101
|
Pająk P, Gałkowska D, Juszczak L, Khachatryan G. Octenyl succinylated potato starch-based film reinforced by honey-bee products: Structural and functional properties. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
102
|
A new method to prepare color-changeable smart packaging films based on the cooked purple sweet potato. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
103
|
Titanium dioxide nanoparticles and elderberry extract incorporated starch based polyvinyl alcohol films as active and intelligent food packaging wraps. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
104
|
Mendes JF, Norcino LB, Manrich A, de Oliveira TJP, Mendes RF, Mattoso LHC. Pectin-based color indicator films incorporated with spray-dried Hibiscus extract microparticles. Food Res Int 2022; 162:111914. [PMID: 36461183 DOI: 10.1016/j.foodres.2022.111914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/18/2022] [Accepted: 09/07/2022] [Indexed: 11/04/2022]
Abstract
Colorimetric films incorporated with anthocyanins as an indicator for freshness monitoring have aroused growing interest recently. The pH-sensing colorimetric film were developed based on pectin (HM), containing aqueous hibiscus extract microparticles (HAE). HAE microparticles were obtained by spray drying with different wall materials (Inulin -IN, maltodextrin- MD and their combination). The films were obtained on large scale by continuous casting. These films were characterized for physicochemical analysis, morphological structure, thermal and barrier properties, antioxidant activity, and color change at different pH. The addition of HAE microparticles caused relevant changes to HM-based films, such as in mechanical behavior and improved barrier property (11-22% WVTR reduction) depending on the type of wall material used and the concentration added. It was verified with the thermal stability of films, with a slight increase being observed. The color variation of smart films was entirely pH-dependent. Overall, the proposed color indicator films showed unique features and functionalities and could be used as an alternative natural pH indicator in smart packaging systems.
Collapse
Affiliation(s)
- Juliana Farinassi Mendes
- National Laboratory of Nanotechnology for Agriculture (LNNA), Embrapa Instrumentation, São Carlos 13560-970, SP, Brazil.
| | - Laís Bruno Norcino
- Graduate Program in Biomaterials Engineering, Federal University of Lavras, Lavras 37200-000, MG, Brazil
| | - Anny Manrich
- National Laboratory of Nanotechnology for Agriculture (LNNA), Embrapa Instrumentation, São Carlos 13560-970, SP, Brazil
| | | | | | | |
Collapse
|
105
|
Kanha N, Osiriphun S, Rakariyatham K, Klangpetch W, Laokuldilok T. On-package indicator films based on natural pigments and polysaccharides for monitoring food quality: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6804-6823. [PMID: 35716018 DOI: 10.1002/jsfa.12076] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 05/12/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
Deterioration of food quality and freshness is mainly due to microbial growth and enzyme activity. Chilled fresh food, especially meat and seafood, as well as pasteurized products, rapidly lose quality and freshness during packing, distribution and storage. Real-time food quality monitoring using on-package indicator films can help consumers make informed purchasing decisions. Interest in the use of intelligent packaging systems for monitoring safety and food quality has increased in recent years. Polysaccharide-based films can be developed into on-package indicator films due to their excellent film-forming properties and biodegradability. Another important component is the use of colorants with visible color changes at various pH levels. Currently, natural pigments are receiving increased attention because of their safety and environmental friendliness. This review highlights the recent findings regarding the role of natural pigments, the effects of incorporating natural pigments and polysaccharides on properties of indicator film, current application and limitations of on-package indicator films based on polysaccharides in some foods, problems and improvement of physical properties and color conversion of indicator film containing natural pigments, and development of polysaccharide-based pH-responsive films. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nattapong Kanha
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | - Sukhuntha Osiriphun
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Innovative Food and Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | - Kanyasiri Rakariyatham
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Innovative Food and Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of High Value Products from Thai Rice and Plants for Health, Chiang Mai University, Chiang Mai, Thailand
| | - Wannaporn Klangpetch
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Innovative Food and Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of High Value Products from Thai Rice and Plants for Health, Chiang Mai University, Chiang Mai, Thailand
| | - Thunnop Laokuldilok
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Innovative Food and Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of High Value Products from Thai Rice and Plants for Health, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
106
|
Plant betalains: Recent applications in food freshness monitoring films. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
107
|
Shaik MI, Azhari MF, Sarbon NM. Gelatin-Based Film as a Color Indicator in Food-Spoilage Observation: A Review. Foods 2022; 11:foods11233797. [PMID: 36496605 PMCID: PMC9739830 DOI: 10.3390/foods11233797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022] Open
Abstract
The color indicator can monitor the quality and safety of food products due to its sensitive nature toward various pH levels. A color indicator helps consumers monitor the freshness of food products since it is difficult for them to depend solely on their appearance. Thus, this review could provide alternative suggestions to solve the food-spoilage determination, especially for perishable food. Usually, food spoilage happens due to protein and lipid oxidation, enzymatic reaction, and microbial activity that will cause an alteration of the pH level. Due to their broad-spectrum properties, natural sources such as anthocyanin, curcumin, and betacyanin are commonly used in developing color indicators. They can also improve the gelatin-based film's morphology and significant drawbacks. Incorporating natural colorants into the gelatin-based film can improve the film's strength, gas-barrier properties, and water-vapor permeability and provide antioxidant and antimicrobial properties. Hence, the color indicator can be utilized as an effective tool to monitor and control the shelf life of packaged foods. Nevertheless, future studies should consider the determination of food-spoilage observation using natural colorants from betacyanin, chlorophyll, and carotenoids, as well as the determination of gas levels in food spoilage, especially carbon dioxide gas.
Collapse
|
108
|
Development of Smart Bilayer Alginate/Agar Film Containing Anthocyanin and Catechin-Lysozyme. Polymers (Basel) 2022; 14:polym14225042. [PMID: 36433169 PMCID: PMC9699012 DOI: 10.3390/polym14225042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Smart packaging can provide real-time information about changes in food quality and impart a protective effect to the food product by using active agents. This study aimed to develop a smart bilayer film (alginate/agar) with a cellulose nanosphere (CNs) from corncob. The bilayer films were prepared using 1.5% (w/w) sodium alginate with 0.25% (w/v) butterfly pea extract incorporated (indicator layer) and 2% (w/w) agar containing 0.5% (w/v) catechin−lysozyme (ratio 1:1) (active layer). The CNs were incorporated into the alginate layer at different concentrations (0, 5, 10, 20, and 30% w/w-based film) in order to improve the film’s properties. The thickness of smart bilayer film dramatically increased with the increase of CNs concentration. The inclusion of CNs reduced the transparency and elongation at break of the smart bilayer film while increasing its tensile strength (p < 0.05). The integration of CNs did not significantly affect the solubility and water vapor permeability of the smart bilayer film (p > 0.05). The smart bilayer film displayed a blue film with a glossy (without CNs) or matte surface (with CNs). The developed bilayer film shows excellent pH sensitivity, changing color at a wide range of pHs, and has a good response to ammonia and acetic acid gases. The film possesses exceptional antimicrobial and antioxidant activities. The integration of CNs did not influence the antibacterial activity of the film, despite the presence of a higher level of DPPH in film containing CNs. The smart bilayer film was effectively used to monitor shrimp freshness. These findings imply that smart bilayer films with and without CNs facilitate food safety and increase food shelf life by monitoring food quality.
Collapse
|
109
|
Cui D, Shi X, Liu W, Zheng K, Yin G, Wang J, Han G, Wan Y, Wang J, Li W. Investigation of the Neutralizing Behaviors of Cement-Based Materials Using a New pH Indicator Formulated from February Orchid Petals. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8033. [PMID: 36431516 PMCID: PMC9699292 DOI: 10.3390/ma15228033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Investigation of the neutralizing behavior of concrete is essential, as it can help reveal the durability properties of concrete structures. In this paper, anthocyanin extracted from February orchid (F. orchid) petals was used to characterize the neutralized (carbonated, leached, and sulfate-attacked) regions of cement-based materials. The durability of F. orchid indicator was evaluated through comparison between discoloring behaviors of fresh and aged F. orchid indicators, and the capability of the new indicator in neutralization characterization was then verified by combining indicator (phenolphthalein, malachite green, indigo carmine, or thymolphthalein) spray, X-ray computed tomography (CT), and the X-ray attenuation method (XRAM). The result in the present study showed that, with a lower color intensity as compared to phenolphthalein/thymolphthalein, F. orchid indicator was less preferable in studying carbonation but a better choice in characterizing leaching and sulfate attack of cement-based materials. In addition, a sharp carbonation front was revealed in the present study, suggesting that the carbonation process in this study was controlled mainly by diffusion. For leaching and sulfate attack, the broader fronts revealed suggested that both processes were co-controlled by diffusion and reaction. The current work serves as a 'leap' toward the application of natural pigments in analyzing the durability of concrete structures.
Collapse
Affiliation(s)
- Dong Cui
- School of Science, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiaohan Shi
- School of Science, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Wenya Liu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Keren Zheng
- Department of Civil Engineering, Central South University, Changsha 410075, China
| | - Guangji Yin
- School of Civil and Transportation Engineering, Ningbo University of Technology, Ningbo 315211, China
| | - Jing Wang
- School of Science, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Guantong Han
- School of Science, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yi Wan
- School of Science, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Junsong Wang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Wenting Li
- Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, Tongji University, Shanghai 201804, China
| |
Collapse
|
110
|
Viscusi G, Lamberti E, Gerardi C, Giovinazzo G, Gorrasi G. Encapsulation of Grape ( Vitis vinifera L.) Pomace Polyphenols in Soybean Extract-Based Hydrogel Beads as Carriers of Polyphenols and pH-Monitoring Devices. Gels 2022; 8:734. [PMID: 36421556 PMCID: PMC9690163 DOI: 10.3390/gels8110734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 05/12/2024] Open
Abstract
In this work, novel bio-based hydrogel beads were fabricated by using soybean extract as raw waste material loaded with Lambrusco extract, an Italian grape cultivar. The phenolic profile and the total amount of anthocyanins from the Lambrusco extract were evaluated before encapsulating it in soybean extract-based hydrogels produced through an ionotropic gelation technique. The physical properties of the produced hydrogel beads were then studied in terms of their morphological and spectroscopic properties. Swelling degree was evaluated in media with different pH levels. The release kinetics of Lambrusco extract were then studied over time as a function of pH of the release medium, corroborating that the acidity/basicity could affect the release rate of encapsulated molecules, as well as their counter-diffusion. The pH-sensitive properties of wine extract were studied through UV-Vis spectroscopy while the colorimetric responses of loaded hydrogel beads were investigated in acidic and basic solutions. Finally, in the framework of circular economy and sustainability, the obtained data open routes to the design and fabrication of active materials as pH-indicator devices from food industry by-products.
Collapse
Affiliation(s)
- Gianluca Viscusi
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Elena Lamberti
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Carmela Gerardi
- National Research Council-Institute of Science of Food Production (CNR-ISPA), Via Monteroni, 73100 Lecce, Italy
| | - Giovanna Giovinazzo
- National Research Council-Institute of Science of Food Production (CNR-ISPA), Via Monteroni, 73100 Lecce, Italy
| | - Giuliana Gorrasi
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| |
Collapse
|
111
|
Chen J, Zheng Y, Kong Q, Sun Z, Liu X. A Wechat miniprogram (‘Fresh color’) based on smart phone to indicate the freshness of Atlantic salmon (Salmo salar L.) and oysters on site by detection of the color changes of curcumin films. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
112
|
Applications of natural polysaccharide-based pH-sensitive films in food packaging: Current research and future trends. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
113
|
Emam HE, Abdelhameed RM. Separation of anthocyanin from roselle extract by cationic nano-rode ZIF-8 constructed using removable template. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
114
|
Yang Y, Yu X, Zhu Y, Zeng Y, Fang C, Liu Y, Hu S, Ge Y, Jiang W. Preparation and application of a colorimetric film based on sodium alginate/sodium carboxymethyl cellulose incorporated with rose anthocyanins. Food Chem 2022; 393:133342. [PMID: 35661468 DOI: 10.1016/j.foodchem.2022.133342] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022]
Abstract
To monitor the freshness of Penaeus vannamei during storage, a colorimetric film based on sodium alginate/sodium carboxymethyl cellulose incorporated with rose anthocyanins extract (RAE) was prepared. The results showed that the incorporation of RAE increased moisture content, water vapor permeability, and water contact angle of the colorimetric film. FTIR, XRD spectra, and SEM demonstrated that RAE had good compatibility with the film-forming substrate. The colorimetric film presented obvious color variation in the pH range of 2.0-12.0 and was sensitive to volatile ammonia. The colorimetric film exhibited a visual color change from pink to pale yellow to yellowish green during the storage of Penaeus vannamei at 4 °C. Significant correlations were observed between the color change of colorimetric film (ΔE) and the pH value or TVB-N content of Penaeus vannamei (p < 0.05). Therefore, the colorimetric film shows great application potential to monitor the freshness of shrimp as intelligent packaging.
Collapse
Affiliation(s)
- Yang Yang
- Key Laboratory of Key Technical Factors in Zhejiang Seafood Health Hazards, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xuena Yu
- Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yanling Zhu
- Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yan Zeng
- Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan 316022, China
| | - Chunshan Fang
- Key Laboratory of Key Technical Factors in Zhejiang Seafood Health Hazards, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yu Liu
- Key Laboratory of Key Technical Factors in Zhejiang Seafood Health Hazards, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan 316022, China
| | - Shiwei Hu
- Key Laboratory of Key Technical Factors in Zhejiang Seafood Health Hazards, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yaming Ge
- Key Laboratory of Key Technical Factors in Zhejiang Seafood Health Hazards, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan 316022, China
| | - Wei Jiang
- Key Laboratory of Key Technical Factors in Zhejiang Seafood Health Hazards, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
115
|
A Facile Strategy for Development of pH-Sensing Indicator Films Based on Red Cabbage Puree and Polyvinyl Alcohol for Monitoring Fish Freshness. Foods 2022; 11:foods11213371. [PMID: 36359984 PMCID: PMC9653917 DOI: 10.3390/foods11213371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/13/2022] [Accepted: 10/24/2022] [Indexed: 12/02/2022] Open
Abstract
This study aimed to develop a novel pH-sensing biopolymer film based on red cabbage puree (RCP) incorporated with polyvinyl alcohol (PVA), which was utilized for monitoring fish freshness during storage at 25 °C. A homogenized RCP suspension with a mean particle size of 12.86 ± 0.03 μm and a total anthocyanin concentration of 292.17 ± 2.65 mg/L was directly used as a film-forming substance and anthocyanin source to blend with PVA, showing visual changes in color and ultraviolet-visible spectra within a pH of 2–12. Rheological and microstructural studies certified the strong interactions and good compatibility between the RCP and PVA, resulting in better mechanical properties and water resistance of the composite film than those of a pure RCP film, but without affecting its pH sensitivity. When used for fish freshness monitoring at 25 °C, the developed RCP/PVA film presented visible color differences from purple to yellow, which corresponded to the spoilage threshold of the total volatile basic nitrogen and the total viable count in fish samples. The study highlights that anthocyanin-rich purees of fruits and vegetables, in this case red cabbage puree, can be fully utilized to develop eco-friendly pH-sensing indicator films for intelligent food packaging.
Collapse
|
116
|
Development of an Indicator Film Based on Cassava Starch-Chitosan Incorporated with Red Dragon Fruit Peel Anthocyanin Extract. Polymers (Basel) 2022; 14:polym14194142. [PMID: 36236090 PMCID: PMC9573306 DOI: 10.3390/polym14194142] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
The increase in new technology and consumer demand for healthy and safe food has led to the development of smart packaging to help consumers understand food conditions in real time. The incorporation of red dragon fruit peel anthocyanin into cassava starch and chitosan films was used in this study as a color indicator to monitor food conditions. This indicator film was generated using the solvent-casting method. The mechanical, morphological, and physicochemical characterizations of the film were studied, and food freshness monitoring was carried out. The results showed that adding red dragon fruit peel anthocyanin increased up to 94.44% of the antioxidant activity. It also improved its flexibility, indicated by the lowest tensile strength (3.89 ± 0.15 MPa) and Young's modulus (0.14 ± 0.01 MPa) and the highest elongation at break (27.62 ± 0.57%). The indicator film was sensitive to pH, which was indicated by its color change from red to yellow as pH increased. The color of the film also changed when it was used to test the freshness of packaged shrimp at both room and chiller temperatures. According to the results, the indicator film based on cassava starch-chitosan incorporated with red dragon fruit peel anthocyanin showed its potential as a smart packaging material.
Collapse
|
117
|
Kossyvaki D, Contardi M, Athanassiou A, Fragouli D. Colorimetric Indicators Based on Anthocyanin Polymer Composites: A Review. Polymers (Basel) 2022; 14:polym14194129. [PMID: 36236076 PMCID: PMC9571802 DOI: 10.3390/polym14194129] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
This review explores the colorimetric indicators based on anthocyanin polymer composites fabricated in the last decade, in order to provide a comprehensive overview of their morphological and compositional characteristics and their efficacy in their various application fields. Notably, the structural properties of the developed materials and the effect on their performance will be thoroughly and critically discussed in order to highlight their important role. Finally, yet importantly, the current challenges and the future perspectives of the use of anthocyanins as components of colorimetric indicator platforms will be highlighted, in order to stimulate the exploration of new anthocyanin sources and the in-depth investigation of all the possibilities that they can offer. This can pave the way for the development of high-end materials and the expansion of their use to new application fields.
Collapse
Affiliation(s)
- Despoina Kossyvaki
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Dipartimento di Informatica Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS), Università degli Studi di Genova, Via Opera Pia 13, 16145 Genova, Italy
| | - Marco Contardi
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | | | - Despina Fragouli
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Correspondence:
| |
Collapse
|
118
|
Roy S, Rhim JW. Starch/agar-based functional films integrated with enoki mushroom-mediated silver nanoparticles for active packaging applications. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101867] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
119
|
López-Díaz AS, Méndez-Lagunas LL. Mucilage-Based Films for Food Applications. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2123501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- A. S. López-Díaz
- Instituto Politécnico Nacional, CIIDIR-Oaxaca, Santa Cruz Xoxocotlán, Oaxaca, México
| | - L. L. Méndez-Lagunas
- Instituto Politécnico Nacional, CIIDIR-Oaxaca, Santa Cruz Xoxocotlán, Oaxaca, México
| |
Collapse
|
120
|
Che Hamzah NH, Khairuddin N, Muhamad II, Hassan MA, Ngaini Z, Sarbini SR. Characterisation and Colour Response of Smart Sago Starch-Based Packaging Films Incorporated with Brassica oleracea Anthocyanin. MEMBRANES 2022; 12:913. [PMID: 36295672 PMCID: PMC9607244 DOI: 10.3390/membranes12100913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
To meet the need for food products to be safe and fresh, smart food packaging that can monitor and give information about the quality of packaged food has been developed. In this study, pH-sensitive films with sago starch and various anthocyanin concentrations of Brassica oleracea also known as red cabbage anthocyanin (RCA) at 8, 10, 12, and 14% (w/v) were manufactured using the solvent casting process. Investigation of the physicochemical, mechanical, thermal, and morphological characteristics of the films was performed and analysed. The response of these materials against pH changes was evaluated with buffers of different pH. When the films were exposed to a series of pH buffers (pH 3, 5, 9, 11, and 13), the RCA-associated films displayed a spectacular colour response. In addition, the ability of the starch matrix to overcome the leaching and release of anthocyanins was investigated. Higher concentrations of RCA can maintain the colour difference of films after being immersed in a series of buffer solutions ranging from acidic to basic conditions. Other than that, incorporating RCA extracts into the starch formulation increased the thickness whereas the water content, swelling degree, tensile strength, and elongation at break decreased as compared to films without RCA. The immobilisation of anthocyanin into the film was confirmed by the FTIR measurements. The surface patterns of films were heterogeneous and irregular due to the presence of RCA extract aggregates, which increased as the extract concentration enhanced. However, this would not affect the properties of films. An increase in thermal stability was noted for the anthocyanin-containing films at the final stage of degradation in TGA analysis. It is concluded that RCA and sago starch formulation has great potential to be explored for food packaging purposes.
Collapse
Affiliation(s)
- Nurul Husna Che Hamzah
- Department of Science and Technology, Faculty of Humanities, Management, and Science, Universiti Putra Malaysia, Bintulu Sarawak Campus, Bintulu 97008, Malaysia
| | - Nozieana Khairuddin
- Department of Science and Technology, Faculty of Humanities, Management, and Science, Universiti Putra Malaysia, Bintulu Sarawak Campus, Bintulu 97008, Malaysia
| | - Ida Idayu Muhamad
- Department of Bioprocess and Polymer Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Mohd Ali Hassan
- Department of Bioprocess Technology, Faculty of Biotechnology and Science Biomolecule, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Zainab Ngaini
- Department of Chemistry, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan 94300, Malaysia
| | - Shahrul Razid Sarbini
- Department of Crop Science, Faculty of Agricultural Science and Forestry, Universiti Putra Malaysia, Bintulu Sarawak Campus, Bintulu 97008, Malaysia
| |
Collapse
|
121
|
Recent Advances and Applications in Starch for Intelligent Active Food Packaging: A Review. Foods 2022; 11:foods11182879. [PMID: 36141005 PMCID: PMC9498516 DOI: 10.3390/foods11182879] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/10/2022] [Accepted: 09/11/2022] [Indexed: 12/22/2022] Open
Abstract
At present, the research and innovation of packaging materials are in a period of rapid development. Starch, a sustainable, low-cost, and abundant polymer, can develop environmentally friendly packaging alternatives, and it possesses outstanding degradability and reproducibility in terms of improving environmental issues and reducing oil resources. However, performance limitations, such as less mechanical strength and lower barrier properties, limit the application of starch in the packaging industry. The properties of starch-based films can be improved by modifying starch, adding reinforcing groups, or blending with other polymers. It is of significance to study starch as an active and intelligent packaging option for prolonging shelf life and monitoring the extent of food deterioration. This paper reviews the development of starch-based films, the current methods to enhance the mechanical and barrier properties of starch-based films, and the latest progress in starch-based activity, intelligent packaging, and food applications. The potential challenges and future development directions of starch-based films in the food industry are also discussed.
Collapse
|
122
|
Intelligent packaging films incorporated with anthocyanins-loaded ovalbumin-carboxymethyl cellulose nanocomplexes for food freshness monitoring. Food Chem 2022; 387:132908. [DOI: 10.1016/j.foodchem.2022.132908] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/24/2022] [Accepted: 04/04/2022] [Indexed: 01/11/2023]
|
123
|
Păușescu I, Dreavă DM, Bîtcan I, Argetoianu R, Dăescu D, Medeleanu M. Bio-Based pH Indicator Films for Intelligent Food Packaging Applications. Polymers (Basel) 2022; 14:polym14173622. [PMID: 36080695 PMCID: PMC9460188 DOI: 10.3390/polym14173622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
The widespread concerns about the environmental problems caused by conventional plastic food packaging and food waste led to a growing effort to develop active and intelligent systems produced from renewable biodegradable polymers for food packaging applications. Among intelligent systems, the most widely used are pH indicators, which are generally based on a pH-sensitive dye incorporated into a solid support. The objective of this study was to develop new intelligent systems based on renewable biodegradable polymers and a new bio-inspired pH-sensitive dye. The structure of the dye was elucidated through FT-IR and 1D and 2D NMR spectroscopic analyses. UV-VIS measurements of the dye solutions at various pH values proved their halochromic properties. Their toxicity was evaluated through theoretical calculations, and no toxicity risks were found. The new anthocyanidin was used for the development of biodegradable intelligent systems based on chitosan blends. The obtained polymeric films were characterized through UV-VIS and FT-IR spectroscopy. Their thermal properties were assessed through a thermogravimetric analysis, which showed a better stability of chitosan–PVA–dye and chitosan–starch–dye films compared to those of chitosan–cellulose–dye films and the dye itself. The films’ sensitivity to pH variations was evaluated through immersion in buffer solutions with pH values ranging from 2 to 12, and visible color changes were observed.
Collapse
|
124
|
Zheng T, Tang P, Li G. Development of a pH-sensitive film based on collagen/chitosan/ZnO nanoparticles and mulberry extract for pork freshness monitoring. Food Chem 2022; 402:134428. [DOI: 10.1016/j.foodchem.2022.134428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/17/2022] [Accepted: 09/25/2022] [Indexed: 11/25/2022]
|
125
|
Oladzadabbasabadi N, Mohammadi Nafchi A, Ghasemlou M, Ariffin F, Singh Z, Al-Hassan A. Natural anthocyanins: Sources, extraction, characterization, and suitability for smart packaging. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
126
|
Physicochemical properties and solubility of sweet potato starch-based edible films. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
127
|
Özünlü O, Ergezer H. Development of Novel Paper‐based Colorimetric Indicator Labels for Monitoring Shelf Life of Chicken Breast Fillets. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Orhan Özünlü
- University of Pamukkale, Department Food Engineering Denizli Turkey
| | - Haluk Ergezer
- University of Pamukkale, Department Food Engineering Denizli Turkey
| |
Collapse
|
128
|
Liu B, Yang H, Zhu C, Xiao J, Cao H, Simal-Gandara J, Li Y, Fan D, Deng J. A comprehensive review of food gels: formation mechanisms, functions, applications, and challenges. Crit Rev Food Sci Nutr 2022; 64:760-782. [PMID: 35959724 DOI: 10.1080/10408398.2022.2108369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Gels refer to the soft and flexible macromolecular polymeric materials retaining a large amount of water or biofluids in their three-dimensional network structure. Gels have attracted increasing interest in the food discipline, especially proteins and polysaccharides, due to their good biocompatibility, biodegradability, nutritional properties, and edibility. With the advancement of living standards, people's demand for nutritious, safe, reliable, and functionally diverse food and even personalized food has increased. As a result, gels exhibiting unique advantages in food application will be of great significance. However, a comprehensive review of functional hydrogels as food gels is still lacking. Here, we comprehensively review the gel-forming mechanisms of food gels and systematically classify them. Moreover, the potential of hydrogels as functional foods in different types of food areas is summarized, with a special focus on their applications in food packaging, satiating gels, nutrient delivery systems, food coloring adsorption, and food safety monitoring. Additionally, the key scientific issues for future food gel research, with specific reference to future novel food designs, mechanisms between food components and matrices, food gel-human interactions, and food gel safety, are discussed. Finally, the future directions of hydrogels for food science and technology are summarized.
Collapse
Affiliation(s)
- Bin Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China
| | - Haixia Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Chenhui Zhu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Hui Cao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Yujin Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China
| | - Jianjun Deng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China
| |
Collapse
|
129
|
Application of pH-indicating film containing blue corn anthocyanins on corn starch/polyvinyl alcohol as substrate for preservation of tilapia. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01531-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
130
|
Intelligent pH-Sensitive Indicator Based on Chitosan@PVP Containing Extracted Anthocyanin and Reinforced with Sulfur Nanoparticles: Structure, Characteristic and Application in Food Packaging. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02445-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
131
|
Acylation of Anthocyanins and Their Applications in the Food Industry: Mechanisms and Recent Research Advances. Foods 2022; 11:foods11142166. [PMID: 35885408 PMCID: PMC9316909 DOI: 10.3390/foods11142166] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 02/05/2023] Open
Abstract
Anthocyanins are extensively used as natural non-toxic compounds in the food industry due to their unique biological properties. However, the instability of anthocyanins greatly affects their industrial application. Studies related to acylated anthocyanins with higher stability and increased solubility in organic solvents have shown that the acylation of anthocyanins can improve the stability and fat solubility of anthocyanins. However, relevant developments in research regarding the mechanisms of acylation and applications of acylated anthocyanins are scarcely reviewed. This review aims to provide an overview of the mechanisms of acylation and the applications of acylated anthocyanins in the food industry. In the review, acylation methods, including biosynthesis, semi-biosynthesis, and chemical and enzymatic acylation, are elaborated, physicochemical properties and biological activities of acylated anthocyanins are highlighted, and their application as colourants, functionalizing agents, intelligent indicators, and novel packaging materials in the food industry are summarized. The limitations encountered in the preparation of acylated anthocyanins and future prospects, their applications are also presented. Acylated anthocyanins present potential alternatives to anthocyanins in the food industry due to their functions and advantages as compared with non-acylated analogues. It is hoped that this review will offer further information on the effective synthesis and encourage commercialization of acylated anthocyanins in the food industry.
Collapse
|
132
|
Zhai X, Sun Y, Cen S, Wang X, Zhang J, Yang Z, Li Y, Wang X, Zhou C, Arslan M, Li Z, Shi J, Huang X, Zou X, Gong Y, Holmes M, Povey M. Anthocyanins-encapsulated 3D-printable bigels: A colorimetric and leaching-resistant volatile amines sensor for intelligent food packaging. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
133
|
Emerging Approach for Fish Freshness Evaluation: Principle, Application and Challenges. Foods 2022; 11:foods11131897. [PMID: 35804712 PMCID: PMC9265959 DOI: 10.3390/foods11131897] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 02/06/2023] Open
Abstract
Affected by micro-organisms and endogenous enzymes, fish are highly perishable during storage, processing and transportation. Efficient evaluation of fish freshness to ensure consumer safety and reduce raw material losses has received an increasing amount of attention. Several of the conventional freshness assessment techniques have plenty of shortcomings, such as being destructive, time-consuming and laborious. Recently, various sensors and spectroscopic techniques have shown great potential due to rapid analysis, low sample preparation and cost-effectiveness, and some methods are especially non-destructive and suitable for online or large-scale operations. Non-destructive techniques typically respond to characteristic substances produced by fish during spoilage without destroying the sample. In this review, we summarize, in detail, the principles and applications of emerging approaches for assessing fish freshness including visual indicators derived from intelligent packaging, active sensors, nuclear magnetic resonance (NMR) and optical spectroscopic techniques. Recent developments in emerging technologies have demonstrated their advantages in detecting fish freshness, but some challenges remain in popularization, optimizing sensor selectivity and sensitivity, and the development of algorithms and chemometrics in spectroscopic techniques.
Collapse
|
134
|
Liu D, Zhang C, Pu Y, Chen S, Liu L, Cui Z, Zhong Y. Recent Advances in pH-Responsive Freshness Indicators Using Natural Food Colorants to Monitor Food Freshness. Foods 2022; 11:foods11131884. [PMID: 35804701 PMCID: PMC9265506 DOI: 10.3390/foods11131884] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 02/05/2023] Open
Abstract
Recently, due to the enhancement in consumer awareness of food safety, considerable attention has been paid to intelligent packaging that displays the quality status of food through color changes. Natural food colorants show useful functionalities (antibacterial and antioxidant activities) and obvious color changes due to their structural changes in different acid and alkali environments, which could be applied to detect these acid and alkali environments, especially in the preparation of intelligent packaging. This review introduces the latest research on the progress of pH-responsive freshness indicators based on natural food colorants and biodegradable polymers for monitoring packaged food quality. Additionally, the current methods of detecting food freshness, the preparation methods for pH-responsive freshness indicators, and their applications for detecting the freshness of perishable food are highlighted. Subsequently, this review addresses the challenges and prospects of pH-responsive freshness indicators in food packaging, to assist in promoting their commercial application.
Collapse
|
135
|
Romruen O, Kaewprachu P, Karbowiak T, Rawdkuen S. Development of Intelligent Gelatin Films Incorporated with Sappan ( Caesalpinia sappan L.) Heartwood Extract. Polymers (Basel) 2022; 14:2487. [PMID: 35746061 PMCID: PMC9228210 DOI: 10.3390/polym14122487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 01/27/2023] Open
Abstract
This study aimed to develop intelligent gelatin films incorporated with sappan (Caesalpinia sappan L.) heartwood extracts (SE) and characterize their properties. The intelligent gelatin film was prepared through a casting method from gelatin (3%, w/v), glycerol (25% w/w, based on gelatin weight), and SE at various concentrations (0, 0.25, 0.50, 0.75, and 1.00%, w/v). The thickness of the developed films ranged from 43 to 63 μm. The lightness and transparency of the films decreased with the increasing concentration of SE (p < 0.05). All concentrations of gelatin films incorporated with SE exhibited great pH sensitivity, as indicated by changes in film color at different pH levels (pH 1−12). Significant decreases in tensile strength were observed at 1.00% SE film (p < 0.05). The addition of SE reduced gelatin films’ solubility and water vapor permeability (p < 0.05). The chemical and physical interactions between gelatin and SE affected the absorption peaks in FTIR spectra. SE was affected by increased total phenolic content (TPC) and antioxidant activity of the gelatin film, and the 1.00% SE film showed the highest TPC (15.60 mg GAE/g db.) and antioxidant activity (DPPH: 782.71 μM Trolox/g db. and FRAP: 329.84 mM/g db.). The gelatin films combined with SE could inhibit S. aureus and E. coli, while the inhibition zone was not observed for E. coli; it only affected the film surface area. The result suggested that gelatin films incorporated with SE can be used as an intelligent film for pH indicators and prolong the shelf life of food due to their antioxidant and antimicrobial activities.
Collapse
Affiliation(s)
- Orapan Romruen
- Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand;
| | - Pimonpan Kaewprachu
- College of Maritime Studies and Management, Chiang Mai University, Samut Sakhon 74000, Thailand;
- Cluster of Innovative Food and Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Thomas Karbowiak
- UMR PAM-Food and Wine Science & Technology, Agrosup Dijon, Université de Bourgogne Franche-Comté, Esplanade Erasme, 21000 Dijon, France;
| | - Saroat Rawdkuen
- Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand;
- Unit of Innovative Food Packaging and Biomaterials, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
| |
Collapse
|
136
|
Gomes V, Pires AS, Mateus N, de Freitas V, Cruz L. Pyranoflavylium-cellulose acetate films and the glycerol effect towards the development of pH-freshness smart label for food packaging. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
137
|
Novel hydrophobic colorimetric films based on ethylcellulose/castor oil/anthocyanins for pork freshness monitoring. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
138
|
Vijayakumar Raja VAN, Maria Leena M, Moses J, Anandharamakrishnan C. Co-electrospun-electrosprayed gelatin-ethyl cellulose nanocomposite pH-sensitive membrane for food quality applications. Food Chem 2022; 394:133420. [DOI: 10.1016/j.foodchem.2022.133420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/17/2022] [Accepted: 06/05/2022] [Indexed: 11/17/2022]
|
139
|
Almasi H, Forghani S, Moradi M. Recent advances on intelligent food freshness indicators; an update on natural colorants and methods of preparation. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100839] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
140
|
Characterization of active and pH-sensitive poly(lactic acid) (PLA)/nanofibrillated cellulose (NFC) films containing essential oils and anthocyanin for food packaging application. Int J Biol Macromol 2022; 212:220-231. [PMID: 35597382 DOI: 10.1016/j.ijbiomac.2022.05.116] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 02/02/2023]
Abstract
Active and pH-sensitive films of poly(lactic acid) (PLA)/nanofibrillated cellulose (NFC) have been fabricated and tested. The PLA and PLA/NFC films with 1.5% NFC were prepared via solvent casting method, with different loadings of essential oil (EO), including thymol and curry, being added at 5, 10, and 15%. The fixed content of anthocyanin powder (1%) was incorporated into the films as a pH indicator. The active PLA and PLA/NFC films were characterised on their physical, mechanical, thermal, and biodegradation properties. The addition of NFC reduced the tensile strength but increased the flexibility of films due to the plasticizing effect of EOs. The PLA/EO and PLA/NFC/EO films containing curry demonstrated a slightly higher strength than the films with thymol. The flexibility of films was increased at higher loading of EO regardless of the types of EO. The thermal profile demonstrated that the neat PLA film had a higher maximum degradation temperature than the active PLA/EO and PLA/NFC/EO films. The active PLA/EO and PLA/NFC/EO films containing anthocyanin successfully changed its colour in pH 2.0 and 14.0. The PLA/NFC films with thymol and anthocyanin formulation could inhibit fungus growth better in the cherry tomato sample than the PLA/NFC films with curry and anthocyanin.
Collapse
|
141
|
Koczoń P, Josefsson H, Michorowska S, Tarnowska K, Kowalska D, Bartyzel BJ, Niemiec T, Lipińska E, Gruczyńska-Sękowska E. The Influence of the Structure of Selected Polymers on Their Properties and Food-Related Applications. Polymers (Basel) 2022; 14:polym14101962. [PMID: 35631843 PMCID: PMC9146511 DOI: 10.3390/polym14101962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/14/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
Every application of a substance results from the macroscopic property of the substance that is related to the substance’s microscopic structure. For example, the forged park gate in your city was produced thanks to the malleability and ductility of metals, which are related to the ability of shifting of layers of metal cations, while fire extinguishing powders use the high boiling point of compounds related to their regular ionic and covalent structures. This also applies to polymers. The purpose of this review is to summarise and present information on selected food-related biopolymers, with special attention on their respective structures, related properties, and resultant applications. Moreover, this paper also highlights how the treatment method used affects the structure, properties, and, hence, applications of some polysaccharides. Despite a strong focus on food-related biopolymers, this review is addressed to a broad community of both material engineers and food researchers.
Collapse
Affiliation(s)
- Piotr Koczoń
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (P.K.); (K.T.); (D.K.)
| | | | - Sylwia Michorowska
- Department of Bioanalysis and Drug Analysis, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Katarzyna Tarnowska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (P.K.); (K.T.); (D.K.)
| | - Dorota Kowalska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (P.K.); (K.T.); (D.K.)
| | - Bartłomiej J. Bartyzel
- Department of Morphological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland;
| | - Tomasz Niemiec
- Animals Nutrition Department, Institute of Animal Sciences, Warsaw University of Life Sciences, 02-786 Warsaw, Poland;
| | - Edyta Lipińska
- Department of Biotechnology, Microbiology and Food Evaluation, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland;
| | - Eliza Gruczyńska-Sękowska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (P.K.); (K.T.); (D.K.)
- Correspondence:
| |
Collapse
|
142
|
Yong H, Liu J, Kan J, Liu J. Active/intelligent packaging films developed by immobilizing anthocyanins from purple sweetpotato and purple cabbage in locust bean gum, chitosan and κ-carrageenan-based matrices. Int J Biol Macromol 2022; 211:238-248. [PMID: 35561863 DOI: 10.1016/j.ijbiomac.2022.05.046] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 11/28/2022]
Abstract
Active/intelligent packaging films were developed by incorporating purple sweetpotato anthocyanins (PSA) and purple cabbage anthocyanins (PCA) in locust bean gum/polyvinyl alcohol (LP), chitosan/polyvinyl alcohol (CP) and κ-carrageenan/polyvinyl alcohol (KP) film matrices. The joint effect of anthocyanins' source and polysaccharides' nature on the structure and functionality of the films was determined. Results showed PSA and PCA interacted with film matrices through hydrogen bonds and/or electrostatic interactions, resulting in improved film uniformity. PSA and PCA did not remarkably alter the water vapor permeability and tensile strength of the films; however, significantly improved the light barrier ability, antioxidant activity, pH-sensitivity and ammonia-sensitivity of films. For the films containing the same anthocyanins (PSA or PCA), LP-based films had relatively higher light barrier ability and storage stability, while CP-based had relatively weaker color changeable ability. When PSA and PCA were immobilized in the same film matrix, the films containing PCA had higher light barrier ability and antioxidant activity than the films containing PSA. Among the films, LP-PCA film exhibited a good potential to monitor the freshness of shrimp. Results suggested the structure and functionality of the films were influenced by the source of anthocyanins and the nature of polysaccharides.
Collapse
Affiliation(s)
- Huimin Yong
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Jing Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Juan Kan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, PR China.
| |
Collapse
|
143
|
Thakur A, Devi P. A Comprehensive Review on Water Quality Monitoring Devices: Materials Advances, Current Status, and Future Perspective. Crit Rev Anal Chem 2022; 54:193-218. [PMID: 35522585 DOI: 10.1080/10408347.2022.2070838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Water quality monitoring has become more critical in recent years to ensure the availability of clean and safe water from natural aquifers and to understand the evolution of water contaminants across time and space. The conventional water monitoring techniques comprise of sample collection, preservation, preparation, tailed by laboratory testing and analysis with cumbersome wet chemical routes and expensive instrumentation. Despite the high accuracy of these methods, the high testing costs, laborious procedures, and maintenance associated with them don't make them lucrative for end end-users and field testing. As the participation of ultimate stakeholders, that is, common man for water quality and quantity can play a pivotal role in ensuring the sustainability of our aquifers, thus it is essential to develop and deploy portable and user-friendly technical systems for monitoring water sources in real-time or on-site. The present review emphasizes here on possible approaches including optical (absorbance, fluorescence, colorimetric, X-ray fluorescence, chemiluminescence), electrochemical (ASV, CSV, CV, EIS, and chronoamperometry), electrical, biological, and surface-sensing (SPR and SERS), as candidates for developing such platforms. The existing developments, their success, and bottlenecks are discussed in terms of various attributes of water to escalate the essentiality of water quality devices development meeting ASSURED criterion for societal usage. These platforms are also analyzed in terms of their market potential, advancements required from material science aspects, and possible integration with IoT solutions in alignment with Industry 4.0 for environmental application.
Collapse
Affiliation(s)
- Anupma Thakur
- Materials Science and Sensor Application, CSIR-Central Scientific Instruments Organisation, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pooja Devi
- Materials Science and Sensor Application, CSIR-Central Scientific Instruments Organisation, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
144
|
Properties and Applications of Intelligent Packaging Indicators for Food Spoilage. MEMBRANES 2022; 12:membranes12050477. [PMID: 35629803 PMCID: PMC9145781 DOI: 10.3390/membranes12050477] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 02/01/2023]
Abstract
Food packaging plays a vital role in the food supply chain by acting as an additional layer to protect against food contamination, but the main function of traditional conventional packaging is only to isolate food from the outside environment, and cannot provide related information about food spoilage. Intelligent packaging can feel, inspect, and record external or internal changes in food products to provide further information about food quality. Importantly, intelligent packaging indicators will account for a significant proportion of the food industry’s production, with promising application potential. In this review, we mainly summarize and review the upcoming progress in the classification, preparation, and application of food packaging indicators. Equally, the feasibility of 3D printing in the preparation of intelligent food packaging indicators is also discussed in detail, as well as the limitations and future directions of smart food packaging. Taken together, the information supported in this paper provides new insights into monitoring food spoilage and food quality.
Collapse
|
145
|
Kilic B, Dogan V, Kilic V, Kahyaoglu LN. Colorimetric food spoilage monitoring with carbon dot and UV light reinforced fish gelatin films using a smartphone application. Int J Biol Macromol 2022; 209:1562-1572. [PMID: 35469948 DOI: 10.1016/j.ijbiomac.2022.04.119] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/12/2022] [Accepted: 04/17/2022] [Indexed: 02/07/2023]
Abstract
The objective of this study was to develop novel colorimetric films for food freshness monitoring. UV light irradiation (365 nm) and carbon dots (CDs) were tested as the potential crosslinkers in the fabrication of anthocyanins doped fish gelatin (FG) films. The effect of crosslinkers on the optical, surface, structural, barrier and mechanical properties of FG films was investigated. The incorporation of CD under UV irradiation improved the tested properties of FG films. The kinetic colorimetric responses of FG films against ammonia vaporwere studied to simulate the food spoilage and determine the ammonia sensitivity of the films. Among the tested films, UV-treated FG films containing 100 mg/l (FG-UV-CD100) indicated the best properties. Later, the color difference of FG-UV-CD100 films was observed to correlate well with microbial growth and TVB-N release in skinless chicken breast samples. At the same time, a custom-designed smartphone application (SmartFood) was also developed to be used with the FG-UV-CD100 film for quantitative estimation of food freshness in real-time. The proposed food freshness monitoring platform reveals a great potential to minimize global food waste and the outbreak of foodborne illness.
Collapse
Affiliation(s)
- Beyza Kilic
- Department of Food Engineering, Middle East Technical University, 06800 Ankara, Turkey
| | - Vakkas Dogan
- Department of Electrical and Electronics Engineering, Izmir Katip Celebi University, 35620 Izmir, Turkey
| | - Volkan Kilic
- Department of Electrical and Electronics Engineering, Izmir Katip Celebi University, 35620 Izmir, Turkey
| | | |
Collapse
|
146
|
Gao R, Hu H, Shi T, Bao Y, Sun Q, Wang L, Ren Y, Jin W, Yuan L. Incorporation of gelatin and Fe 2+ increases the pH-sensitivity of zein-anthocyanin complex films used for milk spoilage detection. Curr Res Food Sci 2022; 5:677-686. [PMID: 35434649 PMCID: PMC9011025 DOI: 10.1016/j.crfs.2022.03.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/10/2022] [Accepted: 03/25/2022] [Indexed: 10/26/2022] Open
Abstract
In this study, blueberry anthocyanins, gelatin and Fe2+ were incorporated into zein matrix via electrospinning method to prepare colorimetric indicator films for monitoring milk freshness. Gelatin and Fe2+ were incorporated into the film to improve visual discrimination of indicator films' color changes in milk with different freshness degrees and in solution with pH 3-7. Results of SEM, FT-IR and XRD showed that there were intermolecular hydrogen bonds among components, which associated with the larger color difference of indicator films. UV-vis spectral analysis showed that blueberry anthocyanin solutions containing both gelatin and Fe2+ displayed the highest intensity absorption peaks. The optimal ability to distinguish the pH (3-7) of solutions was presented by the indicator film incorporating gelatin (1% (w/v)) and Fe2+ (0.07 mg/mL). Gelatin and Fe2+ increased the color-responsive sensitivity of the indicator film to pH. The film could be successfully used to detect the freshness of milk, whose color changes were visually perceivable: from purple black (fresh milk) to royal purple (spoiling milk) and then to violet red (spoiled milk). The color parameters (L*, a*, R, G and B) of the film revealed a high correlation with the pH/acidity of the milk during storage. The successful application of the indicator film embedding gelatin and Fe2+ for monitoring milk quality changes indicated that the addition of special substances could provide great potential for monitoring freshness and preparing intelligent packaging of food.
Collapse
Affiliation(s)
- Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China.,Bio-resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Sha'anxi University of Technology, Hanzhong, Sha'anxi Province, 723001, China
| | - Huiling Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Tong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Yulong Bao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Quancai Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Lin Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Yuhan Ren
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Wengang Jin
- Bio-resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Sha'anxi University of Technology, Hanzhong, Sha'anxi Province, 723001, China
| | - Li Yuan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| |
Collapse
|
147
|
Perez MB, Da Peña Hamparsomian MJ, Gonzalez RE, Denoya GI, Dominguez DLE, Barboza K, Iorizzo M, Simon PW, Vaudagna SR, Cavagnaro PF. Physicochemical properties, degradation kinetics, and antioxidant capacity of aqueous anthocyanin-based extracts from purple carrots compared to synthetic and natural food colorants. Food Chem 2022; 387:132893. [PMID: 35397275 DOI: 10.1016/j.foodchem.2022.132893] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 02/19/2022] [Accepted: 04/02/2022] [Indexed: 11/19/2022]
Abstract
As a means to evaluate the potential of carrot anthocyanins as food colorants and nutraceutical agents, we investigated the physicochemical stability and antioxidant capacity of purple carrot extracts under different pH (2.5-7.0) and temperature (4-40 °C) conditions, in comparison to a commercial synthetic (E131) and a natural grape-based (GRP) colorant. During incubation, the colorants were weekly-monitored for various color parameters, concentration of anthocyanins and phenolics, and antioxidant capacity. Carrot colorants were more stable than GRP; and their thermal stability was equal (at 4 °C) or higher than that of E131 (at 25-40 °C). Carrot anthocyanins had lower degradation rate at low pH and temperature, with acylated anthocyanins (AA) being significantly more stable than non-acylated anthocyanins (NAA). Anthocyanins acylated with feruloyl and coumaroyl glycosides were the most stable carrot pigments. The higher stability of carrot colorants is likely due to their richness in AA and -to a lesser extent- copigmentation with other phenolics.
Collapse
Affiliation(s)
- María B Perez
- National Council of Scientific and Technical Research (CONICET), Av. Rivadavia 1917, Buenos Aires C1033AAJ, Argentina; National Institute of Agricultural Technology (INTA) - E.E.A. La Consulta, La Consulta CC8, San Carlos, 5567 Mendoza, Argentina
| | - María J Da Peña Hamparsomian
- National Council of Scientific and Technical Research (CONICET), Av. Rivadavia 1917, Buenos Aires C1033AAJ, Argentina; Instituto de Biología Agrícola de Mendoza (IBAM), Facultad de Ciencias Agrarias, CONICET, Almirante Brown 500, Luján de Cuyo, 5505 Mendoza, Argentina
| | - Roxana E Gonzalez
- National Institute of Agricultural Technology (INTA) - E.E.A. La Consulta, La Consulta CC8, San Carlos, 5567 Mendoza, Argentina
| | - Gabriela I Denoya
- National Council of Scientific and Technical Research (CONICET), Av. Rivadavia 1917, Buenos Aires C1033AAJ, Argentina; Institute of Food Technology, Agroindustrial Research Center, National Institute of Agricultural Technology (INTA), Nicolas Repetto y de los Reseros s/n, Hurlingham (1686), Buenos Aires, Argentina
| | - Deolindo L E Dominguez
- National Council of Scientific and Technical Research (CONICET), Av. Rivadavia 1917, Buenos Aires C1033AAJ, Argentina; Instituto de Biología Agrícola de Mendoza (IBAM), Facultad de Ciencias Agrarias, CONICET, Almirante Brown 500, Luján de Cuyo, 5505 Mendoza, Argentina
| | - Karina Barboza
- National Council of Scientific and Technical Research (CONICET), Av. Rivadavia 1917, Buenos Aires C1033AAJ, Argentina
| | - Massimo Iorizzo
- Department of Horticultural Science, North Carolina State University, Raleigh and Plants for Human Health Institute, North Carolina State University, 500 Laureate Way, Kannapolis, NC 28081, USA
| | - Philipp W Simon
- Department of Horticulture, University of Wisconsin-Madison and USDA-Agricultural Research Service, Vegetable Crops Research Unit, University of Wisconsin-Madison, 1575 Linden Drive, Madison, WI 53706-1514, USA
| | - Sergio R Vaudagna
- National Council of Scientific and Technical Research (CONICET), Av. Rivadavia 1917, Buenos Aires C1033AAJ, Argentina; Institute of Food Technology, Agroindustrial Research Center, National Institute of Agricultural Technology (INTA), Nicolas Repetto y de los Reseros s/n, Hurlingham (1686), Buenos Aires, Argentina
| | - Pablo F Cavagnaro
- National Council of Scientific and Technical Research (CONICET), Av. Rivadavia 1917, Buenos Aires C1033AAJ, Argentina; National Institute of Agricultural Technology (INTA) - E.E.A. La Consulta, La Consulta CC8, San Carlos, 5567 Mendoza, Argentina; Faculty of Agricultural Sciences, National University of Cuyo, Almirante Brown 500, Luján de Cuyo, 5505 Mendoza, Argentina.
| |
Collapse
|
148
|
Zheng L, Liu L, Yu J, Shao P. Novel trends and applications of natural pH-responsive indicator film in food packaging for improved quality monitoring. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108769] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
149
|
Koshy RR, Reghunadhan A, Mary SK, Pillai PS, Joseph S, Pothen LA. pH indicator films fabricated from soy protein isolate modified with chitin nanowhisker and Clitoria ternatea flower extract. Curr Res Food Sci 2022; 5:743-751. [PMID: 35497776 PMCID: PMC9046646 DOI: 10.1016/j.crfs.2022.03.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/12/2022] [Accepted: 03/25/2022] [Indexed: 11/18/2022] Open
Abstract
Sensor films are finding wide range of applications. Different type of sensing films is fabricated for the identification of chemicals, ions, heavy metals, changes in the pH, etc. The present report is on the fabrication of pH sensitive films from completely natural sources-soy protein isolate, chitin nano whiskers and flower extract. The highly crystalline chitin nano whiskers (CNW) were extracted from prawn shell under neutral condition via steam explosion technique. Multifunctional Soy protein isolate (SPI) films were prepared by adding chitin nanowhisker and Clitoria ternatea flower extract and its effect on thermal, mechanical and moisture properties of SPI film was investigated. The isolated CNW presented a needle like morphology with a diameter of 10–50 nm and a crystallinity index of 99.67%. The extracted chitin nanowhisker was used to prepare biodegradable films with soy protein isolate immobilized with anthocyanin from Clitoria ternatea flower extract. The prepared Soy protein -chitin nanowhisker films was found to have a tensile strength of about 15.45 ± 0.97 MPa with 8% chitin nanowhisker addition. The addition of CTE was found to decrease the tensile strength of SPI-CNW film but was found to make the film pH sensitive. The developed indicator film showed visible color changes in acidic and basic medium and hence can be used to monitor the freshness of food materials. Thin films were fabricated from soy protein isolate, chitin and anthocyanin. Packaging films from fully greener and bio origin. pH sensing smart films. Easy to fabricate and handle. Superior mechanical properties and stability.
Collapse
Affiliation(s)
- Rekha Rose Koshy
- Postgraduate and Research Department of Chemistry, Bishop Moore College, Mavelikara, 690101, Kerala, India
- Postgraduate and Research Department of Chemistry, CMS College, Kottayam, 686001, Kerala, India
| | - Arunima Reghunadhan
- Department of Chemistry, TKM College of Engineering, Karicode, Kollam, Kerala, 691005, India
| | - Siji K. Mary
- Postgraduate and Research Department of Chemistry, Bishop Moore College, Mavelikara, 690101, Kerala, India
- Postgraduate and Research Department of Chemistry, CMS College, Kottayam, 686001, Kerala, India
| | | | - Seno Joseph
- Postgraduate and Research Department of Chemistry, CMS College, Kottayam, 686001, Kerala, India
| | - Laly A. Pothen
- Postgraduate and Research Department of Chemistry, CMS College, Kottayam, 686001, Kerala, India
- International and Interuniversity Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University Kottayam, India
- Corresponding author. Postgraduate and Research Department of Chemistry, CMS College, Kottayam, 686001, Kerala, India.
| |
Collapse
|
150
|
Novel aldehyde sensitive bio-based colorimetric film for kiwi fruit freshness monitoring. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|