101
|
Kraithong S, Theppawong A, Huang R. Encapsulated starch characteristics and its shell matrix mechanisms controlling starch digestion. Food Chem 2023; 423:136322. [PMID: 37192559 DOI: 10.1016/j.foodchem.2023.136322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/11/2023] [Accepted: 05/04/2023] [Indexed: 05/18/2023]
Abstract
Encapsulated starch can be classified as physically inaccessible starch or type 1 resistant starch (RS1), which is produced by encapsulating starch granules within food matrices using various encapsulation techniques. Encapsulated starch has the potential to be used as a functional ingredient in low-/medium-glycemic index (GI) foods as it can help control glycemic and insulin responses. Despite its remarkable benefits, the relevant information related to entrapped starch and its application is still insufficient and needs further elucidation. The objective of this work is to present a comprehensive overview of the current techniques utilized for the preparation of encapsulated starch and its characteristics, thereby extending the fundamental knowledge. Furthermore, this review delves into the mechanisms governing starch hydrolysis regulated by shell matrices and provides the prospective utilization of encapsulated starch in food production.
Collapse
Affiliation(s)
- Supaluck Kraithong
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Atiruj Theppawong
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
102
|
Zhang Z, Zhang M, Zhao W. Effect of starch-protein interaction on regulating the digestibility of waxy rice starch under radio frequency treatment with added CaCl 2. Int J Biol Macromol 2023; 232:123236. [PMID: 36657547 DOI: 10.1016/j.ijbiomac.2023.123236] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/18/2023]
Abstract
This study investigated the effect of starch-protein interaction on regulating the digestibility of waxy rice starch under radio frequency (RF) treatment with added salts. The results showed that starch-protein interactions could significantly reduce the digestibility of waxy rice starch (WRS) under synergetic Ca2+-RF treatment. With the increase of Ca2+ content (0-2 %), the resistant starch content of WRS-WPI, WRS-SPI and WRS-PPI increased from 35.53 %, 36.12 % and 38.78 % to 51.05 %, 52.82 % and 55.93 %, respectively. The addition of appropriate Ca2+ content could increase the short-range ordered structure and lamella structure and form a more compact and uniform microstructure. In addition, the interaction between WRS and protein was mainly through hydrogen bonding and hydrophobic interactions during RF treatment. Furthermore, the presence of Ca2+ could improve the distribution and mobility of water molecules and regulate the rheological properties of WRS-protein complexes. This study offers theoretical guidance for the design and production of rice starch-based products with lower digestibility.
Collapse
Affiliation(s)
- Zhenna Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Mengqing Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Zhao
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
103
|
Wang C, Ji N, Dai L, Qin Y, Shi R, Xiong L, Sun Q. The Mechanism Underlying the Amylose-Zein Complexation Process and the Stability of the Molecular Conformation of Amylose-Zein Complexes in Water Based on Molecular Dynamics Simulation. Foods 2023; 12:foods12071418. [PMID: 37048239 PMCID: PMC10093620 DOI: 10.3390/foods12071418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
The aim of this study was to employ molecular dynamics simulations to elucidate the mechanism involved in amylose–zein complexation and the stability of the molecular conformation of amylose–zein complexes in water at the atomic and molecular levels. The average root mean square deviation and radius of gyration were lower for amylose–zein complexes (1.11 nm and 1 nm, respectively) than for amylose (2.13 nm and 1.2 nm, respectively), suggesting a significantly higher conformational stability for amylose–zein complexes than for amylose in water. The results of radial distribution function, solvent-accessible surface area, and intramolecular and intermolecular hydrogen bonds revealed that the amylose–zein interaction inhibited water permeation into the amylose cavity, leading to enhanced conformational stabilities of the V-type helical structure of amylose and the amylose–zein complexes. Furthermore, the amylose in amylose–zein complexes displayed the thermodynamically stable 4C1 conformation. These findings can provide theoretical guidance in terms of the application of protein on starch processing aiming to improve the physicochemical and functional properties of starch (such as swelling capacity, pasting properties, and digestibility) for developing novel low-digestibility starch–protein products.
Collapse
|
104
|
Scott G, Awika JM. Effect of protein-starch interactions on starch retrogradation and implications for food product quality. Compr Rev Food Sci Food Saf 2023; 22:2081-2111. [PMID: 36945176 DOI: 10.1111/1541-4337.13141] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/16/2023] [Accepted: 02/23/2023] [Indexed: 03/23/2023]
Abstract
Starch retrogradation is a consequential part of food processing that greatly impacts the texture and acceptability of products containing both starch and proteins, but the effect of proteins on starch retrogradation has only recently been explored. With the increased popularity of plant-based proteins in recent years, incorporation of proteins into starch-based products is more commonplace. These formulation changes may have unforeseen effects on ingredient functionality and sensory outcomes of starch-containing products during storage, which makes the investigation of protein-starch interactions and subsequent impact on starch retrogradation and product quality essential. Protein can inhibit or promote starch retrogradation based on its exposed residues. Charged residues promote charge-dipole interactions between starch-bound phosphate and protein, hydrophobic groups restrict amylose release and reassociation, while hydrophilic groups impact water/molecular mobility. Covalent bonds (disulfide linkages) formed between proteins may enhance starch retrogradation, while glycosidic bonds formed between starch and protein during high-temperature processing may limit starch retrogradation. With these protein-starch interactions in mind, products can be formulated with proteins that enhance or delay textural changes in starch-containing products. Future work to understand the impact of starch-protein interactions on retrogradation should focus on integrating the fields of proteomics and carbohydrate chemistry. This interdisciplinary approach should result in better methods to characterize mechanisms of interaction between starch and proteins to optimize their food applications. This review provides useful interpretations of current literature characterizing the mechanistic effect of protein on starch retrogradation.
Collapse
Affiliation(s)
- Gabrielle Scott
- Department of Food Science and Technology, Texas A&M University, College Station, Texas, USA
| | - Joseph M Awika
- Department of Food Science and Technology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
105
|
Xie L, Zhou W, Zhao L, Peng J, Zhou X, Qian X, Lu L. Impact of okara on quality and in vitro starch digestibility of noodles: The view based on physicochemical and structural properties. Int J Biol Macromol 2023; 237:124105. [PMID: 36948342 DOI: 10.1016/j.ijbiomac.2023.124105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/17/2023] [Accepted: 03/16/2023] [Indexed: 03/24/2023]
Abstract
The development of cereal foods with slow starch digestibility is important for the general improvement of human health. In this study, the quality properties of noodles with added okara, in vitro starch digestibility, and the underlying mechanisms of the influence of okara on noodles were studied. Low concentrations (5 and 10 %) of okara improved the texture, cooking, and sensory properties of the noodles. Okara decreased the rapidly digestible starch (RDS) content, increased the resistant starch (RS) content, and reduced the predicted glycaemic index (pGI) of noodles. The pasting viscosity, thermal stability, and dynamic rheological results indicated that okara improved the starch crystallite stability of wheat flour and viscoelasticity of dough. Moreover, Fourier transform infrared (FTIR) spectroscopy showed that okara promoted the formation of starch-lipid complexes and improved the short-range structural order of starch. Additionally, microstructure imaging and protein network analysis (PNA) indicated that low addition of okara promoted the compactness of the okara-gluten-starch matrix, thus reducing the contact between starch and hydrolytic enzymes. These results reveal the effect of okara on the quality properties and starch digestibility in a starch-gluten complex system.
Collapse
Affiliation(s)
- Le Xie
- School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan Province, PR China; College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, Hunan Province, PR China; National Engineering Research Center for Rice and By-product Deep Processing, Changsha 410004, Hunan Province, PR China; Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha 410004, Hunan Province, PR China; Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang 422000, Hunan Province, PR China
| | - Wenhua Zhou
- School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan Province, PR China; National Engineering Research Center for Rice and By-product Deep Processing, Changsha 410004, Hunan Province, PR China; Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha 410004, Hunan Province, PR China
| | - Liangzhong Zhao
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, Hunan Province, PR China; Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang 422000, Hunan Province, PR China
| | - Jing Peng
- School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan Province, PR China; National Engineering Research Center for Rice and By-product Deep Processing, Changsha 410004, Hunan Province, PR China; Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha 410004, Hunan Province, PR China
| | - Xiaojie Zhou
- School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan Province, PR China; College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, Hunan Province, PR China; National Engineering Research Center for Rice and By-product Deep Processing, Changsha 410004, Hunan Province, PR China; Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha 410004, Hunan Province, PR China; Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang 422000, Hunan Province, PR China
| | - Xin Qian
- School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan Province, PR China; National Engineering Research Center for Rice and By-product Deep Processing, Changsha 410004, Hunan Province, PR China; Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha 410004, Hunan Province, PR China
| | - Lu Lu
- School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan Province, PR China; National Engineering Research Center for Rice and By-product Deep Processing, Changsha 410004, Hunan Province, PR China; Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha 410004, Hunan Province, PR China.
| |
Collapse
|
106
|
Peng P, Wang X, Liao M, Zou X, Ma Q, Zhang X, Hu X. Effects of HMW-GSs at Glu-B1 locus on starch-protein interaction and starch digestibility during thermomechanical processing of wheat dough. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2134-2145. [PMID: 36397183 DOI: 10.1002/jsfa.12340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/30/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The composition of glutenin protein significantly affects protein-starch interactions and starch digestion characteristics in wheat dough matrices. To elucidate the effects of high molecular weight glutenin subunits at the Glu-B1 locus on dough processing quality, the detailed structural changes of protein, starch, and their complexes were compared in Mixolab dough samples of two near isogenic lines 7 + 8 and 7 + 9. RESULTS The results showed that the degree of protein aggregation increased continuously during dough processing, as did the destruction and rearrangement of the gluten network. Compared to 7 + 8, the stronger and more stable protein network formed in 7 + 9 dough induced intensive interactions between protein and starch, primarily through hydrogen bonds and isomeric glycosidic bonds. In 7 + 9 dough, the more compact and extensive protein-starch network significantly inhibited starch gelatinization during dough pasting, while during the dough cooling stage [from C4 (82.8 °C) to C5 (52.8 °C)], more protein-starch complexes composed of monomeric proteins and short-chain starch were generated, which remarkably inhibited starch retrogradation. All protein-starch interactions in the 7 + 9 dough improved the starch digestion resistance, as reflected by the high content of resistant starch. CONCLUSION The more extensive and intensive protein-starch interactions in the 7 + 9 dough inhibited the gelatinization and enzymatic hydrolysis of starch, thereby producing more slowly digestible starch and resistant starch. These findings demonstrate the feasibility of optimizing the texture and digestibility of wheat-based food products by regulating the behavior and interactions of proteins and starch during dough processing. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Pai Peng
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xiaolong Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Mei Liao
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xiaoyang Zou
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Qianying Ma
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xiaoke Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Xinzhong Hu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, China
| |
Collapse
|
107
|
Liu H, Duan J, Zhu J, Liu X. Effects of Highland Barley Flour with Different Particle Sizes on the Characteristics of Reconstituted Flour and Noodles. Foods 2023; 12:1074. [PMID: 36900591 PMCID: PMC10001254 DOI: 10.3390/foods12051074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/07/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
To study the effects of highland barley flour with different particle sizes on dough characteristics and noodle quality, highland barley flours (median particle sizes of 223.25, 143.12, 90.73, 42.33 and 19.26 μm, respectively) were mixed with the wheat flour to make noodles. The damaged starch content of highland barley flour with five particle sizes was 47.0, 61.0, 62.3, 102.0, and 108.0 g/kg, respectively. The reconstituted flour containing highland barley powder with smaller particle sizes showed higher viscosity and water absorption. The smaller the particle size of barley flour, the lower the cooking yield, shear force and pasting enthalpy of the noodles, and the higher the hardness of the noodles. As the particle size of barley flour decreases, the structural density of the noodles increases. This study is expected to provide a constructive reference for the development of barley-wheat composite flour and the production of barley-wheat noodles.
Collapse
Affiliation(s)
- Haibo Liu
- College of Food Science, Southwest University, Chongqing 400715, China
- College of Food Science, XinYang Agriculture and Forestry University, Xinyang 464000, China
| | - Jiaojiao Duan
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Jing Zhu
- College of Food Science, XinYang Agriculture and Forestry University, Xinyang 464000, China
| | - Xiong Liu
- College of Food Science, Southwest University, Chongqing 400715, China
| |
Collapse
|
108
|
Bao H, Liu Q, Yang Y, Xu L, Zhu K, Jin Z, Jiao A. Effects of rice protein, soy isolate protein, and whey concentrate protein on the digestibility and physicochemical properties of extruded rice starch. J Food Sci 2023; 88:1159-1171. [PMID: 36704898 DOI: 10.1111/1750-3841.16458] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/01/2022] [Accepted: 12/23/2022] [Indexed: 01/28/2023]
Abstract
Protein, as the second major component in starchy foods, is crucial for its influence on the physicochemical properties and digestibility of starch. However, the effect of different sources of protein on starch digestibility is still unclear. In this paper, the effects of different sources of proteins (rice protein: RP, soybean isolate protein: SPI, and whey concentrate protein: WPC) on structural features, digestibility, and enzyme activity of extruded rice starch were investigated. The addition of all three proteins reduced the starch digestibility of extrudates. Native SPI and WPC suppressed amyloglucosidase activity, and all three proteins exhibited stronger amyloglucosidase inhibition when hydrolyzed. The rheological properties and Fourier transform infrared spectroscopy results revealed the exogenous proteins and starch interacted through non-covalent bonds and improved the ordered structures in the extrudates. The extrusion process also facilitated the formation of a V-type structure. The sum of SDS and RS content of extrudates was negatively correlated with the content of leached amylose and positively correlated with the ratio of 1047/1022 cm-1 . These findings suggest that the inclusion of exogenous proteins during extrusion can affect starch digestibility through mechanisms such as the interaction with starch molecules, as well as the inhibition of amylase activity. PRACTICAL APPLICATION: This result indicated that the addition of protein during extrusion not only increased the nutritional value of the extrudate, but also decreased the starch digestibility. Extrusion technology can efficiently produce extruded products with protein, expanding further applications of protein in food and providing new healthy staple food options for special populations, such as diabetic and overweight people.
Collapse
Affiliation(s)
- Huiyi Bao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qing Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yueyue Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Lulian Xu
- Department of Pediatric Endocrinology, The Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi, China
| | - Kunfu Zhu
- Shandong Zhushi Pharmaceutical Group Co., Ltd, Heze, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Aiquan Jiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| |
Collapse
|
109
|
Lu Z, Liu Y, Lee YEJ, Chan A, Lee PR, Yang H. Effect of starch addition on the physicochemical properties, molecular interactions, structures, and in vitro digestibility of the plant-based egg analogues. Food Chem 2023; 403:134390. [DOI: 10.1016/j.foodchem.2022.134390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 10/14/2022]
|
110
|
Lu X, Zhan J, Ma R, Tian Y. Structure, thermal stability, and in vitro digestibility of rice starch-protein hydrolysate complexes prepared using different hydrothermal treatments. Int J Biol Macromol 2023; 230:123130. [PMID: 36610573 DOI: 10.1016/j.ijbiomac.2022.123130] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/07/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023]
Abstract
In this study, rice starch-protein hydrolysate (WPH-S) complexes with high resistant starch (RS) content were prepared by heat-moisture treatment (HMT) and annealing (ANN). The effects of different hydrothermal treatments on the structure and thermal stability of the WPH-S complexes and their relationship with starch digestibility were further discussed. The results showed that RS contents of ANN-WPH-S complexes (35.09-40.26 g/100 g) were higher than that of HMT-WPH-S complexes (24.15-38.74 g/100 g). Under hydrothermal treatments, WPH decreased the hydrolysis kinetic constant (k) of starch form 4.07 × 10-2-4.63 × 10-2 min-1 to 3.29 × 10-2-3.67 × 10-2 min-1. HMT and ANN promoted hydrogen bonding between WPH and starch molecules, thus increasing the molecular size of starch. In addition, the shear stability of WPH-S mixture was improved with the hysteresis loop area decreased after HMT/ANN treatments, resulting in a more stable structure. Most importantly, the hydrothermal treatment made the scatterers of WPH-S complexes denser and the surface smoother. Especially after ANN treatment, the WPH60-S complex formed a denser aggregate structure, which hindered the in vitro digestion of starch to a certain extent. These results enrich our understanding of the regulation of starch digestion by protein hydrolysates under different hydrothermal treatments and have guiding significance for the development of foods with a low glycemic index.
Collapse
Affiliation(s)
- Xiaoxue Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Jinling Zhan
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Rongrong Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Yaoqi Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| |
Collapse
|
111
|
Shao Y, Jiao R, Wu Y, Xu F, Li Y, Jiang Q, Zhang L, Mao L. Physicochemical and functional properties of the protein-starch interaction in Chinese yam. Food Sci Nutr 2023; 11:1499-1506. [PMID: 36911839 PMCID: PMC10003003 DOI: 10.1002/fsn3.3189] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 11/07/2022] [Accepted: 12/05/2022] [Indexed: 01/09/2023] Open
Abstract
Protein-starch interaction has an important impact on the properties of starchy foods rich in protein, but the contribution of the interaction to Chinese yam still remains unclear. This study aimed to characterize the physicochemical and functional properties related to the possible interaction between starch and protein in Chinese yam. Differential scanning calorimetry and rapid viscosity analyzer results revealed that the gelatinization temperature increased in protein and starch cross-linked powder, while the peak viscosity and the setback viscosity decreased. The swelling power and solubility at 80°C and 95°C decreased with increasing protein ratio in the powder. In vitro starch digestibility test indicated that a high protein ratio could rapidly reduce digestible starch, but increase both slowly digestible starch and resistant starch. Protein could act as the physical barrier toward starch against heating and digestion to exert the influence on starch properties. Fourier transform infrared spectroscopy test revealed the interaction between protein and starch. These results revealed the role of protein-starch interaction and provided beneficial information for the utilization of Chinese yam.
Collapse
Affiliation(s)
- Yelin Shao
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro‐Food Processing, Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural AffairsZhejiang UniversityHangzhouChina
| | - Ruize Jiao
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro‐Food Processing, Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural AffairsZhejiang UniversityHangzhouChina
| | - Yingyin Wu
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro‐Food Processing, Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural AffairsZhejiang UniversityHangzhouChina
| | - Fangcheng Xu
- Department of Agriculture and BiotechnologyWenzhou Vocational College of Science and TechnologyWenzhouChina
| | - Yan Li
- Department of Agriculture and BiotechnologyWenzhou Vocational College of Science and TechnologyWenzhouChina
| | - Qiaojun Jiang
- Department of Agriculture and BiotechnologyWenzhou Vocational College of Science and TechnologyWenzhouChina
| | - Liang Zhang
- Wencheng Institution of Modern Agriculture and Healthcare IndustryWenzhouChina
| | - Linchun Mao
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro‐Food Processing, Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural AffairsZhejiang UniversityHangzhouChina
- Ningbo Research InstituteZhejiang UniversityNingboChina
| |
Collapse
|
112
|
Chen N, Gao HX, He Q, Zeng WC. Potential application of phenolic compounds with different structural complexity in maize starch-based film. FOOD STRUCTURE 2023. [DOI: 10.1016/j.foostr.2023.100318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
113
|
Rong L, Chen X, Shen M, Yang J, Qi X, Li Y, Xie J. The application of 3D printing technology on starch-based product: A review. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
114
|
Chen X, Zhang Y, Zou Y, Li L, Yan J, Chen S, Zhang S, Zhu J. Heat-induced amorphous aggregates assembly of soy protein modulate in vitro digestibility of potato starch. Int J Biol Macromol 2023; 227:222-230. [PMID: 36509202 DOI: 10.1016/j.ijbiomac.2022.12.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
This research focused on the characteristics of amorphous aggregates derived from soy protein (SPAA), and their effects on the structural, physicochemical, and digestive properties of potato starch (PS). The SPAA induced by different heating temperatures at pH 7.0 formed an inhomogeneous spherical structure. The presence of SPAA could improve the degree of short-range order of starch, increase thermal stability, reduce pasting viscosity and breakdown, and setback viscosity values of PS. For the PS complexed with SPAAs under simulated cooking conditions, the fraction of digested starch at 300 min (C300) decreased by 6-14 %, and rapid digestible starch content (RDS) decreased by 18-25 %, while the slowly digestible starch (SDS) and resistant starch (RS) increased by 0.4-3 % and 15-23 %, respectively. The SPAA at higher temperature treatment (SPAA130) reduced digestive rate coefficient (k) values more significantly than SPAA at a lower temperature (SPAA70, SPAA90, SPAA110). And the SPAA had no inhibitory effect on α-amylase. The results of this study would significantly contribute to expanding the theoretical information about protein regulation in starch digestion and promoting the development of healthy foods with digestion-resistant properties.
Collapse
Affiliation(s)
- Xu Chen
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Yuge Zhang
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China; College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuan Zou
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Lin Li
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Jingkun Yan
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Siqian Chen
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Shuyan Zhang
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Jie Zhu
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China.
| |
Collapse
|
115
|
Interactions between leached amylose and protein affect the stickiness of cooked white rice. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
116
|
Wang LS, Duan YM, Tong LF, Yu XS, Saleh ASM, Xiao ZG, Wang P. Effect of extrusion parameters on the interaction between rice starch and glutelin in the preparation of reconstituted rice. Int J Biol Macromol 2023; 225:277-285. [PMID: 36402395 DOI: 10.1016/j.ijbiomac.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/26/2022] [Accepted: 11/01/2022] [Indexed: 11/18/2022]
Abstract
Reconstituted rice produced by extrusion has been attracted attention due to nutritional fortification and convenient production. Nevertheless, how to achieve desirable qualities and physicochemical properties of reconstituted rice nearly to natural rice by regulating extrusion process parameters is difficult. Herein, rice starch/glutelin mixture as raw material of reconstituted rice was extruded at varying extrusion conditions. Specific mechanical energy (SME) and sectional expansion index (SEI) dropped with rise in density (R2 = 0.9117 and 0.8207). Solubility was enhanced with increase in product temperature (R2 = 0.9085), color darkened and shifted to reddish and yellowish as extrusion temperature increased (R2 = 0.8577). These trends were well fitted by sigmoid models. Furthermore, SME enhanced hydrophobic and electrostatic interactions between rice starch and glutelin and caused the reduction in crystallinity and thermal stability, promoting the formation of a bi-continuous matrix of protein aggregates with rice starch. The obtained results can be applied to guide the production of reconstituted rice with desirable qualities.
Collapse
Affiliation(s)
- Li-Shuang Wang
- College of Food, Shenyang Agricultural University, Shenyang 110866, China; College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163000, China
| | - Yu-Min Duan
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163000, China; College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Li-Feng Tong
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163000, China
| | - Xiao-Shuai Yu
- College of Food, Shenyang Agricultural University, Shenyang 110866, China
| | - Ahmed S M Saleh
- Department of Food Science and Technology, Faculty of Agriculture, Assiut University, Egypt
| | - Zhi-Gang Xiao
- College of Food, Shenyang Agricultural University, Shenyang 110866, China; College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163000, China; College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China.
| | - Peng Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163000, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China.
| |
Collapse
|
117
|
Ahad T, Gull A, Masoodi FA, Nissar J, Masoodi L, Sajad Wani M. Effect of excipient wall materials on the development of ginger oleoresin microcapsules: assessing the physicochemical, antioxidant and structural properties. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:73-82. [PMID: 35794734 DOI: 10.1002/jsfa.12113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/29/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Ginger oleoresin is prone to destruction from air, light and high temperatures and has a limited shelf life if kept improperly. Its viscous and sticky characteristics also make it difficult to handle and utilize. These issues can be solved via microencapsulation. The goal of this research was to evaluate how different wall materials affect the properties of microencapsulated ginger oleoresin powder. RESULTS Ginger oleoresin microcapsules were developed through spray drying technique using gum acacia (GA) and whey protein isolate (WPI) as wall materials. The characteristics of the obtained powder, including water activity, wettability and encapsulation efficiency, were evaluated, corresponded to values of 0.20, 90.54 s and 84.15% for whey protein isolate-based ginger oleoresin powder. Whey protein isolate microcapsules also exhibited higher phenolic content (27.26 mg gallic acid equivalents g-1 ), total flavonoid (2.94 mg quercetin equivalents g-1 ) and 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity (68.71%) than GA microcapsules. Both WPI- and GA-based oleoresin microcapsules displayed poor flowability, but possessed a metastable amorphous state as indicated by X-ray diffraction. GA-encapsulated oleoresin microcapsules showed a significant increase in particle size (1983 nm) compared to WPI oleoresin microcapsules. Fourier transform infrared analysis of the developed oleoresin microcapsules indicated no change in molecular structure except for a variation in peak intensity. CONCLUSION Whey protein isolate proved to be more efficient in maintaining the physicochemical and antioxidant activity of spray-dried ginger oleoresin powder. The present study revealed whey protein-based oleoresin powder could be used as a therapeutic agent in various nutraceutical applications. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tehmeena Ahad
- Department of Food Technology, University of Kashmir, Srinagar, India
| | - Amir Gull
- Department of Food Technology, University of Kashmir, Srinagar, India
| | | | - Jasia Nissar
- Department of Food Technology, University of Kashmir, Srinagar, India
| | - Lubna Masoodi
- Department of Food Technology, University of Kashmir, Srinagar, India
| | - Mohd Sajad Wani
- Department of Food Technology, University of Kashmir, Srinagar, India
| |
Collapse
|
118
|
Shi M, Dong X, Cheng Y, Ji X, Liu Y, Yan Y. Preparation and Characterization of Extruded Yam Starch-Soy Protein Isolate Complexes and Their Effects on the Quality of Dough. Foods 2023; 12:foods12020360. [PMID: 36673452 PMCID: PMC9857982 DOI: 10.3390/foods12020360] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Extrusion is a method of processing that changes the physicochemical and rheological properties of starch and protein under specific temperature and pressure conditions. In this study, twin-screw extrusion technology was employed to prepare yam starch-soy protein isolate complexes. The structure and properties of the complexes and their effects on the quality of dough were studied. The results showed changes in the X-ray diffraction, rheology, and in vitro digestibility of the complexes. The extruded starch-protein complex formed an A+V-type crystal structure with the addition of soy protein isolate. A small amount of soy protein isolate could improve the complex's viscoelasticity. As the content of soy protein isolate increased, the content of slow-digesting starch and resistant starch in the complexes increased, and the digestibility decreased. The microstructure of the dough indicated that the network structure of the puffed yam starch-protein complex dough was more uniform than that of the same amount of puffed yam starch. The moisture distribution of the dough showed that with the addition of extruded flour, the closely bound water content of the dough increased, and the weakly bound water content decreased. The hardness, gumminess, chewiness, and resilience of the dough decreased. In conclusion, extruded starch-protein complexes can improve dough quality and provide technical support for the broad application of yam.
Collapse
Affiliation(s)
| | | | | | | | | | - Yizhe Yan
- Correspondence: ; Tel.: +86-135-9258-3213
| |
Collapse
|
119
|
Feed Clusters According to In Situ and In Vitro Ruminal Crude Protein Degradation. Animals (Basel) 2023; 13:ani13020224. [PMID: 36670766 PMCID: PMC9855172 DOI: 10.3390/ani13020224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Effective degradation (ED) of crude protein (CP) was estimated in vitro at 0.02, 0.05 and 0.08 h−1 assumed ruminal passage rates for a total of 40 feedstuffs, for which in situ ED was available and used as reference degradation values. For this, the Streptomyces griseus protease test was used. The differences between in vitro CP degradation and the in situ CP degradation values were lowest in legume grains and highest in cereal by-products and barley. The differences between in situ and in vitro ED were expressed using a degradation quotient (degQ), where degQ = (EDin vitro − EDin situ)/EDin situ. Among the tested feedstuffs, eight specific clusters were identified according to degQ for the assumed passage rates. The feedstuffs clustered in an unspecific way, i.e., feedstuffs of different nutrient composition, origin or treatment did not necessarily group together. Formaldehyde−treated rapeseed meal, soybean meal, wheat, a treated lupin, sunflower meal and barley could not be assigned to any of the clusters. Groupwise degradation (range of degQ for assumed passage rates are given in brackets) was detected in grass silages (−0.17, −0.11), cereal by-products together with sugar beet pulp (−0.47, −0.35) and partly in legume grains (−0.14, 0.14). The clustering probably based on different specific nutrient composition and matrix effects that influence the solubility of feed protein and limit the performance of the protease. The matrix can be affected by treatment (chemically, thermally or mechanically), changing the chemical and physical structure of the protein within the plant. The S. griseus protease test had reliable sensitivity to reflect differences between native feedstuffs and treatments (thermally or chemically) that were found in situ. The in situ results, however, are mostly underestimated. The clustering results do not allow a clear conclusion on the groupwise or feed-specific use of carbohydrate-degrading enzymes as pre- or co-inoculants as part of the S. griseus protease test and need to be tested for its potential to make this test more conform with in situ data.
Collapse
|
120
|
Su H, Chen Z, Zhao Y, An J, Huang H, Liu R, Huang C. Polyvinyl alcohol film with chlorine dioxide microcapsules can be used for blueberry preservation by slow-release of chlorine dioxide gas. Front Nutr 2023; 10:1177950. [PMID: 37143474 PMCID: PMC10151673 DOI: 10.3389/fnut.2023.1177950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction Chlorine dioxide (ClO2) is a safe and efficient bactericide with unique advantages in reducing foodborne illnesses, inhibiting microbial growth, and maintaining the nutritional quality of food. However, gaseous ClO2 is sensitive to heat, vibration, and light, which limits its application. Methods In this study, a ClO2 precursor-stabilized ClO2 aqueous solution was encapsulated by the double emulsion method, and a high-performance ClO2 self-releasing polyvinyl alcohol (PVA) film was prepared to investigate its performance and effect on blueberry quality during storage. Results The self-releasing films had the best overall performance when the microcapsule content was 10% as the film's mechanical properties, thermal stability, and film barrier properties were significantly improved. The inhibition rates of Listeria monocytogenes and Escherichia coli were 93.69% and 95.55%, respectively, and the mycelial growth of Staphylococcus griseus was successfully inhibited. The resulting ClO2 self-releasing films were used for blueberry preservation, and an experimental study found that the ClO2 self-releasing antimicrobial film group delayed the quality decline of blueberries. During the 14-day storage period, no mold contamination was observed in the ClO2 self-releasing film group, and blueberries in the antibacterial film group had higher anthocyanin accumulation during the storage period. Discussion Research analysis showed that films containing ClO2 microcapsules are promising materials for future fruit and vegetable packaging.
Collapse
Affiliation(s)
- Hongxia Su
- School of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Zhanpeng Chen
- School of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Yuan Zhao
- School of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Jiejie An
- School of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Haohe Huang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Ren Liu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Chongxing Huang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Nanning, China
- *Correspondence: Chongxing Huang
| |
Collapse
|
121
|
Pasting and gelation of faba bean starch-protein mixtures. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
122
|
Different nitrogen fertilizer application in the field affects the morphology and structure of protein and starch in rice during cooking. Food Res Int 2023; 163:112193. [PMID: 36596133 DOI: 10.1016/j.foodres.2022.112193] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
Nitrogen fertilization is one of the most important cultivation practices that affects the eating quality of rice. During the cooking process, nitrogen fertilizer application in the field changed the structure of protein and starch during cooking, which eventually reduced the rice eating quality. However, the morphology and structure of rice during cooking under high nitrogen fertilizer application in the field have not been explored. The relationship between the morphological and structural changes of rice protein and starch during cooking and the rice eating quality has not been studied. In this study, we conducted field trials at two nitrogen fertilizer levels (0 N and 350 N), and the rice was cooked after harvest. Our results showed that the peak viscosity of rice flour was 3326 cp and 2453 cp at 0 N and 350 N, respectively, and the peak viscosity of rice starch was 3424 cp and 3378 cp, respectively. Rice proteins played an important role in the starch gelatinization properties and thermodynamic properties. High nitrogen fertilizer application increased the protein content of rice from 5.97 % to 11.32 %, and more protein bodies adhered to the surface of amyloplasts eventually inhibiting starch gelatinization. The rice proteins could bind to amylose-lipid complexes during cooking, promoting the formation of V-type diffraction peaks. What is more, under high nitrogen fertilizer, rice protein had more β-sheets, which slowed the entry of water into the interior of starch molecules and prevented the destruction of the short-range ordered structure of starch. Our study provides the possibility to further improve the eating quality of rice under nitrogen fertilizer treatment.
Collapse
|
123
|
Garske RP, Mercali GD, Thys RCS, Cladera-Olivera F. Cassava starch and chickpea flour pre-treated by microwave as a substitute for gluten-free bread additives. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:53-63. [PMID: 36618054 PMCID: PMC9813335 DOI: 10.1007/s13197-022-05586-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/21/2022] [Accepted: 09/02/2022] [Indexed: 02/06/2023]
Abstract
There is an increasing demand for gluten-free products, which are regularly made by a combination of ingredients and additives. Microwave pre-treatment of gluten-free ingredients is an alternative to food additives because it may induce changes in protein and starch functional properties. In this context, this study aimed to apply microwave treatment in cassava starch and chickpea flour, analyzing their functional and thermal properties and their ability to substitute additives in gluten-free breads, comparing them to an additive-containing bread. All formulations were analyzed regarding their physical characteristics and quality parameters. The microwave-treated ingredients showed color, thermal properties and morphology changes. The bread made with chickpea flour treated with initial moisture of 40% showed the best quality parameters when compared to the control bread. The ingredients pre-treated with microwave have shown efficiency on gluten-free bakery additives substitution, allowing the use of a clean label terminology.
Collapse
Affiliation(s)
- Raquel Pischke Garske
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (ICTA-UFRGS), Av. Bento Goncalves, 9500, Porto Alegre, RS 91501-970 Brazil
| | - Giovana Domeneghini Mercali
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (ICTA-UFRGS), Av. Bento Goncalves, 9500, Porto Alegre, RS 91501-970 Brazil
| | - Roberta Cruz Silveira Thys
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (ICTA-UFRGS), Av. Bento Goncalves, 9500, Porto Alegre, RS 91501-970 Brazil
| | - Florencia Cladera-Olivera
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (ICTA-UFRGS), Av. Bento Goncalves, 9500, Porto Alegre, RS 91501-970 Brazil
| |
Collapse
|
124
|
Katherine Sofia TO, Sotelo-Díaz LI, Caez-Ramírez GR. Mechanical and rheological categorization of food patterns suitable for older adults with swallowing limitation. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2140811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Luz Indira Sotelo-Díaz
- Research group in food and process management and service, EICEA, Universidad de La Sabana, Chia, Colombia
| | - Gabriela R Caez-Ramírez
- Research Group in Procesos Agroindustriales, Engineering Faculty, Universidad de la Sabana, Chía, Colombia
| |
Collapse
|
125
|
Self-assembling soy protein fibril aggregates: Characterization and impact on in vitro digestibility of potato starch. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
126
|
Emerging challenges on viability and commercialization of lignin in biobased polymers for food packaging: A review. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
127
|
Dong H, Li Y, Jia C, Zhang B, Niu M, Zhao S, Xu Y. Mechanism behind the rheological property improvement of fava bean protein by the presence of dextran. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
128
|
Yang T, Zhong L, Jiang G, Liu L, Wang P, Zhong Y, Yue Q, Ouyang L, Zhang A, Li Z, Cui Z, Jiang D, Zhou Q. Comparative study on bread quality and starch digestibility of normal and waxy wheat (Triticum aestivum L.) modified by maltohexaose producing α-amylases. Food Res Int 2022; 162:112034. [DOI: 10.1016/j.foodres.2022.112034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/05/2022] [Accepted: 10/09/2022] [Indexed: 11/30/2022]
|
129
|
Wang K, Zhou M, Gong X, Zhou Y, Chen J, Ma J, Zhang P. Starch-protein interaction effects on lipid metabolism and gut microbes in host. Front Nutr 2022; 9:1018026. [PMID: 36466418 PMCID: PMC9709417 DOI: 10.3389/fnut.2022.1018026] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/31/2022] [Indexed: 07/20/2023] Open
Abstract
The purpose of this experiment was to investigate the effects of different starch and protein levels on lipid metabolism and gut microbes in mice of different genders. A total of 160 male mice were randomly assigned to sixteen groups and fed a 4 × 4 Latin square design with dietary protein concentrations of 16, 18, 20, and 22%, and starch concentrations of 50, 52, 54, and 56%, respectively. The results of the study showed that different proportions of starch and protein had obvious effects on the liver index of mice, and there was a significant interaction between starch and protein on the liver index (p = 0.005). Compared with other protein ratio diets, 18% protein diet significantly increased the serum TBA concentration of mice (p < 0.001), and different starch ratio diets had no effect on serum TBA concentration (p = 0.442). It was proved from the results of ileal tissue HE staining that the low protein diet and the low starch diet were more favorable. There was a significant interaction between diets with different starch and protein levels on Bacteroidetes, Firmicutes and Proteobacteria abundance in feces of mice (p < 0.001). Compared with 16 and 18% protein ratio diets, both 20 and 22% protein diets significantly decreased the Parabacteroides and Alistipes abundance in feces of mice (p < 0.05), and 52% starch ratio diet significantly decreased the Parabacteroides and Alistipes abundance than 50% starch ratio diet of mice (p < 0.05). There was a significant interaction between diets with different starch and protein levels on Parabacteroides (p = 0.014) and Alistipes (p = 0.001) abundance in feces of mice. Taken together, our results suggest that a low protein and starch diet can alter lipid metabolism and gut microbes in mice.
Collapse
Affiliation(s)
- Kaijun Wang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
- College of Animal Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
| | - Miao Zhou
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Xinyu Gong
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Yuqiao Zhou
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Jiayi Chen
- Academician Workstation, Changsha Medical University, Changsha, Hunan, China
| | - Jie Ma
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Peihua Zhang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
130
|
Tang YF, Zhan WX, Li MZ, Wang L, Wei JY, Deng JL, Chen ZX. Glutathione Inhibited Starch Digestion: Structural and Kinetic analysis of Substrate and α-Amylase. Food Chem 2022; 405:134979. [DOI: 10.1016/j.foodchem.2022.134979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
|
131
|
Guan Y, Zhao G, Thaiudom S. Evaluation of the physico-chemical properties of potato starch-based foods and their interactions with milk protein and soybean oil. Food Chem X 2022; 16:100495. [DOI: 10.1016/j.fochx.2022.100495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/20/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
|
132
|
Yun HJ, Jung WK, Kim HW, Lee S. Embedded 3D printing of abalone protein scaffolds as texture-designed food production for the elderly. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
133
|
Zhu Z, Wang C, Mei L, Xue W, Sun C, Wang Y, Du X. Effects of soy protein isolate hydrolysate on physicochemical properties and in vitro digestibility of corn starch with various amylose contents. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
134
|
Bai J, Dong M, Li J, Tian L, Xiong D, Jia J, Yang L, Liu X, Duan X. Effects of egg white on physicochemical and functional characteristics of steamed cold noodles (a wheat starch gel food). Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
135
|
Tarahi M, Shahidi F, Hedayati S. Physicochemical, Pasting, and Thermal Properties of Native Corn Starch-Mung Bean Protein Isolate Composites. Gels 2022; 8:693. [PMID: 36354601 PMCID: PMC9689853 DOI: 10.3390/gels8110693] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/12/2022] [Accepted: 10/22/2022] [Indexed: 08/27/2023] Open
Abstract
Starch is widely used in food and non-food industries because of its unique characteristics. However, native starch shows some weaknesses that restrict its applications. Recently, some studies have demonstrated the benefits of using protein to overcome these limitations. Therefore, the aim of the present study was to investigate the effect of mung bean protein isolate (MBPI) (2%, 4%, 6%, and 8%) on the physicochemical, pasting, and thermal properties of native corn starch (NCS), as a novel starch-protein composite. Higher swelling power (SP), water absorbance capacity (WAC), and solubility values of NCS were observed with increasing MBPI concentration. Additionally, by the addition of MBPI, the rapid visco analyzer (RVA) showed a reduction in pasting temperature (77.98 to 76.53 °C), final viscosity (5762 to 4875 cP), and setback (3063 to 2400 cP), while the peak viscosity (4691 to 5648 cP) and breakdown (1992 to 3173 cP) increased. The thermal properties of NCS/MBPI gels investigated by differential scanning calorimetry (DSC) showed higher onset, peak, and conclusion temperatures (69.69 to 72.21 °C, 73.45 to 76.72 °C, and 77.75 to 82.26 °C, respectively), but lower gelatinization enthalpy (10.85 to 8.79 J/g) by increasing MBPI concentration. Fourier transform infrared spectroscopy (FT-IR) indicated that the addition of MBPI decreased the amount of hydrogen bonds within starch. Furthermore, after three cycles of freeze-thaw shocks, the syneresis of NCS-MBPI composites decreased from 38.18 to 22.01%. These results indicated that the MBPI could improve the physicochemical properties of NCS, especially its syneresis and retrogradation characteristics.
Collapse
Affiliation(s)
- Mohammad Tarahi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad 9177948978, Iran
| | - Fakhri Shahidi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad 9177948978, Iran
| | - Sara Hedayati
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz 7193635899, Iran
| |
Collapse
|
136
|
Recent progress in understanding starch gelatinization - An important property determining food quality. Carbohydr Polym 2022; 293:119735. [DOI: 10.1016/j.carbpol.2022.119735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/04/2022] [Accepted: 06/11/2022] [Indexed: 11/17/2022]
|
137
|
Structural, Thermal and Pasting Properties of Heat-Treated Lotus Seed Starch–Protein Mixtures. Foods 2022; 11:foods11192933. [PMID: 36230010 PMCID: PMC9563054 DOI: 10.3390/foods11192933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/21/2022] Open
Abstract
The interactions between starch and protein, the essential components of lotus seed, strongly influence the quality of lotus seed processing by-products. This study investigated the effects of lotus seed starch–protein (LS-LP) interactions on the structural, thermal and gelatinization properties of LS-LP mixtures, using LS/LP ratios of 6:1, 6:2, 6:3, 6:4, 6:5, or 1:1, after heat treatment (95 °C, 30 min). Fourier transform infrared peaks at 1540 cm−1 and 3000–3600 cm−1 revealed the major interactions (electrostatic and hydrogen bonding) between LS and LP. The UV–visible absorption intensities (200–240 nm) of LS-LP mixtures increased with increased protein content. X-ray diffraction and electron microscopy revealed that LS-LP consists of crystalline starch granules encapsulated by protein aggregates. Increasing the addition of protein to the mixtures restricted the swelling of the starch granules, based on their solubility, swelling properties and thermal properties. Viscometric analysis indicated that the formation of LS-LP mixtures improved structural and storage stability. These findings provide a practicable way to control the thermal and gelatinization properties of lotus seed starch–protein mixtures, by changing the proportions of the two components, and provide a theoretical basis for developing novel and functional lotus-seed-based foods.
Collapse
|
138
|
Chi C, Shi M, Zhao Y, Chen B, He Y, Wang M. Dietary compounds slow starch enzymatic digestion: A review. Front Nutr 2022; 9:1004966. [PMID: 36185656 PMCID: PMC9521573 DOI: 10.3389/fnut.2022.1004966] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/23/2022] [Indexed: 11/20/2022] Open
Abstract
Dietary compounds significantly affected starch enzymatic digestion. However, effects of dietary compounds on starch digestion and their underlying mechanisms have been not systematically discussed yet. This review summarized the effects of dietary compounds including cell walls, proteins, lipids, non-starchy polysaccharides, and polyphenols on starch enzymatic digestion. Cell walls, proteins, and non-starchy polysaccharides restricted starch disruption during hydrothermal treatment and the retained ordered structures limited enzymatic binding. Moreover, they encapsulated starch granules and formed physical barriers for enzyme accessibility. Proteins, non-starchy polysaccharides along with lipids and polyphenols interacted with starch and formed ordered assemblies. Furthermore, non-starchy polysaccharides and polyphenols showed robust abilities to reduce activities of α-amylase and α-glucosidase. Accordingly, it can be concluded that dietary compounds lowered starch digestion mainly by three modes: (i) prevented ordered structures from disruption and formed ordered assemblies chaperoned with these dietary compounds; (ii) formed physical barriers and prevented enzymes from accessing/binding to starch; (iii) reduced enzymes activities. Dietary compounds showed great potentials in lowering starch enzymatic digestion, thereby modulating postprandial glucose response to food and preventing or treating type II diabetes disease.
Collapse
Affiliation(s)
- Chengdeng Chi
- College of Life Sciences, Fujian Normal University, Fuzhou, China
- *Correspondence: Chengdeng Chi
| | - Miaomiao Shi
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Yingting Zhao
- Center for Nutrition and Food Sciences, The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Brisbane, QLD, Australia
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bilian Chen
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yongjin He
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Meiying Wang
- School of Engineering, University of Guelph, Guelph, ON, Canada
- Meiying Wang
| |
Collapse
|
139
|
Ji X, Wang Z, Jin X, Qian Z, Qin L, Guo X, Yin M, Liu Y. Effect of inulin on the pasting and retrogradation characteristics of three different crystalline starches and their interaction mechanism. Front Nutr 2022; 9:978900. [PMID: 36159497 PMCID: PMC9493248 DOI: 10.3389/fnut.2022.978900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
At present, there are hardly any studies about the effect of inulin (IN) on the physicochemical properties and structures of different crystalline starches. In this study, three different crystalline starches (wheat, potato, and pea starch) were compounded with natural IN, and its pasting, retrogradation, and structural characteristics were investigated. Then, the potential mechanism of interaction between IN and starch was studied. The results showed that there were some differences in the effects of IN on the three different crystalline starch. Pasting experiments showed that the addition of IN not only increased pasting viscosity but also decreased the values of setback and breakdown. For wheat starch and pea starch, IN reduced their peak viscosity from 2,515 cP, 3,035 cP to 2,131 cP and 2,793 cP, respectively. Retrogradation experiment dates demonstrated that IN delayed gelatinization of all three starches. IN could reduce the enthalpy of gelatinization and retrogradation to varying degrees and inhibit the retrogradation of starch. Among them, it had a better inhibitory effect on potato starch. The addition of IN reduced the retrogradation rate of potato starch from 38.45 to 30.14%. Fourier-transform infrared spectroscopy and interaction force experiments results showed that IN interacted with amylose through hydrogen bonding and observed the presence of electrostatic force in the complexed system. Based on the above, experimental results speculate that the mechanism of interaction between IN and three crystalline starches was the same, and the difference in physicochemical properties was mainly related to the ratio of amylose to amylopectin in different crystalline starches. These findings could enrich the theoretical system of the IN with starch compound system and provide a solid theoretical basis for further applications.
Collapse
Affiliation(s)
- Xiaolong Ji
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan Collaborative Innovation Center for Food Production and Safety, Zhengzhou, China
| | - Zhiwen Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan Collaborative Innovation Center for Food Production and Safety, Zhengzhou, China
| | - Xueyuan Jin
- School of Clinical Medicine, Hainan Vocational University of Science and Technology, Haikou, China
| | - Zhenpeng Qian
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan Collaborative Innovation Center for Food Production and Safety, Zhengzhou, China
| | - Le Qin
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan Collaborative Innovation Center for Food Production and Safety, Zhengzhou, China
| | - Xudan Guo
- Basic Medical College, Hebei University of Chinese Medicine, Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Hebei TCM Formula Preparation Technology Innovation Center, Shijiazhuang, China
- *Correspondence: Xudan Guo
| | - Mingsong Yin
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan Collaborative Innovation Center for Food Production and Safety, Zhengzhou, China
- Mingsong Yin
| | - Yanqi Liu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan Collaborative Innovation Center for Food Production and Safety, Zhengzhou, China
- Yanqi Liu
| |
Collapse
|
140
|
Kuang J, Huang J, Ma W, Min C, Pu H, Xiong YL. Influence of reconstituted gluten fractions on the short-term and long-term retrogradation of wheat starch. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
141
|
Cao H, Huang Q, Wang C, Guan X, Huang K, Zhang Y. Effect of compositional interaction on in vitro digestion of starch during the milling process of quinoa. Food Chem 2022; 403:134372. [DOI: 10.1016/j.foodchem.2022.134372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 10/14/2022]
|
142
|
Wang C, Chao C, Yu J, Copeland L, Huang Y, Wang S. Mechanisms Underlying the Formation of Amylose- Lauric Acid-β-Lactoglobulin Complexes: Experimental and Molecular Dynamics Studies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10635-10643. [PMID: 35994717 DOI: 10.1021/acs.jafc.2c04523] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The aim of the present study was to reveal the mechanisms underlying the formation of ternary complexes with a model system of amylose (AM), lauric acid (LA), and β-lactoglobulin (βLG) using experimental studies and molecular dynamics (MD) simulations. Experimental analyses showed that hydrophobic interactions and hydrogen bonds contributed more than electrostatic forces to the formation of the AM-LA-βLG complex. MD simulations indicated that interactions between AM and βLG through electrostatic forces and hydrogen bonds, and to a less extent van der Waals forces, and interactions between AM and LA through van der Waals forces, were mostly responsible for complex formation. The combination of experimental results and MD simulations has provided new mechanistic insights and led us to conclude that hydrophobic interactions, van der Waals forces between AM and LA, and van der Waals forces and hydrogen bonds between AM and βLG were the main driving forces for the formation of the AM-LA-βLG complex.
Collapse
Affiliation(s)
- Cuiping Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- School of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Chen Chao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- School of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jinglin Yu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Les Copeland
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales Australia 2006
| | - Yongchun Huang
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Shujun Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- School of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
143
|
Lu X, Ma R, Zhan J, Jin Z, Tian Y. Mechanism of peptides from rice hydrolyzed proteins hindering starch digestion subjected to hydrothermal treatment. NPJ Sci Food 2022; 6:37. [PMID: 36008427 PMCID: PMC9411161 DOI: 10.1038/s41538-022-00153-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/05/2022] [Indexed: 11/09/2022] Open
Abstract
Clarifying the interactions between food components is critical in designing carbohydrate-based foods with low digestibility. To date, the hindering effect of starch-protein interactions on starch digestion has attracted extensive attention. In this study, rice proteins were further hydrolyzed, and rice peptides (RP) with different molecular weights were obtained by ultrafiltration. The effects and possible mechanisms of RP with different molecular weights on the structure, thermal properties, and in vitro digestibility of cooked rice starch were investigated. All peptides slowed the digestion of rice starch in a concentration-dependent manner. A concentration of 10% RP>10 decreased the rapidly digestible starch content from 68.02 to 45.90 g/100 g, and increased the resistant starch content from 17.54 to 36.54 g/100 g. The addition of RP improved the thermal stability of the starch and reduced the amount of leached amylose. Infrared analysis shows that strong hydrogen bonds formed between RP (especially RP>10) and starch during co-gelatinization. In addition, RP improved the compactness of aggregated structure and played an important role in hindering the enzymatic hydrolysis of starch. These results enrich the theory of starch-protein interactions and have important implications for the development of carbohydrate-based foods with low digestibility and protein functional foods.
Collapse
Affiliation(s)
- Xiaoxue Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Rongrong Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Jinling Zhan
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.,National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Yaoqi Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China. .,School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.
| |
Collapse
|
144
|
Effects of Mung Bean ( Vigna radiata) Protein Isolate on Rheological, Textural, and Structural Properties of Native Corn Starch. Polymers (Basel) 2022; 14:polym14153012. [PMID: 35893974 PMCID: PMC9331134 DOI: 10.3390/polym14153012] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/05/2022] [Accepted: 07/19/2022] [Indexed: 01/25/2023] Open
Abstract
It is critical to understand the starch–protein interactions in food systems to obtain products with desired functional properties. This study aimed to investigate the influence of mung bean protein isolate (MBPI) on the rheological, textural, and structural properties of native corn starch (NCS) and their possible interactions during gelatinization. The dynamic rheological measurements showed a decrease in the storage modulus (G’) and loss modulus (G”) and an increase in the loss factor (tan δ), by adding MBPI to NCS gels. In addition, the textural properties represented a reduction in firmness after the addition of MBPI. The Scanning electron microscope (SEM) images of the freeze-dried NCS/MBPI gels confirmed that the NCS gel became softer by incorporating the MBPI. Moreover, X-ray diffraction (XRD) patterns showed a peak at 17.4°, and the relative crystallinity decreased with increasing MBPI concentrations. The turbidity determination after 120 h refrigerated storage showed that the addition of MBPI could reduce the retrogradation of NCS gels by interacting with leached amylose. Additionally, the syneresis of NCS/MBPI gels decreased at 14 days of refrigerated storage from 60.53 to 47.87%.
Collapse
|
145
|
Zhang X, Baek NW, Lou J, Xu J, Yuan J, Fan X. Effects of exogenous proteins on enzyme desizing of starch and its mechanism. Int J Biol Macromol 2022; 218:375-383. [PMID: 35902008 DOI: 10.1016/j.ijbiomac.2022.07.164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/19/2022]
Abstract
Added protein to starch has abundantly applied to size the yarns. However, scarce information is available about the impact of proteins on the enzyme desizing of starch. Thus, the objective of this study was to explore the effect of corn gluten, soybean protein and bone glue on enzyme desizing and reveal the interference mechanism. The desizing efficiency of starch was detected after added proteins. The contact angle, swelling ability, protein content and structure of starch adhesion on desized yarn were measured to analyze the effect of protein on desizing. In addition, the binding forces between protein and starch were detected, and the inhibition mechanism was analyzed. Experimental results showed that desizing efficiencies of starch were decreased after adding the protein. Corn gluten had the strongest influence in hindering desizing due to the weakest promotion in the swelling of film and the stronger binding force between protein and starch, mainly through hydrophobic interaction and hydrogen bond. Improving the swelling ability of film and inhibiting the binding between starch and protein may be feasible ways to reduce the inhibition of protein on desizing.
Collapse
Affiliation(s)
- Xun Zhang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Na-Won Baek
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jiangfei Lou
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jin Xu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jiugang Yuan
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xuerong Fan
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
146
|
Hu Y, Yu B, Wang L, McClements DJ, Li C. Study of dextrin addition on the formation and physicochemical properties of whey protein-stabilized emulsion: Effect of dextrin molecular dimension. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
147
|
Insight into the multi-scale structure changes and mechanism of corn starch modulated by different structural phenolic acids during retrogradation. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107581] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
148
|
Lu X, Ma R, Zhan J, Wang F, Tian Y. The role of protein and its hydrolysates in regulating the digestive properties of starch: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
149
|
Ji S, Xu T, Liu Y, Li H, Luo J, Zou Y, Zhong Y, Li Y, Lu B. Investigation of the mechanism of casein protein to enhance 3D printing accuracy of cassava starch gel. Carbohydr Polym 2022; 295:119827. [DOI: 10.1016/j.carbpol.2022.119827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 11/15/2022]
|
150
|
Wang L, Wei Z, Xue C. The presence of propylene glycol alginate increased the stability and intestine-targeted delivery potential of carboxymethyl starch-stabilized emulsions. Food Res Int 2022; 157:111387. [PMID: 35761643 DOI: 10.1016/j.foodres.2022.111387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/06/2022] [Accepted: 05/17/2022] [Indexed: 12/31/2022]
Abstract
Propylene glycol alginate (PGA) was added to improve the stability and delivery performance of carboxymethyl starch (CMS)-stabilized emulsion. In the first instance, the CMS/PGA complexes were characterized, which proved that the formation of CMS/PGA complexes mainly depended on hydrogen bonding, and the CMS/PGA complexes showed porous networks. The CMS/PGA complexes were more hydrophobic than CMS, and the interaction of CMS with PGA enhanced the thermal stability of CMS. Next, the effects of CMS/PGA complexes on the properties of emulsions were investigated, and the intestine-targeted delivery potential of emulsions was evaluated through the in vitro release study as well. The droplet size of CMS/PGA complex-stabilized emulsions gradually decreased and the encapsulation efficiency (EE) improved with increasing the PGA content in CMS/PGA complexes. The addition of PGA also greatly improved the physical stability of emulsions, including anti-flocculation and anti-coalescence stabilities. All emulsions exhibited non-Newtonian pseudoplastic properties. Furthermore, the emulsions stabilized by CMS/PGA complexes showed reduced curcumin (Cur) release in the simulated gastric fluid (SGF), whereas exhibited sustained release in the α-amylase-containing simulated intestinal fluid (SIF). These results demonstrated that the emulsion stabilized by CMS/PGA complex was able to control and modulate the release of Cur in the gastrointestinal tract, and was therefore a promising intestine-targeted delivery system for Cur.
Collapse
Affiliation(s)
- Luhui Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Zihao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China.
| |
Collapse
|