101
|
Shen C, Wang T, Guo F, Sun K, Wang B, Wang J, Zhang Z, Zhang X, Zhao Y, Chen Y. Structural characterization and intestinal protection activity of polysaccharides from Sea buckthorn (Hippophae rhamnoides L.) berries. Carbohydr Polym 2021; 274:118648. [PMID: 34702467 DOI: 10.1016/j.carbpol.2021.118648] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/28/2021] [Accepted: 09/04/2021] [Indexed: 12/20/2022]
Abstract
The sea buckthorn (Hippophae rhamnoides L.) berries are rich in various bioactive components and widely used as fruit and traditional medicine. In this study, a novel heteropolysaccharide fraction (SP0.1-1) was isolated from Sea buckthorn berries. SP0.1-1 is composed of mannose, glucose, galactose, and arabinose in the molar ratio of 1:2.3:1.9:11.2 with a core structure containing 1,4-linked-α-d-Glcp, 1,4,6-linked-α-d-Glcp and 1,4-linked-α-d-Manp residues as the backbone. And the side-chains comprised of 1,3,5-linked-α-l-Araf, 1,5-linked-α-l-Araf, terminal α-Araf and 1,4-linked-β-d-Galp. Furthermore, a diet supplemented with SP0.1-1 extended the mean lifespan, enhanced antioxidant enzyme (superoxide dismutase, SOD; glutathione peroxidase, GSH-Px; and catalase, CAT) activities, and decreased the malondialdehyde (MDA) level and hydrogen peroxide (H2O2)-induced mortality rate in fruit flies (Drosophila melanogaster). To summarize, the study's findings will provide evidence for the development of sea buckthorn polysaccharide products.
Collapse
Affiliation(s)
- Chen Shen
- College of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan 316000, People's Republic of China
| | - Teng Wang
- College of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan 316000, People's Republic of China
| | - Feng Guo
- College of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan 316000, People's Republic of China
| | - Kunlai Sun
- College of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan 316000, People's Republic of China
| | - Bin Wang
- College of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan 316000, People's Republic of China
| | - Jie Wang
- College of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan 316000, People's Republic of China
| | - Zefeng Zhang
- BeiGene Company, 6 Jianguomenwai Avenue, Central International Trade Center 22nd Floor, Tower D Chaoyang District, Beijing 100022, People's Republic of China
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Yuqin Zhao
- College of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan 316000, People's Republic of China.
| | - Yin Chen
- College of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan 316000, People's Republic of China; Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, 1 South Haida Road, Zhoushan 316000, People's Republic of China.
| |
Collapse
|
102
|
Mihalcea L, Turturică M, Cucolea EI, Dănilă GM, Dumitrașcu L, Coman G, Constantin OE, Grigore-Gurgu L, Stănciuc N. CO 2 Supercritical Fluid Extraction of Oleoresins from Sea Buckthorn Pomace: Evidence of Advanced Bioactive Profile and Selected Functionality. Antioxidants (Basel) 2021; 10:antiox10111681. [PMID: 34829552 PMCID: PMC8615056 DOI: 10.3390/antiox10111681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 12/02/2022] Open
Abstract
The processing of sea buckthorn generates a significant amount of pomace, seeds and skin considered valuable sources of health-promoting macromolecules, such as carotenoids, pectin, flavonoids, phytosterols, polyunsaturated fatty acids and tocopherols. In this study, the bioactives from sea buckthorn pomace (SBP) were extracted using supercritical carbon dioxide (SFE-CO2), at different temperatures and pressures, allowing for obtaining four fractions according to separators (S40 and S45). The highest carotenoid content of 396.12 ± 1.02 mg/g D.W. was found in the S40 fraction, at extraction parameters of 35 °C/45 MPa, yielding an antioxidant activity of 32.10 ± 0.17 mMol TEAC/g D.W. The representative carotenoids in the extract were zeaxanthin, β-carotene and lycopene, whereas all enriched SFE-CO2 extracts contained α-, β- and δ-tocopherol, with α-tocopherol representing around 82% of all fractions. β-sitosterol was the major phytosterol in the fractions derived from S45. All fractions contained significant fatty acids, with a predominance of linoleic acid. Remarkably, the enriched extracts showed a significant palmitoleic acid content, ranging from 53 to 65 µg/g. S40 extracts showed a good antibacterial activity against Staphylococcus aureus and Aeromonas hydrophila ATCC 7966, whereas S45 extracts showed a growth inhibition rate of 100% against Aspergillus niger after three days of growth. Our results are valuable, and they allow identifying the different profiles of extracts with many different applications in food, pharmaceutics, nutraceuticals and cosmeceuticals.
Collapse
Affiliation(s)
- Liliana Mihalcea
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domnească Street 111, 800201 Galati, Romania; (L.M.); (M.T.); (L.D.); (G.C.); (O.E.C.); (L.G.-G.)
| | - Mihaela Turturică
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domnească Street 111, 800201 Galati, Romania; (L.M.); (M.T.); (L.D.); (G.C.); (O.E.C.); (L.G.-G.)
| | - Elena Iulia Cucolea
- Cromatec Plus SRL, Research Center for Instrumental Analysis SCIENT, Petre Ispirescu Street 1, 077176 Tâncăbești, Romania; (E.I.C.); (G.-M.D.)
| | - George-Mădălin Dănilă
- Cromatec Plus SRL, Research Center for Instrumental Analysis SCIENT, Petre Ispirescu Street 1, 077176 Tâncăbești, Romania; (E.I.C.); (G.-M.D.)
| | - Loredana Dumitrașcu
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domnească Street 111, 800201 Galati, Romania; (L.M.); (M.T.); (L.D.); (G.C.); (O.E.C.); (L.G.-G.)
| | - Gigi Coman
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domnească Street 111, 800201 Galati, Romania; (L.M.); (M.T.); (L.D.); (G.C.); (O.E.C.); (L.G.-G.)
| | - Oana Emilia Constantin
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domnească Street 111, 800201 Galati, Romania; (L.M.); (M.T.); (L.D.); (G.C.); (O.E.C.); (L.G.-G.)
| | - Leontina Grigore-Gurgu
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domnească Street 111, 800201 Galati, Romania; (L.M.); (M.T.); (L.D.); (G.C.); (O.E.C.); (L.G.-G.)
| | - Nicoleta Stănciuc
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domnească Street 111, 800201 Galati, Romania; (L.M.); (M.T.); (L.D.); (G.C.); (O.E.C.); (L.G.-G.)
- Correspondence:
| |
Collapse
|
103
|
Sireswar S, Dey G, Biswas S. Influence of fruit-based beverages on efficacy of Lacticaseibacillus rhamnosus GG (Lactobacillus rhamnosus GG) against DSS-induced intestinal inflammation. Food Res Int 2021; 149:110661. [PMID: 34600663 DOI: 10.1016/j.foodres.2021.110661] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/30/2021] [Accepted: 08/23/2021] [Indexed: 12/19/2022]
Abstract
Different lines of evidences from clinical, epidemiological and biochemical studies have established that optimal nutrition including probiotic and fruit phenolics can mitigate the risk and morbidity associated with some chronic diseases. The basis for this observation is the potential synergies that may exist between probiotic strains and different bioactive components of food matrices. This study was conceptualized to compare the efficiency of a probiotic strain in two different fruit matrices. Two fruits, viz., sea buckthorn (Hippophae rhamnoides) (SBT) and apples (Malus pumila) (APJ) were chosen and the anti-inflammatory effects of L. rhamnosus GG (ATCC 53103) (LR) fortified in SBT and APJ were analysed against dextran sulphate sodium (DSS) induced colitis in zebrafish (Danio rerio). The results showed that administration of probiotic (LR) fortified, malt supplemented SBT beverage (SBT + M + LR) had better restorative potential on the intestinal barrier function and mucosal damage, in comparison to LR fortified, malt supplemented APJ beverage (APJ + M + LR). SBT + M + LR demonstrated adequate anti-oxidant potential by enhancing the CAT, SOD, GPx and GSH activities, impaired due to DSS administration. The increase in the expressions of toll like receptor (TLR)-2, TLR-4 and TLR-5 induced by DSS were significantly inhibited by SBT + M + LR administration. Gene expression of pro-inflammatory markers, (NF-κB, TNF-α, IL-1β, IL-6, IL-8, CCL20, MPO and MMP9) were attenuated by SBT + M + LR treatment in intestinal tissues of DSS-treated zebrafishes. Notably, SBT + M + LR increased the expression of anti-inflammatory cytokine, IL-10. The study provides evidence that specific interactions between fruit matrix and probiotic strain can provide adjunct therapeutic strategy to manage intestinal inflammation.
Collapse
Affiliation(s)
- Srijita Sireswar
- School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to be University, Patia, Bhubaneswar, Odisha 751024. India
| | - Gargi Dey
- School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to be University, Patia, Bhubaneswar, Odisha 751024. India.
| | - Sutapa Biswas
- Care Hospital, Chandrasekharpur, Bhubaneswar, Odisha 751016, India
| |
Collapse
|
104
|
Bartkiene E, Bartkevics V, Berzina Z, Klementaviciute J, Sidlauskiene S, Isariene A, Zeimiene V, Lele V, Mozuriene E. Fatty acid profile and safety aspects of the edible oil prepared by artisans' at small-scale agricultural companies. Food Sci Nutr 2021; 9:5402-5414. [PMID: 34646511 PMCID: PMC8497834 DOI: 10.1002/fsn3.2495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/31/2021] [Accepted: 07/17/2021] [Indexed: 11/10/2022] Open
Abstract
The aim of this study was to analyze the fatty acid (FA) profiles and mycotoxin and polycyclic aromatic hydrocarbon (PAH) concentrations in sea buckthorn (SB1, SB2), flaxseed (FL3, FL4, FL5), hempseed (HE6, HE7, HE8), camelina (CA9, CA10), and mustard (MU11) edible oils, prepared by artisans' by artisanal at small-scale agricultural companies in Lithuania. The dominant FAs were palmitic and oleic acids in SB; palmitic, stearic, oleic, linoleic, and α-linolenic acids in FL; palmitic, stearic, oleic, linoleic, and α-linolenic acids in HE; palmitic, oleic, linoleic, α-linolenic, eicosenoic, and erucic acids in CA; and oleic, linoleic, α-linolenic, eicosenoic, and erucic acids in MU. In SB2 oil samples, T-2 toxin and zearalenone concentrations higher than 1.0 µg/kg were found (1.7 and 3.0 µg/kg, respectively). In sample FL4, an ochratoxin A concentration higher than 1.0 µg/kg was established (1.2 µg/kg); also, in HE8 samples, 2.0 µg/kg of zearalenone was found. None of the tested edible oils exceeded the limits for PAH concentration. Finally, because of the special place of edible oils in the human diet, not only should their contamination with mycotoxins and PAHs be controlled but also their FA profile, as an important safety characteristic, must be taken into consideration to ensure higher safety standards.
Collapse
Affiliation(s)
- Elena Bartkiene
- Institute of Animal Rearing TechnologiesLithuanian University of Health SciencesKaunasLithuania
- Department of Food Safety and QualityLithuanian University of Health SciencesKaunasLithuania
| | - Vadims Bartkevics
- Institute of Food SafetyAnimal Health and Environment BIORRigaLatvia
| | - Zane Berzina
- Institute of Food SafetyAnimal Health and Environment BIORRigaLatvia
| | - Jolita Klementaviciute
- Institute of Animal Rearing TechnologiesLithuanian University of Health SciencesKaunasLithuania
| | - Sonata Sidlauskiene
- Institute of Animal Rearing TechnologiesLithuanian University of Health SciencesKaunasLithuania
| | | | - Vaida Zeimiene
- National Food and Veterinary Risk Assessment InstituteVilniusLithuania
| | - Vita Lele
- Institute of Animal Rearing TechnologiesLithuanian University of Health SciencesKaunasLithuania
- Department of Food Safety and QualityLithuanian University of Health SciencesKaunasLithuania
| | - Erika Mozuriene
- Institute of Animal Rearing TechnologiesLithuanian University of Health SciencesKaunasLithuania
- Department of Food Safety and QualityLithuanian University of Health SciencesKaunasLithuania
| |
Collapse
|
105
|
Segliņa D, Krasnova I, Grygier A, Radziejewska‐Kubzdela E, Rudzińska M, Górnaś P. Unique bioactive molecule composition of sea buckthorn (
Hippophae rhamnoides
L.) oils obtained from the peel, pulp, and seeds via physical “solvent‐free” approaches. J AM OIL CHEM SOC 2021. [DOI: 10.1002/aocs.12524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | | | - Anna Grygier
- Department of Food Technology of Plant Origin, Faculty of Food Science and Nutrition Poznań University of Life Sciences Poznań Poland
| | - Elżbieta Radziejewska‐Kubzdela
- Department of Food Technology of Plant Origin, Faculty of Food Science and Nutrition Poznań University of Life Sciences Poznań Poland
| | - Magdalena Rudzińska
- Department of Food Technology of Plant Origin, Faculty of Food Science and Nutrition Poznań University of Life Sciences Poznań Poland
| | | |
Collapse
|
106
|
Abstract
Sea buckthorn (Hippophae rhamnoides L.) represents a valuable source of biologically active compounds such as carotenoids and polyphenols. High amounts of these substances are found in its fruits, bark, and leaves. However, their bioavailability is limited and must be increased in order to benefit from the properties they exert. Therefore, the purpose of this study was to increase the stability and bioavailability of sea buckthorn fruit’s bioactives. The sea buckthorn’s bioactive compounds were extracted with a solvent combination between glacial acetic acid, acetone, and water on one side and water only on the other side. Afterward, the phytochemicals from the extracts were encapsulated using the coacervation technique, followed by freeze-drying in order to obtain stable powders. The powders were characterized in terms of antioxidant activity, total carotenoids, β-carotene, lycopene, total polyphenol, and total flavonoid content, color, structure, and morphology. The phytochemical stability of the powders and their antioxidant activity was assessed during 270 days of storage at 4 °C. Moreover, the bioavailability of phytochemicals was measured during in vitro simulated digestibility. Our findings provide insights to promote carotenoids and polyphenols from sea buckthorn as bioactive ingredients with multiple purposes.
Collapse
|
107
|
Petrescu-Mag RM, Vermeir I, Roba C, Petrescu DC, Bican-Brisan N, Martonos IM. Is "Wild" a Food Quality Attribute? Heavy Metal Content in Wild and Cultivated Sea Buckthorn and Consumers' Risk Perception. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18189463. [PMID: 34574397 PMCID: PMC8466791 DOI: 10.3390/ijerph18189463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/28/2021] [Accepted: 09/02/2021] [Indexed: 11/28/2022]
Abstract
Globally, the consumption of herbal supplements is on an upward trend. As the food supplement industry thrives, so does the need for consumers’ awareness of health risks. This contribution is grounded on two assumptions. Firstly, not always “wild” is a food quality attribute, and secondly, the food chain is judged as a noteworthy route for human exposure to soil contamination. Sea buckthorn (SBT) was selected for investigation due to its versatility. In addition to its wide therapeutic uses, it is present in ecological rehabilitation which may raise concerns regarding its safety for human consumption as a consequence of the accumulation of contaminants in the plant. The study aims to discover if the objective contamination of SBT with toxic residues is congruent with people’s subjective evaluation of SBT consumption risk. A quantitative determination of heavy metals was performed by atomic absorption spectrometry. The metals abundance followed the sequence Fe > Cu > Zn > Mn > Cr > Ni > Pb > Cd. Quantitative data on consumers’ subjective risk evaluations were collected through an online survey on 408 Romanians. Binary logistic shows that the consumption of SBT is predicted by the perceived effect of SBT consumption on respondents’ health. The study confirms that the objective contamination of wild and cultivated SBT is in line with the perceived contamination risk. It is inferred that a joint effort of marketers, media, physicians, and pharmacists is needed to inform consumers about the risks and benefits of SBT consumption.
Collapse
Affiliation(s)
- Ruxandra Malina Petrescu-Mag
- Faculty of Environmental Science and Engineering, Babes-Bolyai University, 30 Fantanele Street, 400294 Cluj-Napoca, Romania; (R.M.P.-M.); (C.R.); (N.B.-B.); (I.M.M.)
- Gembloux Agro-Bio Tech, University of Liège, 2 Passage des Déportés, 5030 Gembloux, Belgium
| | - Iris Vermeir
- Department of Marketing, Innovation and Organization, Faculty of Economics and Business Administration, Ghent University, 9000 Ghent, Belgium;
- BE4LIFE, Research Center on Sustainable, Healthy and Ethical Consumption, Ghent University, 9000 Ghent, Belgium
| | - Carmen Roba
- Faculty of Environmental Science and Engineering, Babes-Bolyai University, 30 Fantanele Street, 400294 Cluj-Napoca, Romania; (R.M.P.-M.); (C.R.); (N.B.-B.); (I.M.M.)
| | - Dacinia Crina Petrescu
- Department of Marketing, Innovation and Organization, Faculty of Economics and Business Administration, Ghent University, 9000 Ghent, Belgium;
- Faculty of Business, Babes-Bolyai University, 7 Horea Street, 400174 Cluj-Napoca, Romania
- Correspondence:
| | - Nicoleta Bican-Brisan
- Faculty of Environmental Science and Engineering, Babes-Bolyai University, 30 Fantanele Street, 400294 Cluj-Napoca, Romania; (R.M.P.-M.); (C.R.); (N.B.-B.); (I.M.M.)
| | - Ildiko Melinda Martonos
- Faculty of Environmental Science and Engineering, Babes-Bolyai University, 30 Fantanele Street, 400294 Cluj-Napoca, Romania; (R.M.P.-M.); (C.R.); (N.B.-B.); (I.M.M.)
| |
Collapse
|
108
|
Ben T, Wu P, Zou H, Chen Y. Characterization of nitrite degradation by polyphenols in sea buckthorn (Hippophaë rhamnoides L.) by density function theory calculations. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
109
|
Gâtlan AM, Gutt G. Sea Buckthorn in Plant Based Diets. An Analytical Approach of Sea Buckthorn Fruits Composition: Nutritional Value, Applications, and Health Benefits. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18178986. [PMID: 34501575 PMCID: PMC8431556 DOI: 10.3390/ijerph18178986] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/08/2021] [Accepted: 08/17/2021] [Indexed: 01/17/2023]
Abstract
Current nutritional trends include plant-based diets as nutritional behavior of consumers who are increasingly concerned about a healthy lifestyle. Sea buckthorn (Hippophaë rhamnoides L.) is a plant with great virtues, containing more than 100 types of compounds. It is a plant with versatile properties, multiple economic advantages and a rich history, which still continues in natural medicine, and it is hence included in the daily diet by more and more people for the prevention and treatment of diet-related diseases. Its uniqueness is due to its chemical composition and the health beneficial properties that rise from its composition. This review is a detailed analytical picture of the current state of knowledge currently available regarding the Hippophaë plant, providing an overview of the qualities of sea buckthorn. This article summarizes data on sea buckthorn’s nutritional value, health beneficial properties, and its applications.
Collapse
|
110
|
Raudone L, Puzerytė V, Vilkickyte G, Niekyte A, Lanauskas J, Viskelis J, Viskelis P. Sea Buckthorn Leaf Powders: The Impact of Cultivar and Drying Mode on Antioxidant, Phytochemical, and Chromatic Profile of Valuable Resource. Molecules 2021; 26:4765. [PMID: 34443353 PMCID: PMC8398517 DOI: 10.3390/molecules26164765] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 11/16/2022] Open
Abstract
Sea buckthorn (Hippophae rhamnoides L. (HR)) leaf powders are the underutilized, promising resource of valuable compounds. Genotype and processing methods are key factors in the preparation of homogenous, stable, and quantified ingredients. The aim of this study was to evaluate the phenolic, triterpenic, antioxidant profiles, carotenoid and chlorophyll content, and chromatic characteristics of convection-dried and freeze-dried HR leaf powders obtained from ten different female cultivars, namely 'Avgustinka', 'Botaniceskaja Liubitelskaja', 'Botaniceskaja', 'Hibrid Percika', 'Julia', 'Nivelena', 'Otradnaja', 'Podarok Sadu', 'Trofimovskaja', and 'Vorobjovskaja'. The chromatic characteristics were determined using the CIELAB scale. The phytochemical profiles were determined using HPLC-PDA (high performance liquid chromatography with photodiode array detector) analysis; spectrophotometric assays and antioxidant activities were investigated using ABTS (2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) and FRAP (ferric ion reducing antioxidant power) assays. The sea buckthorn leaf powders had a yellowish-green appearance. The drying mode had a significant impact on the total antioxidant activity, chlorophyll content, and chromatic characteristics of the samples; the freeze-dried samples were superior in antioxidant activity, chlorophyll, carotenoid content, and chromatic profile, compared to convection-dried leaf powder samples. The determined triterpenic and phenolic profiles strongly depend on the cultivar, and the drying technique had no impact on qualitative and quantitative composition. Catechin, epigallocatechin, procyanidin B3, ursolic acid, α-amyrin, and β-sitosterol could be used as quantitative markers in the phenolic and triterpenic profiles. The cultivars 'Avgustinka', 'Nivelena', and 'Botaniceskaja' were superior to other tested cultivars, with the phytochemical composition and antioxidant activity.
Collapse
Affiliation(s)
- Lina Raudone
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Sukileliu av. 13, LT-50162 Kaunas, Lithuania
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu av. 13, LT-50162 Kaunas, Lithuania; (G.V.); (A.N.)
| | - Viktorija Puzerytė
- Laboratory of Biochemistry and Technology, Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kauno Str. 30, LT-54333 Babtai, Kaunas District, Lithuania; (V.P.); (J.V.); (P.V.)
| | - Gabriele Vilkickyte
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu av. 13, LT-50162 Kaunas, Lithuania; (G.V.); (A.N.)
| | - Aurelija Niekyte
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu av. 13, LT-50162 Kaunas, Lithuania; (G.V.); (A.N.)
| | - Juozas Lanauskas
- Department of Horticulture Technologies, Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kauno Str. 30, LT-54333 Babtai, Kaunas District, Lithuania;
| | - Jonas Viskelis
- Laboratory of Biochemistry and Technology, Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kauno Str. 30, LT-54333 Babtai, Kaunas District, Lithuania; (V.P.); (J.V.); (P.V.)
| | - Pranas Viskelis
- Laboratory of Biochemistry and Technology, Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kauno Str. 30, LT-54333 Babtai, Kaunas District, Lithuania; (V.P.); (J.V.); (P.V.)
| |
Collapse
|
111
|
Dong K, Binosha Fernando WM, Durham R, Stockmann R, Jayasena V. Nutritional Value, Health-promoting Benefits and Food Application of Sea Buckthorn. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1943429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Ke Dong
- School of Science, Western Sydney University, Penrith, New South Wales Australia
| | - Warnakulasuriya M.A.D. Binosha Fernando
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia Australia
- Australian Alzheimer’s Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, Western Australia Australia
| | - Rosalie Durham
- School of Science, Western Sydney University, Penrith, New South Wales Australia
| | | | - Vijay Jayasena
- School of Science, Western Sydney University, Penrith, New South Wales Australia
| |
Collapse
|
112
|
Zhang Q, Liang D, Guo J, Guo R, Bi Y. Inclusion Complex of Sea Buckthorn Fruit Oil with β‐Cyclodextrin: Preparation Characterization and Antioxidant Activity. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202100006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Qiang Zhang
- College of Pharmacy Guangdong Pharmaceutical University Guangzhou 510000 China
| | - Dongyi Liang
- College of Pharmacy Guangdong Pharmaceutical University Guangzhou 510000 China
| | - Juan Guo
- College of Food Science Guangdong Pharmaceutical University Guangzhou 510000 China
| | - Rui‐Xue Guo
- College of Food Science Guangdong Pharmaceutical University Guangzhou 510000 China
| | - Yongguang Bi
- College of Pharmacy Guangdong Pharmaceutical University Guangzhou 510000 China
| |
Collapse
|
113
|
Eisinaitė V, Vinauskienė R, Syrpas M, Venskutonis PR, Leskauskaitė D. Oleogel formulation using lipophilic sea buckthorn extract isolated from pomace with supercritical CO 2. J Texture Stud 2021; 52:520-533. [PMID: 34076280 DOI: 10.1111/jtxs.12615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 11/28/2022]
Abstract
Lipophilic sea buckthorn pomace extract isolated by supercritical CO2 (LSBPE) was structurized with different amounts of carnauba wax or beeswax as oleogelators. Oleogels were also made with added water at an LSBPE:water ratio of 70:30. LSBPE was characterized by a favorable ratio of omega-6 to omega-3 fatty acids (1:3) and reasonable amounts of omega-7 fatty acids (4.45% of total), tocopherols (63.0 mg/100 g) and carotenoids (700.1 mg/100 g). The oleogels were characterized by their structural and rheological properties, and physical and chemical stability during storage. Carnauba wax produced a gel-like structure with a highly condensed network of aggregated crystals, while beeswax oleogels displayed elongated crystals which formed interconnected networks. Carnauba wax gels were harder than beeswax gels with better oil-binding capacity and higher crystallization and melting temperatures. Both oleogels showed good physical and oxidative stability during storage due to the immobilization of oil in the three-dimensional structures, and the presence of strong lipophilic antioxidants in LSBPE, respectively. As the proportion of waxes increased from 5 to 17.5%, the hardness, oil-binding capacity, crystallization, and melting temperatures increased in both gels due to the more developed crystalline associations. Addition of water had no significant effect on the physical and chemical stability of oleogels during storage. Water was distributed as small droplets in the crystalline network of oleogelators. However, hardness and oil-binding capacity decreased as water was added. Rich in polyunsaturated fatty acids and bioactive compounds, LSBPE oleogels offer the opportunity to deliver bioactives while simultaneously acting as fat substitutes.
Collapse
Affiliation(s)
- Viktorija Eisinaitė
- Department of Food Science and Technology, Kaunas University of Technology, Kaunas, Lithuania
| | - Rimantė Vinauskienė
- Department of Food Science and Technology, Kaunas University of Technology, Kaunas, Lithuania
| | - Michail Syrpas
- Department of Food Science and Technology, Kaunas University of Technology, Kaunas, Lithuania
| | | | - Daiva Leskauskaitė
- Department of Food Science and Technology, Kaunas University of Technology, Kaunas, Lithuania
| |
Collapse
|
114
|
Odgerel U, Islam MZ, Kitamura Y, Kokawa M, Odbayar T. Effect of micro wet milling process on particle sizes, antioxidants, organic acids, and specific phenolic compounds of whole sea buckthorn (
Hippophae rhamnoides
L.) juices. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ulziibat Odgerel
- Graduate School of Life and Environmental Sciences University of Tsukuba Ibaraki Japan
| | - Md. Zohurul Islam
- Graduate School of Life and Environmental Sciences University of Tsukuba Ibaraki Japan
| | - Yutaka Kitamura
- Faculty of Life and Environmental Sciences University of Tsukuba Ibaraki Japan
| | - Mito Kokawa
- Faculty of Life and Environmental Sciences University of Tsukuba Ibaraki Japan
| | - Tseye‐Oidov Odbayar
- School of Industrial Technology, Department of Food Engineering Main Campus of MUST Ulaanbaatar Mongolia
| |
Collapse
|
115
|
Pap N, Reshamwala D, Korpinen R, Kilpeläinen P, Fidelis M, Furtado MM, Sant'Ana AS, Wen M, Zhang L, Hellström J, Marnilla P, Mattila P, Sarjala T, Yang B, Lima ADS, Azevedo L, Marjomäki V, Granato D. Toxicological and bioactivity evaluation of blackcurrant press cake, sea buckthorn leaves and bark from Scots pine and Norway spruce extracts under a green integrated approach. Food Chem Toxicol 2021; 153:112284. [PMID: 34044082 DOI: 10.1016/j.fct.2021.112284] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022]
Abstract
Aqueous extracts from blackcurrant press cake (BC), Norway spruce bark (NS), Scots pine bark (SP), and sea buckthorn leaves (SB) were obtained using maceration and pressurized hot water and tested for their bioactivities. Maceration provided the extraction of higher dry matter contents, including total phenolics (TPC), anthocyanins, and condensed tannins, which also impacted higher antioxidant activity. NS and SB extracts presented the highest mean values of TPC and antioxidant activity. Individually, NS extract presented high contents of proanthocyanidins, resveratrol, and some phenolic acids. In contrast, SB contained a high concentration of ellagitannins, ellagic acid, and quercetin, explaining the antioxidant activity and antibacterial effects. SP and BC extracts had the lowest TPC and antioxidant activity. However, BC had strong antiviral efficacy, whereas SP can be considered a potential ingredient to inhibit α-amylase. Except for BC, the other extracts decreased reactive oxygen species (ROS) generation in HCT8 and A549 cells. Extracts did not inhibit the production of TNF-alpha in lipopolysaccharide-stimulated THP-1 macrophages but inhibited the ROS generation during the THP-1 cell respiratory burst. The recovery of antioxidant compounds from these by-products is incentivized for high value-added applications.
Collapse
Affiliation(s)
- Nora Pap
- Biorefinery and Bioproducts, Natural Resources Institute Finland (Luke), FI-31600, Jokioinen, Finland.
| | - Dhanik Reshamwala
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Risto Korpinen
- Biorefinery and Bioproducts, Natural Resources Institute Finland (Luke), FI-02150, Espoo, Finland
| | - Petri Kilpeläinen
- Biorefinery and Bioproducts, Natural Resources Institute Finland (Luke), FI-02150, Espoo, Finland
| | - Marina Fidelis
- Food Processing and Quality, Natural Resources Institute Finland (Luke), FI-02150, Espoo, Finland
| | - Marianna M Furtado
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Mingchun Wen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Jarkko Hellström
- Food Processing and Quality, Natural Resources Institute Finland (Luke), FI-31600, Jokioinen, Finland
| | - Pertti Marnilla
- Food Processing and Quality, Natural Resources Institute Finland (Luke), FI-31600, Jokioinen, Finland
| | - Pirjo Mattila
- Food Processing and Quality, Natural Resources Institute Finland (Luke), FI- 20520, Turku, Finland
| | - Tytti Sarjala
- Biomass Characterization and Properties, Natural Resources Institute Finland (Luke), FI-39700, Parkano, Finland
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, 20014, Turku, Finland
| | - Amanda Dos Santos Lima
- Department of Food, Faculty of Nutrition, Federal University of Alfenas, Rua Gabriel Monteiro da Silva, 714, 37130-000, Alfenas, Brazil
| | - Luciana Azevedo
- Department of Food, Faculty of Nutrition, Federal University of Alfenas, Rua Gabriel Monteiro da Silva, 714, 37130-000, Alfenas, Brazil
| | - Varpu Marjomäki
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Daniel Granato
- Food Processing and Quality, Natural Resources Institute Finland (Luke), FI-02150, Espoo, Finland.
| |
Collapse
|
116
|
Attempts for Developing Novel Sugar-Based and Sugar-Free Sea Buckthorn Marmalades. Molecules 2021; 26:molecules26113073. [PMID: 34063892 PMCID: PMC8196551 DOI: 10.3390/molecules26113073] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 11/17/2022] Open
Abstract
Sea buckthorn (Hippophaė rhamnoides L.) is recognized as a valuable source of vitamin C and antioxidants, frequently used as nutraceuticals and cosmeceuticals. In the present study, attempts are made to produce and characterize a novel type of marmalade using sea buckthorn berries processed at 102 °C into marmalade in two combinations, with whole cane or stevia sugar. Changes in the phytochemical profile, antioxidant activity, color, shelf-life, texture, microbiological, and sensorial characteristics were determined. The total carotenoids content in the marmalades were significantly different, with values of 0.91 ± 0.03 mg/g dry weight (DW) in the sample with whole sugar cane (Cz) and 2.69 ± 0.14 mg/g DW in the sample with Stevia sugar (Cs). Significant values of polyphenols were found, of 59.41 ± 1.13 mg GAE/g DW in Cz and 72.44 ± 2.31 mg GAE/g DW in Cs, leading to an antioxidant activity of 45.12 ± 0.001 μMol Trolox/g DW and 118.07 ± 0.01 μMol Trolox/g DW, respectively. Accelerated storage study showed a decrease in all the phytochemicals, however no significant changes were found in antioxidant activity. Values of <100 CFU/g for yeasts and molds and <5 CFU/g for Enterobacteriaceae after 21 days of storage at the room temperature of the marmalades were determined. The sensorial and color results were more than acceptable. Overall, the results highlighted the potential of using sea buckthorn as a potential rich source of bioactive compounds to be used in the sugar-based products manufacturing.
Collapse
|
117
|
Wang K, Xu Z, Liao X. Bioactive compounds, health benefits and functional food products of sea buckthorn: a review. Crit Rev Food Sci Nutr 2021; 62:6761-6782. [PMID: 33783272 DOI: 10.1080/10408398.2021.1905605] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Sea buckthorn (Hippophae rhamnoides L.), which has been categorized as a "medicine food homology" fruit by China's National Health Commission for both nutritional and medicinal purposes, has nearly 200 kinds of nutritive and bioactive compounds such as polyunsaturated fatty acids, carotenoids, sugar alcohols, superoxide dismutase and phytosterols. Significant bioactivity, including cardiovascular improvement, antidiabetic and anti-obesity activity, have highlighted the application of sea buckthorn. This review compiled a database of the phytochemical compounds in sea buckthorn, which contains the contents of 106 nutrients and 74 bioactive compounds. The health benefits of sea buckthorn and its extracts were summarized and the mechanism of anti-oxidation and anti-inflammation were introduced in detail. Seventeen common marketed products of sea buckthorn from 8 countries were collected. A future scope is really needed to explore the mechanism of sea buckthorn bioactive compounds along with the incorporation cost-effective functional food products.
Collapse
Affiliation(s)
- Kewen Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Institute of Quality Standard & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenzhen Xu
- Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Institute of Quality Standard & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
118
|
Ma X, Yang W, Kallio H, Yang B. Health promoting properties and sensory characteristics of phytochemicals in berries and leaves of sea buckthorn ( Hippophaë rhamnoides). Crit Rev Food Sci Nutr 2021; 62:3798-3816. [PMID: 33412908 DOI: 10.1080/10408398.2020.1869921] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sea buckthorn (Hippophaë rhamnoides L., SB), as a multi-functional plant, is widely grown in Asia, Europe and Canada. The berries and leaves of SB contain a diverse array of health-supporting phytochemicals, which are also related to the sensory qualities of berry and berry products. This review summarizes the biologically active key-compounds of the berries and leaves of SB, their health-promoting effects, as well as the contributions to the sensory quality of the berries. The target compounds consist of sugars, sugar derivatives, organic acids, phenolic compounds and lipophilic compounds (mainly carotenoids and tocopherols), which play an important role in anti-inflammatory and antioxidant functions, as well as in metabolic health. In addition, these compounds contribute to the orosensory qualities of SB berries, which are closely related to consumer acceptance and preference of the products. Studies regarding the bioavailability of the compounds and the influence of the processing conditions are also part of this review. Finally, the role of the sensory properties is emphasized in the development of SB products to increase utilization of the berry as a common meal component and to obtain value-added products to support human health.
Collapse
Affiliation(s)
- Xueying Ma
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Turku, Finland
| | - Wei Yang
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Turku, Finland
| | - Heikki Kallio
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Turku, Finland
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Turku, Finland.,Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taiyuan, China
| |
Collapse
|
119
|
Huang R, Xu C. An overview of the perception and mitigation of astringency associated with phenolic compounds. Compr Rev Food Sci Food Saf 2020; 20:1036-1074. [PMID: 33340236 DOI: 10.1111/1541-4337.12679] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 11/07/2020] [Accepted: 11/12/2020] [Indexed: 12/21/2022]
Abstract
Astringency, as a kind of puckering, drying, or rough sensation, is widely perceived from natural foods, especially plants rich in phenolic compounds. Although the interaction and precipitation of salivary proteins by phenolic compounds was often believed as the major mechanism of astringency, a definitive theory about astringency is still lacking due to the complex oral sensations. The interaction with oral epithelial cells and the activation of trigeminal chemoreceptors and mechanoreceptors also shed light on some of the phenolic astringency mechanisms, which complement the insufficient mechanism of interaction with salivary proteins. Since phenolic compounds with different types and structures show different astringency thresholds in a certain regularity, there might be some relationships between the phenolic structures and perceived astringency. On the other hand, novel approaches to reducing the unfavorable perception of phenolic astringency have been increasingly emerging; however, the according summary is still sparse. Therefore, this review aims to: (a) illustrate the possible mechanisms of astringency elicited by phenolic compounds, (b) reveal the possible relationships between phenolic structures and perception of astringency, and (c) summarize the emerging mitigation approaches to astringency triggered by phenolic compounds. This comprehensive review would be of great value to both the understanding of phenolic astringency and the finding of appropriate mitigation approaches to phenolic astringency in future research.
Collapse
Affiliation(s)
- Rui Huang
- The Food Processing Center, Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Changmou Xu
- The Food Processing Center, Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska
| |
Collapse
|
120
|
Chen L, Qu H, Bai S, Yan L, You M, Gou W, Li P, Gao F. Effect of wet sea buckthorn pomace utilized as an additive on silage fermentation profile and bacterial community composition of alfalfa. BIORESOURCE TECHNOLOGY 2020; 314:123773. [PMID: 32645569 DOI: 10.1016/j.biortech.2020.123773] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 06/11/2023]
Abstract
To effectively preserve nutrients, alfalfa silage was treated without (control) or with Lactobacillus plantarum (LP) and their mixture (LP + SBP). Results showed that SBP decreased (P < 0.05) final pH value and ammonia-N of total N, increased (P < 0.05) lactic, acetic and propionic acid contents, resulting in more residual water soluble carbohydrate and crude protein contents and less fiber content in relative to control. Moreover, SBP decreased (P < 0.05) the number of observed species, richness index of ACE and diversity index of Shannon at early stage of ensiling, while Lactobacillus plantarum, Lactococcus lactis, and/or Lactobacillus brevis dominated in silages. In particular, LP + SBP enhanced the growth of Lactococcus lactic at early stage and Lactobacillus plantarum at late stage of ensiling, resulting in higher lactic and acetic acid contents and lower propionic acid content as compared with LP. These confirmed that SBP could be used as an additive for improving silage quality of alfalfa.
Collapse
Affiliation(s)
- Liangyin Chen
- Sichuan Academy of Grassland Sciences, Chengdu 611431, China
| | - Hui Qu
- Grassland Research Institute, Chinese Academy of Agricultural Sciences, Hohhot 010010, China
| | - Shiqie Bai
- Sichuan Academy of Grassland Sciences, Chengdu 611431, China
| | - Lijun Yan
- Sichuan Academy of Grassland Sciences, Chengdu 611431, China
| | - Minghong You
- Sichuan Academy of Grassland Sciences, Chengdu 611431, China
| | - Wenlong Gou
- Sichuan Academy of Grassland Sciences, Chengdu 611431, China
| | - Ping Li
- Sichuan Academy of Grassland Sciences, Chengdu 611431, China.
| | - Fengqin Gao
- Grassland Research Institute, Chinese Academy of Agricultural Sciences, Hohhot 010010, China.
| |
Collapse
|
121
|
Neagu C, Mihalcea L, Enachi E, Barbu V, Borda D, Bahrim GE, Stănciuc N. Cross-Linked Microencapsulation of CO 2 Supercritical Extracted Oleoresins from Sea Buckthorn: Evidence of Targeted Functionality and Stability. Molecules 2020; 25:molecules25102442. [PMID: 32456245 PMCID: PMC7288087 DOI: 10.3390/molecules25102442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 11/16/2022] Open
Abstract
Oleoresin supercritical extracts from sea buckthorn were microencapsulated in whey proteins isolate and casein, in two states: native (N) and cross-linked mediated by transglutaminase (TG). The encapsulation efficiency showed values higher than 92% for total carotenoids and lycopene. Phytochemicals content was 352.90 ± 1.02 mg/g dry weight (DW) for total carotenoids in TG and 302.98 ± 2.30 mg/g DW in N, with antioxidant activity of 703.13 ± 23.60 mMol Trolox/g DW and 608.74 ± 7.12 mMol Trolox/g DW, respectively. Both powders had an inhibitory effect on α-glucosidase, of about 40% for N and 35% for TG. The presence of spherosomes was highlighted, with sizes ranging between 15.23-73.41 µm and an agglutination tendency in N, and lower sizes, up to 35 µm in TG. The in vitro digestibility revealed a prolonged release in an intestinal environment, up to 65% for TG. Moisture sorption isotherms were studied at 20 °C and the shape of curves corresponds to sigmoidal type II model. The presence of cross-linked mediated aggregates in TG powders improved stability and flowability. Our results can be used as evidence that cross-linked aggregates mediated by transglutaminase applied for microencapsulation of oleoresins have the potential to become new delivery systems, for carotenoids and lycopene, being valuable in terms of their attractive color and biological and bioaccessibility properties.
Collapse
|