101
|
Klement RJ, Fink MK. Dietary and pharmacological modification of the insulin/IGF-1 system: exploiting the full repertoire against cancer. Oncogenesis 2016; 5:e193. [PMID: 26878387 PMCID: PMC5154349 DOI: 10.1038/oncsis.2016.2] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/10/2015] [Accepted: 11/16/2015] [Indexed: 12/19/2022] Open
Abstract
As more and more links between cancer and metabolism are discovered, new approaches to treat cancer using these mechanisms are considered. Dietary restriction of either calories or macronutrients has shown great potential in animal studies to both reduce the incidence and growth of cancer, and to act synergistically with other treatment strategies. These studies have also shown that dietary restriction simultaneously targets many of the molecular pathways that are targeted individually by anticancer drugs. The insulin/insulin-like growth factor-1 (IGF-1) system has thereby emerged as a key regulator of cancer growth pathways. Although lowering of insulin levels with diet or drugs such as metformin and diazoxide seems generally beneficial, some practitioners also utilize strategic elevations of insulin levels in combination with chemotherapeutic drugs. This indicates a broad spectrum of possibilities for modulating the insulin/IGF-1 system in cancer treatment. With a specific focus on dietary restriction, insulin administration and the insulin-lowering drug diazoxide, such modifications of the insulin/IGF-1 system are the topic of this review. Although preclinical data are promising, we point out that insulin regulation and the metabolic response to a certain diet often differ between mice and humans. Thus, the need for collecting more human data has to be emphasized.
Collapse
Affiliation(s)
- R J Klement
- Department of Radiation Oncology, Leopoldina Hospital Schweinfurt, Schweinfurt, Germany
| | - M K Fink
- Onkologische Praxis, Fürth, Germany
| |
Collapse
|
102
|
Giezenaar C, Chapman I, Luscombe-Marsh N, Feinle-Bisset C, Horowitz M, Soenen S. Ageing Is Associated with Decreases in Appetite and Energy Intake--A Meta-Analysis in Healthy Adults. Nutrients 2016; 8:28. [PMID: 26751475 PMCID: PMC4728642 DOI: 10.3390/nu8010028] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/07/2015] [Accepted: 12/22/2015] [Indexed: 02/07/2023] Open
Abstract
It is not well recognized that in the elderly weight loss is more common than weight gain. The aim of this analysis was to determine the effect of ageing on appetite (hunger/fullness) and energy intake, after overnight fasting and in a postprandial state, by meta-analyses of trials that included at least two age groups (>18 years). We hypothesized that appetite and energy intake would be less in healthy older compared with younger adults. Following a PubMed-database systematic search up to 30 June 2015, 59 studies were included in the random-effects-model meta-analyses. Energy intake was 16%-20% lower in older (n = 3574/~70 years/~71 kg/~25 kg/m²) than younger (n = 4111/~26 years/~69 kg/~23 kg/m²) adults (standardized mean difference: -0.77 (95% confidence interval -0.90 to -0.64)). Hunger was 25% (after overnight fasting; weighted mean difference (WMD): -17 (-22 to -13) mm) to 39% (in a postprandial state; WMD: -14 (-19 to -9) mm) lower, and fullness 37% (after overnight fasting; WMD: 6 mm (95% CI: 1 to 11 mm)) greater in older than younger adults. In conclusion, appetite and energy intake are less in healthy older than younger adults, suggesting that ageing per se affects food intake.
Collapse
Affiliation(s)
- Caroline Giezenaar
- Discipline of Medicine, National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, the University of Adelaide, 5000 Adelaide, Australia.
| | - Ian Chapman
- Discipline of Medicine, National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, the University of Adelaide, 5000 Adelaide, Australia.
| | - Natalie Luscombe-Marsh
- Discipline of Medicine, National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, the University of Adelaide, 5000 Adelaide, Australia.
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Food and Nutrition, 5000 Adelaide, Australia.
| | - Christine Feinle-Bisset
- Discipline of Medicine, National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, the University of Adelaide, 5000 Adelaide, Australia.
| | - Michael Horowitz
- Discipline of Medicine, National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, the University of Adelaide, 5000 Adelaide, Australia.
| | - Stijn Soenen
- Discipline of Medicine, National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, the University of Adelaide, 5000 Adelaide, Australia.
| |
Collapse
|
103
|
|
104
|
Caloric restriction and exercise "mimetics'': Ready for prime time? Pharmacol Res 2015; 103:158-66. [PMID: 26658171 DOI: 10.1016/j.phrs.2015.11.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 12/19/2022]
Abstract
Exercise and diet are powerful interventions to prevent and ameliorate various pathologies. The development of pharmacological agents that confer exercise- or caloric restriction-like phenotypic effects is thus an appealing therapeutic strategy in diseases or even when used as life-style and longevity drugs. Such so-called exercise or caloric restriction "mimetics" have so far mostly been described in pre-clinical, experimental settings with limited translation into humans. Interestingly, many of these compounds activate related signaling pathways, most often postulated to act on the common downstream effector peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) in skeletal muscle. In this review, resveratrol and other exercise- and caloric restriction "mimetics" are discussed with a special focus on feasibility, chances and limitations of using such compounds in patients as well as in healthy individuals.
Collapse
|
105
|
Sarker MR, Franks S, Sumien N, Thangthaeng N, Filipetto F, Forster M. Curcumin Mimics the Neurocognitive and Anti-Inflammatory Effects of Caloric Restriction in a Mouse Model of Midlife Obesity. PLoS One 2015; 10:e0140431. [PMID: 26473740 PMCID: PMC4608712 DOI: 10.1371/journal.pone.0140431] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/26/2015] [Indexed: 12/24/2022] Open
Abstract
Dietary curcumin was studied for its potential to decrease adiposity and reverse obesity- associated cognitive impairment in a mouse model of midlife sedentary obesity. We hypothesized that curcumin intake, by decreasing adiposity, would improve cognitive function in a manner comparable to caloric restriction (CR), a weight loss regimen. 15-month-old male C57BL/6 mice were assigned in groups to receive the following dietary regimens for 12 weeks: (i) a base diet (Ain93M) fed ad libitum (AL), (ii) the base diet restricted to 70% of ad libitum (CR) or (iii) the base diet containing curcumin fed AL (1000 mg/kg diet, CURAL). Blood markers of inflammation, interleukin 6 (IL-6) and C-reactive protein (CRP), as well as an indicator of redox stress (GSH: GSSG ratio), were determined at different time points during the treatments, and visceral and subcutaneous adipose tissue were measured upon completion of the experiment. After 8 weeks of dietary treatment, the mice were tested for spatial cognition (Morris water maze) and cognitive flexibility (discriminated active avoidance). The CR group showed significant weight loss and reduced adiposity, whereas CURAL mice had stable weight throughout the experiment, consumed more food than the AL group, with no reduction of adiposity. However, both CR and CURAL groups took fewer trials than AL to reach criterion during the reversal sessions of the active avoidance task, suggesting an improvement in cognitive flexibility. The AL mice had higher levels of CRP compared to CURAL and CR, and GSH as well as the GSH: GSSG ratio were increased during curcumin intake, suggesting a reducing shift in the redox state. The results suggest that, independent of their effects on adiposity; dietary curcumin and caloric restriction have positive effects on frontal cortical functions that could be linked to anti-inflammatory or antioxidant actions.
Collapse
Affiliation(s)
- Marjana Rahman Sarker
- Department of Pharmacology and Neuroscience, Institute for Aging and Alzheimer's Disease Research (IAADR), University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Susan Franks
- Family Medicine, Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Nathalie Sumien
- Department of Pharmacology and Neuroscience, Institute for Aging and Alzheimer's Disease Research (IAADR), University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Nopporn Thangthaeng
- Department of Pharmacology and Neuroscience, Institute for Aging and Alzheimer's Disease Research (IAADR), University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Frank Filipetto
- Family Medicine, Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Michael Forster
- Department of Pharmacology and Neuroscience, Institute for Aging and Alzheimer's Disease Research (IAADR), University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| |
Collapse
|
106
|
Ageing and Caloric Restriction in a Marine Planktonic Copepod. Sci Rep 2015; 5:14962. [PMID: 26455575 PMCID: PMC4601087 DOI: 10.1038/srep14962] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/09/2015] [Indexed: 01/25/2023] Open
Abstract
Planktonic copepods are a key group in the marine pelagic ecosystem, linking primary production with upper trophic levels. Their abundance and population dynamics are constrained by the life history tradeoffs associated with resource availability, reproduction and predation pressure. The tradeoffs associated with the ageing process and its underlying biological mechanisms are, however, poorly known. Our study shows that ageing in copepods involves a deterioration of their vital rates and a rise in mortality associated with an increase in oxidative damage (lipid peroxidation); the activity of the cell-repair enzymatic machinery also increases with age. This increase in oxidative damage is associated with an increase in the relative content of the fatty acid 22:6(n-3), an essential component of cell membranes that increases their susceptibility to peroxidation. Moreover, we show that caloric (food) restriction in marine copepods reduces their age-specific mortality rates, and extends the lifespan of females and their reproductive period. Given the overall low production of the oceans, this can be a strategy, at least in certain copepod species, to enhance their chances to reproduce in a nutritionally dilute, temporally and spatially patchy environment.
Collapse
|
107
|
Huang CJ, McAllister MJ, Slusher AL, Webb HE, Mock JT, Acevedo EO. Obesity-Related Oxidative Stress: the Impact of Physical Activity and Diet Manipulation. SPORTS MEDICINE-OPEN 2015; 1:32. [PMID: 26435910 PMCID: PMC4580715 DOI: 10.1186/s40798-015-0031-y] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 09/11/2015] [Indexed: 01/03/2023]
Abstract
Obesity-related oxidative stress, the imbalance between pro-oxidants and antioxidants (e.g., nitric oxide), has been linked to metabolic and cardiovascular disease, including endothelial dysfunction and atherosclerosis. Reactive oxygen species (ROS) are essential for physiological functions including gene expression, cellular growth, infection defense, and modulating endothelial function. However, elevated ROS and/or diminished antioxidant capacity leading to oxidative stress can lead to dysfunction. Physical activity also results in an acute state of oxidative stress. However, it is likely that chronic physical activity provides a stimulus for favorable oxidative adaptations and enhanced physiological performance and physical health, although distinct responses between aerobic and anaerobic activities warrant further investigation. Studies support the benefits of dietary modification as well as exercise interventions in alleviating oxidative stress susceptibility. Since obese individuals tend to demonstrate elevated markers of oxidative stress, the implications for this population are significant. Therefore, in this review our aim is to discuss (i) the role of oxidative stress and inflammation as associated with obesity-related diseases, (ii) the potential concerns and benefits of exercise-mediated oxidative stress, and (iii) the advantageous role of dietary modification, including acute or chronic caloric restriction and vitamin D supplementation.
Collapse
Affiliation(s)
- Chun-Jung Huang
- Exercise Biochemistry Laboratory, Department of Exercise Science and Health Promotion, Florida Atlantic University, 777 Glades Road, FH11A-126B, Boca Raton, FL 33431 USA
| | | | - Aaron L Slusher
- Exercise Biochemistry Laboratory, Department of Exercise Science and Health Promotion, Florida Atlantic University, 777 Glades Road, FH11A-126B, Boca Raton, FL 33431 USA ; Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA USA
| | - Heather E Webb
- Department of Kinesiology, Texas A&M University-Corpus Christi, Corpus Christi, TX USA
| | - J Thomas Mock
- Exercise Biochemistry Laboratory, Department of Exercise Science and Health Promotion, Florida Atlantic University, 777 Glades Road, FH11A-126B, Boca Raton, FL 33431 USA
| | - Edmund O Acevedo
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA USA
| |
Collapse
|
108
|
Abstract
AbstractEnergy restriction (ER; also known as caloric restriction) is the only nutritional intervention that has repeatedly been shown to increase lifespan in model organisms and may delay ageing in humans. In the present review we discuss current scientific literature on ER and its molecular, metabolic and hormonal effects. Moreover, criteria for the classification of substances that might induce positive ER-like changes without having to reduce energy intake are summarised. Additionally, the putative ER mimetics (ERM) 2-deoxy-d-glucose, metformin, rapamycin, resveratrol, spermidine and lipoic acid and their suggested molecular targets are discussed. While there are reports on these ERM candidates that describe lifespan extension in model organisms, data on longevity-inducing effects in higher organisms such as mice remain controversial or are missing. Furthermore, some of these candidates produce detrimental side effects such as immunosuppression or lactic acidosis, or have not been tested for safety in long-term studies. Up to now, there are no known ERM that could be recommended without limitations for use in humans.
Collapse
|
109
|
The effects of graded levels of calorie restriction: IV. Non-linear change in behavioural phenotype of mice in response to short-term calorie restriction. Sci Rep 2015; 5:13198. [PMID: 26306002 PMCID: PMC4548231 DOI: 10.1038/srep13198] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/03/2015] [Indexed: 02/06/2023] Open
Abstract
Animals have to adjust their activities when faced with caloric restriction (CR) to deal with reduced energy intake. If CR is pronounced, allostasis can push individuals into alternate physiological states which can result in important health benefits across a wide range of taxa. Here we developed a new approach to determine the changes in behavioural phenotype associated with different levels of CR. We exposed C57BL/6 male mice to graded CR (from 0 to 40%) for three months and defined their behavioural phenotype using hidden Markov models of their movement and body temperature. All 40% CR mice exhibited a state-shift in behavioural phenotype and only some exposed to 30% CR did. We show for the first time that mice changed their activity characteristics rather than changed their activities. This new phenotyping approach provides an avenue to determine the mechanisms linking CR to healthspan.
Collapse
|
110
|
Hou C, Amunugama K. On the complex relationship between energy expenditure and longevity: Reconciling the contradictory empirical results with a simple theoretical model. Mech Ageing Dev 2015; 149:50-64. [DOI: 10.1016/j.mad.2015.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/06/2015] [Accepted: 06/02/2015] [Indexed: 12/31/2022]
|
111
|
Mitchell SE, Tang Z, Kerbois C, Delville C, Konstantopedos P, Bruel A, Derous D, Green C, Aspden RM, Goodyear SR, Chen L, Han JJ, Wang Y, Promislow DE, Lusseau D, Douglas A, Speakman JR. The effects of graded levels of calorie restriction: I. impact of short term calorie and protein restriction on body composition in the C57BL/6 mouse. Oncotarget 2015; 6:15902-30. [PMID: 26079539 PMCID: PMC4599246 DOI: 10.18632/oncotarget.4142] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 03/31/2015] [Indexed: 12/18/2022] Open
Abstract
Faced with reduced levels of food, animals must adjust to the consequences of the shortfall in energy. We explored how C57BL/6 mice withdrew energy from different body tissues during three months of food restriction at graded levels up to 40% (calorie restriction: CR). We compared this to the response to equivalent levels of protein restriction (PR) without a shortfall in calories. Under CR there was a dynamic change in body mass over 30 days and thereafter it stabilized. The time to reach stability was independent of the level of restriction. At the end of three months whole body dissections revealed differential utilization of the different tissues. Adipose tissue depots were the most significantly utilized tissue, and provided 55.8 to 60.9% of the total released energy. In comparison, reductions in the sizes of structural tissues contributed between 29.8 and 38.7% of the energy. The balance was made up by relatively small changes in the vital organs. The components of the alimentary tract grew slightly under restriction, particularly the stomach, and this was associated with a parallel increase in assimilation efficiency of the food (averaging 1.73%). None of the changes under CR were recapitulated by equivalent levels of PR.
Collapse
Affiliation(s)
- Sharon E. Mitchell
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - Zhanhui Tang
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - Celine Kerbois
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - Camille Delville
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - Penelope Konstantopedos
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - Aurélie Bruel
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - Davina Derous
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - Cara Green
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - Richard M. Aspden
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - Simon R. Goodyear
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - Luonan Chen
- Key laboratory of Systems Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jackie J.D. Han
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Chinese Academy of Sciences, Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang, Beijing, China
| | - Daniel E.L. Promislow
- Department of Pathology and Department of Biology, University of Washington, Seattle, WA, USA
| | - David Lusseau
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - Alex Douglas
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - John R. Speakman
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, UK
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang, Beijing, China
| |
Collapse
|
112
|
Qi H, Su FY, Wan S, Chen Y, Cheng YQ, Liu AJ. The antiaging activity and cerebral protection of rapamycin at micro-doses. CNS Neurosci Ther 2015; 20:991-8. [PMID: 25327787 DOI: 10.1111/cns.12338] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 09/22/2014] [Accepted: 09/22/2014] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE The immunosuppressant drug rapamycin was reported to have an antiaging activity, which was attributed to the TORC1 inhibition that inhibits cell proliferation and increases autophagy. However, rapamycin also exhibits a number of harmful adverse effects. Whether rapamycin can be developed into an antiaging agent remains unclear. METHODS AND RESULTS We demonstrated that rapamycin at micro-doses (below the TORC1 inhibiting concentration) exhibits a cell-protective activity: (1) It protects cultured neurons against neurotoxin MPP(+) and H2O2. (2) It increases survival time of neuron in culture. (3) It maintains the nonproliferative state of cultured senescent human fibroblasts and prevents cell death induced by telomere dysfunction. (4) In animal models, it decreased the cerebral infarct sizes induced by acute ischemia and dramatically extended the life span of stroke prone spontaneously hypertensive rats (SHR-SPs). CONCLUSION We propose that rapamycin at micro-dose can be developed into an antiaging agent with a novel mechanism.
Collapse
Affiliation(s)
- Haiyan Qi
- Springcell Corporation, Dayton, NJ, USA
| | | | | | | | | | | |
Collapse
|
113
|
Abstract
INTRODUCTION After the introduction of highly active antiretroviral treatment, the course of HIV infection turned into a chronic disease and most of HIV-positive patients will soon be over 50 years old. MATERIAL AND METHODS This paper reviews the multiple aspects that physicians have to face while taking care of HIV-positive ageing patients including the definitions of frailty and the prevalence and risk factors of concomitant diseases. From a therapeutic point of view pharmacokinetic changes and antiretroviral-specific toxicities associated with ageing are discussed; finally therapeutic approaches to frailty are reviewed both in HIV-positive and negative patients. CONCLUSION AND DISCUSSION We conclude by suggesting that the combined use of drugs with the least toxicity potential and the promotion of healthy behaviours (including appropriate nutrition and exercise) might be the best practice for ageing HIV-positive subjects.
Collapse
|
114
|
Takahashi R, Odera K. [An overview of current research of the effect of foods on aging and stress]. YAKUGAKU ZASSHI 2015; 135:33-40. [PMID: 25743896 DOI: 10.1248/yakushi.14-00208-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aging process is largely influenced by dietary factors. For example, caloric restriction can slow age-related functional deterioration and the onset or progression of age-related diseases, as well as prolong mean and maximum life span in laboratory animals. However, the dietary factors that affect the aging process comprise not only calories, but also various nutrients, such as proteins, carbohydrates, fats, and vitamins. Phytochemicals, which are found in plants, are non-nutritive, yet many phytochemicals are known to act as antioxidants and prevent diseases associated with free radical production. Furthermore, certain phytochemicals can help prevent or reduce the risk of cancer, inflammation, and cardiovascular disease by alteration of several signal transduction pathways in cells. Therefore, much focus is being placed on the effects of dietary phytochemicals on aging and stress response. This paper reviews recent advances in the study of two major dietary phytochemicals, resveratrol and curcumin, on aging and stress response.
Collapse
Affiliation(s)
- Ryoya Takahashi
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Toho University
| | | |
Collapse
|
115
|
Kane AE, Hilmer SN, Boyer D, Gavin K, Nines D, Howlett SE, de Cabo R, Mitchell SJ. Impact of Longevity Interventions on a Validated Mouse Clinical Frailty Index. J Gerontol A Biol Sci Med Sci 2015; 71:333-9. [PMID: 25711530 DOI: 10.1093/gerona/glu315] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 12/24/2014] [Indexed: 11/14/2022] Open
Abstract
This article investigates the effect on the mouse frailty index (FI), of factors known to influence lifespan and healthspan in mice: strain (short-lived DBA/2J mice vs long-lived C57BL/6J mice), calorie restriction (CR), and resveratrol treatment. The mouse FI, based on deficit accumulation, was recently validated in C57BL/6J mice by Whitehead JC, Hildebrand BA, Sun M, et al. (A clinical frailty index in aging mice: comparisons with frailty index data in humans. J Gerontol A Biol Sci Med Sci. 2014;69:621-632) and shares many characteristics of the human FI. FI scores were measured in male and female aged (18 months) ad-libitum fed and CR DBA/2J and C57BL/6J mice, as well as male aged (24 months) C57BL/6J mice ad-libitum fed with or without resveratrol (100 mg/kg/day) in the diet for 6 months. Mean scores of two raters were used, and the raters had excellent inter-rater reliability (ICC = 0.88, 95% CI [0.80, 0.92]). Furthermore, the interventions of CR and resveratrol were associated with a significant reduction in FI scores in C57BL/6J mice, compared to age-matched controls. The short-lived DBA/2J mice also had slightly higher FI scores than the C57BL/6J mice, for the male calorie-restricted groups (DBA/2J FI = 0.16±0.03, C57BL/6J FI = 0.11±0.03, p = .01). This study uses the mouse FI developed by Whitehead JC, Hildebrand BA, Sun M, et al. (A clinical frailty index in aging mice: comparisons with frailty index data in humans. J Gerontol A Biol Sci Med Sci. 2014;69:621-632) in a different mouse colony and shows that this tool can be applied to quantify the effect of dietary and pharmaceutical interventions on frailty.
Collapse
Affiliation(s)
- Alice E Kane
- Kolling Institute of Medical Research and Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia. Departments of Clinical Pharmacology and Aged Care, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Sarah N Hilmer
- Kolling Institute of Medical Research and Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia. Departments of Clinical Pharmacology and Aged Care, Royal North Shore Hospital, Sydney, New South Wales, Australia.
| | - Dawn Boyer
- National Institute on Aging, Baltimore, Maryland
| | | | - Dawn Nines
- National Institute on Aging, Baltimore, Maryland
| | | | | | | |
Collapse
|
116
|
Prevention of protein glycation by natural compounds. Molecules 2015; 20:3309-34. [PMID: 25690291 PMCID: PMC6272653 DOI: 10.3390/molecules20023309] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 12/14/2022] Open
Abstract
Non-enzymatic protein glycosylation (glycation) contributes to many diseases and aging of organisms. It can be expected that inhibition of glycation may prolong the lifespan. The search for inhibitors of glycation, mainly using in vitro models, has identified natural compounds able to prevent glycation, especially polyphenols and other natural antioxidants. Extrapolation of results of in vitro studies on the in vivo situation is not straightforward due to differences in the conditions and mechanism of glycation, and bioavailability problems. Nevertheless, available data allow to postulate that enrichment of diet in natural anti-glycating agents may attenuate glycation and, in consequence, ageing.
Collapse
|
117
|
Klement RJ. Mimicking caloric restriction: what about macronutrient manipulation? A response to Meynet and Ricci. Trends Mol Med 2014; 20:471-2. [DOI: 10.1016/j.molmed.2014.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 07/03/2014] [Indexed: 10/25/2022]
|