101
|
Zhou X, Bai C, Sun X, Gong X, Yang Y, Chen C, Shan G, Yao Q. Puerarin attenuates renal fibrosis by reducing oxidative stress induced-epithelial cell apoptosis via MAPK signal pathways in vivo and in vitro. Ren Fail 2017; 39:423-431. [PMID: 28335679 PMCID: PMC6014507 DOI: 10.1080/0886022x.2017.1305409] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Puerarin (PR) is an isoflavonoid isolated from the root of the plant Pueraria lobata and has been widely used in traditional Chinese herbal medicine for the treatment of various diseases. Oxidative stress and epithelial cell apoptosis play important roles in the renal fibrotic process. The present study aimed to determine whether or not PR inhibits renal fibrosis by reducing oxidative stress induced-epithelial cell apoptosis. In vivo, unilateral ureteral obstruction (UUO) induced renal fibrosis, and epithelial cell apoptosis. A total of 24 mice were randomly assigned to four experimental groups: sham, UUO alone, UUO +50 mg/kg PR, and UUO +100 mg/kg PR. In vitro, 200 μM hydrogen peroxide (H2O2) induced epithelial cell apoptosis. The experiments were dived into four groups: control, H2O2 alone, H2O2+50 μM PR, and H2O2+100 μM PR. Tubular injury was measured in the renal cortex of the mice through periodic acid-Schiff (PAS) staining, and the extracellular matrix (ECM) was measured through Sirius red (SR), immunohistochemistry (IHC) staining, and Western blot. Renal epithelial cell apoptosis was measured through terminal deoxynucleotidyl transferase-mediated dUTP Nick-End labeling (TUNEL), flow cytometry (FCM), and Hoechst assays. The protein expression of NOX4, caspase3, ERK, P38, and JNK was assessed through Western blot. PAS staining showed that PR decreased renal tubular injury in UUO mice. SR and IHC staining demonstrated that PR decreased the accumulation of ECM. PR treatment significantly inhibited epithelial cell apoptosis according to the results of TUNEL, FCM, Hoechst, and Western blot. Furthermore, NOX4 increased in UUO mice and decreased with PR treatment. H2O2-derived oxidative stress activated epithelial apoptosis and mitogen-activated protein kinases (MAPK), and PR treatment significantly reversed it. These results suggest that PR treatment ameliorates renal fibrosis by inhibiting oxidative stress induced-epithelial cell apoptosis through MAPK signaling.
Collapse
Affiliation(s)
- Xiangjun Zhou
- a Department of Urology , Taihe Hospital, Hubei University of Medicine , Hubei , China
| | - Chen Bai
- b Department of General Surgery , Taihe Hospital, Hubei University of Medicine , Hubei , China
| | - Xinbo Sun
- a Department of Urology , Taihe Hospital, Hubei University of Medicine , Hubei , China
| | - Xiaoxin Gong
- a Department of Urology , Taihe Hospital, Hubei University of Medicine , Hubei , China
| | - Yong Yang
- a Department of Urology , Taihe Hospital, Hubei University of Medicine , Hubei , China
| | - Congbo Chen
- a Department of Urology , Taihe Hospital, Hubei University of Medicine , Hubei , China
| | - Guang Shan
- c Department of Urology , Renmin Hospital of Wuhan University , Hubei , China
| | - Qisheng Yao
- a Department of Urology , Taihe Hospital, Hubei University of Medicine , Hubei , China
| |
Collapse
|
102
|
Protective effect of surface layer proteins isolated from four Lactobacillus strains on hydrogen-peroxide-induced HT-29 cells oxidative stress. Int J Biol Macromol 2017; 102:76-83. [DOI: 10.1016/j.ijbiomac.2017.03.160] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/21/2017] [Accepted: 03/27/2017] [Indexed: 01/02/2023]
|
103
|
Downregulation of TIGAR sensitizes the antitumor effect of physapubenolide through increasing intracellular ROS levels to trigger apoptosis and autophagosome formation in human breast carcinoma cells. Biochem Pharmacol 2017; 143:90-106. [PMID: 28774732 DOI: 10.1016/j.bcp.2017.07.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 07/24/2017] [Indexed: 01/01/2023]
Abstract
Physapubenolide (PB) is a cytotoxic withanolide isolated from Physalis angulata that was used as a traditional Chinese medicine. In this study, we investigated the role of TIGAR and ROS in PB-induced apoptosis and autophagosome formation in human breast carcinoma MDA-MB-231 and MCF-7 cells. PB induced apoptosis by decreasing mitochondrial membrane potential and elevating the Bax/Bcl-2 protein expression ratio in MDA-MB-231 and MCF-7 cells. Caspase inhibitor Z-VAD-FMK treatment partly blocked PB induced cytotoxicity, suggesting that apoptosis serves as an important role in the anti-proliferative effect of PB. Meanwhile, PB induced autophagosome formation, as characterized by increased acridine orange-stained positive cells, accumulation of punctate LC3B fluorescence and a greater number of autophagic vacuoles under electron microscopy. Furthermore, PB inhibited autophagic flux as reflected by the overlapping of mCherry and GFP fluorescence when MDA-MB-231 cells were transfected with GFP-mCherry-LC3 plasmid. Depletion of LC3B, ATG5 or ATG7 reduced PB-induced cytotoxicity, indicating that autophagosome associated cell death participated in the anti-cancer effect of PB. Moreover, PB-induced apoptosis and autophagosome formation were linked to the generation of intracellular ROS, and pre-treatment with the antioxidant NAC obviously mitigated the effects. Interestingly, PB treatment slightly increased TIGAR expression at low concentrations but decreased TIGAR expression drastically at high concentrations. Downregulation of TIGAR by small interfering RNA augmented low concentrations of PB-induced apoptosis and autophagosome formation, which contributed to the observed anti-cancer effect of PB and were reversed by NAC pre-treatment. Consistently, in MDA-MB-231 or MCF-7 xenograft mouse model, PB suppressed tumor growth through ROS induced apoptosis and autophagosome associated cell death accompanied with the downregulation of TIGAR. Taken together, these results indicate that downregulation of TIGAR increased PB-induced apoptosis and autophagosomes associated cell death through promoting ROS generation in MDA-MB-231 and MCF-7 cells.
Collapse
|
104
|
Wang G, Zhang T, Sun W, Wang H, Yin F, Wang Z, Zuo D, Sun M, Zhou Z, Lin B, Xu J, Hua Y, Li H, Cai Z. Arsenic sulfide induces apoptosis and autophagy through the activation of ROS/JNK and suppression of Akt/mTOR signaling pathways in osteosarcoma. Free Radic Biol Med 2017; 106:24-37. [PMID: 28188923 DOI: 10.1016/j.freeradbiomed.2017.02.015] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/23/2017] [Accepted: 02/06/2017] [Indexed: 12/11/2022]
Abstract
Osteosarcoma is a common primary malignant bone tumor, the cure rate of which has stagnated over the past 25-30 years. Arsenic sulfide (As2S2), the main active ingredient of the traditional Chinese medicine realgar, has been proved to have antitumor efficacy in several tumor types including acute promyelocytic leukemia, gastric cancer and colon cancer. Here, we investigated the efficacy and mechanism of As2S2 in osteosarcoma both in vitro and in vivo. In this study, we demonstrated that As2S2 potently suppressed cell proliferation by inducing G2/M phase arrest in various osteosarcoma cell lines. Also, treatment with As2S2 induced apoptosis and autophagy in osteosarcoma cells. The apoptosis induction was related to PARP cleavage and activation of caspase-3, -8, -9. As2S2 was demonstrated to induce autophagy as evidenced by formation of autophagosome and accumulation of LC3II. Further studies showed that As2S2-induced apoptosis and autophagy could be significantly attenuated by ROS scavenger and JNK inhibitor. Moreover, we found that As2S2 inhibited Akt/mTOR signaling pathway, and suppressing Akt and mTOR kinases activity can increase As2S2-induced apoptosis and autophagy. Finally, As2S2in vivo suppressed tumor growth with few side effects. In summary, our results revealed that As2S2 induced G2/M phase arrest, apoptosis, and autophagy via activing ROS/JNK and blocking Akt/mTOR signaling pathway in human osteosarcoma cells. Arsenic sulfide may be a potential clinical antitumor drugs targeting osteosarcoma.
Collapse
Affiliation(s)
- Gangyang Wang
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Tao Zhang
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Wei Sun
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hongsheng Wang
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Orthopaedics, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Fei Yin
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhuoying Wang
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Dongqing Zuo
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Mengxiong Sun
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zifei Zhou
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Orthopaedics, Shanghai East Hospital, Tongji University, Shanghai, China.
| | - Binhui Lin
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jing Xu
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yingqi Hua
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Haoqing Li
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhengdong Cai
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
105
|
Liu Z, Ren B, Wang Y, Zou C, Qiao Q, Diao Z, Mi Y, Zhu D, Liu X. Sesamol Induces Human Hepatocellular Carcinoma Cells Apoptosis by Impairing Mitochondrial Function and Suppressing Autophagy. Sci Rep 2017; 7:45728. [PMID: 28374807 PMCID: PMC5379556 DOI: 10.1038/srep45728] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 03/03/2017] [Indexed: 12/19/2022] Open
Abstract
Sesamol, a nutritional phenolic antioxidant compound enriched in sesame seeds, has been shown to have potential anticancer activities. This study aims at characterizing the antitumor efficacy of sesamol and unveiling the importance of mitochondria in sesamol-induced effects using a human hepatocellular carcinoma cell line, HepG2 cells. Results of this study showed that sesamol treatment suppressed colony formation, elicited S phase arrest during cell cycle progression, and induced both intrinsic and extrinsic apoptotic pathway in vitro with a dose-dependent manner. Furthermore, sesamol treatment elicited mitochondrial dysfunction by inducing a loss of mitochondrial membrane potential. Impaired mitochondria and accumulated H2O2 production resulted in disturbance of redox-sensitive signaling including Akt and MAPKs pathways. Mitochondrial biogenesis was inhibited as suggested by the decline in expression of mitochondrial complex I subunit ND1, and the upstream AMPK/PGC1α signals. Importantly, sesamol inhibited mitophagy and autophagy through impeding the PI3K Class III/Belin-1 pathway. Autophagy stimulator rapamycin reversed sesamol-induced apoptosis and mitochondrial respiration disorders. Moreover, it was also shown that sesamol has potent anti-hepatoma activity in a xenograft nude mice model. These data suggest that mitochondria play an essential role in sesamol-induced HepG2 cells death, and further research targeting mitochondria will provide more chemotherapeutic opportunities.
Collapse
Affiliation(s)
- Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bo Ren
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yihui Wang
- School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Chen Zou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qinglian Qiao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhijun Diao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yashi Mi
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Di Zhu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
106
|
A novel STAT3 inhibitor HO-3867 induces cell apoptosis by reactive oxygen species-dependent endoplasmic reticulum stress in human pancreatic cancer cells. Anticancer Drugs 2017; 28:392-400. [DOI: 10.1097/cad.0000000000000470] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
107
|
Capsular Polysaccharide of Mycoplasma ovipneumoniae Induces Sheep Airway Epithelial Cell Apoptosis via ROS-Dependent JNK/P38 MAPK Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6175841. [PMID: 28367270 PMCID: PMC5359454 DOI: 10.1155/2017/6175841] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 02/15/2017] [Indexed: 12/28/2022]
Abstract
In an attempt to better understand the pathogen-host interaction between invading Mycoplasma ovipneumoniae (M. ovipneumoniae) and sheep airway epithelial cells, biological effects and possible molecular mechanism of capsular polysaccharide of M. ovipneumoniae (CPS) in the induction of cell apoptosis were explored using sheep bronchial epithelial cells cultured in air-liquid interface (ALI). The CPS of M. ovipneumoniae was first isolated and purified. Results showed that CPS had a cytotoxic effect by disrupting the integrity of mitochondrial membrane, accompanied with an increase of reactive oxygen species and decrease of mitochondrial membrane potential (ΔΨm). Of importance, the CPS exhibited an ability to induce caspase-dependent cell apoptosis via both intrinsic and extrinsic apoptotic pathways. Mechanistically, the CPS induced extrinsic cell apoptosis by upregulating FAS/FASL signaling proteins and cleaved-caspase-8 and promoted a ROS-dependent intrinsic cell apoptosis by activating a JNK and p38 signaling but not ERK1/2 signaling of mitogen-activated protein kinases (MAPK) pathways. These findings provide the first evidence that CPS of M. ovipneumoniae induces a caspase-dependent apoptosis via both intrinsic and extrinsic apoptotic pathways in sheep bronchial epithelial cells, which may be mainly attributed by a ROS-dependent JNK and p38 MAPK signaling pathways.
Collapse
|
108
|
Galadari S, Rahman A, Pallichankandy S, Thayyullathil F. Reactive oxygen species and cancer paradox: To promote or to suppress? Free Radic Biol Med 2017; 104:144-164. [PMID: 28088622 DOI: 10.1016/j.freeradbiomed.2017.01.004] [Citation(s) in RCA: 651] [Impact Index Per Article: 81.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/16/2016] [Accepted: 01/03/2017] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS), a group of highly reactive ions and molecules, are increasingly being appreciated as powerful signaling molecules involved in the regulation of a variety of biological processes. Indeed, their role is continuously being delineated in a variety of pathophysiological conditions. For instance, cancer cells are shown to have increased ROS levels in comparison to their normal counterparts. This is partly due to an enhanced metabolism and mitochondrial dysfunction in cancer cells. The escalated ROS generation in cancer cells contributes to the biochemical and molecular changes necessary for the tumor initiation, promotion and progression, as well as, tumor resistance to chemotherapy. Therefore, increased ROS in cancer cells may provide a unique opportunity to eliminate cancer cells via elevating ROS to highly toxic levels intracellularly, thereby, activating various ROS-induced cell death pathways, or inhibiting cancer cell resistance to chemotherapy. Such results can be achieved by using agents that either increase ROS generation, or inhibit antioxidant defense, or even a combination of both. In fact, a large variety of anticancer drugs, and some of those currently under clinical trials, effectively kill cancer cells and overcome drug resistance via enhancing ROS generation and/or impeding the antioxidant defense mechanism. This review focuses on our current understanding of the tumor promoting (tumorigenesis, angiogenesis, invasion and metastasis, and chemoresistance) and the tumor suppressive (apoptosis, autophagy, and necroptosis) functions of ROS, and highlights the potential mechanism(s) involved. It also sheds light on a very novel and an actively growing field of ROS-dependent cell death mechanism referred to as ferroptosis.
Collapse
Affiliation(s)
- Sehamuddin Galadari
- Cell Signaling Laboratory, Department of Biochemistry, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE; Al Jalila Foundation Research Centre, P.O. Box 300100, Dubai, UAE.
| | - Anees Rahman
- Cell Signaling Laboratory, Department of Biochemistry, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE.
| | - Siraj Pallichankandy
- Cell Signaling Laboratory, Department of Biochemistry, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE.
| | - Faisal Thayyullathil
- Cell Signaling Laboratory, Department of Biochemistry, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE.
| |
Collapse
|
109
|
Wang HY, Wang W, Liu YW, Li MY, Liang TY, Li JY, Hu HM, Lu Y, Yao C, Ye YY, Wang YZ, Zhang SZ. Role of KCNB1 in the prognosis of gliomas and autophagy modulation. Sci Rep 2017; 7:14. [PMID: 28144039 PMCID: PMC5428316 DOI: 10.1038/s41598-017-00045-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 12/20/2016] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence suggests that ion channel genes play an important role in the progression of gliomas. However, the mechanisms by which ion channel genes influence the progression of glioma are not fully understood. We identified KCNB1 as a novel ion gene, associated with malignant progression and favorable overall survival (OS) and progression-free survival (PFS) in glioma patients from three datasets (CGGA, GSE16011 and REMBRANDT). Moreover, we characterized a novel function of autophagy induction accompanied by increased apoptosis and reduced proliferation and invasion of glioma cells for KCNB1. KEGG pathway analysis and in vitro studies suggested that the ERK pathway is involved in KCNB1-mediated regulation of autophagy, which was confirmed by inhibition of KCNB1-induced autophagy by using a selective ERK1/2 inhibitor (U0126) or siERK1/2. In vivo studies showed that KCNB1 induced autophagy while inhibiting tumor growth and increasing survival. Overall, our studies define KCNB1 as a novel prognostic factor for gliomas that exerts its tumor suppressive function through autophagy induction.
Collapse
Affiliation(s)
- Hao-Yuan Wang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Wen Wang
- Chinese Glioma Cooperative Group (CGCG), Beijing, China.,Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yan-Wei Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Cooperative Group (CGCG), Beijing, China.,Department of Radiation Therapy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ming-Yang Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Cooperative Group (CGCG), Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ting-Yu Liang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Ji-Ye Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hui-Min Hu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Cooperative Group (CGCG), Beijing, China
| | - Yang Lu
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chen Yao
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yong-Yi Ye
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yong-Zhi Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China. .,Chinese Glioma Cooperative Group (CGCG), Beijing, China. .,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Shi-Zhong Zhang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China. .,The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
110
|
Qi G, Mi Y, Fan R, Li R, Wang Y, Li X, Huang S, Liu X. Tea polyphenols ameliorate hydrogen peroxide- and constant darkness-triggered oxidative stress via modulating the Keap1/Nrf2 transcriptional signaling pathway in HepG2 cells and mice liver. RSC Adv 2017. [DOI: 10.1039/c7ra05000c] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tea polyphenols alleviate oxidative stressviamodulating the Keap1/Nrf2 transcriptional signaling pathway in HepG2 cells and the liver of mice kept in constant darkness.
Collapse
Affiliation(s)
- Guoyuan Qi
- Laboratory of Functional Chemistry and Nutrition of Food
- College of Food Science and Engineering
- Northwest A&F University
- Yangling
- China
| | - Yashi Mi
- Laboratory of Functional Chemistry and Nutrition of Food
- College of Food Science and Engineering
- Northwest A&F University
- Yangling
- China
| | - Rong Fan
- Laboratory of Functional Chemistry and Nutrition of Food
- College of Food Science and Engineering
- Northwest A&F University
- Yangling
- China
| | - Runnan Li
- Laboratory of Functional Chemistry and Nutrition of Food
- College of Food Science and Engineering
- Northwest A&F University
- Yangling
- China
| | - Yiwen Wang
- Laboratory of Functional Chemistry and Nutrition of Food
- College of Food Science and Engineering
- Northwest A&F University
- Yangling
- China
| | - Xingyu Li
- Laboratory of Functional Chemistry and Nutrition of Food
- College of Food Science and Engineering
- Northwest A&F University
- Yangling
- China
| | - Shuxian Huang
- Laboratory of Functional Chemistry and Nutrition of Food
- College of Food Science and Engineering
- Northwest A&F University
- Yangling
- China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food
- College of Food Science and Engineering
- Northwest A&F University
- Yangling
- China
| |
Collapse
|
111
|
Wu JJ, Ma T, Wang ZM, Xu WJ, Yang XL, Luo JG, Kong LY, Wang XB. Polycyclic xanthones via pH-switched biotransformation of α-mangostin catalysed by horseradish peroxidase exhibited cytotoxicity against hepatoblastoma cells in vitro. J Funct Foods 2017. [DOI: 10.1016/j.jff.2016.11.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
112
|
Zhang Z, Wang HH, Yu HJ, Xiong YZ, Zhang HT, Ji LN, Liu HY. Synthesis, characterization and in vitro and in vivo photodynamic activities of a gallium(iii) tris(ethoxycarbonyl)corrole. Dalton Trans 2017; 46:9481-9490. [DOI: 10.1039/c7dt00992e] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A gallium(iii) tris(ethoxycarbonyl)corrole is a highly effective photosensitizer against A549 cancer cells via p38 MAPK signaling cascade pathways.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Chemistry
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- South China University of Technology
- Guangzhou
- P. R. China
| | - Hua-Hua Wang
- Department of Chemistry
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- South China University of Technology
- Guangzhou
- P. R. China
| | - Hua-Jun Yu
- Guangdong Medical University Laboratory Animal Center
- Guang Dong Medical University
- Zhanjiang
- P. R. China
| | - Yu-Zhen Xiong
- Department of Biochemistry and Molecular Biology
- Guang Dong Medical University
- Zhanjiang
- P. R. China
| | - Hai-Tao Zhang
- Department of Biochemistry and Molecular Biology
- Guang Dong Medical University
- Zhanjiang
- P. R. China
| | - Liang-Nian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Hai-Yang Liu
- Department of Chemistry
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- South China University of Technology
- Guangzhou
- P. R. China
| |
Collapse
|
113
|
Zhong WF, Wang XH, Pan B, Li F, Kuang L, Su ZX. Eupatilin induces human renal cancer cell apoptosis via ROS-mediated MAPK and PI3K/AKT signaling pathways. Oncol Lett 2016; 12:2894-2899. [PMID: 27698876 PMCID: PMC5038859 DOI: 10.3892/ol.2016.4989] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 05/16/2016] [Indexed: 01/16/2023] Open
Abstract
Phosphatidylinositol 3-kinase (PI3K)/AKT and mitogen activated protein kinase (MAPK) signaling cascades have significant roles in cell proliferation, survival, angiogenesis and metastasis of tumor cells. Eupatilin, one of the major compounds present in Artemisia species, has been demonstrated to have antitumor properties. However, the effect of eupatilin in renal cell carcinoma (RCC) remains to be elucidated. Therefore, the present study investigated the biological effects and mechanisms of eupatilin in RCC cell apoptosis. The results of the present study demonstrated that eupatilin significantly induced cell apoptosis and enhanced the production of reactive oxygen species (ROS) in 786-O cells. In addition, eupatilin induced phosphorylation of p38α (Thr180/Tyr182), extracellular signal-regulated kinase 1/2 and c-Jun N-terminal kinase 1/2 (Thr183/Tyr185), and decreased the phosphorylation of PI3K and AKT in 786-O cells in a concentration-dependent manner. Furthermore, the ROS inhibitor N-acetyl-L-cysteine was able to rescue the MAPK activation and PI3K/AKT inhibition induced by eupatilin. Taken together, the results of the present study provide evidence that inhibition of eupatilin induces apoptosis in human RCC via ROS-mediated activation of the MAPK signaling pathway and inhibition of the PI3K/AKT signaling pathway. Thus, eupatilin may serve as a potential therapeutic agent for the treatment of human RCC.
Collapse
Affiliation(s)
- Wei-Feng Zhong
- Department of Urology, Meizhou People's Hospital, Meizhou, Guangdong 514031, P.R. China
| | - Xiao-Hong Wang
- Department of Nephrology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Bin Pan
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Feng Li
- Department of Urology, The Fourth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 511447, P.R. China
| | - Lu Kuang
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Ze-Xuan Su
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
114
|
Li Z, Wang JW, Wang WZ, Zhi XF, Zhang Q, Li BW, Wang LJ, Xie KL, Tao JQ, Tang J, Wei S, Zhu Y, Xu H, Zhang DC, Yang L, Xu ZK. Natriuretic peptide receptor A inhibition suppresses gastric cancer development through reactive oxygen species-mediated G2/M cell cycle arrest and cell death. Free Radic Biol Med 2016; 99:593-607. [PMID: 27634171 DOI: 10.1016/j.freeradbiomed.2016.08.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 08/11/2016] [Accepted: 08/14/2016] [Indexed: 12/15/2022]
Abstract
Natriuretic peptide receptor A (NPRA), the major receptor for atrial natriuretic peptide (ANP), has been implicated in tumorigenesis; however, the role of ANP-NPRA signaling in the development of gastric cancer remains unclear. Immunohistochemical analyses indicated that NPRA expression was positively associated with gastric tumor size and cancer stage. NPRA inhibition by shRNA induced G2/M cell cycle arrest, cell death, and autophagy in gastric cancer cells, due to accumulation of reactive oxygen species (ROS). Either genetic or pharmacologic inhibition of autophagy led to caspase-dependent cell death. Therefore, autophagy induced by NPRA silencing may represent a cytoprotective mechanism. ROS accumulation activated c-Jun N-terminal kinase (JNK) and AMP-activated protein kinase (AMPK). ROS-mediated activation of JNK inhibited cell proliferation by disturbing cell cycle and decreased cell viability. In addition, AMPK activation promoted autophagy in NPRA-downregulated cancer cells. Overall, our results indicate that the inhibition of NPRA suppresses gastric cancer development and targeting NPRA may represent a promising strategy for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Zheng Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ji-Wei Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei-Zhi Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao-Fei Zhi
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of General Surgery, The Affiliated Hospital of Nantong University, Nantong, China
| | - Qun Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bo-Wen Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lin-Jun Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kun-Ling Xie
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jin-Qiu Tao
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Tang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Song Wei
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Zhu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dian-Cai Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li Yang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ze-Kuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
115
|
Cai B, Huang Z, Wu Z, Wang L, Yin G, Gao F. Fabrication of RGD-conjugated Gd(OH) 3:Eu nanorods with enhancement of magnetic resonance, luminescence imaging and in vivo tumor targeting. Dalton Trans 2016; 45:14063-14070. [PMID: 27711720 DOI: 10.1039/c6dt02304e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The development of multimodal probes with magnetic resonance imaging (MRI) and intraoperative fluorescence imaging is the most challenging task in the field of tumor diagnosis. Herein, a simple one-pot hydrothermal method is used to prepare Eu-doped Gd(OH)3 nanorods (Gd(OH)3:Eu NRs) with good fluorescence and the longitudinal relaxivity r1 value of 4.78 (Gd mM s-1). After dual-functionalized maleimide-polyethylene glycol-succinimide (Mal-PEG-NHS) macromolecules are coated on the surface of Gd(OH)3:Eu NRs (PEG-NRs), the results of a lower degradation ratio in newborn calf serum (NCS), reactive oxygen species (ROS) generation in L929 cells and the hemolytic rate of PEG-NRs show their good cyto-compatibility and longer blood circulation time. Moreover, the actively tumor-targeting properties are endowed to NRs through the conjugation of cyclic arginine-glycine-aspartic acid (cRGD) (denoted RGD-NRs). The bio-distributions of RGD-NRs in tumor-bearing nude mice via tail-vein injection indicate that RGD-NRs are specifically taken-up by gliomas. The tests of in vivo T1-weighted MR imaging via tail-vein injection confirm that RGD-NRs possess a higher positive signal-enhancement ability in gliomas. Besides, the better luminescence imaging of living cells under a fluorescence microscope and the clear in vivo fluorescence imaging further confirm the targeting properties and better in vivo optical imaging behavior of RGD-NRs.
Collapse
Affiliation(s)
- Bianyun Cai
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China.
| | - Zhongbing Huang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China.
| | - Zhi Wu
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China.
| | - Lei Wang
- Molecular Imaging Center, Department of Radiology, West China Hospital of Sichuan University, China.
| | - Guangfu Yin
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China.
| | - Fabao Gao
- Molecular Imaging Center, Department of Radiology, West China Hospital of Sichuan University, China.
| |
Collapse
|
116
|
Ai Y, Zhu B, Ren C, Kang F, Li J, Huang Z, Lai Y, Peng S, Ding K, Tian J, Zhang Y. Discovery of New Monocarbonyl Ligustrazine-Curcumin Hybrids for Intervention of Drug-Sensitive and Drug-Resistant Lung Cancer. J Med Chem 2016; 59:1747-60. [PMID: 26891099 DOI: 10.1021/acs.jmedchem.5b01203] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The elevation of oxidative stress preferentially in cancer cells by inhibiting thioredoxin reductase (TrxR) and/or enhancing reactive oxygen species (ROS) production has emerged as an effective strategy for selectively targeting cancer cells. In this study, we designed and synthesized 21 ligustrazine-curcumin hybrids (10a-u). Biological evaluation indicated that the most active compound 10d significantly inhibited the proliferation of drug-sensitive (A549, SPC-A-1, LTEP-G-2) and drug-resistant (A549/DDP) lung cancer cells but had little effect on nontumor lung epithelial-like cells (HBE). Furthermore, 10d suppressed the TrxR/Trx system and promoted intracellular ROS accumulation and cancer cell apoptosis. Additionally, 10d inhibited the NF-κB, AKT, and ERK signaling, P-gp-mediated efflux of rhodamine 123, P-gp ATPase activity, and P-gp expression in A549/DDP cells. Finally, 10d repressed the growth of implanted human drug-resistant lung cancer in mice. Together, 10d acts a novel TrxR inhibitor and may be a promising candidate for intervention of lung cancer.
Collapse
Affiliation(s)
- Yong Ai
- State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing 210009, China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University , Nanjing 210009, China
| | - Bin Zhu
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory for Carcinogenesis of Chinese Ministry of Health, School of Basic Medical Sciences, Central South University , Changsha 410078, China
| | - Caiping Ren
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory for Carcinogenesis of Chinese Ministry of Health, School of Basic Medical Sciences, Central South University , Changsha 410078, China
| | - Fenghua Kang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing 210009, China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University , Nanjing 210009, China
| | - Jinlong Li
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory for Carcinogenesis of Chinese Ministry of Health, School of Basic Medical Sciences, Central South University , Changsha 410078, China
| | - Zhangjian Huang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing 210009, China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University , Nanjing 210009, China
| | - Yisheng Lai
- State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing 210009, China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University , Nanjing 210009, China
| | - Sixun Peng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing 210009, China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University , Nanjing 210009, China
| | - Ke Ding
- Key Laboratory of Regenerative Biology and Institute of Chemical Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou 510530, China
| | - Jide Tian
- Department of Molecular and Medical Pharmacology, University of California , Los Angeles, California 90095, United States
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing 210009, China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University , Nanjing 210009, China
| |
Collapse
|