101
|
Kuppa SS, Kim HK, Kang JY, Lee SC, Seon JK. Role of Mesenchymal Stem Cells and Their Paracrine Mediators in Macrophage Polarization: An Approach to Reduce Inflammation in Osteoarthritis. Int J Mol Sci 2022; 23:13016. [PMID: 36361805 PMCID: PMC9658630 DOI: 10.3390/ijms232113016] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/28/2022] Open
Abstract
Osteoarthritis (OA) is a low-grade inflammatory disorder of the joints that causes deterioration of the cartilage, bone remodeling, formation of osteophytes, meniscal damage, and synovial inflammation (synovitis). The synovium is the primary site of inflammation in OA and is frequently characterized by hyperplasia of the synovial lining and infiltration of inflammatory cells, primarily macrophages. Macrophages play a crucial role in the early inflammatory response through the production of several inflammatory cytokines, chemokines, growth factors, and proteinases. These pro-inflammatory mediators are activators of numerous signaling pathways that trigger other cytokines to further recruit more macrophages to the joint, ultimately leading to pain and disease progression. Very few therapeutic alternatives are available for treating inflammation in OA due to the condition's low self-healing capacity and the lack of clear diagnostic biomarkers. In this review, we opted to explore the immunomodulatory properties of mesenchymal stem cells (MSCs) and their paracrine mediators-dependent as a therapeutic intervention for OA, with a primary focus on the practicality of polarizing macrophages as suppression of M1 macrophages and enhancement of M2 macrophages can significantly reduce OA symptoms.
Collapse
Affiliation(s)
- Sree Samanvitha Kuppa
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Korea
- Department of Orthopaedics Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup 519-763, Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 501-757, Korea
| | - Hyung Keun Kim
- Department of Orthopaedics Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup 519-763, Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 501-757, Korea
| | - Ju Yeon Kang
- Department of Orthopaedics Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup 519-763, Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 501-757, Korea
| | - Seok Cheol Lee
- Department of Orthopaedics Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup 519-763, Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 501-757, Korea
| | - Jong Keun Seon
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Korea
- Department of Orthopaedics Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup 519-763, Korea
- Korea Biomedical Materials and Devices Innovation Research Center, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 501-757, Korea
| |
Collapse
|
102
|
Eucommia ulmoides Oliver's Multitarget Mechanism for Treatment of Ankylosing Spondylitis: A Study Based on Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3699146. [PMID: 36267087 PMCID: PMC9578855 DOI: 10.1155/2022/3699146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022]
Abstract
Background Eucommia ulmoides Oliver (EU) is a plant used in Chinese medicine as a medicinal herb to treat autoimmune and inflammatory conditions. We used network pharmacology to examine the active ingredients and estimate the main targets and pathways affected by EU when it is used to treat ankylosing spondylitis (AS). Materials and Methods The Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform was used to search for active ingredients in EU and their target proteins. The GeneCards Database was used to find AS-related targets. The targets from the EU and AS searches that coincided were selected by constructing a Venn diagram. Then, a STRING network platform and Cytoscape software were used to analyse the protein-protein interaction (PPI) network and key targets. The strong affinity between EU and its targets was confirmed using molecular docking techniques. The Gene Ontology and the Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway enrichment analysis of overlapping targets was performed using the database for annotation, visualization, and integrated discovery online tool. Results The number of active ingredients against AS in EU was discovered to be 28. Major targets against AS in the PPI network and core targets analyses were identified as IL-1B, PTGS2, IL-8, nMMP-9, CCL2, MYC, and IL-2. Furthermore, molecular docking studies showed the strong affinity between EU's bioactive molecules and their AS targets. Enrichment analysis revealed that active ingredients from EU were involved in a variety of biological processes, including the response to molecules derived from bacteria, extracellular stimuli, nutrient levels, and the regulation of reactive oxygen species, all of which are mediated by interleukin-17, TNF-α, and other signalling pathways. Conclusion The therapy for AS using EU involves a multitarget, multipathway, and multiselection mechanism that includes anti-inflammatory and analgesic effects. This study provides a theoretical basis for future research into targeted molecular therapies for AS.
Collapse
|
103
|
Wang Z, Efferth T, Hua X, Zhang XA. Medicinal plants and their secondary metabolites in alleviating knee osteoarthritis: A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154347. [PMID: 35914361 DOI: 10.1016/j.phymed.2022.154347] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/30/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND With the increasing ages of the general population, the incidence of knee osteoarthritis (KOA) is also rising, and KOA has become a major health problem worldwide. Recently, medicinal plants and their secondary metabolites have gained interest due to their activity in treating KOA. In this paper, a comprehensive systematic review of the literature was performed concerning the effects of medicinal plant extracts and natural compounds against KOA in recent years. The related molecular pathways of natural compounds against KOA were summarized, and the possible crosstalk among components in chondrocytes was discussed to propose possible solutions for the current situation of treating KOA. PURPOSE This review focused on the molecular mechanisms by which medicinal plants and their secondary metabolites act against KOA. METHODS Literature searches were performed in the PUBMED, Embase, Science Direct, and Web of Science databases for a 10-year period from 2011 to 2022 with the search terms "medicinal plants," "bioactive compounds," "natural products," "phytochemical," "knee osteoarthritis," "knee joint osteoarthritis," "knee osteoarthritis," "osteoarthritis of the knee," and "osteoarthritis of knee joint." RESULTS According to the results, substantial plant extracts and secondary metabolites show a positive effect in fighting KOA. Plant extracts and their secondary metabolites can affect the diagnostic and prognostic biomarkers of KOA. Natural products inhibit the expression of MMP1, MMP3, MMP19, syndecan IV, ADAMTS-4, ADAMTS-5, iNOS, COX-2, collagenases, IL-6, IL-1β, and TNF-α in vitro and in vivo and . Cytokines also upregulate the expression of collagen II and aggrecan. The main signaling pathways affected by the extracts and isolated compounds include AMPK, SIRT, NLRP3, MAPKs, PI3K/AKT, mTOR, NF-κB, WNT/β-catenin, JAK/STAT3, and NRF2, as well as the cell death modes apoptosis, autophagy, pyroptosis, and ferroptosis. CONCLUSION The role of secondary metabolites in different signaling pathways supplies a better understanding of their potential to develop further curative options for KOA.
Collapse
Affiliation(s)
- Zhuo Wang
- School of Kinesiology, Shenyang Sport University, No. 36 Jinqiansong East Road, Shenyang, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Xin Hua
- College of Life Science, Northeast Forestry University, No. 26 Hexing Road, Harbin, China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, China.
| | - Xin-An Zhang
- School of Kinesiology, Shenyang Sport University, No. 36 Jinqiansong East Road, Shenyang, China.
| |
Collapse
|
104
|
Shen P, Jia S, Wang Y, Zhou X, Zhang D, Jin Z, Wang Z, Liu D, Bai L, Yang Y. Mechanical stress protects against chondrocyte pyroptosis through lipoxin A4 via synovial macrophage M2 subtype polarization in an osteoarthritis model. Biomed Pharmacother 2022; 153:113361. [DOI: 10.1016/j.biopha.2022.113361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/20/2022] [Accepted: 06/28/2022] [Indexed: 11/02/2022] Open
|
105
|
Jia H, Duan L, Yu P, Zhou Y, Liu R, Wang H. Digoxin ameliorates joint inflammatory microenvironment by downregulating synovial macrophage M1-like-polarization and its-derived exosomal miR-146b-5p/Usp3&Sox5 axis. Int Immunopharmacol 2022; 111:109135. [PMID: 35987145 DOI: 10.1016/j.intimp.2022.109135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/05/2022]
Abstract
Relatively low-grade inflammatory of osteoarthritic joints is characterized by synovitis and a catabolic and proinflammatory state of the chondrocytes and plays an important role in osteoarthritis (OA) initiation and exacerbation. Our previous research showed cardiac glycoside compounds might be effective in OA synovitis. However, the effect of digoxin (DIG), an FDA-approved cardenolide, on inflammation inhibition of osteoarthritic joints has not been investigated. In the present study, a western blot analysis and immunofluorescence staining revealed that DIG alleviated OA synovitis by inhibiting the M1-like polarization of synovial macrophages in OA patients and collagenase-induced OA (CIOA, with considerable synovitis) mice. Subsequently, the exosomes produced by macrophages and M1-like macrophages treated with or without DIG were isolated and identified. According to miRNA sequencing analysis of these exosomes and subsequent target activity assays, we confirmed DIG controls OA inflammatory microenvironment and promotes chondrogenesis by, at least partly, downregulating the M1-like macrophage-derived exosomal miR-146b-5p/Usp3&Sox5 axis in vitro and in vivo. This research provides reliable experimental evidence supporting the clinical application of DIG as a disease-modifying drug for inflammation-associated OA. Additionally, the spectrum of diseases of inflammation controlled by DIG has been broadened, which prompting research interest in the new function of an "old" FDA-approved drug.
Collapse
Affiliation(s)
- Hao Jia
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Control of Tropical Diseases, School of Tropical Medicine, Department of Spine Surgery of The First Affiliated Hospital, Hainan Medical University, Haikou 571199, China
| | - Lian Duan
- Department of Joint Surgery, the First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| | - Peng Yu
- Department of Joint Surgery, the First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| | - Yue Zhou
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Control of Tropical Diseases, School of Tropical Medicine, Department of Spine Surgery of The First Affiliated Hospital, Hainan Medical University, Haikou 571199, China
| | - Rangru Liu
- Hainan Provincial Key Laboratory of R&D of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China
| | - Hua Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Control of Tropical Diseases, School of Tropical Medicine, Department of Spine Surgery of The First Affiliated Hospital, Hainan Medical University, Haikou 571199, China.
| |
Collapse
|
106
|
Wang L, He C. Nrf2-mediated anti-inflammatory polarization of macrophages as therapeutic targets for osteoarthritis. Front Immunol 2022; 13:967193. [PMID: 36032081 PMCID: PMC9411667 DOI: 10.3389/fimmu.2022.967193] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/27/2022] [Indexed: 12/14/2022] Open
Abstract
Macrophages are the most abundant immune cells within the synovial joints, and also the main innate immune effector cells triggering the initial inflammatory responses in the pathological process of osteoarthritis (OA). The transition of synovial macrophages between pro-inflammatory and anti-inflammatory phenotypes can play a key role in building the intra-articular microenvironment. The pro-inflammatory cascade induced by TNF-α, IL-1β, and IL-6 is closely related to M1 macrophages, resulting in the production of pro-chondrolytic mediators. However, IL-10, IL1RA, CCL-18, IGF, and TGF are closely related to M2 macrophages, leading to the protection of cartilage and the promoted regeneration. The inhibition of NF-κB signaling pathway is central in OA treatment via controlling inflammatory responses in macrophages, while the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway appears not to attract widespread attention in the field. Nrf2 is a transcription factor encoding a large number of antioxidant enzymes. The activation of Nrf2 can have antioxidant and anti-inflammatory effects, which can also have complex crosstalk with NF-κB signaling pathway. The activation of Nrf2 can inhibit the M1 polarization and promote the M2 polarization through potential signaling transductions including TGF-β/SMAD, TLR/NF-κB, and JAK/STAT signaling pathways, with the regulation or cooperation of Notch, NLRP3, PI3K/Akt, and MAPK signaling. And the expression of heme oxygenase-1 (HO-1) and the negative regulation of Nrf2 for NF-κB can be the main mechanisms for promotion. Furthermore, the candidates of OA treatment by activating Nrf2 to promote M2 phenotype macrophages in OA are also reviewed in this work, such as itaconate and fumarate derivatives, curcumin, quercetin, melatonin, mesenchymal stem cells, and low-intensity pulsed ultrasound.
Collapse
Affiliation(s)
- Lin Wang
- Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Chengqi He
- Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Chengqi He,
| |
Collapse
|
107
|
Shi X, Jie L, Wu P, Mao J, Wang P, Liu Z, Yin S. Comprehensive Network Pharmacological Analysis and In Vitro Verification Reveal the Potential Active Ingredients and Potential Mechanisms of Frankincense and Myrrh in Knee Osteoarthritis. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221116984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Frankincense and myrrh (FM) are often used together to treat knee osteoarthritis (KOA). However, the underlying mechanism of its treatment of KOA remains unclear. Objective: To analyze the active components of FM through network pharmacology and in vitro experiments, and to explore its potential therapeutic mechanism in the treatment of KOA. Materials and methods: The protein mapping relationship between potential drug targets and disease targets was screened and constructed through the database. Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed using R software. Discovery Studio software was used to perform molecular docking. The active components of FM were identified using liquid chromatography–mass spectrometry (LC-MS). In addition, experimental verification was carried out by Cell Counting Kit-8 detection, Western blot, and immunofluorescence analysis. Results: Combining the results of network pharmacology and LC-MS, 31 active compounds and 94 target genes of FM were identified. The common genes of FM and KOA suggest that FM exerts anti-KOA effect by regulating genes such as Transcription factor Jun (JUN), Interleukin-6 (IL-6), Interleukin-1 beta (IL-1β), C-X-C motif chemokine ligand 8 (CXCL8), Transcription factor p65 (RELA), and Mitogen-activated protein kinase 1 (MAPK1). GO enrichment analysis showed that FM exerted therapeutic effects on KOA by regulating biological processes such as cell proliferation, cell migration, and apoptosis. In addition, KEGG enrichment analysis involved signaling pathways such as fluid shear stress, the TNF, PI3K-Akt, NF-κB, and MAPK. Consistently, in vivo experiments showed that FM inhibited IL-1β-induced MAPK activation and attenuated inflammation in mouse chondrocytes. Furthermore, FM inhibited IL-1β-induced phosphorylation of p65 and the process of p65 translocation from the cytoplasm into the nucleus. Conclusions: Our results provide conclusive evidence and deepen the current understanding of FM in the treatment of KOA and further support its clinical application.
Collapse
Affiliation(s)
- Xiaoqing Shi
- Department of Orthopaedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lishi Jie
- Department of Orthopaedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Peng Wu
- Department of Orthopaedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun Mao
- Department of Orthopaedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Peimin Wang
- Department of Orthopaedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zixiu Liu
- Department of Orthopaedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Songjiang Yin
- Department of Orthopaedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
108
|
Ding DF, Xue Y, Wu XC, Zhu ZH, Ding JY, Song YJ, Xu XL, Xu JG. Recent Advances in Reactive Oxygen Species (ROS)-Responsive Polyfunctional Nanosystems 3.0 for the Treatment of Osteoarthritis. J Inflamm Res 2022; 15:5009-5026. [PMID: 36072777 PMCID: PMC9443071 DOI: 10.2147/jir.s373898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/11/2022] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) is an inflammatory and degenerative joint disease with severe effects on individuals, society, and the economy that affects millions of elderly people around the world. To date, there are no effective treatments for OA; however, there are some treatments that slow or prevent its progression. Polyfunctional nanosystems have many advantages, such as controlled release, targeted therapy and high loading rate, and have been widely used in OA treatment. Previous mechanistic studies have revealed that inflammation and ROS are interrelated, and a large number of studies have demonstrated that ROS play an important role in different types of OA development. In this review article, we summarize third-generation ROS-sensitive nanomaterials that scavenge excessive ROS from chondrocytes and osteoclasts in vivo. We only focus on polymer-based nanoparticles (NPs) and do not review the effects of drug-loaded or heavy metal NPs. Mounting evidence suggests that polyfunctional nanosystems will be a promising therapeutic strategy in OA therapy due to their unique characteristics of being sensitive to changes in the internal environment.
Collapse
Affiliation(s)
- Dao-Fang Ding
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yan Xue
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Centre), Tongji University, Shanghai, People’s Republic of China
| | - Xi-Chen Wu
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Zhi-Heng Zhu
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Jia-Ying Ding
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yong-Jia Song
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xiao-Ling Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, People’s Republic of China
- Correspondence: Xiao-Ling Xu, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren Street, Hangzhou, 310015, People’s Republic of China, Email
| | - Jian-Guang Xu
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Jian-Guang Xu, Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 200000, People’s Republic of China, Email
| |
Collapse
|
109
|
Elucidation of the Underlying Mechanism of Gujian Oral Liquid Acting on Osteoarthritis through Network Pharmacology, Molecular Docking, and Experiment. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9230784. [PMID: 35937393 PMCID: PMC9352474 DOI: 10.1155/2022/9230784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/19/2022] [Accepted: 07/06/2022] [Indexed: 11/20/2022]
Abstract
Gujian oral liquid (GJ), a traditional herbal formula in China, has been widely used to treat patients with osteoarthritis (OA). Nevertheless, the active component and potential mechanism of GJ are not fully elucidated. Thus, we investigate the effect of GJ and explore its underlying mechanism on OA through network pharmacology and experimental validation. First, a total of 175 bioactive compounds were identified, and 134 overlapping targets were acquired after comparing the targets of the GJ with those of OA. 8 hub targets, including IL6 and AKT1, were obtained in PPI network analysis. Then, we built up GJ-target-OA network and protein-protein interaction (PPI) network, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. The results underlined inflammatory tumor necrosis factor (TNF) as a promising signaling pathway of GJ for OA treatment. Moreover, molecular docking also verified the top two active compounds had direct bindings with the top three target genes. Finally, we verified the effect of GJ on OA in vivo and in vitro. In vivo experiments validated that GJ not only significantly attenuated OA phenotypes including articular cartilage degeneration and subchondral bone sclerosis but also reduced the expressions of tumor necrosis factor-α (TNF-α) and p-p65 in articular chondrocytes. Besides, GJ serum also had a protective effect on chondrocytes against inflammation caused by TNF-α in vitro. Hence, our study predicted and verified that GJ could exert anti-inflammation and anticatabolism effects partially via regulating TNF-α/NF-kappa B (NF-κB) signaling.
Collapse
|
110
|
Bai LK, Su YZ, Wang XX, Bai B, Zhang CQ, Zhang LY, Zhang GL. Synovial Macrophages: Past Life, Current Situation, and Application in Inflammatory Arthritis. Front Immunol 2022; 13:905356. [PMID: 35958604 PMCID: PMC9361854 DOI: 10.3389/fimmu.2022.905356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022] Open
Abstract
Inflammatory arthritis is an inflammatory disease that involves the joints and surrounding tissues. Synovial hyperplasia often presents when joints become inflamed due to immune cell infiltration. Synovial membrane is an important as well as a highly specific component of the joint, and its lesions can lead to degeneration of the joint surface, causing pain and joint disability or affecting the patients’ quality of life in severe cases. Synovial macrophages (SMs) are one of the cellular components of the synovial membrane, which not only retain the function of macrophages to engulf foreign bodies in the joint cavity, but also interact with synovial fibroblasts (SFs), T cells, B cells, and other inflammatory cells to promote the production of a variety of pro-inflammatory cytokines and chemokines, such as TNF-α, IL-1β, IL-8, and IL-6, which are involved in the pathogenic process of inflammatory arthritis. SMs from different tissue sources have differently differentiated potentials and functional expressions. This article provides a summary on studies pertaining to SMs in inflammatory arthritis, and explores their role in its treatment, in order to highlight novel treatment modalities for the disease.
Collapse
Affiliation(s)
- Lin-Kun Bai
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China
| | - Ya-Zhen Su
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China
| | - Xue-Xue Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China
| | - Bing Bai
- First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Cheng-Qiang Zhang
- Fifth Hospital of Shanxi Medical University, Shanxi Provincial People’s Hospital, Taiyuan, Shanxi, China
| | - Li-Yun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China
| | - Gai-Lian Zhang
- Fifth Hospital of Shanxi Medical University, Shanxi Provincial People’s Hospital, Taiyuan, Shanxi, China
- *Correspondence: Gai-Lian Zhang,
| |
Collapse
|
111
|
Cui Z, Zhao X, Amevor FK, Du X, Wang Y, Li D, Shu G, Tian Y, Zhao X. Therapeutic application of quercetin in aging-related diseases: SIRT1 as a potential mechanism. Front Immunol 2022; 13:943321. [PMID: 35935939 PMCID: PMC9355713 DOI: 10.3389/fimmu.2022.943321] [Citation(s) in RCA: 174] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/27/2022] [Indexed: 12/15/2022] Open
Abstract
Quercetin, a naturally non-toxic flavonoid within the safe dose range with antioxidant, anti-apoptotic and anti-inflammatory properties, plays an important role in the treatment of aging-related diseases. Sirtuin 1 (SIRT1), a member of NAD+-dependent deacetylase enzyme family, is extensively explored as a potential therapeutic target for attenuating aging-induced disorders. SIRT1 possess beneficial effects against aging-related diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), Depression, Osteoporosis, Myocardial ischemia (M/I) and reperfusion (MI/R), Atherosclerosis (AS), and Diabetes. Previous studies have reported that aging increases tissue susceptibility, whereas, SIRT1 regulates cellular senescence and multiple aging-related cellular processes, including SIRT1/Keap1/Nrf2/HO-1 and SIRTI/PI3K/Akt/GSK-3β mediated oxidative stress, SIRT1/NF-κB and SIRT1/NLRP3 regulated inflammatory response, SIRT1/PGC1α/eIF2α/ATF4/CHOP and SIRT1/PKD1/CREB controlled phosphorylation, SIRT1-PINK1-Parkin mediated mitochondrial damage, SIRT1/FoxO mediated autophagy, and SIRT1/FoxG1/CREB/BDNF/Trkβ-catenin mediated neuroprotective effects. In this review, we summarized the role of SIRT1 in the improvement of the attenuation effect of quercetin on aging-related diseases and the relationship between relevant signaling pathways regulated by SIRT1. Moreover, the functional regulation of quercetin in aging-related markers such as oxidative stress, inflammatory response, mitochondrial function, autophagy and apoptosis through SIRT1 was discussed. Finally, the prospects of an extracellular vesicles (EVs) as quercetin loading and delivery, and SIRT1-mediated EVs as signal carriers for treating aging-related diseases, as well as discussed the ferroptosis alleviation effects of quercetin to protect against aging-related disease via activating SIRT1. Generally, SIRT1 may serve as a promising therapeutic target in the treatment of aging-related diseases via inhibiting oxidative stress, reducing inflammatory responses, and restoring mitochondrial dysfunction.
Collapse
Affiliation(s)
- Zhifu Cui
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xingtao Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiaxia Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Gang Shu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yaofu Tian
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Xiaoling Zhao,
| |
Collapse
|
112
|
Shao Y, He J, Zhang X, Xie P, Lian H, Zhang M. Mechanism of Astragali Radix for the treatment of osteoarthritis: A study based on network pharmacology and molecular docking. Medicine (Baltimore) 2022; 101:e29885. [PMID: 35839041 PMCID: PMC11132399 DOI: 10.1097/md.0000000000029885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/08/2022] [Indexed: 11/26/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease caused by many factors. Astragali Radix (Huangqi), a traditional Chinese medicine (TCM), is widely used to treat OA. Although it can inhibit the progression of OA, its pharmacological mechanism is unclear. In this study, we used a network pharmacological approach to determine the mechanism by which Huangqi inhibits the progression of OA. We obtained the active ingredients of Huangqi from the Traditional Chinese Systems Pharmacology database and identified potential targets of these ingredients. Next, we identified the OA-related targets by using the GeneCards and Online Mendelian Inheritance in Man databases. Then, a protein-protein interaction (PPI) network was established based on the overlapping genes between the Huangqi targets and the OA targets, and the interactions were analyzed. Subsequently, the Metascape database was used to perform the Gene Ontology biological functions and Kyoto Encyclopedia of Genes and Genomes pathways enrichment analysis. Furthermore, selected active ingredients and corresponding targets were investigated through molecular docking. In total, 20 active ingredients and 206 related targets were identified. The results of Gene Ontology enrichment analysis showed that the intersection targets were mainly involved in immune inflammation, proliferation, and apoptosis. The Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that Huangqi might exert antiosteoarthritis effect mainly through the PI3K-Akt signaling pathway, apoptosis, the mitogen-activated protein kinases signaling pathway, and the p53 signaling pathway. Moreover, the molecular docking results indicated that quercetin and kaempferol exhibited the good binding capacity to transcription factor JUN, tumor necrosis factor, and protein kinase B. In summary, we investigated the therapeutic effects of Huangqi from a systemic perspective. These key targets and pathways provide promising directions for future studies to reveal the exact regulating mechanism of Huangqi against OA.
Collapse
Affiliation(s)
- Yiming Shao
- Department of Orthopedics, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Jiao He
- Department of Traditional Chinese Internal Medicine, Yancheng Hospital of Traditional Chinese Medicine, Luohe, Henan, China
| | - Xinan Zhang
- Department of Orthopedics, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Panpan Xie
- Department of Orthopedics, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Hongkai Lian
- Department of Orthopedics, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Meng Zhang
- Department of Orthopedics, People’s Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| |
Collapse
|
113
|
Jayusman PA, Nasruddin NS, Mahamad Apandi NI, Ibrahim N, Budin SB. Therapeutic Potential of Polyphenol and Nanoparticles Mediated Delivery in Periodontal Inflammation: A Review of Current Trends and Future Perspectives. Front Pharmacol 2022; 13:847702. [PMID: 35903322 PMCID: PMC9315271 DOI: 10.3389/fphar.2022.847702] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 06/21/2022] [Indexed: 01/04/2023] Open
Abstract
Periodontitis is an oral inflammatory process involving the periodontium, which is mainly caused by the invasion of periodontopathogenic microorganisms that results in gingival connective tissue and alveolar bone destruction. Metabolic products of the oral pathogens and the associated host immune and inflammatory responses triggered are responsible for the local tissue destruction. Numerous studies in the past decades have demonstrated that natural polyphenols are capable of modulating the host inflammatory responses by targeting multiple inflammatory components. The proposed mechanism by which polyphenolic compounds exert their great potential is by regulating the immune cell, proinflammatory cytokines synthesis and gene expression. However, due to its low absorption and bioavailability, the beneficial effects of these substances are very limited and it hampers their use as a therapeutic agent. To address these limitations, targeted delivery systems by nanoencapsulation techniques have been explored in recent years. Nanoencapsulation of polyphenolic compounds with different carriers is an efficient and promising approach to boost their bioavailability, increase the efficiency and reduce the degradability of natural polyphenols. In this review, we focus on the effects of different polyphenolic substances in periodontal inflammation and to explore the pharmaceutical significance of polyphenol-loaded nanoparticles in controlling periodontitis, which may be useful for further enhancement of their efficacy as therapeutic agents for periodontal disease.
Collapse
Affiliation(s)
- Putri Ayu Jayusman
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nurrul Shaqinah Nasruddin
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nurul Inaas Mahamad Apandi
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Norliwati Ibrahim
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Siti Balkis Budin
- Centre for Diagnostic, Therapeutic and Investigative Studies, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
114
|
Samadi F, Kahrizi MS, Heydari F, Arefnezhad R, Roghani-Shahraki H, Mokhtari Ardekani A, Rezaei-Tazangi F. Quercetin and Osteoarthritis: A Mechanistic Review on the Present Documents. Pharmacology 2022; 107:464-471. [PMID: 35793647 DOI: 10.1159/000525494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/28/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Osteoarthritis (OA), as one of the chronic debilitating conditions, affects 15% of people globally and is linked with serious problems, such as cardiovascular diseases, metabolic syndrome, and autoimmune inflammatory disorders. The current therapeutic options for this disease include nonsteroidal anti-inflammatory drugs, surgery, gene therapy, intrasynovial gel injection, and warm needle penetration. However, these approaches may be accompanied by considerable side effects, high costs, and some limitations for patients. Thus, using an alternative way is needed. SUMMARY Presently, natural compounds based-therapies, like flavonoids, have acquired much attention in the current era. One of the compounds belonging to the flavonoid family is quercetin, and its therapeutic effects on disorders related to joints and cartilage have been addressed in vivo and in vitro studies. KEY MESSAGES In this review, we summarized evidence indicating its curative capacity against OA with a mechanistic insight.
Collapse
Affiliation(s)
- Faezeh Samadi
- School of Nursing and Midwifery, Tehran University of Medical Science, Tehran, Iran
| | | | - Fateme Heydari
- Student Research Committee, School of Medicine, Shahid Beheshti of Medical Sciences, Tehran, Iran
| | - Reza Arefnezhad
- Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Abnoos Mokhtari Ardekani
- Endocrinology and Metabolism Research Center, Physiology Research Center, Institute of Basic and Clinical Physiology Science, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
115
|
Chen F, Liu Q. Demystifying phytoconstituent-derived nanomedicines in their immunoregulatory and therapeutic roles in inflammatory diseases. Adv Drug Deliv Rev 2022; 186:114317. [PMID: 35533788 DOI: 10.1016/j.addr.2022.114317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/15/2022] [Accepted: 04/30/2022] [Indexed: 11/28/2022]
Abstract
In the past decades, phytoconstituents have appeared as critical mediators for immune regulations among various diseases, both in eukaryotes and prokaryotes. These bioactive molecules, showing a broad range of biological functions, would hold tremendous promise for developing new therapeutics. The discovery of phytoconstituents' capability of functionally regulating immune cells and associating cytokines, suppressing systemic inflammation, and remodeling immunity have rapidly promoted the idea of their employment as anti-inflammatory agents. In this review, we discuss various roles of phyto-derived medicines in the field of inflammatory diseases, including chronic inflammation, autoimmune diseases, and acute inflammatory disease such as COVID-19. Nevertheless, traditional phyto-derived medicines often concurred with their clinical administration limitations, such as their lack of cell specificity, inefficient cytoplasmic delivery, and rapid clearance by the immune system. As alternatives, phyto-derived nano-approaches may provide significant benefits. Both unmodified and engineered nanocarriers present the potential to serve as phytoconstituent delivery systems to improve therapeutic physio-chemical properties and pharmacokinetic profiles. Thus, the development of phytoconstituents' nano-delivery designs, their new and perspective approaches for therapeutical applications are elaborated herein.
Collapse
Affiliation(s)
- Fengqian Chen
- Translational Research Program, Department of Anesthesiology and Center for Shock Trauma Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Qi Liu
- Department of Dermatology, Johns Hopkins University School of Medicine, Cancer Research Building II, Suite 216, 1550 Orleans Street, Baltimore, MD 21231, United States.
| |
Collapse
|
116
|
Jin Z, Chang B, Wei Y, Yang Y, Zhang H, Liu J, Piao L, Bai L. Curcumin exerts chondroprotective effects against osteoarthritis by promoting AMPK/PINK1/Parkin-mediated mitophagy. Biomed Pharmacother 2022; 151:113092. [PMID: 35550528 DOI: 10.1016/j.biopha.2022.113092] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 11/28/2022] Open
Abstract
Osteoarthritis (OA), a chronic degenerative disease with heterogeneous properties, is difficult to cure due to its complex pathogenesis. Curcumin possesses excellent anti-inflammatory and antioxidant properties and may have potential therapeutic value in OA. In this study, we investigated the action targets of curcumin and identified potential anti-OA targets for curcumin. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway analyses were performed to evaluate these targets. Furthermore, we established a sodium monoiodoacetate-induced rat knee OA model and IL-1β induced OA chondrocyte model to verify the effect and mechanism of curcumin against OA. The GO and KEGG analyses screened seven hub genes involved in metabolic processes and the AMPK signaling pathway. Curcumin can significantly attenuate OA characteristics according to Osteoarthritis Research Society International (OARSI) and Mankin scores in OA rats. Additionally, curcumin is notably employed as an activator of mitophagy in maintaining mitochondrial homeostasis (ROS, Ca2+, ATP production, and mitochondrial membrane potential). The expression levels of mitophagy-related proteins were increased not only in articular cartilage but also in chondrocytes with curcumin intervention. Combining validation experiments and network pharmacology, we identified the importance of mitophagy in the curcumin treatment of OA. The chondroprotective effects of curcumin against OA are mediated by the AMPK/PINK1/Parkin pathway, and curcumin may serve as a potential novel drug for OA management.
Collapse
Affiliation(s)
- Zhuangzhuang Jin
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Bohan Chang
- Department of Rheumatology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yingliang Wei
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yue Yang
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - He Zhang
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jiabao Liu
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Longhuan Piao
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Lunhao Bai
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
117
|
Shahid A, Inam‐Ur‐Raheem M, Iahtisham‐Ul‐Haq , Nawaz MY, Rashid MH, Oz F, Proestos C, Aadil RM. Diet and lifestyle modifications: An update on non‐pharmacological approach in the management of osteoarthritis. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Arashi Shahid
- National Institute of Food Science and Technology University of Agriculture Faisalabad Pakistan
| | - Muhammad Inam‐Ur‐Raheem
- National Institute of Food Science and Technology University of Agriculture Faisalabad Pakistan
| | - Iahtisham‐Ul‐Haq
- Kauser Abdulla Malik School of Life Sciences Forman Christian College (A Chartered University) Punjab Pakistan
| | - Muhammad Yasir Nawaz
- Department of Pathology Faculty of Veterinary Science, University of Agriculture Faisalabad Faisalabad Pakistan
| | - Muhammad Hamdan Rashid
- National Institute of Food Science and Technology University of Agriculture Faisalabad Pakistan
| | - Fatih Oz
- Department of Food Engineering, Faculty of Agriculture Ataturk University Erzurum Turkey
| | - Charalampos Proestos
- Laboratory of Food Chemistry, Department of Chemistry National and Kapodistrian University of Athens Zografou Athens Greece
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology University of Agriculture Faisalabad Pakistan
| |
Collapse
|
118
|
Pharmacological Activities of Safflower Yellow and Its Clinical Applications. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2108557. [PMID: 35795285 PMCID: PMC9252638 DOI: 10.1155/2022/2108557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/25/2022] [Indexed: 12/24/2022]
Abstract
Background. Safflower is an annual herb used in traditional Chinese herbal medicine. It consists of the dried flowers of the Compositae plant safflower. It is found in the central inland areas of Asia and is widely cultivated throughout the country. Its resistance to cold weather and droughts and its tolerance and adaptability to salts and alkalis are strong. Safflower has the effect of activating blood circulation, dispersing blood stasis, and relieving pain. A natural pigment named safflower yellow (SY) can be extracted from safflower petals. Chemically, SY is a water-soluble flavonoid and the main active ingredient of safflower. The main chemical constituents, pharmacological properties, and clinical applications of SY are reviewed in this paper, thereby providing a reference for the use of safflower in preventing and treating human diseases. Methods. The literature published in recent years was reviewed, and the main chemical components of SY were identified based on chemical formula and structure. The pharmacological properties of hydroxysafflor yellow A (HSYA), SYA, SYB, and anhydrosafflor yellow B (AHSYB) were reviewed. Results. The main chemical constituents of SY included HSYA, SYA, SYB, and AHSYB. These ingredients have a wide range of pharmacological activities. SY has protective effects on the heart, kidneys, liver, nerves, lungs, and brain. Moreover, its effects include, but are not limited to, improving cardiovascular and cerebrovascular diseases, abirritation, regulating lipids, and treating cancer and diabetic complications. HSYA is widely recognised as an effective ingredient to treat cardiovascular and cerebrovascular diseases. Conclusion. SY has a wide range of pharmacological activities, among which improving cardiovascular and cerebrovascular diseases are the most significant.
Collapse
|
119
|
Zhang Y, Liu T, Yang H, He F, Zhu X. Melatonin: A novel candidate for the treatment of osteoarthritis. Ageing Res Rev 2022; 78:101635. [PMID: 35483626 DOI: 10.1016/j.arr.2022.101635] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 04/14/2022] [Accepted: 04/21/2022] [Indexed: 12/30/2022]
Abstract
Osteoarthritis (OA), characterized by cartilage erosion, synovium inflammation, and subchondral bone remodeling, is a common joint degenerative disease worldwide. OA pathogenesis is regulated by multiple predisposing factors, including imbalanced matrix metabolism, aberrant inflammatory response, and excessive oxidative stress. Moreover, melatonin has been implicated in development of several degenerative disorders owing to its potent biological functions. With regards to OA, melatonin reportedly promotes synthesis of cartilage matrix, inhibition of chondrocyte apoptosis, attenuation of inflammatory response, and suppression of matrix degradation by regulating the TGF-β, MAPK, or NF-κB signaling pathways. Notably, melatonin has been associated with amelioration of oxidative damage by restoring the OA-impaired intracellular antioxidant defense system in articular cartilage. Findings from preliminary application of melatonin or melatonin-loaded biomaterials in animal models have affirmed its potential anti-arthritic effects. Herein, we summarize the anti-arthritic effects of melatonin on OA cartilage and demonstrate that melatonin has potential therapeutic efficacy in treating OA.
Collapse
Affiliation(s)
- Yijian Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China.
| | - Tao Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China.
| | - Fan He
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China.
| | - Xuesong Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China.
| |
Collapse
|
120
|
Wang Y, Ge W, Ma Z, Ji G, Wang M, Zhou G, Wang X. Use of mesoporous polydopamine nanoparticles as a stable drug-release system alleviates inflammation in knee osteoarthritis. APL Bioeng 2022; 6:026101. [PMID: 35496642 PMCID: PMC9033307 DOI: 10.1063/5.0088447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/04/2022] [Indexed: 12/31/2022] Open
Abstract
Osteoarthritis drugs are often short-acting; therefore, to enhance their efficacy, long-term, stable-release, drug-delivery systems are urgently needed. Mesoporous polydopamine (MPDA), a natural nanoparticle with excellent biocompatibility and a high loading capacity, synthesized via a self-aggregation-based method, is frequently used in tumor photothermal therapy. Here, we evaluated its efficiency as a sustained and controlled-release drug carrier and investigated its effectiveness in retarding drug clearance. To this end, we used MPDA as a controlled-release vector to design a drug-loaded microsphere system (RCGD423@MPDA) for osteoarthritis treatment, and thereafter, tested the efficacy of the system in a rat model of osteoarthritis. The results indicated that at an intermediate drug-loading dose, MPDA showed high drug retention. Furthermore, the microsphere system maintained controlled drug release for over 28 days. Our in vitro experiments also showed that drug delivery using this microsphere system inhibited apoptosis-related cartilage degeneration, whereas MPDA-only administration did not show obvious cartilage degradation improvement effect. Results from an in vivo osteoarthritis model also confirmed that drug delivery via this microsphere system inhibited cartilage damage and proteoglycan loss more effectively than the non-vectored drug treatment. These findings suggest that MPDA may be effective as a controlled-release carrier for inhibiting the overall progression of osteoarthritis. Moreover, they provide insights into the selection of drug-clearance retarding vectors, highlighting the applicability of MPDA in this regard.
Collapse
Affiliation(s)
- Yun Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai 200011, China
| | - Weiwen Ge
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai 200011, China
| | - Zhigui Ma
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Guangyu Ji
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Mingsong Wang
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai 200011, China
| | - Xiansong Wang
- Authors to whom correspondence should be addressed: ; ; and
| |
Collapse
|
121
|
Zhu C, Han S, Zeng X, Zhu C, Pu Y, Sun Y. Multifunctional thermo-sensitive hydrogel for modulating the microenvironment in Osteoarthritis by polarizing macrophages and scavenging RONS. J Nanobiotechnology 2022; 20:221. [PMID: 35526013 PMCID: PMC9077879 DOI: 10.1186/s12951-022-01422-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/13/2022] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA) is a common degenerative joint disease that can lead to disability. Blocking the complex malignant feedback loop system dominated by oxidative stress and pro-inflammatory factors is the key to treating OA. Here, we develop a multifunctional composite thermo-sensitive hydrogel (HPP@Cu gel), which is utilized by Poloxamer 407 (P407) and hyaluronic acid (HA) mixture as the gel matrix, then physically mixed with copper nanodots (Cu NDs) and platelet-rich plasma (PRP). Cu NDs is a novel nano-scavenger of reactive oxygen and nitrogen species (RONS) with efficient free radical scavenging activity. HPP@Cu gel is injected into the articular cavity, where it form an in situ gel that slowly released Cu NDs, HA, and PRP, prolonging the duration of drug action. Our results indicate that HPP@Cu gel could efficiently remove RONS from inflammatory sites and promote repolarization of macrophages to an anti-inflammatory phenotype. The HPP@Cu gel therapy dramatically reduces cartilage degradation and inflammatory factor production in OA rats. This study provides a reliable reference for the application of injectable hydrogels in inflammatory diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Chunrong Zhu
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, People's Republic of China
| | - Shangcong Han
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, People's Republic of China
| | - Xianhu Zeng
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, People's Republic of China
| | - Chunxiao Zhu
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, People's Republic of China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, People's Republic of China.
| |
Collapse
|
122
|
Keranmu A, Pan LB, Yu H, Fu J, Liu YF, Amuti S, Han P, Ma SR, Xu H, Zhang ZW, Chen D, Yang FY, Wang MS, Wang Y, Xing NZ, Jiang JD. The potential biological effects of quercetin based on pharmacokinetics and multi-targeted mechanism in vivo. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022; 24:403-431. [PMID: 35282731 DOI: 10.1080/10286020.2022.2045965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Quercetin is a plant-derived polyphenol flavonoid that has been proven to be effective for many diseases. However, the mechanism and in vivo metabolism of quercetin remains to be clarified. It achieves a wide range of biological effects through various metabolites, gut microbiota and its metabolites, systemic mediators produced by inflammation and oxidation, as well as by multiple mechanisms. The all-round disease treatment of quercetin is achieved through the organic combination of multiple channels. Therefore, this article clarifies the metabolic process of quercetin in the body, and explores the new pattern of action of quercetin in the treatment of diseases.
Collapse
Affiliation(s)
- Adili Keranmu
- State Key Laboratory of Molecular Oncology, Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Li-Bin Pan
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Hang Yu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Jie Fu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Yi-Fang Liu
- Department of Tuberculosis, Shanghai Pulmonary Hospital Affiliated to Tongji University, Shanghai Clinical Research Center of Tuberculosis, Shanghai 200433, China
| | - Siyiti Amuti
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Ürümqi 830011, China
| | - Pei Han
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Shu-Rong Ma
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Hui Xu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Zheng-Wei Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Dong Chen
- State Key Laboratory of Molecular Oncology, Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Fei-Ya Yang
- State Key Laboratory of Molecular Oncology, Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ming-Shuai Wang
- State Key Laboratory of Molecular Oncology, Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yan Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Nian-Zeng Xing
- State Key Laboratory of Molecular Oncology, Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
123
|
Lv S, Wang X, Jin S, Shen S, Wang R, Tong P. Quercetin mediates TSC2-RHEB-mTOR pathway to regulate chondrocytes autophagy in knee osteoarthritis. Gene X 2022; 820:146209. [PMID: 35093450 DOI: 10.1016/j.gene.2022.146209] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/03/2021] [Accepted: 01/13/2022] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE This study aimed to explore the specific molecular mechanism of the therapeutic effect of quercetin in knee osteoarthritis (KOA). METHODS The KOA rat model was constructed by excising the medial meniscus and transecting the anterior meniscus. Joint injuries in rats were determined by Hematoxylin-Eosin (H&E) and Safranin O staining. The severity of KOA was then assessed according to the Osteoarthritis Research Society International (OARSI). The expressions of TSC2 and LC2B in joint tissue were measured by immunohistochemistry. Besides, chondrocytes treated with 10 ng/ml IL-1β were used to construct a chondrocyte arthritis model, while those treated with 4 or 8 μM quercetin were served as treatment groups. MTT, flow cytometry and toluidine blue staining were used to detect cell viability, apoptosis and mucopolysaccharide synthesis, respectively. qRT-PCR or Western blot was performed to determine the expressions of MMP-13, collagen II, Aggrecan, TSC2, RHEB, mTOR, p-mTOR, ULK1, p-ULK1, LC3B-I, LC3B-II and P62 in chondrocytes. RESULTS Quercetin alleviated the joint injury and suppressed the increase in MMP-13 expression and the decreases in collagen II and Aggrecan expressions in KOA rats. In addition, quercetin suppressed RHEB, p-mTOR, p-ULK1 and P62 expressions but promoted TSC2 and LC3BII expressions in KOA rats. Furthermore, quercetin could relieve the decrease of cell viability and the increase of apoptosis that induced by IL-1β, and promote the synthesis of IL-1β-inhibited mucopolysaccharide in chondrocytes. Nevertheless, siTSC2 partially offset the therapeutic effects of quercetin in chondrocytes. CONCLUSION Quercetin alleviated KOA by mediating the TSC2-RHBE-mTOR signaling pathway.
Collapse
Affiliation(s)
- Shuaijie Lv
- Orthopedics Department, The First Affiliated Hospital of Zhejiang University of Chinese Medicine, Shangcheng District, Hangzhou City, Zhejiang Province 310000, China
| | - Xiaojian Wang
- Orthopedics Department, The First Clinical Medical College of Zhejiang University of Chinese Medicine, Binjiang District, Hangzhou City, Zhejiang Province 310053, China
| | - Shuaijie Jin
- Orthopedics Department, The First Clinical Medical College of Zhejiang University of Chinese Medicine, Binjiang District, Hangzhou City, Zhejiang Province 310053, China
| | - Shaoning Shen
- Orthopedics Department, The First Clinical Medical College of Zhejiang University of Chinese Medicine, Binjiang District, Hangzhou City, Zhejiang Province 310053, China
| | - Rui Wang
- Orthopedics Department, The First Clinical Medical College of Zhejiang University of Chinese Medicine, Binjiang District, Hangzhou City, Zhejiang Province 310053, China
| | - Peijian Tong
- Orthopedics Department, The First Affiliated Hospital of Zhejiang University of Chinese Medicine, Shangcheng District, Hangzhou City, Zhejiang Province 310000, China.
| |
Collapse
|
124
|
Chaenomeles Fructus (CF), the Fruit of Chaenomeles sinensis Alleviates IL-1β Induced Cartilage Degradation in Rat Articular Chondrocytes. Int J Mol Sci 2022; 23:ijms23084360. [PMID: 35457176 PMCID: PMC9025567 DOI: 10.3390/ijms23084360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
Osteoarthritis (OA) causes persistent pain, joint dysfunction, and physical disability. It is the most prevalent type of degenerative arthritis, affecting millions of people worldwide. OA is currently treated with a focus on pain relief, inflammation control, and artificial joint surgery. Hence, a therapeutic agent capable of preventing or delaying the progression of OA is needed. OA is strongly associated with the degeneration of the articular cartilage and changes in the ECM, which are primarily associated with a decrease in proteoglycan and collagen. In the progress of articular cartilage degradation, catabolic enzymes, such as matrix metalloproteinases (MMPs), are activated by IL-1β stimulation. Given the tight relationship between IL-1β and ECM (extra-cellular matrix) degradation, this study examined the effects of Chaenomeles Fructus (CF) on IL-1β-induced OA in rat chondrocytes. The CF treatment reduced IL-1β-induced MMP3/13 and ADAMTS-5 production at the mRNA and protein levels. Similarly, CF enhanced col2a and aggrecan accumulation and chondrocyte proliferation. CF inhibited NF-κB (nuclear factor kappa B) activation, nuclear translocation induced by IL-1β, reactive oxygen species (ROS) production, and ERK phosphorylation. CF demonstrated anti-OA and articular regeneration effects on rat chondrocytes, thus, suggesting that CF is a viable and fundamental therapeutic option for OA.
Collapse
|
125
|
Network Pharmacology-Based Strategy for Exploring the Pharmacological Mechanism of Honeysuckle (Lonicer japonica Thunb.) against Newcastle Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9265094. [PMID: 35422871 PMCID: PMC9005276 DOI: 10.1155/2022/9265094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 03/06/2022] [Accepted: 03/14/2022] [Indexed: 11/17/2022]
Abstract
Objective Newcastle disease causes huge economic losses in the global poultry industry. An efficient treatment is needed to deal with the variable immunogenicity of the Newcastle disease virus (NDV). This study utilized network pharmacology to study the potential therapeutic targets of Honeysuckle (Lonicer japonica Thunb.) against Newcastle disease. Methods Venny online analysis was used to analyze the potential overlapping targets of Honeysuckle and Newcastle disease. Hub genes were obtained using the STRING database and Cytoscape 3.8.2 software. Gene Ontology (GO) functions and Kyoto Encyclopedia of Genes and Genomics (KEGG) pathway enrichment analysis using the DAVID online tool were performed on these targets. Results Twenty-five overlapping targets were identified. The PPI network construction results included 23 nodes of 25 genes and 95 edges. It was found that the IL-6 node had the largest degree. STAT1 and IRF1, CASP9, and CASP3 had the same as well as strongest interaction strengths. GO functions, such as “cytokine activity,” had a regulatory effect on NDV. The “Toll-like receptor signaling Pathway” “Nod-like receptor signaling pathway,” “RIG-I-like receptor signaling pathway,” and “Apoptosis,” which were obtained using KEGG analysis, also indicated that these pathways can act on NDV to enhance immune function. Conclusions In this study, the potential targets and mechanisms of action of Honeysuckle against Newcastle disease were explored through network pharmacology, which provided a theoretical basis for the treatment of Newcastle disease and provided new ideas for the development of traditional Chinese medicine for the poultry industry.
Collapse
|
126
|
Wei J, Liu L, Li Z, Lyu T, Zhao L, Xu X, Song Y, Dai Y, Li B. Fire Needling Acupuncture Suppresses Cartilage Damage by Mediating Macrophage Polarization in Mice with Knee Osteoarthritis. J Pain Res 2022; 15:1071-1082. [PMID: 35444462 PMCID: PMC9013919 DOI: 10.2147/jpr.s360555] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/31/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Jiangyan Wei
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, People’s Republic of China
| | - Lu Liu
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, People’s Republic of China
| | - Zhijuan Li
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, People’s Republic of China
| | - Tianli Lyu
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, People’s Republic of China
| | - Luopeng Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing, People’s Republic of China
| | - Xiaobai Xu
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, People’s Republic of China
| | - Yine Song
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, People’s Republic of China
| | - Yidan Dai
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, People’s Republic of China
| | - Bin Li
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, People’s Republic of China
- Correspondence: Bin Li, Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, 23 Meishuguan Back Street, Dongcheng District, Beijing, 100010, People’s Republic of China, Tel +86-18910781852, Fax +86-87906055, Email
| |
Collapse
|
127
|
Anti-Inflammatory and Analgesic Effects of Schisandra chinensis Leaf Extracts and Monosodium Iodoacetate-Induced Osteoarthritis in Rats and Acetic Acid-Induced Writhing in Mice. Nutrients 2022; 14:nu14071356. [PMID: 35405969 PMCID: PMC9003109 DOI: 10.3390/nu14071356] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 02/04/2023] Open
Abstract
In this study, we aimed to determine the anti-inflammatory and antinociceptive activities of Schisandra chinensis leaf extracts (SCLE) in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages, an acetic acid-induced mouse model of writhing, and a monosodium iodoacetate (MIA)-induced rat model of osteoarthritis (OA). In LPS-stimulated RAW264.7 cells, a 100 µg/mL dose of SCLE significantly reduced the production of nitric oxide (NO), interleukin-1β (IL-1β), tumour necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and prostaglandin E2 (PGE2). Acetic acid-induced writhing responses in mice that quantitatively determine pain were significantly inhibited by SCLE treatment. In addition, SCLE significantly decreased the MIA-induced elevation in OA symptoms, the expression levels of pro-inflammatory mediators/cytokines and matrix metalloproteinases, and cartilage damage in the serum and joint tissues. Our data demonstrated that SCLE exerts anti-osteoarthritic effects by regulating inflammation and pain and can be a useful therapeutic candidate against OA.
Collapse
|
128
|
Sirše M. Effect of Dietary Polyphenols on Osteoarthritis-Molecular Mechanisms. Life (Basel) 2022; 12:436. [PMID: 35330187 PMCID: PMC8955436 DOI: 10.3390/life12030436] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 12/25/2022] Open
Abstract
Osteoarthritis is a common crippling and degenerative disease resulting in irreversible functional changes due to damage of the cartilage and other tissues of the joint. With limited safe and effective pharmaceutical treatments, the demand and use for alternative therapeutic approaches with symptomatic relief for OA patients have increased. Clinical, pre-clinical, and in vitro studies have demonstrated that polyphenols can exert pain-relieving symptoms coupled with increased functional capacity in OA models. This review will highlight studies carried out in the last five years to define the efficacies and underlying mechanisms in polyphenols such as quercetin, resveratrol, curcumin, epigallocatechin-3-gallate, rosmarinic acid, genistein, ginger, berries, silver fir, pine bark, and Boswellia. Most of these studies indicate that polyphenols exhibit their beneficial roles through regulating changes at the biochemical and molecular levels, inducing or inhibiting various signaling pathways related to inflammation and oxidative stress. Polyphenols have also been implicated in modulating microRNA at the posttranscriptional level to counteract OA pathogenesis.
Collapse
Affiliation(s)
- Mateja Sirše
- Department of Orthopaedics, University Medical Centre Maribor, Ljubljanska Street 5, 2000 Maribor, Slovenia
| |
Collapse
|
129
|
Wu SS, Hao LJ, Shi YY, Lu ZJ, Yu JL, Jiang SQ, Liu QL, Wang T, Guo SY, Li P, Li F. Network Pharmacology-Based Analysis on the Effects and Mechanism of the Wang-Bi Capsule for Rheumatoid Arthritis and Osteoarthritis. ACS OMEGA 2022; 7:7825-7836. [PMID: 35284738 PMCID: PMC8908527 DOI: 10.1021/acsomega.1c06729] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/26/2022] [Indexed: 06/12/2023]
Abstract
Wang-Bi capsule (WB) is a traditional Chinese medicine (TCM)-based herbal formula, and it has been used in the treatment of rheumatoid arthritis (RA) in China for many years. Additionally, WB is also used as a supplement to the treatment of osteoarthritis (OA) in clinical practice. Our research aimed to reveal the therapeutic effects and underling mechanism of WB on RA and OA through computational system pharmacology analysis and experimental study. Based on network pharmacology analysis, a total of 173 bioactive compounds interacted with 417 common gene targets related to WB, RA, and OA, which mainly involved the PI3K-Akt signaling pathway. In addition, the serine-threonine protein kinase 1 (AKT1) might be a core gene protein for the action of WB, which was further emphasized by molecular docking. Moreover, the anti-inflammatory activity of WB in vitro was confirmed by reducing NO production in lipopolysaccharide (LPS)-induced RAW264.7 cells. The anti-RA and OA effects of WB in vivo were confirmed by ameliorating the disease symptoms of collagen II-induced RA (CIA) and monosodium iodoacetate-induced OA (MIA) in rats, respectively. Furthermore, the role of the PI3K-Akt pathway in the action of WB was preliminarily verified by western blot analysis. In conclusion, our study elucidated that WB is a potentially effective strategy for the treatment of RA and OA, which might be achieved by regulating the PI3K-Akt pathway. It provides us with systematic insights into the effects and mechanism of WB on RA and OA.
Collapse
Affiliation(s)
- Shan-Shan Wu
- State
Key Laboratory of Natural Medicines, China
Pharmaceutical University, Nanjing 210009, China
| | - Li-Jun Hao
- School
of Science, China Pharmaceutical University, Nanjing 210009, China
| | - Yuan-Yuan Shi
- State
Key Laboratory of Natural Medicines, China
Pharmaceutical University, Nanjing 210009, China
- College
of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| | - Zhuo-Jian Lu
- State
Key Laboratory of Natural Medicines, China
Pharmaceutical University, Nanjing 210009, China
- College
of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| | - Jia-Lin Yu
- State
Key Laboratory of Natural Medicines, China
Pharmaceutical University, Nanjing 210009, China
| | - Si-Qi Jiang
- State
Key Laboratory of Natural Medicines, China
Pharmaceutical University, Nanjing 210009, China
| | - Qing-Ling Liu
- State
Key Laboratory of Natural Medicines, China
Pharmaceutical University, Nanjing 210009, China
| | - Ting Wang
- School
of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal
Resource, Yunnan University of Chinese Medicine, Kunming 650000, China
| | - Shi-Ying Guo
- China
Resources Sanjiu Medical & Pharmaceutical Company Ltd., Shenzhen 518110, China
| | - Ping Li
- State
Key Laboratory of Natural Medicines, China
Pharmaceutical University, Nanjing 210009, China
| | - Fei Li
- State
Key Laboratory of Natural Medicines, China
Pharmaceutical University, Nanjing 210009, China
- College
of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| |
Collapse
|
130
|
Gu RR, Meng XH, Zhang Y, Xu HY, Zhan L, Gao ZB, Yang JL, Zheng YM. (-)-Naringenin 4',7-dimethyl Ether Isolated from Nardostachys jatamansi Relieves Pain through Inhibition of Multiple Channels. Molecules 2022; 27:1735. [PMID: 35268839 PMCID: PMC8911579 DOI: 10.3390/molecules27051735] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 12/04/2022] Open
Abstract
(-)-Naringenin 4',7-dimethyl ether ((-)-NRG-DM) was isolated for the first time by our lab from Nardostachys jatamansi DC, a traditional medicinal plant frequently used to attenuate pain in Asia. As a natural derivative of analgesic, the current study was designed to test the potential analgesic activity of (-)-NRG-DM and its implicated mechanism. The analgesic activity of (-)-NRG-DM was assessed in a formalin-induced mouse inflammatory pain model and mustard oil-induced mouse colorectal pain model, in which the mice were intraperitoneally administrated with vehicle or (-)-NRG-DM (30 or 50 mg/kg) (n = 10 for each group). Our data showed that (-)-NRG-DM can dose dependently (30~50 mg/kg) relieve the pain behaviors. Notably, (-)-NRG-DM did not affect motor coordination in mice evaluated by the rotarod test, in which the animals were intraperitoneally injected with vehicle or (-)-NRG-DM (100, 200, or 400 mg/kg) (n = 10 for each group). In acutely isolated mouse dorsal root ganglion neurons, (-)-NRG-DM (1~30 μM) potently dampened the stimulated firing, reduced the action potential threshold and amplitude. In addition, the neuronal delayed rectifier potassium currents (IK) and voltage-gated sodium currents (INa) were significantly suppressed. Consistently, (-)-NRG-DM dramatically inhibited heterologously expressed Kv2.1 and Nav1.8 channels which represent the major components of the endogenous IK and INa. A pharmacokinetic study revealed the plasma concentration of (-)-NRG-DM is around 7 µM, which was higher than the effective concentrations for the IK and INa. Taken together, our study showed that (-)-NRG-DM is a potential analgesic candidate with inhibition of multiple neuronal channels (mediating IK and INa).
Collapse
Affiliation(s)
- Ru-Rong Gu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China;
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Y.Z.); (H.-Y.X.); (L.Z.)
| | - Xian-Hua Meng
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China;
| | - Yin Zhang
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Y.Z.); (H.-Y.X.); (L.Z.)
| | - Hai-Yan Xu
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Y.Z.); (H.-Y.X.); (L.Z.)
| | - Li Zhan
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Y.Z.); (H.-Y.X.); (L.Z.)
| | - Zhao-Bing Gao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China;
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Y.Z.); (H.-Y.X.); (L.Z.)
- Zhongshan Institute of Drug Discovery, Institution for Drug Discovery Innovation, Chinese Academy of Sciences, Zhongshan 528400, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Jun-Li Yang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China;
| | - Yue-Ming Zheng
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Y.Z.); (H.-Y.X.); (L.Z.)
| |
Collapse
|
131
|
Wang D, Chai XQ, Hu SS, Pan F. Joint synovial macrophages as a potential target for intra-articular treatment of osteoarthritis-related pain. Osteoarthritis Cartilage 2022; 30:406-415. [PMID: 34861384 DOI: 10.1016/j.joca.2021.11.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/19/2021] [Accepted: 11/22/2021] [Indexed: 02/02/2023]
Abstract
Osteoarthritis is the most common form of joint disease and is one of the leading causes of chronic pain. Given the multi-factorial nature, numerous efforts have been made to clarify the multiple factors impacting the pain symptoms and joint pathology, including synovial macrophages in particular. Accumulating evidence from studies involving human participants and experimental animal models suggests that accumulating macrophages in synovial tissue are implicated in peripherally mediated pain sensitization of affected joints in osteoarthritis. Crosstalk between synovial macrophages and the innervating primary nociceptive neurons is thought to contribute to this facilitated pain processing by the peripheral nervous system. Due to high plasticity and complexity of synovial macrophages in the joint, safe therapies targeting single cells or molecules are currently lacking. Using advanced technologies (such as single-cell RNA sequencing and mass cytometry), studies have shown that diverse subpopulations of synovial macrophages exist in the distinct synovial microenvironments of specific osteoarthritis subtypes. Considerable progress has been made in delineating the molecular mechanisms of various subsets of synovial macrophages in the development of osteoarthritis. To develop a novel intra-articular treatment paradigm targeting synovial macrophages, we have summarized in this review the recent advances in identifying the functional consequences of synovial macrophage sub-populations and understanding of the molecular mechanisms driving macrophage-mediated remodeling.
Collapse
Affiliation(s)
- D Wang
- Pain Clinic, Department of Anesthesiology, First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei 230001, China.
| | - X-Q Chai
- Pain Clinic, Department of Anesthesiology, First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei 230001, China.
| | - S-S Hu
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, PR China (Anhui Medical University), Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China.
| | - F Pan
- Menzies Institute for Medical Research, University of Tasmania, Private Bag 23, Hobart, TAS 7000, Australia.
| |
Collapse
|
132
|
Pan X, Yuan S, Xun X, Fan Z, Xue X, Zhang C, Wang J, Deng J. Long-Term Recruitment of Endogenous M2 Macrophages by Platelet Lysate-Rich Plasma Macroporous Hydrogel Scaffold for Articular Cartilage Defect Repair. Adv Healthc Mater 2022; 11:e2101661. [PMID: 34969180 DOI: 10.1002/adhm.202101661] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/21/2021] [Indexed: 01/08/2023]
Abstract
After cartilage damage, a large number of monocytes/macrophages infiltrate into adjacent synovium and the resident macrophages in synovial tissue transform to activated macrophages (M1), which secrete pro-inflammatory cytokines to induce sustained inflammation and chondrocyte apoptotic. However, current clinical therapies for cartilage repair can rarely achieve long-term anti-inflammatory regulation and satisfactory outcomes. Herein, a platelet lysate-rich plasma macroporous hydrogel (PLPMH) scaffold with around 100 µm pore size and 1.25 MPa Young's modulus is developed to sustainedly recruit and polarize endogenous anti-inflammatory macrophages (M2) for improving cartilage defect repair. PLPMH scaffold can steadily release sphingosine1-phosphate and proteins via gradual degradation, thus inducing M2 macrophages migration or resting (M0) macrophages migration and then polarization to M2 phenotype, and improving the secretion of anti-inflammatory cytokines. Furthermore, PLPMH scaffold exhibits negligible inflammatory responses in vivo and promotes endogenous M2 macrophage infiltration in large numbers and long-time duration to provide a local anti-inflammatory microenvironment, which even lasts for 42 d. In a rabbit model of cartilage defect, PLPMH scaffold increases the ratio of M2 macrophages and improves cartilage tissue regeneration. These studies support that PLPMH scaffold may have a great potential in articular cartilage tissue engineering by providing an anti-inflammatory and pro-regenerative microenvironment.
Collapse
Affiliation(s)
- Xiaoyun Pan
- Department of Orthopaedics The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou Zhejiang 325000 China
- Key Laboratory of Orthopaedics of Zhejiang Province Wenzhou Medical University Wenzhou Zhejiang 325000 China
| | - Shanshan Yuan
- Wenzhou Institute University of Chinese Academy Sciences Wenzhou Zhejiang 325000 China
| | - Xiaojie Xun
- Wenzhou Institute University of Chinese Academy Sciences Wenzhou Zhejiang 325000 China
| | | | - Xinghe Xue
- Department of Orthopaedics The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou Zhejiang 325000 China
- Key Laboratory of Orthopaedics of Zhejiang Province Wenzhou Medical University Wenzhou Zhejiang 325000 China
| | - Changhuan Zhang
- Wenzhou Institute University of Chinese Academy Sciences Wenzhou Zhejiang 325000 China
| | - Jilong Wang
- Wenzhou Institute University of Chinese Academy Sciences Wenzhou Zhejiang 325000 China
| | - Junjie Deng
- Department of Orthopaedics The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou Zhejiang 325000 China
- Key Laboratory of Orthopaedics of Zhejiang Province Wenzhou Medical University Wenzhou Zhejiang 325000 China
- Wenzhou Institute University of Chinese Academy Sciences Wenzhou Zhejiang 325000 China
| |
Collapse
|
133
|
Zheng W, Li X, Li J, Wang X, Liu D, Zhai L, Ding B, Li G, Sun Y, Yokota H, Zhang P. Mechanical loading mitigates osteoarthritis symptoms by regulating the inflammatory microenvironment in a mouse model. Ann N Y Acad Sci 2022; 1512:141-153. [DOI: 10.1111/nyas.14760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/27/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Weiwei Zheng
- Department of Anatomy and Histology, School of Basic Medical Sciences Tianjin Medical University Tianjin China
| | - Xinle Li
- Department of Anatomy and Histology, School of Basic Medical Sciences Tianjin Medical University Tianjin China
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases Tianjin Medical University Tianjin China
| | - Jie Li
- Department of Anatomy and Histology, School of Basic Medical Sciences Tianjin Medical University Tianjin China
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases Tianjin Medical University Tianjin China
| | - Xiaoyu Wang
- Department of Anatomy and Histology, School of Basic Medical Sciences Tianjin Medical University Tianjin China
| | - Daquan Liu
- Department of Anatomy and Histology, School of Basic Medical Sciences Tianjin Medical University Tianjin China
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases Tianjin Medical University Tianjin China
| | - Lidong Zhai
- Department of Anatomy and Histology, School of Basic Medical Sciences Tianjin Medical University Tianjin China
| | - Beibei Ding
- Department of Anatomy and Histology, School of Basic Medical Sciences Tianjin Medical University Tianjin China
| | - Guang Li
- Department of Anatomy and Histology, School of Basic Medical Sciences Tianjin Medical University Tianjin China
| | - Yuting Sun
- Department of Anatomy and Histology, School of Basic Medical Sciences Tianjin Medical University Tianjin China
| | - Hiroki Yokota
- Department of Biomedical Engineering Indiana University‐Purdue University Indianapolis Indianapolis Indiana
| | - Ping Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences Tianjin Medical University Tianjin China
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases Tianjin Medical University Tianjin China
- Tianjin Key Laboratory of Spine and Spinal Cord Tianjin Medical University Tianjin China
| |
Collapse
|
134
|
Chen W, Zheng H, Zhang X, Xu Y, Fu Z, Ji X, Wei C, An G, Tan M, Zhou M. Columbianetin alleviates lipopolysaccharides (LPS)-induced inflammation and apoptosis in chondrocyte through activation of autophagy by inhibiting serum and glucocorticoid-induced protein kinase 1 (SGK1) expression. Bioengineered 2022; 13:4051-4062. [PMID: 35129051 PMCID: PMC8973585 DOI: 10.1080/21655979.2022.2032970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative disease of articular cartilage involving the entire joint tissue. Columbianetin (CBT) is a major active compound of radix angelicae pubescentis, which is used in the treatment of OA. This paper attempts to explore the role of CBT in OA. Lipopolysaccharides (LPS) was used to induce mouse chondrocytes ATDC5. The effect of CBT on cell viability in ATDC5 cells with or without LPS induction was determined by CCK-8 and LDH kits. The inflammatory response was evaluated using ELISA kits. Apoptosis in LPS-induced ATDC5 cells were examined by TUNEL staining. The expression of apoptosis and autophagy-related proteins was tested with Western blot. The relationship between CBT and serum and glucocorticoid-induced protein kinase 1 (SGK1) was examined by RT-qPCR, Western blot, and molecular docking. After SGK1 overexpression or addition of the autophagy inhibitor 3-methyladenine (3 MA), the above experiments were done again. Results revealed that CBT increased LPS-induced decrease in ATDC5 cell viability. CBT inhibited inflammation triggered by LPS, evidenced by reduced levels of TNF-α, IL-6 and IL-1β. Cell apoptosis was attenuated following CBT adding in ATDC5 cells exposed to LPS, accompanied by upregulated Bcl-2 expression and downregulated Bax and cleaved caspase 3 expression. In addition, CBT elevated Beclin1 and LC3II/LC3I expression but decreased p62 expression. Additionally, CBT inhibited SGK1 expression. However, SGK1 overexpression or 3 MA reversed the effects of CBT on LPS-induced loss of ATDC5 cell viability, inflammation, apoptosis and autophagy. Collectively, CBT could improve OA through the activation of chondrocyte autophagy by suppressing SGK1 expression.
Collapse
Affiliation(s)
- Wei Chen
- Department of Orthopaedics, Traditional Chinese Medical Hospital of Gansu Province, Lanzhou, Gansu, China
| | - Haotian Zheng
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Xuan Zhang
- Department of Oncology, Traditional Chinese Medical Hospital of Gansu Province, Lanzhou, Gansu, China
| | - Yude Xu
- Department of Orthopaedics, Traditional Chinese Medical Hospital of Gansu Province, Lanzhou, Gansu, China
| | - Zhibin Fu
- Department of Orthopaedics, Traditional Chinese Medical Hospital of Gansu Province, Lanzhou, Gansu, China
| | - Xing Ji
- Department of Orthopaedics, Traditional Chinese Medical Hospital of Gansu Province, Lanzhou, Gansu, China
| | - Changhao Wei
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Guoyao An
- Department of Orthopaedics, Traditional Chinese Medical Hospital of Gansu Province, Lanzhou, Gansu, China
| | - Mingyuan Tan
- Department of Orthopaedics, Traditional Chinese Medical Hospital of Gansu Province, Lanzhou, Gansu, China
| | - Mingwang Zhou
- Department of Orthopaedics, Traditional Chinese Medical Hospital of Gansu Province, Lanzhou, Gansu, China
| |
Collapse
|
135
|
Mu P, Feng J, Hu Y, Xiong F, Ma X, Tian L. Botanical Drug Extracts Combined With Biomaterial Carriers for Osteoarthritis Cartilage Degeneration Treatment: A Review of 10 Years of Research. Front Pharmacol 2022; 12:789311. [PMID: 35173609 PMCID: PMC8841352 DOI: 10.3389/fphar.2021.789311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/08/2021] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA) is a long-term chronic arthrosis disease which is usually characterized by pain, swelling, joint stiffness, reduced range of motion, and other clinical manifestations and even results in disability in severe cases. The main pathological manifestation of OA is the degeneration of cartilage. However, due to the special physiological structure of the cartilage, once damaged, it is unable to repair itself, which is one of the challenges of treating OA clinically. Abundant studies have reported the application of cartilage tissue engineering in OA cartilage repair. Among them, cell combined with biological carrier implantation has unique advantages. However, cell senescence, death and dedifferentiation are some problems when cultured in vitro. Botanical drug remedies for OA have a long history in many countries in Asia. In fact, botanical drug extracts (BDEs) have great potential in anti-inflammatory, antioxidant, antiaging, and other properties, and many studies have confirmed their effects. BDEs combined with cartilage tissue engineering has attracted increasing attention in recent years. In this review, we will explain in detail how cartilage tissue engineering materials and BDEs play a role in cartilage repair, as well as the current research status.
Collapse
Affiliation(s)
- Panyun Mu
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Feng
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yimei Hu
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Yimei Hu,
| | - Feng Xiong
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xu Ma
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Linling Tian
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
136
|
Elucidation of Potential Targets of San-Miao-San in the Treatment of Osteoarthritis Based on Network Pharmacology and Molecular Docking Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7663212. [PMID: 35087596 PMCID: PMC8789436 DOI: 10.1155/2022/7663212] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/14/2021] [Accepted: 12/13/2021] [Indexed: 01/05/2023]
Abstract
Background To examine the potential therapeutic targets of Chinese medicine formula San-Miao-San (SMS) in the treatment of osteoarthritis (OA), we analyzed the active compounds of SMS and key targets of OA and investigated the interacting pathways using network pharmacological approaches and molecular docking analysis. Methods The active compounds of SMS and OA-related targets were searched and screened by TCMSP, DrugBank, Genecards, OMIM, DisGeNet, TTD, and PharmGKB databases. Venn analysis and PPI were performed for evaluating the interaction of the targets. The topological analysis and molecular docking were used to confirm the subnetworks and binding affinity between active compounds and key targets, respectively. The GO and KEGG functional enrichment analysis for all targets of each subnetwork were conducted. Results A total of 57 active compounds and 203 targets of SMS were identified by the TCMSP and DrugBank database, while 1791 OA-related targets were collected from the Genecards, OMIM, DisGeNet, TTD, and PharmGKB databases. By Venn analysis, 108 intersection targets between SMS targets and OA targets were obtained. Most of these intersecting targets involve quercetin, kaempferol, and wogonin. Moreover, intersecting targets identified by PPI analysis were introduced into Cytoscape plug-in CytoNCA for topological analysis. Hence, nine key targets of SMS for OA treatment were obtained. Furthermore, the potential binding conformations between active compounds and key targets were found through molecular docking analysis. According to the DAVID enrichment analysis, the main biological processes of SMS in the treatment of OA include oxidative stress, response to reactive oxygen species, and apoptotic signaling pathways. Finally, we found wogonin, the key compound in SMS, might play a pivotal role on Toll-like receptor, IL-17, TNF, osteoclast differentiation, and apoptosis signaling pathways through interacting with four key targets. Conclusions Therefore, this study elucidated the potential active compounds and key targets of SMS in the treatment of OA based on network pharmacology.
Collapse
|
137
|
Nowaczyk A, Szwedowski D, Dallo I, Nowaczyk J. Overview of First-Line and Second-Line Pharmacotherapies for Osteoarthritis with Special Focus on Intra-Articular Treatment. Int J Mol Sci 2022; 23:1566. [PMID: 35163488 PMCID: PMC8835883 DOI: 10.3390/ijms23031566] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 02/07/2023] Open
Abstract
Osteoarthritis (OA) can be defined as the result of pathological processes of various etiologies leading to damage to the articular structures. Although the mechanism of degenerative changes has become better understood due to the plethora of biochemical and genetic studies, the drug that could stop the degenerative cascade is still unknown. All available forms of OA therapy are based on symptomatic treatment. According to actual guidelines, comprehensive treatment of OA should always include a combination of various therapeutic options aimed at common goals, which are pain relief in the first place, and then the improvement of function. Local treatment has become more common practice, which takes place between rehabilitation and pharmacological treatment in the hierarchy of procedures. Only in the case of no improvement and the presence of advanced lesions visible in imaging tests, should surgery be considered. Currently, an increasing number of studies are being published suggesting that intra-articular injections may be as effective or even more effective than non-steroidal anti-inflammatory drugs (NSAIDs) and result in fewer systemic adverse events. The most commonly used preparations are hyaluronic acid (HA), glucocorticosteroids (GS), and also platelet-rich plasma (PRP) in recent years. This review aims to present the mechanism of action and clinical effectiveness of different pharmacological options in relieving pain and improving functions in OA as well as the emerging approach in intra-articular treatment with PRP.
Collapse
Affiliation(s)
- Alicja Nowaczyk
- Department of Organic Chemistry, Faculty of Pharmacy, LudwikRydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 2 dr. A. Jurasza St., 85-094 Bydgoszcz, Poland
| | - Dawid Szwedowski
- Department of Orthopaedics and Trauma Surgery, Provincial Polyclinical Hospital, 87-100 Toruń, Poland;
- Orthopedic Arthroscopic Surgery International (O.A.S.I.) Bioresearch Foundation, Gobbi N.P.O., 20133 Milan, Italy
| | - Ignacio Dallo
- Unit of Biological Therapies, SportMe Medical Center, Department of Orthopaedic Surgery and Sports Medicine, 41013 Seville, Spain;
| | - Jacek Nowaczyk
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarina St., 87-100 Toruń, Poland
| |
Collapse
|
138
|
Restoration of the Phenotype of Dedifferentiated Rabbit Chondrocytes by Sesquiterpene Farnesol. Pharmaceutics 2022; 14:pharmaceutics14010186. [PMID: 35057081 PMCID: PMC8779926 DOI: 10.3390/pharmaceutics14010186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 01/27/2023] Open
Abstract
Osteoarthritis (OA) is a joint disorder characterized by the progressive degeneration of articular cartilage. The phenotype and metabolism behavior of chondrocytes plays crucial roles in maintaining articular cartilage function. Chondrocytes dedifferentiate and lose their cartilage phenotype after successive subcultures or inflammation and synthesize collagen I and X (COL I and COL X). Farnesol, a sesquiterpene compound, has an anti-inflammatory effect and promotes collagen synthesis. However, its potent restoration effects on differentiated chondrocytes have seldom been evaluated. The presented study investigated farnesol's effect on phenotype restoration by examining collagen and glycosaminoglycan (GAG) synthesis from dedifferentiated chondrocytes. The results indicated that chondrocytes gradually dedifferentiated through cellular morphology change, reduced expressions of COL II and SOX9, increased the expression of COL X and diminished GAG synthesis during four passages of subcultures. Pure farnesol and hyaluronan-encapsulated farnesol nanoparticles promote COL II synthesis. GAG synthesis significantly increased 2.5-fold after a farnesol treatment of dedifferentiated chondrocytes, indicating the restoration of chondrocyte functions. In addition, farnesol drastically increased the synthesis of COL II (2.5-fold) and GAG (15-fold) on interleukin-1β-induced dedifferentiated chondrocytes. A significant reduction of COL I, COL X and proinflammatory cytokine prostaglandin E2 was observed. In summary, farnesol may serve as a therapeutic agent in OA treatment.
Collapse
|
139
|
Mesenchymal Stem Cell-Derived Exosomes Modulate Chondrocyte Glutamine Metabolism to Alleviate Osteoarthritis Progression. Mediators Inflamm 2022; 2021:2979124. [PMID: 34992497 PMCID: PMC8724850 DOI: 10.1155/2021/2979124] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/21/2021] [Accepted: 11/22/2021] [Indexed: 12/16/2022] Open
Abstract
Osteoarthritis (OA) had a high incidence in people over 65 years old, and there is currently no drug that could completely cure it. This study is aimed at studying the role of exosomes in regulating glutamine metabolism in the treatment of OA. First, we identified the exosomes extracted from the mouse OA model's bone marrow mesenchymal stem cells (MSC). In vitro, compared with the control group, the cell apoptosis in the OA group increased, while the cell proliferation of the OA group was suppressed. After exosomal treatment, cell apoptosis and cell proliferation were reversed. Inflammatory factors (TNFα, IL-6), glutamine metabolic activity-related proteins (c-MYC, GLS1), glutamine, and GSH/GSSG were increased in the OA group. The overexpression of c-MYC reduced the therapeutic effect of exosomes. At the same time, we found that chondrocyte functional factors (collagen II, Aggrecan) were improved under the treatment of exosomes. However, oe-c-MYC reversed the therapeutic effect of exosomes. In vivo, we found that the running capacity of the mice in the OA group was reduced, and the cartilage tissue was severely damaged. In addition, TNFα, IL-6, and chondrocyte apoptosis increased, while the metabolism of collagen II, Aggrecan, and glutamate decreased in the OA group. After exosomal treatment, the mice's exercise capacity, tissue damage, inflammation, and chondrocyte function were improved, and glutamate metabolism was increased. This study showed that exosomes regulated the level of chondrocyte glutamine metabolism by regulating c-MYC, thereby alleviating OA.
Collapse
|
140
|
Zhou Q, Ren Q, Jiao L, Huang J, Yi J, Chen J, Lai J, Ji G, Zheng T. The potential roles of JAK/STAT signaling in the progression of osteoarthritis. Front Endocrinol (Lausanne) 2022; 13:1069057. [PMID: 36506076 PMCID: PMC9729341 DOI: 10.3389/fendo.2022.1069057] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
Osteoarthritis (OA) is an age-related chronic progressive degenerative disease that induces persistent pain and disabilities. The development of OA is a complex process, and the risk factors are various, including aging, genetics, trauma and altered biomechanics. Inflammation and immunity play an important role in the pathogenesis of OA. JAK/STAT pathway is one of the most prominent intracellular signaling pathways, regulating cell proliferation, differentiation, and apoptosis. Inflammatory factors can act as the initiators of JAK/STAT pathway, which is implicated in the pathophysiological activity of chondrocyte. In this article, we provide a review on the importance of JAK/STAT pathway in the pathological development of OA. Potentially, JAK/STAT pathway becomes a therapeutic target for managing OA.
Collapse
Affiliation(s)
- Qingluo Zhou
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Qun Ren
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Linhui Jiao
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Jishang Huang
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jun Yi
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jincai Chen
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jinliang Lai
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Guanglin Ji
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Guanglin Ji, ; Tiansheng Zheng,
| | - Tiansheng Zheng
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Guanglin Ji, ; Tiansheng Zheng,
| |
Collapse
|
141
|
Li H, Xu J, Hu J, Hu Q, Fang X, Sun ZJ, Xu Z, Zhang L. Sustained release of chlorogenic acid-loaded nanomicelles alleviates bone loss in mouse periodontitis. Biomater Sci 2022; 10:5583-5595. [DOI: 10.1039/d2bm01099b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract Periodontitis is a prevalent chronic inflammatory disease that destroys the periodontal supporting tissues, impinges on oral health, and is correlative with an increased risk of systemic disease. Currently, the...
Collapse
|
142
|
Shi L, Xu X, Meng B, He K, Sun Y, Tong J, Xu J, Cheng Y, Gan G, Xiang G. Neuregulin 4 Attenuates Osteoarthritis Progression by Inhibiting Inflammation and Apoptosis of Chondrocytes in Mice. Calcif Tissue Int 2022; 110:131-142. [PMID: 34383111 DOI: 10.1007/s00223-021-00897-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/28/2021] [Indexed: 10/20/2022]
Abstract
Osteoarthritis (OA) is characterized by chondrocyte apoptosis and increased degradation of type II collagen. Inflammation is one of the major risk factors involved in the pathophysiology of OA. Neuregulin 4 (Nrg4) plays a protective role in a variety of low-level inflammatory diseases, such as non-alcoholic fatty liver disease, inflammatory bowel disease, or type 2 diabetes mellitus. Here we found that (1) Nrg4 deficiency aggravated the destruction and inflammation of articular cartilage and the apoptosis of chondrocytes in vivo. (2) Nrg4 restoration reversed these changes in vivo. (3) Murine recombinant Nrg4 (rNrg4) suppressed inflammation and apoptosis of chondrocytes and decreased the degradation of extracellular matrix in vitro. (4) Mechanistically, the mitogen-activated protein kinase/c-jun N-terminal kinase (MAPK/JNK) signaling pathway may be involved in the regulation of Nrg4 in the pathophysiology of OA. Therefore, we concluded that Nrg4 alleviated the progression of OA by inhibiting the inflammation, protecting against apoptosis of chondrocyte, and decreasing the degradation of extracellular matrix in a manner involving MAPK/JNK signaling.
Collapse
Affiliation(s)
- Lingfeng Shi
- The First School of Clinical Medicine, Southern Medical University, No.1023, South Shatai Road, Baiyun District, Guangzhou, 510515, Guangdong, China
| | - Xiaoli Xu
- The First School of Clinical Medicine, Southern Medical University, No.1023, South Shatai Road, Baiyun District, Guangzhou, 510515, Guangdong, China
- Department of Endocrinology, General Hospital of Central Theater Command, Wuluo Road 627, Wuhan, 430070, Hubei Province, China
| | - Biying Meng
- Department of Endocrinology, General Hospital of Central Theater Command, Wuluo Road 627, Wuhan, 430070, Hubei Province, China
| | - Kaiyue He
- The First School of Clinical Medicine, Southern Medical University, No.1023, South Shatai Road, Baiyun District, Guangzhou, 510515, Guangdong, China
| | - Yin Sun
- Department of Endocrinology, General Hospital of Central Theater Command, Wuluo Road 627, Wuhan, 430070, Hubei Province, China
| | - Jiayue Tong
- The First School of Clinical Medicine, Southern Medical University, No.1023, South Shatai Road, Baiyun District, Guangzhou, 510515, Guangdong, China
| | - Jinling Xu
- The First School of Clinical Medicine, Southern Medical University, No.1023, South Shatai Road, Baiyun District, Guangzhou, 510515, Guangdong, China
| | - Yangyang Cheng
- Department of Endocrinology, General Hospital of Central Theater Command, Wuluo Road 627, Wuhan, 430070, Hubei Province, China
| | - Guosheng Gan
- The First School of Clinical Medicine, Southern Medical University, No.1023, South Shatai Road, Baiyun District, Guangzhou, 510515, Guangdong, China.
- General Hospital of Central Theater Command, Wuluo Road 627, Wuhan, 430070, Hubei Province, China.
| | - Guangda Xiang
- The First School of Clinical Medicine, Southern Medical University, No.1023, South Shatai Road, Baiyun District, Guangzhou, 510515, Guangdong, China.
- Department of Endocrinology, General Hospital of Central Theater Command, Wuluo Road 627, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|
143
|
Ma Z, Wei Y, Zhang L, Shi X, Xing R, Liao T, Yang N, Li X, Jie L, Wang P. GCTOF-MS Combined LC-QTRAP-MS/MS Reveals Metabolic Difference Between Osteoarthritis and Osteoporotic Osteoarthritis and the Intervention Effect of Erxian Decoction. Front Endocrinol (Lausanne) 2022; 13:905507. [PMID: 35966099 PMCID: PMC9365991 DOI: 10.3389/fendo.2022.905507] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
PURPOSE OP and OA are chronic bone diseases with high incidence in the middle-aged and elderly populations. The latest research shows that the pathological environment of OP may be involved in the aggravation of the pathological process of OA, and the pathological state of OP plays an important role in the aggravation of OA pathology. EXD is a traditional Chinese medicine decoction that has been used to treat osteoporosis. Therefore, we further study whether OA will be aggravated in the OP environment and whether EXD can alleviate OA by intervening in the OP environment. The purpose of this study was to analyze the effect of OP on OA metabolites by using metabolomic methods and to explore the intervention mechanism of EXD on osteoporotic OA. METHOD Thirty-two SD rats were randomly divided into normal group, OA group, OP-OA group, and EXD group. EXD was administered by gavage. Histopathological evaluation of cartilage tissue was performed using Saffron fast green and HE staining. Western blot and qRT-PCR were used to detect the expression levels of chondrogenesis genes SOX9, COL2A1, and COMP in cartilage tissue. GC-TOFMS and LC-QTRAP-MS/MS metabolomics methods were used to analyze the changes of metabolites in serum samples of rats in each group. RESULT The slice results showed that the cartilage damage in the OP-OA group was more serious than that in the OA group, which was significantly relieved after EXD intervention, indicating that the cartilage damage in the OP-OA group was more severe than that in the OA group and further reduced the protein and gene expressions of cartilage markers SOX9, COL2A1, and COMP. Thirty-seven substances were identified, and gentiopicroside, emodin, quercetin, and diosmetin were analyzed as possible active components of EXD. EXD treatment significantly reduced cartilage damage and reversed the expression of these markers. Metabolomics showed that EXD attenuated cartilage destruction by modulating the expression of cystine, chenodeoxycholate, and D-Turanose, involving glycolysis/gluconeogenesis, pantothenate, and CoA biosynthesis metabolic pathways. CONCLUSION The OP environment may promote the progression of OA through metabolic factors. The benign intervention of EXD in osteoporotic OA involves cystine, chenodeoxycholate, and D-Turanose, and their associated glycolysis/gluconeogenesis, pantothenate, and CoA biosynthesis metabolic pathways. Therefore, we have a deep understanding of the metabolic-related intervention of EXD in osteoporotic OA and are eager to better understand the mechanism of multi-targeted intervention of EXD in bone metabolic lesions.
Collapse
Affiliation(s)
- Zhenyuan Ma
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yibao Wei
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Li Zhang
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoqing Shi
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Runlin Xing
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Traditional Chinese Medicine Orthopedics, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Taiyang Liao
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Nan Yang
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaochen Li
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Traditional Chinese Medicine Orthopedics, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Lishi Jie
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Peimin Wang
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Traditional Chinese Medicine Orthopedics, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
- *Correspondence: Peimin Wang,
| |
Collapse
|
144
|
Cheng J, Luo XQ, Chen FS. Quercetin attenuates lipopolysaccharide-mediated inflammatory injury in human nasal epithelial cells via regulating miR-21/DMBT1/NF-κB axis. Immunopharmacol Immunotoxicol 2021; 44:7-16. [PMID: 34927513 DOI: 10.1080/08923973.2021.1988963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Quercetin (Qu) belongs to a flavonoid polyphenolic compound present in fruits and vegetables which has been confirmed to exert anti-inflammatory properties. Our study aimed to explore the impacts of quercetin on lipopolysaccharide (LPS)-induced inflammatory injury and signal transduction of miR-21/DMBT1/NF-κB axis in human nasal epithelial cells (HNEpC). METHODS HNEpCs were cultured and treated with 1 μg/mL of LPS and a gradient concentration (10, 100, and 200 μM) of quercetin for 24 h. Cell viability, apoptosis, and cytokines were detected to assess the inflammatory injury in LPS-exposed HNEpCs. The expressions of miR-21, DMBT1, and NF-κB mRNA were detected by quantitative real-time polymerase chain reaction (qRT-PCR). The levels of DMBT1 and NF-κB protein were measured by western blotting. RESULTS LPS treatment reduced cell viability, promoted cell apoptosis and inflammatory response, down-regulated miR-21 expression and up-regulated DMBT1, and NF-κB in HNEpC cells. Quercetin exerted the opposite effects to attenuate LPS-induced inflammatory injury in HNEpC cells at a concentration-dependent way. Additionally, miR-21 directly targeted DMBT1 to reduce its expression and further inducing cell viability via inhibiting cell apoptosis and inflammatory response. MiR-21 inhibition or DMBT1 over-expression weakened the protective effects of quercetin against LPS-induced inflammatory injury in HNEpC cells. CONCLUSIONS Quercetin could protect HNEpC cells against LPS-induced inflammatory injury via inducing miR-21/DMBT1/NF-κB axis. Therefore, quercetin could be utilized as a potential compound to treat for allergic rhinitis.
Collapse
Affiliation(s)
- Ji Cheng
- Department of Otolaryngology Head and Neck Surgery, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, PR China
| | - Xian-Qing Luo
- Department of Otolaryngology Head and Neck Surgery, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, PR China
| | - Fa-Sheng Chen
- Department of Otolaryngology Head and Neck Surgery, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, PR China
| |
Collapse
|
145
|
Zheng S, Ma M, Chen Y, Li M. Effects of quercetin on ovarian function and regulation of the ovarian PI3K/Akt/FoxO3a signalling pathway and oxidative stress in a rat model of cyclophosphamide-induced premature ovarian failure. Basic Clin Pharmacol Toxicol 2021; 130:240-253. [PMID: 34841658 DOI: 10.1111/bcpt.13696] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/17/2021] [Accepted: 11/22/2021] [Indexed: 12/28/2022]
Abstract
To investigate the ability of quercetin to improve ovarian function and inhibit ovarian oxidative stress through the PI3K/Akt/FoxO3a signalling pathway in a rat model of premature ovarian failure (POF), we constructed a POF rat model with cyclophosphamide (CTX) and treated it with quercetin. Haematoxylin and eosin staining (H&E staining) was used to observe the morphological changes of the ovaries. The serum levels of AMH, E2, FSH, SOD, GSH-Px and MDA were determined by enzyme-linked immunosorbent assays. The expression of phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt), forkhead box O3a (FoxO3a) and their phosphorylated forms AMH, FSH and their receptors in the ovary were detected by western blots. The mRNA expression of PI3K, Akt, FOXO3a, AMH, FSH and their receptors was detected by qRT-PCR. Our results showed that quercetin could significantly increase the expression of AMH, E2, SOD and GSH-Px, upregulate the protein expression of AMH, FSH and its receptor and decrease the expression ratio of phosphorylated PI3K, Akt, FOXO3a and the unphosphorylated forms. Moreover, quercetin inhibited the mRNA expression of PI3K, Akt and FOXO3a. These results suggest that quercetin can restore ovarian function and inhibit oxidative stress by regulating the PI3K/Akt/FoxO3a signalling pathway.
Collapse
Affiliation(s)
- Shaoyan Zheng
- Pharmacy Department, Foshan Women and Children Hospital Affiliated to Southern Medical University, Foshan, China
| | - Mingying Ma
- Pharmacy Department, Nanfang Hospital Affiliated to Southern Medical University, Guangzhou, China
| | - Yanxia Chen
- Pharmacy Department, The First Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Miaoxia Li
- Comprehensive Laboratory, Guangdong Huiqun Chinese Traditional Medicine Co., Ltd, Shantou, China
| |
Collapse
|
146
|
Zhu Y, Zhong W, Peng J, Wu H, Du S. Study on the Mechanism of Baimai Ointment in the Treatment of Osteoarthritis Based on Network Pharmacology and Molecular Docking with Experimental Verification. Front Genet 2021; 12:750681. [PMID: 34868222 PMCID: PMC8635803 DOI: 10.3389/fgene.2021.750681] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/15/2021] [Indexed: 12/22/2022] Open
Abstract
Purpose: The external preparation of the Tibetan medicine formula, Baimai ointment (BMO), has great therapeutic effects on osteoarthritis (OA). However, its molecular mechanism remains almost elusive. Here, a comprehensive strategy combining network pharmacology and molecular docking with pharmacological experiments was adopted to reveal the molecular mechanism of BMO against OA. Methods: The traditional Chinese medicine for systems pharmacology (TCMSP) database and analysis platform, traditional Chinese medicine integrated database (TCMID), GeneCards database, and DisGeNET database were used to screen the active components and targets of BMO in treating OA. A component-target (C-T) network was built with the help of Cytoscape, and the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment through STRING. Autodock Tools which was used to dock the key components and key target proteins was analyzed. Animal experiments were performed to verify the key targets of BMO. Hematoxylin-eosin and toluidine blue staining were used to observe the pathology of joints. Protein expression was determined using enzyme-linked immunosorbent assay. Results: Bioactive compounds and targets of BMO and OA were screened. The network analysis revealed that 17-β-estradiol, curcumin, licochalone A, quercetin, and glycyrrhizic acid were the candidate key components, and IL6, tumor necrosis factor (TNF), MAPK1, VEGFA, CXCL8, and IL1B were the candidate key targets in treating OA. The KEGG indicated that the TNF signaling pathway, NF-κB signaling pathway, and HIF-1 signaling pathway were the potential pathways. Molecular docking implied a strong combination between key components and key targets. The pathology and animal experiments showed BMO had great effects on OA via regulating IL6, TNF, MAPK1, VEGFA, CXCL8, and IL1B targets. These findings were consistent with the results obtained from the network pharmacology approach. Conclusion: This study preliminarily illustrated the candidate key components, key targets, and potential pathways of BMO against OA. It also provided a promising method to study the Tibetan medicine formula or external preparations.
Collapse
Affiliation(s)
- Yingyin Zhu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wanling Zhong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Peng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Huichao Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shouying Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
147
|
Khursheed R, Singh SK, Wadhwa S, Gulati M, Kapoor B, Jain SK, Gowthamarajan K, Zacconi F, Chellappan DK, Gupta G, Jha NK, Gupta PK, Dua K. Development of mushroom polysaccharide and probiotics based solid self-nanoemulsifying drug delivery system loaded with curcumin and quercetin to improve their dissolution rate and permeability: State of the art. Int J Biol Macromol 2021; 189:744-757. [PMID: 34464640 DOI: 10.1016/j.ijbiomac.2021.08.170] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/18/2021] [Accepted: 08/22/2021] [Indexed: 02/07/2023]
Abstract
The role of mushroom polysaccharides and probiotics as pharmaceutical excipients for development of nanocarriers has never been explored. In the present study an attempt has been made to explore Ganoderma lucidum extract powder (GLEP) containing polysaccharides and probiotics to convert liquid self nanoemulsifying drug delivery system (SNEDDS) into solid free flowing powder. Two lipophilic drugs, curcumin and quercetin were used in this study due to their dissolution rate limited oral bioavailability and poor permeability. These were loaded into liquid SNEDDS by dissolving them into isotropic mixture of Labrafill M1944CS, Capmul MCM, Tween-80 and Transcutol P. The liquid SNEDDS were solidified using probiotics and mushroom polysaccharides as carriers and Aerosil-200 as coating agent. The solidification was carried out using spray drying process. The process and formulation variables for spray drying process of liquid SNEDDS were optimized using Box Behnken Design to attain required powder properties. The release of both drugs from the optimized spray dried (SD) formulation was found to be more than 90%, whereas, it was less than 20% for unprocessed drugs. The results of DSC, PXRD and SEM, showed that the developed L-SNEDDS preconcentrate was successfully loaded onto the porous surface of probiotics, mushroom polysaccharides and Aerosil-200.
Collapse
Affiliation(s)
- Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India.
| | - Sheetu Wadhwa
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Subheet Kumar Jain
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Kuppusamy Gowthamarajan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India; Centre of Excellence in Nanoscience & Technology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Flavia Zacconi
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile; Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, India
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201310, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
148
|
Ma X, Hao C, Zhang Z, Jiang H, Zhang W, Huang J, Chen X, Yang W. Shenjinhuoxue Mixture Attenuates Inflammation, Pain, and Cartilage Degeneration by Inhibiting TLR-4 and NF- κB Activation in Rats with Osteoarthritis: A Synergistic Combination of Multitarget Active Phytochemicals. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4190098. [PMID: 34777686 PMCID: PMC8589511 DOI: 10.1155/2021/4190098] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 01/14/2023]
Abstract
Osteoarthritis (OA), a highly prevalent chronic joint disease, involves a complex network of inflammatory mediators that not only triggers pain and cartilage degeneration but also accelerates disease progression. Traditional Chinese medicinal shenjinhuoxue mixture (SHM) shows anti-inflammatory and analgesic effects against OA with remarkable clinical efficacy. This study explored the mechanism underlying anti-OA properties of SHM and evaluated its efficacy and safety via in vivo experiments. Through network pharmacology and published literature, we identified the key active phytochemicals in SHM, including β-sitosterol, oleanolic acid, licochalcone A, quercetin, isorhamnetin, kaempferol, morusin, lupeol, and pinocembrin; the pivotal targets of which are TLR-4 and NF-κB, eliciting anti-OA activity. These phytochemicals can enter the active pockets of TLR-4 and NF-κB with docking score ≤ -3.86 kcal/mol, as shown in molecular docking models. By using surface plasmon resonance assay, licochalcone A and oleanolic acid were found to have good TLR-4-binding affinity. In OA rats, oral SHM at mid and high doses (8.72 g/kg and 26.2 g/kg) over 6 weeks significantly alleviated mechanical and thermal hyperalgesia (P < 0.0001). Accordingly, the expression of inflammatory mediators (TLR-4, interleukin (IL-) 1 receptor-associated kinase 1 (IRAK1), NF-κB-p65, tumor necrosis factor (TNF-) α, IL-6, and IL-1β), receptor activator of the NF-κB ligand (RANKL), and transient receptor potential vanilloid 1 (TRPV1) in the synovial and cartilage tissue of OA rats was significantly decreased (P < 0.05). Moreover, pathological observation illustrated amelioration of cartilage degeneration and joint injury. In chronic toxicity experiment of rats, SHM at 60 mg/kg demonstrated the safety. SHM had an anti-inflammatory effect through a synergistic combination of active phytochemicals to attenuate pain and cartilage degeneration by inhibiting TLR-4 and NF-κB activation. This study provided the experimental foundation for the development of SHM into a more effective dosage form or new drugs for OA treatment.
Collapse
Affiliation(s)
- Xiaoqin Ma
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Pharmacy, Xi'an Children's Hospital, Xi'an, China
| | - Chenxia Hao
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Pharmacy, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhaokang Zhang
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiting Jiang
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weixia Zhang
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingjing Huang
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofei Chen
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Wanhua Yang
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
149
|
Luo X, Bao X, Weng X, Bai X, Feng Y, Huang J, Liu S, Jia H, Yu B. The protective effect of quercetin on macrophage pyroptosis via TLR2/Myd88/NF-κB and ROS/AMPK pathway. Life Sci 2021; 291:120064. [PMID: 34688696 DOI: 10.1016/j.lfs.2021.120064] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/05/2021] [Accepted: 10/14/2021] [Indexed: 12/15/2022]
Abstract
AIMS Pyroptosis is a pro-inflammatory form of programmed cell death, which plays a vital role in the development of inflammatory diseases. As a natural flavonoid, quercetin has been shown to possess anti-inflammatory activity, but its effects on macrophage pyroptosis is still unclear. Therefore, this study aims to investigate the effects of quercetin on macrophage pyroptosis and the underlying mechanism. MATERIAL AND METHODS LPS/ATP treatment was used to induce THP-1 macrophage pyroptosis. Cell counting kit-8 (CCK-8) assay was used to evaluate cell viability. Scanning electron microscope (SEM) was used to detect cell morphology. Hoechst/propidium iodide (PI) staining and lactate dehydrogenase (LDH) assay were performed to evaluate the cell membrane integrity. The expression of key components and effectors of nod-like receptors3 (NLRP3) inflammasome were examined by real-time PCR and western blot. Immunofluorescence staining was used to detect reactive oxygen species (ROS) level and P65 nuclear translocation. KEY FINDINGS Our results showed that quercetin prevented THP-1 macrophage pyroptosis by reducing the expression of NLRP3 and cleaved-caspase1, as well as IL-1β and N-GSDMD in a concentration dependent manner. Quercetin suppressed NLRP3 inflammasome activation by inhibiting ROS overproduction. Moreover, quercetin inhibited the phosphorylation of P65 and its translocation from cytoplasm into nuclear. In addition, we found that quercetin suppressed the increase of TLR2/Myd88 and p-AMPK induced by LPS/ATP, while both TLR2 and AMPK agonist weakened the inhibitory effect of quercetin on the activity of NLRP3 inflammasome and alleviated the protective effect on macrophages pyroptosis. SIGNIFICANCE Quercetin possesses a protective effect on macrophages pyroptosis via TLR2/Myd88/NF-κB and ROS/AMPK pathway.
Collapse
Affiliation(s)
- Xing Luo
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China; Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150001, PR China
| | - Xiaoyi Bao
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China; Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150001, PR China
| | - Xiuzhu Weng
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Xiaoxuan Bai
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Yi Feng
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150001, PR China
| | - Jianxin Huang
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150001, PR China
| | - Shaoyu Liu
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150001, PR China; Bin xian People's Hospital, Harbin 150400, PR China
| | - Haibo Jia
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China; Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150001, PR China.
| | - Bo Yu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China; Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150001, PR China
| |
Collapse
|
150
|
Wang Y, Li C, Wan Y, Qi M, Chen Q, Sun Y, Sun X, Fang J, Fu L, Xu L, Dong B, Wang L. Quercetin-Loaded Ceria Nanocomposite Potentiate Dual-Directional Immunoregulation via Macrophage Polarization against Periodontal Inflammation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101505. [PMID: 34499411 DOI: 10.1002/smll.202101505] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/13/2021] [Indexed: 05/22/2023]
Abstract
Macrophage polarization toward M1 phenotype (pro-inflammation) is closely associated with the destructive phase of periodontal inflammation. Nanoceria is verified to inhibit M1 polarization of macrophages by the favorable ability of reactive oxygen species (ROS) scavenging. However, the function of nanoceria on macrophage polarization toward M2 phenotype (anti-inflammation) in reparative phase of periodontal inflammation is quite limited. In this work, by introducing an antioxidant drug quercetin onto nano-octahedral ceria, synergistic and intense regulation of host immunity against periodontal disease is realized. Such nanocomposite can control the phenotypic switch of macrophages by not only inhibition of M1 polarization for suppressing the damage in the destructive phase but also promotion of M2 polarization for regenerating the surrounding tissues in reparative phase of periodontal disease. As-prepared nanocomposite can effectively increase the M2/M1 ratio of macrophage polarization in inflammatory cellular models by lipopolysaccharide stimulation. More importantly, the nanocomposite also exerts an improved therapeutic potential against local inflammation by significant downregulation of pro-inflammatory cytokines and upregulation of anti-inflammatory cytokines in an animal model with periodontal inflammation. Therefore, this newly developed nanomedicine is efficient in ROS scavenging and driving pro-inflammatory macrophages to the anti-inflammatory phenotype to eliminate inflammation, thereby providing a promising candidate for treating periodontal inflammation.
Collapse
Affiliation(s)
- Yu Wang
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Sciences and Technology of Stomatology Nanoengineering, School of Dentistry, Jilin University, Changchun, 130021, China
| | - Chunyan Li
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Sciences and Technology of Stomatology Nanoengineering, School of Dentistry, Jilin University, Changchun, 130021, China
| | - Yao Wan
- Department of Oral Implantology, School of Dentistry, Jilin University, Changchun, 130021, China
| | - Manlin Qi
- Department of Oral Implantology, School of Dentistry, Jilin University, Changchun, 130021, China
| | - Qiuhan Chen
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Sciences and Technology of Stomatology Nanoengineering, School of Dentistry, Jilin University, Changchun, 130021, China
| | - Yue Sun
- Department of Oral Implantology, School of Dentistry, Jilin University, Changchun, 130021, China
| | - Xiaolin Sun
- Department of Oral Implantology, School of Dentistry, Jilin University, Changchun, 130021, China
| | - Jiao Fang
- Department of Oral Implantology, School of Dentistry, Jilin University, Changchun, 130021, China
| | - Li Fu
- Department of Oral Implantology, School of Dentistry, Jilin University, Changchun, 130021, China
| | - Lin Xu
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Lin Wang
- Department of Oral Implantology, School of Dentistry, Jilin University, Changchun, 130021, China
| |
Collapse
|