101
|
Preliminary Phytochemical Screening and Antioxidant Activity of Commercial Moringa oleifera Food Supplements. Antioxidants (Basel) 2023; 12:antiox12010110. [PMID: 36670972 PMCID: PMC9855063 DOI: 10.3390/antiox12010110] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Moringa oleifera has been reported to possess a high number of bioactive compounds; hence, several food supplements are commercially available based on it. This work aimed to analyze the phytochemical composition and antioxidant activity of commercial food supplements. The phenolic composition of methanolic extracts was determined by using high-performance liquid chromatography with diode-array and electrospray ionization mass spectrometric detection (HPLC-DAD-ESI-MSn), and the antioxidant activity was assessed by ABTS·+ and DPPH assays. Thirty-three compounds were identified, and all the main compounds were quantified, observing that the main contribution to the phenolic profile was due to kaempferol and quercetin glucosides. The antioxidant activity in both assays agreed with the phenolic content: the higher the phenolic levels, the higher the antioxidant activity. The obtained results were compared with those previously published regarding Moringa oleifera leaves to establish the potential benefits of food supplement consumption in the diet.
Collapse
|
102
|
Admane N, Cavallo G, Hadjila C, Cavalluzzi MM, Rotondo NP, Salerno A, Cannillo J, Difonzo G, Caponio F, Ippolito A, Lentini G, Sanzani SM. Biostimulant Formulations and Moringa oleifera Extracts to Improve Yield, Quality, and Storability of Hydroponic Lettuce. Molecules 2023; 28:373. [PMID: 36615566 PMCID: PMC9822398 DOI: 10.3390/molecules28010373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/19/2022] [Accepted: 12/26/2022] [Indexed: 01/03/2023] Open
Abstract
The urgent need to increase the sustainability of crop production has pushed the agricultural sector towards the use of biostimulants based on natural products. The current work aimed to determine whether the preharvest application of two commercial formulations, based on a Fabaceae enzymatic hydrolysate or a blend of nitrogen sources including fulvic acids, and two lab-made aqueous extracts from Moringa oleifera leaves (MLEs), could improve yield, quality, and storability of lettuce grown in a hydroponic system, as compared to an untreated control. Lettuce plants treated with the MLEs showed significantly improved quality parameters (leaf number, area, and color), total phenolic content and antioxidant activity, and resistance against the fungal pathogen Botrytis cinerea, comparable to that obtained with commercial formulates, particularly those based on the protein hydrolysate. A difference between the M. oleifera extracts was observed, probably due to the different compositions. Although further large-scale trials are needed, the tested MLEs seem a promising safe and effective preharvest means to improve lettuce agronomic and quality parameters and decrease susceptibility to rots.
Collapse
Affiliation(s)
| | | | | | - Maria Maddalena Cavalluzzi
- Dipartimento di Farmacia—Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy
| | - Natalie Paola Rotondo
- Dipartimento di Farmacia—Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy
| | - Antonio Salerno
- Forza Vitale, Via Castel del Monte, 194/C, 70033 Corato, Italy
| | - Joseph Cannillo
- Forza Vitale, Via Castel del Monte, 194/C, 70033 Corato, Italy
| | - Graziana Difonzo
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| | - Francesco Caponio
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| | - Antonio Ippolito
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| | - Giovanni Lentini
- Dipartimento di Farmacia—Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy
| | - Simona Marianna Sanzani
- CIHEAM Bari, Via Ceglie 9, 70010 Valenzano, Italy
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| |
Collapse
|
103
|
Abdel Shakour ZT, El-Akad RH, Elshamy AI, El Gendy AENG, Wessjohann LA, Farag MA. Dissection of Moringa oleifera leaf metabolome in context of its different extracts, origin and in relationship to its biological effects as analysed using molecular networking and chemometrics. Food Chem 2023; 399:133948. [DOI: 10.1016/j.foodchem.2022.133948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 10/15/2022]
|
104
|
Phytochemical analysis and evaluation of antibacterial activity of Moringa oleifera extracts against gram-negative bacteria: an in vitro and molecular docking studies. CURRENT ISSUES IN PHARMACY AND MEDICAL SCIENCES 2022. [DOI: 10.2478/cipms-2022-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Abstract
Moringa oleifera seed and leaf are used traditionally for the treatment of various health problems (among others, hypertension, scrapes, skin infection, diabetes, genitourinary illnesses), and to boost the immune system, as well as to act as a contraceptive. In this study, the antibacterial activity of seed and leaf M. oleifera extracts on three-gram negative bacteria was investigated, and phytochemical analysis for the association of antibacterial activity with the active constituents in the plant was determined. Moreover, understanding of the mechanism of action was achieved by applying the Auto Dock Vina technique. The phytochemical screening of M. oleifera seed and leaf extracts exhibited the presence of alkaloids, carbohydrates, cardioactive glycosides, flavonoids, tannins, phenols, steroids and terpenoids. In silico results revealed that compounds (4-O-caffeoyl quinic acid, 4-(α-L-rhamnopyranosyloxyl)-benzylisothiocyanate); (Isoquercitrin, 4-(α-L-rhamnopyranosyloxy) benzyl glucosinolate); and (Astragalin, 4-(α-L-rhamnopyranosyloxy) benzyl glucosinolate) from leaf and seed have the highest binding affinity and very good interactions with Transcriptional Activator Protein (LasR), Klebsiella pneumoniae carbapenemase (KPC), and Malonyl-CoA-acyl carrier protein transacylase (FabD), respectively.
Collapse
|
105
|
Cultivation and Uses of Moringa oleifera as Non-Conventional Feed Stuff in Livestock Production: A Review. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010063. [PMID: 36676012 PMCID: PMC9865686 DOI: 10.3390/life13010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
M. oleifera is the best known and the most utilized of the 14 known species of the genus Moringa. Moringa is used as animal fodder and a medicinal plant as well as in the purification of water. Studies have shown that the day/night temperature of 30/20 °C is the most favorable for M. oleifera germination, plant growth and development. M. oleifera plants prefer sandy, well-drained loam soils due to their susceptibility to waterlogged soil conditions. It is recommended to use fertilizers to improve plant growth and the amount of forage production in areas with low rainfall and extreme temperatures. For forage production, an area of 20 × 20 cm is adapted to 16,000 plants per hectare. Chemical analyses confirmed the presence of different groups of pharmacologically active chemical compounds, as well as functional compounds of nutritional value such as carbohydrates, proteins, fats and vitamins, in M. oleifera. The reviewed literature particularly encourages the use of M. oleifera whole plants as nonconventional forage in ruminants' nutrition, as well as using M. oleifera leaves or leaves extract as a protein source for broilers and laying hens. M. oleifera in livestock feed with the ultimate goal of producing functional food (meat, eggs and milk) with appropriate contents of human health-promoting substances such as omega-3 and organic selenium remains to be elucidated. Furthermore, M. oleifera inclusion in livestock feed has the potential to increase the shelf-life of animal products during storage and processing. Further research is needed to determine the appropriate supplementation level of different plant parts or their extracts, as well as the appropriate processing methods or treatments of M. oleifera, in order to improve its palatability and consequently enhance the production performance of livestock without compromising animal health.
Collapse
|
106
|
Monteiro J, Scotti-Campos P, Pais I, Figueiredo AC, Viegas D, Reboredo F. Elemental composition, total fatty acids, soluble sugar content and essential oils of flowers and leaves of Moringa oleifera cultivated in Southern Portugal. Heliyon 2022; 8:e12647. [PMID: 36636210 PMCID: PMC9830163 DOI: 10.1016/j.heliyon.2022.e12647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/31/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
The evaluation of the elemental content of moringa leaves and flowers by Energy Dispersive X-Ray Fluorescence Spectrometry revealed that the leaves are a good source of some macro (Ca and K) and micronutrients (Mn) beyond the presence of important polyunsaturated fatty acids (PUFAs), essential in human nutrition. Total soluble sugars prevail in the flowers which may be linked to insect attraction and the pollination process. M. oleifera leaves, flowers and seeds essential oils (EOs) were isolated by hydrodistillation. Gas chromatography and gas chromatography-mass spectrometry analysis (GC-MS) showed EOs dominated by alkanes and fatty acids in diverse ratios in the analyzed plant parts. The nutritional characterization of M. oleifera cultivated in Portugal showed some important nutrients to human physiology. Further studies will allow determining if its consumption may overcome the nutritional imbalances of daily modern households, preventing the emergence of hypertension and diabetes.
Collapse
Affiliation(s)
- Josélia Monteiro
- Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Monte da Caparica, Portugal
| | - Paula Scotti-Campos
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., Quinta do Marquês, Av. República, 2784-505, Oeiras, Portugal
| | - Isabel Pais
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., Quinta do Marquês, Av. República, 2784-505, Oeiras, Portugal
| | - A. Cristina Figueiredo
- Centro de Estudos do Ambiente e do Mar Lisboa (CESAM Lisboa), Faculdade de Ciências da Universidade de Lisboa, Biotecnologia Vegetal (CBV), DBV, C2, Campo Grande, 1749-016, Lisboa, Portugal
| | - Dulce Viegas
- Quinta Chão Freixo, Estrada Nacional 245, painel EN 245, Cx 50, 7470-275, Sousel, Portugal
| | - Fernando Reboredo
- Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Monte da Caparica, Portugal,GeoBioTec, Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Monte da Caparica, Portugal,Corresponding author.
| |
Collapse
|
107
|
Antioxidant Stability of Moringa Leaves Extract Powders Obtained by Cocrystallization, Vacuum Drying, and Plating. J FOOD QUALITY 2022. [DOI: 10.1155/2022/3038403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cocrystallization, vacuum drying, and plating are three potential applications to preserve the antioxidant activity of moringa leaves. Moringa leaves extract was incorporated with sucrose at the same concentration (7 : 100, solid : solid) for all applications and stored for 30 days. This study aims to examine the effects of each application on the antioxidant stability of moringa leaves extract powders. Morphological properties by SEM showed that cocrystallized powders exhibited porous, agglomerated crystals, vacuum dried powders exhibited agglomerated crystals, and plated powders exhibited layered crystals. Based on XRD and hygroscopicity results, cocrystallization produced powders with the highest crystallinity, i.e., 69.11%, and the lowest hygroscopicity, i.e., 0.26 × 10−4 ± 0.02 × 10−4 g H2O/g solid/minute due to the slow water intake of the crystalline structure. Powders with the strongest initial antioxidant activity were obtained from cocrystallization, i.e., 3647.96 ± 20.29 ppm and followed by vacuum drying, i.e., 4378.51 ± 26.29 ppm. The least antioxidant activity was obtained from plating, i.e., 4733.46 ± 31.91 ppm. During 30 days of storage, powders obtained by cocrystallization maintained the most stable antioxidant activity (91.81–91.12%). The results indicated that the high temperature used in the process was likely to impact crystalline structure through the pore formation, which entrapped bioactive compounds and resulted in strong antioxidant activity. While, vacuum drying resulted in powders with a lower but increased antioxidant activity (84.06%–86.43%). In contrast to the other two applications, plating resulted in a decreased antioxidant activity (83.77–82.25%). This study suggests that application of cocrystallization produced moringa leaves extract powders with the strongest and most stable antioxidant activity during storage. Preserving the antioxidant stability of plant extract has been one of the major drives in the development of food encapsulation technology. Cocrystallization and vacuum drying are two relatively novel, less common techniques offering a simpler and more cost-effective method, but their effect on the antioxidant stability of moringa leaves extract has not yet been studied. This study discloses the effects of cocrystallization, vacuum drying, and plating (alternative extract incorporation method) on the antioxidant stability of moringa leaves extract powders. The results indicated that the three methods produced powders with high crystallinity and stable antioxidant stability during storage. Among the three methods, cocrystallization was the method that resulted in powders with the strongest and most stable antioxidant activity.
Collapse
|
108
|
Potent Bioactivity of Endophytic Fungi Isolated from Moringa oleifera Leaves. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2461021. [PMID: 36567913 PMCID: PMC9779999 DOI: 10.1155/2022/2461021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 10/14/2022] [Accepted: 10/31/2022] [Indexed: 12/23/2022]
Abstract
Plant species are known to harbor large number of endophytes, which stays in plant tissues as symbionts. These endophytes secrete large array of bioactive compounds that have potency against certain diseases with no side effects. We have collected leaf samples of the Moringa oleifera plant from the Pakistan Forest Institute, Khyber Pakhtunkhwa, Pakistan for the isolation of beneficial endophytes. The strains isolated from the leaves of M. oleifera were coded with MOL and tested for antimicrobial, antifungal, germicidal, phytotoxic, insecticidal, cytotoxic, and anti-inflammatory activities. The isolates, MOL1, MOL16, MOL19, and MOL21, possessed antibacterial activity against Staphylococcus aureus, whereas MOL7 inhibited 55% of the growth of Escherichia coli. MOL3 inhibited the growth of E. coli, S. aureus, and Pseudomonas aeruginosa. The strains, MOL1 and MOL7, showed antifungal activity against Candida albicans and Saccharomyces cerevisiae, while the strains, MOL11 and MOL17, showed activity against Verticillium chlamydosporium. The isolates, MOL3, MOL7, MOL9, MOL15, MOL17, MOL18, and MOL19, inhibited the growth of Lemna minor (duckweed) at 100 μg/ml. MOL2 exhibited strong activity in the brine shrimp assay, while MOL1, MOL2, MOL5, MOL6, MOL12, MOL17, MOL19, and MOL20 showed insecticidal, and MOL3 demonstrated larvicidal and antileishmanial activity. The isolated potent endophytes were identified as Aspergillus, Penicillium, Fusarium, Tricoderma, Rhizoctonia, Mucor, Alternaria, Pestalotiopsis, Acremonium, and Cladosporium through morphological and microscopic characteristics of the colonies.
Collapse
|
109
|
Mahmood M, Samli HE, Sener-Aydemir A, Sharma S, Zebeli Q, Khiaosa-ard R. Moringa oleifera and Propolis in Cattle Nutrition: Characterization of Metabolic Activities in the Rumen In Vitro. Metabolites 2022; 12:1237. [PMID: 36557275 PMCID: PMC9780799 DOI: 10.3390/metabo12121237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Moringa oleifera by-products such as seed cake and leaves are protein-rich ingredients, while raw propolis has the potential to influence ruminal protein metabolism. These substances are also known to be sources of functional compounds. With these properties, they could modulate ruminal fermentation activities. Using the rumen simulation technique, we investigated ruminal fermentation and the antioxidant properties of four dietary treatments. These included a control diet (CON) without supplementation; the CON diet top-dressed on a dry matter (DM) basis, either with moringa seed cake (MSC, containing 49% crude protein (CP)), moringa leaf powder (ML, containing 28% CP), or raw propolis (PRO, 3% CP). MSC, ML, and PRO accounted for 3.8, 7.4, and 0.1% of the total diet DM, respectively. Both ML and MSC resulted in 14 and 27% more ammonia concentration, respectively than CON and PRO (p < 0.05). MSC increased the propionate percentage at the expense of acetate (p < 0.05). Both ML and MSC decreased methane percentages by 7 and 10%, respectively, compared to CON (p < 0.05). The antioxidant capacity of the moringa seed cake, moringa leaf powder, and raw propolis were 1.14, 0.56, and 8.56 mg Trolox/g DM, respectively. However, such differences were not evident in the fermentation fluid. In conclusion, the supplementation of moringa seed cake desirably modulates rumen microbial activities related to protein and carbohydrate metabolism.
Collapse
Affiliation(s)
- Mubarik Mahmood
- Animal Nutrition Section, Department of Animal Sciences, University of Veterinary and Animal Sciences, Lahore, Sub Campus Jhang, 12 km Chiniot Road, Jhang 35200, Pakistan
| | - Hasan Ersin Samli
- Department of Animal Science, Faculty of Agriculture, Tekirdag Namik Kemal University, Degirmenalti Campus, Tekirdag 59030, Turkey
| | - Arife Sener-Aydemir
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Suchitra Sharma
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Qendrim Zebeli
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Ratchaneewan Khiaosa-ard
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| |
Collapse
|
110
|
Agrawal J, Kumar KA, Indrani D, Radha C. Effect of Moringa oleifera seed flour on the rheological, physico-sensory, protein digestibility and fatty acid profile of cookies. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:4731-4739. [PMID: 36276549 PMCID: PMC9579257 DOI: 10.1007/s13197-022-05555-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/04/2022] [Accepted: 07/05/2022] [Indexed: 06/16/2023]
Abstract
In the present study, debittered Moringa Oleifera seed flour (DDMF) rich in protein, vitamins, minerals and balanced amino acid and fatty acid profile was used to develop functional cookies. DDMF was incorporated at 25, 50, 75 and 100% levels and studied their effect on flour rheological, physicochemical, micro-structural, sensory and nutritional properties of cookies. The results revealed that the addition of an increasing amount of DDMF from 0 to 100% increased water absorption (59.5-77%) by farinograph study; cookie dough hardness (89.2-284.7 N); decreased pasting temperature (60.2-30.1 °C) and peak viscosity (696-9 BU) by amylograph study. SEM studies of cookies indicated that, in control cookies, starch granules are completely gelatinized and enmeshed in the gluten protein matrix, whereas, in 50% DDMF incorporated cookies, partially gelatinized starch granules are seen embedded in a weak protein matrix. Sensory evaluation showed that incorporating DDMF, up to 50% of cookies had clean mouthfeel without any residue formation and were highly acceptable; however, beyond that limit, they became brittle. The addition of 50% DDMF increased cookies' in-vitro protein digestibility, mineral contents, and fatty acids content. Thus, the nutritional quality of cookies concerning quantity and quality of protein and fat could be enhanced by incorporating DDMF.
Collapse
Affiliation(s)
| | - K. Ashwath Kumar
- Flour Milling, Baking and Confectionery Technology Department, CSIR-Central Food Technological Research Institute, Mysore, 570020 India
| | - D. Indrani
- Flour Milling, Baking and Confectionery Technology Department, CSIR-Central Food Technological Research Institute, Mysore, 570020 India
| | - C. Radha
- Protein Chemistry and Technology, Mysore, India
| |
Collapse
|
111
|
Faheem M, Khaliq S, Abbas RZ, Mansour AT. Moringa oleifera alleviated oxidative stress, physiological and molecular disruption induced by acute thermal stress in grass carp, Ctenopharyngodon idella. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1463-1473. [PMID: 36481837 DOI: 10.1007/s10695-022-01147-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
The present study was designed to investigate the protective effect of dietary Moringa oleifera leaf meal (MLM) supplementation against high temperature-induced stress in grass carp (Ctenopharyngodon idella). A total of 180 apparent healthy juvenile grass carp (15.48 g ± 0.054) were divided into three groups in triplicate (20 fish in each replicate). Fish were fed with diets containing 0, 1, and 5% MLM for 60 days and then subjected to a high-temperature challenge for 48 h (32-33 °C). The results revealed that feeding fish with 1 and 5% MLM resulted in a significant increase in weight gain and specific growth rate compared to the control. In addition, feed conversion ratio was significantly reduced in groups fed with MLM. No significant difference was reported in the serum cortisol level among different experimental groups before heat stress while serum glucose level significantly decreased in fish fed with 5% MLM. Serum alanine transaminase, aspartate transaminase, and alkaline phosphatase significantly decreased in fish fed with 1 and 5% MLM before and after heat stress. Hepatic lipid peroxidation significantly decreased in fish fed with MLM for 60 days. A non-significant increase in hepatic reduced glutathione level was reported in fish fed with 1 and 5% MLM before heat stress. Catalase and superoxide dismutase activities increased significantly in the liver of fish fed with 5% MLM. No significant change was observed in the expression profile of heat shock protein (hsp) 70 and 90 before heat stress. Meanwhile, after heat stress, up to a fivefold increase was recorded in mRNA level of hsp 70 and fourfold increase in the expression level of hsp 90 in the liver of the control fish which were not fed with MLM-supplemented diets. Fish fed with 1 and 5% MLM showed a significant decrease in the expression of hsp 70 and a non-significant decrease in the expression of hsp 90. Results of the present study suggest that supplementing the diet of grass carp with 5% MLM could improve growth and physiological performance and provide resistance against high temperature-induced stress.
Collapse
Affiliation(s)
- Mehwish Faheem
- Department of Zoology, Government College University, Lahore, Pakistan.
| | - Saba Khaliq
- Department of Physiology and Cell Biology, University of Health Sciences, Lahore, Pakistan
| | - Rao Zahid Abbas
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Abdallah Tageldein Mansour
- Animal and Fish Production Department, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa, 31982, Kingdom of Saudi Arabia
- Department of Fish and Animal Production, Faculty of Agriculture (Saba Basha), Alexandria University, P.O. Box 21531, Alexandria, Egypt
| |
Collapse
|
112
|
Impact of Moringa oleífera leaves extract in the stabilization of margarine under accelerated storage. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01714-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
113
|
Pop OL, Kerezsi AD, Ciont (Nagy) C. A Comprehensive Review of Moringa oleifera Bioactive Compounds-Cytotoxicity Evaluation and Their Encapsulation. Foods 2022; 11:foods11233787. [PMID: 36496595 PMCID: PMC9737119 DOI: 10.3390/foods11233787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Moringa oleifera Lam. has gained a lot of attention due to its potential use as a functional food not only for human health but also for animal health. Its bioactive molecules include carbohydrates, phenolic compounds, carotenoids, fatty acids, essential amino acids, and functional peptides. Despite significant efforts to isolate and characterize bioactive metabolites with health functions, few effective metabolites are accessible. The current review aims to describe the main processes for extracting and encapsulating bioactive compounds from Moringa oleifera for potential impact on food science and public health. Researchers have shown that different extraction techniques significantly impact the Moringa polysaccharides' molecular structure and biological activity. Encapsulation has been proposed to reduce oxidative stability and entrap active agents within a carrier material to deliver bioactive molecules into foods. Currently, polysaccharides and proteins, followed by lipids, are used for material encapsulation. Recent techniques include spray drying, cross-linking gelation, freeze-drying, nanoencapsulation, electrospinning, and electrospraying. Moreover, these encapsulations can overlap concerns regarding the Moringa oleifera compounds' cytotoxicity. Future studies should prioritize the effect of new encapsulation materials on Moringa extract and develop new techniques that consider both encapsulation cost and efficiency.
Collapse
Affiliation(s)
- Oana Lelia Pop
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Molecular Nutrition and Proteomics Lab, CDS3, Life Science Institute, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Correspondence: (O.L.P.); (C.C.)
| | - Andreea Diana Kerezsi
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Gembloux Agro-Bio Tech, Department of Food Science and Formulation, University of Liège, B-5030 Gembloux, Belgium
| | - Călina Ciont (Nagy)
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Molecular Nutrition and Proteomics Lab, CDS3, Life Science Institute, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Correspondence: (O.L.P.); (C.C.)
| |
Collapse
|
114
|
Bulawa B, Sogoni A, Jimoh MO, Laubscher CP. Potassium Application Enhanced Plant Growth, Mineral Composition, Proximate and Phytochemical Content in Trachyandra divaricata Kunth (Sandkool). PLANTS (BASEL, SWITZERLAND) 2022; 11:3183. [PMID: 36432914 PMCID: PMC9693438 DOI: 10.3390/plants11223183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Wild leafy vegetables are commonly included in the diet of people in rural homesteads. Among various wild edible vegetables in South Africa, Trachyandra divaricata (Sandkool) is one of the most abundant but underutilized due to the dearth of literature on its cultivation and nutritional value. In the present study, the effect of potassium application and pruning on growth dynamics, mineral composition, and proximate and phytochemical content in T. divaricata were evaluated. Treatments consisted of three potassium concentrations (0.0072, 0.0144, and 0.0216 M) supplemented in the form of potassium sulphate (K2SO4) with four pruning levels (unpruned, 5, 10, and 15 cm) applied in each treatment. The potassium doses were added to the nutrient solution, while the control treatment was sustained and irrigated with nutrient solution only. The results revealed a significant increase in flower bud yield, height, total dry and wet weight of shoots and roots, as well as ash and neutral detergent fibre in plants irrigated with 0.0072 M of K2SO4 without pruning. Conversely, chlorophyll content and Ca were comparable among treatments, while the highest yield of Na, P, N, and Zn was recorded in treatment 100 mL of K2SO4 with 10 cm pruning. Likewise, the highest antioxidant value (Polyphenols, Flavonol and DPPH) was obtained from plants irrigated with 0.0072 M of K2SO4 with 10 cm pruning. Based on these findings, T. divaricata is a promising leafy vegetable as a minimum dose (0.0072 M) of K with moderate pruning optimised its productivity in terms of growth, biomass parameters, nutritional content, and antioxidant potential. Due to its rich nutritional value, the plant should be domesticated and studied further for its potential nutraceutical benefits.
Collapse
|
115
|
Effect of Thermal Processing on Physicochemical and Antioxidant Properties of Raw and Cooked Moringa oleifera Lam. Pods. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2022; 2022:1502857. [DOI: 10.1155/2022/1502857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/02/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022]
Abstract
Moringa is regarded as a miracle tree because all components of the plant, including the roots, leaves, pod, and flowers, have significant nutritional and therapeutic value. Moringa oleifera Lam. pods have excellent antioxidant characteristics and are a good source of protein, carbohydrate, fat, vitamins, beta-carotene, amino acids, and phenolic compounds. The pods of Moringa oleifera Lam. were collected from the local market of Sunamganj, and their nutritional value was assessed in raw condition and after thermal processing. The goal of this research was to observe how the thermal temperature affected the antioxidant and physicochemical qualities of thermally-processed Moringa oleifera Lam. pods. Thermal treatment diminished the amount of crude protein, fat, carbohydrate, ash, ascorbic acid, and beta-carotene in the pods, as well as DPPH, total phenol content, and total flavonoid content. The moisture percentage of raw and thermally-processed Moringa oleifera Lam. pods was determined to be 83.12%, 86.03% with a total ash level of 2.01%, and 1.8%, respectively. The crude protein, fat content, and carbohydrate were 3.0%, 0.1%, and 3.2%, respectively, in thermally-processed pods. The values for total phenol content, total flavonoid content, vitamin C, DPPH free radical scavenging activity, and β-carotene were 28.13 mg, 2.98 mg, 38.23%, 3.98 mg, and 0.12 mg, respectively, in raw samples whereas 24.56 mg, 2.72 mg, 3.50 mg, 34.32%, and 0.0904 mg, respectively, in thermally-processed samples. According to the findings, Moringa oleifera Lam. pods have high nutritional content and thus can be used as an excellent source of diet, and even after thermal processing, a significant nutritive value remains in the Moringa oleifera Lam. pods.
Collapse
|
116
|
Singh J, Gautam DNS, Sourav S, Sharma R. Role of
Moringa oleifera
Lam. in cancer: Phytochemistry and pharmacological insights. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Jyoti Singh
- Department of Rasa Shastra & Bhaishajya Kalpana Faculty of Ayurveda, Institute of Medical Sciences Banaras Hindu University Varanasi India
| | - Dev Nath Singh Gautam
- Department of Rasa Shastra & Bhaishajya Kalpana Faculty of Ayurveda, Institute of Medical Sciences Banaras Hindu University Varanasi India
| | - Simant Sourav
- Department of Sharira Kriya, Government Ayurvedic College and Hospital Patna India
| | - Rohit Sharma
- Department of Rasa Shastra & Bhaishajya Kalpana Faculty of Ayurveda, Institute of Medical Sciences Banaras Hindu University Varanasi India
| |
Collapse
|
117
|
Choudhary N, Tewari D, Nabavi SF, Kashani HRK, Lorigooini Z, Filosa R, Khan FB, Masoudian N, Nabavi SM. Plant based food bioactives: A boon or bane for neurological disorders. Crit Rev Food Sci Nutr 2022; 64:3279-3325. [PMID: 36369694 DOI: 10.1080/10408398.2022.2131729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Neurological disorders are the foremost occurring diseases across the globe resulting in progressive dysfunction, loss of neuronal structure ultimately cell death. Therefore, attention has been drawn toward the natural resources for the search of neuroprotective agents. Plant-based food bioactives have emerged as potential neuroprotective agents for the treatment of neurodegenerative disorders. This comprehensive review primarily focuses on various plant food bioactive, mechanisms, therapeutic targets, in vitro and in vivo studies in the treatment of neurological disorders to explore whether they are boon or bane for neurological disorders. In addition, the clinical perspective of plant food bioactives in neurological disorders are also highlighted. Scientific evidences point toward the enormous therapeutic efficacy of plant food bioactives in the prevention or treatment of neurological disorders. Nevertheless, identification of food bioactive components accountable for the neuroprotective effects, mechanism, clinical trials, and consolidation of information flow are warranted. Plant food bioactives primarily act by mediating through various pathways including oxidative stress, neuroinflammation, apoptosis, excitotoxicity, specific proteins, mitochondrial dysfunction, and reversing neurodegeneration and can be used for the prevention and therapy of neurodegenerative disorders. In conclusion, the plant based food bioactives are boon for neurological disorders.
Collapse
Affiliation(s)
- Neeraj Choudhary
- Department of Pharmacognosy, Adesh Institute of Pharmacy and Biomedical Sciences, Adesh University, Bathinda, Punjab, India
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Seyed Fazel Nabavi
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
- Nutringredientes Research Center, Federal Institute of Education, Science and Technology (IFCE), Baturite, Ceara, Brazil
| | - Hamid Reza Khayat Kashani
- Department of Neurosurgery, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Rosanna Filosa
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
- Department of Science and Technology, University of Sannio, 82100, Benevento, Italy
| | - Farheen Badrealam Khan
- Department of Biology, College of Science, The United Arab Emirates University, Al Ain, 15551 United Arab Emirates
| | - Nooshin Masoudian
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
| | - Seyed Mohammad Nabavi
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
- Nutringredientes Research Center, Federal Institute of Education, Science and Technology (IFCE), Baturite, Ceara, Brazil
| |
Collapse
|
118
|
Mihai RA, Acurio Criollo OS, Quishpe Nasimba JP, Melo Heras EJ, Galván Acaro DK, Landazuri Abarca PA, Florescu LI, Catana RD. Influence of Soil Nutrient Toxicity and Deficiency from Three Ecuadorian Climatic Regions on the Variation of Biological, Metabolic, and Nutritional Properties of Moringa oleifera Lam. TOXICS 2022; 10:661. [PMID: 36355952 PMCID: PMC9696296 DOI: 10.3390/toxics10110661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Moringa oleifera Lam. contains numerous essential constituents found in all plant parts (leaves, pods, and seeds). From all its edible parts, the leaf represents an effective remedy with high potential for medicinal applications. Ecuador is part of the new promising cultivation areas for Moringa, and therefore our study is emphasized to determine the influence of soil nutrition, toxicity (excess), and deficiency, from three main areas of this country, correlated with its climatic characteristics, on the mineral components, bioactive compounds' synthesis, and antioxidant capacity of Moringa. Different analyses were performed in soil and especially leaf samples for phytochemical content, antioxidant activity, calcium, protein, and vitamin C determination to identify the relationship between soil nutrients, abiotic conditions, and the therapeutic potential of this species cultivated in Ecuador. The obtained values using methods such as DPPH, FRAP, and ABTS showed a high antioxidant capacity of the leaves from the Coastal Ecuadorian region, related with total phenolic compounds' content (through the Folin-Ciocalteu method) and flavonoids in samples, with results obtained under the positive influence of high soil nutrients such as Ca, Mg, Mn, and Fe. We can conclude that M. oleifera from the coastal area of Ecuador presents the right environmental and soil conditions to positively influence its mineral and phytochemical content, making it suitable for incorporation into foods and medicines to solve the nutritional and medical problems in Ecuador and worldwide.
Collapse
Affiliation(s)
- Raluca A. Mihai
- CICTE, Department of Life Science and Agriculture, Universidad de Las Fuerzas Armadas—ESPE, Av. General Rumiñahui s/n y, Sangolqui 171103, Ecuador
| | - Osmar S. Acurio Criollo
- Department of Life Science and Agriculture, Universidad de Las Fuerzas Armadas—ESPE, Av. General Rumiñahui s/n y, Sangolqui 171103, Ecuador
| | - Jean P. Quishpe Nasimba
- Department of Life Science and Agriculture, Universidad de Las Fuerzas Armadas—ESPE, Av. General Rumiñahui s/n y, Sangolqui 171103, Ecuador
| | - Erly J. Melo Heras
- Department of Life Science and Agriculture, Universidad de Las Fuerzas Armadas—ESPE, Av. General Rumiñahui s/n y, Sangolqui 171103, Ecuador
| | - Dayana K. Galván Acaro
- IASA 1, Department of Life Science and Agriculture, Universidad de las Fuerzas Armadas—ESPE, Av. General Rumiñahui s/n y Ambato, Sangolquí 171103, Ecuador
| | - Pablo A. Landazuri Abarca
- IASA 1, Department of Life Science and Agriculture, Universidad de las Fuerzas Armadas—ESPE, Av. General Rumiñahui s/n y Ambato, Sangolquí 171103, Ecuador
| | - Larisa I. Florescu
- Institute of Biology Bucharest of Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest, Romania
| | - Rodica D. Catana
- Institute of Biology Bucharest of Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest, Romania
| |
Collapse
|
119
|
Mezhoudi M, Salem A, Abdelhedi O, Fakhfakh N, Mabrouk M, Khorchani T, Debeaufort F, Jridi M, Zouari N. Development of active edible coatings based on fish gelatin enriched with Moringa oleifera extract: Application in fish ( Mustelus mustelus) fillet preservation. Food Sci Nutr 2022; 10:3979-3992. [PMID: 36348780 PMCID: PMC9632210 DOI: 10.1002/fsn3.2993] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 06/16/2022] [Accepted: 06/25/2022] [Indexed: 11/25/2022] Open
Abstract
An edible coating was developed using gelatin extracted from the skin of gray triggerfish (Balistes capriscus) and applied to the fillet of the smooth-hound shark (Mustelus mustelus). Moringa oleifera leaf extract was added to gelatin coating solution to improve its preservative properties. The phenolic profiles and antioxidant and antibacterial activities of M. oleifera extracts were determined. Phenolic acids constituted the largest group representing more than 77% of the total compounds identified in the ethanol/water (MOE/W) extract, among which the quinic acid was found to be the major one (31.48 mg/g extract). The MOE/W extract presented the highest DPPH• scavenging activity (IC50 = 0.53 ± 0.02 mg/ml) and reducing (Fe3+) power (EC0.5 = 0.57 ± 0.02 mg/ml), as well as interesting inhibition zones (20-35 mm) for the most tested strains. Coating by 3% of gelatin solution significantly reduced most deterioration indices during chilled storage, such as malondialdehyde (MDA), total volatile basic nitrogen (TVB-N), weight loss, pH, and mesophilic, psychrophilic, lactic, and H2S-producing bacterial counts. Interestingly, coating with gelatin solution containing MOE/W extract at 20 μg/ml was more effective than gelatin applied alone. Compared with the uncoated sample, gelatin-MOE/W coating reduced the weight loss and MDA content by 26% and 70% after 6 days of storage, respectively. Texture analysis showed that the strength of uncoated fillet increased by 46%, while the strength of fillet coated with gelatin-MOE/W only increased by 12% after 6 days of storage. Fish fillet coated with gelatin-MOE/W had the highest sensory scores in terms of odor, color, and overall acceptability throughout the study period.
Collapse
Affiliation(s)
- Maram Mezhoudi
- University of Sfax, National Engineering School of SfaxResearch Laboratory of Enzyme Engineering and MicrobiologySfaxTunisia
- Higher Institute of Applied Biology of MedenineUniversity of GabesMedenineTunisia
| | - Ali Salem
- University of Sfax, National Engineering School of SfaxResearch Laboratory of Enzyme Engineering and MicrobiologySfaxTunisia
- Higher Institute of Applied Biology of MedenineUniversity of GabesMedenineTunisia
| | - Ola Abdelhedi
- University of Sfax, National Engineering School of SfaxResearch Laboratory of Enzyme Engineering and MicrobiologySfaxTunisia
| | - Nahed Fakhfakh
- University of Sfax, National Engineering School of SfaxResearch Laboratory of Enzyme Engineering and MicrobiologySfaxTunisia
- Higher Institute of Applied Biology of MedenineUniversity of GabesMedenineTunisia
| | - Mahmoud Mabrouk
- Arid Regions Institute of MedenineCentral LaboratoryMedenineTunisia
| | - Touhami Khorchani
- Arid Regions Institute of MedenineResearch Laboratory of Livestock and Wild LifeMedenineTunisia
| | - Frederic Debeaufort
- Univ. Bourgogne Franche‐Comté/AgrosupDijon, UMR PAM A02.102Physical‐Chemistry of Food and Wine LabDijonFrance
- Institut Universitaire de Technologie de Dijon, BioEngineering DepartmentDijon CedexFrance
| | - Mourad Jridi
- University of Sfax, National Engineering School of SfaxResearch Laboratory of Enzyme Engineering and MicrobiologySfaxTunisia
- University of JendoubaHigher Institute of Biotechnology of BejaBejaTunisia
| | - Nacim Zouari
- University of Sfax, National Engineering School of SfaxResearch Laboratory of Enzyme Engineering and MicrobiologySfaxTunisia
- Higher Institute of Applied Biology of MedenineUniversity of GabesMedenineTunisia
| |
Collapse
|
120
|
Vu TN, Le PHP, Pham DNP, Hoang TH, Nadda AK, Le TS, Pham TD. Highly adsorptive protein inorganic nanohybrid of Moringa seeds protein and rice husk nanosilica for effective adsorption of pharmaceutical contaminants. CHEMOSPHERE 2022; 307:135856. [PMID: 35944682 DOI: 10.1016/j.chemosphere.2022.135856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/02/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
The present study aims to investigate adsorption characteristics and mechanisms of Moringa (MO) seeds protein on nanosilica rice husk and their applications in removal of pharmaceutical residues including the fluoroquinolone antibiotic levofloxacin (LFX) and the nonsteroidal anti-inflammatory drug diclofenac (DCF) in aquatic environment. Molecular weight of MO protein was determined by gel-permeation chromatography (GPC) method while its amino acids were quantified by high performance liquid chromatography (HPLC). The number-(Mn) and weight-average molecular weights (Mw) of MO protein were 1.53 × 104 and 1.61 × 104 g/mol, respectively. Different effective conditions on adsorption protein on nanosilica including contact time, pH, adsorbent dosage, and ionic strength were systematically optimized and found to be 180 min, 10, 10 mg/mL and 1 mM KCl, respectively. The surface charge change by zeta potential, surface modification by Fourier-transform infrared spectroscopy (FT-IR) and adsorption isotherms demonstrated that protein adsorption on nanosilica was governed by both electrostatic and non-electrostatic interactions. Application of protein functionalized nanosilica (ProFNS) in LFX and DCF removal were also thoroughly studied. The selected conditions for LFX and DCF removal using ProFNS were 1 mM KCl for both LFX and DCF; pH 8 and pH 6; contact time 90 and 120 min, and adsorption dosage 10 and 5 mg/ml for LFX and DCF, respectively. Adsorption isotherms of protein on nanosilica as well as LFX and DCF onto ProFNS at different ionic strengths were reasonably fitted by the two-step model while a pseudo-second-order model could fit adsorption kinetic well. The removal of LFX and DCF using ProFNS significantly increased from 51.51% to 87.35%, and 7.97%-50.02%, respectively. High adsorption capacities of 75.75 mg/g for LFX and 59.52 mg/g for DCF, indicate that ProFNS is a great performance for pharmaceutical residues removal in water environment.
Collapse
Affiliation(s)
- Thi Ngan Vu
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hoan Kiem, Hanoi, 100000, Viet Nam
| | - Pham Hai Phong Le
- HUS High School for Gifted Students, University of Science, Vietnam National University, Hanoi, 182 Luong the Vinh, Thanh Xuan, Hanoi, 100000, Viet Nam
| | - Duc Nam Phuong Pham
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hoan Kiem, Hanoi, 100000, Viet Nam
| | - Thu Ha Hoang
- University of Education, Vietnam National University, Hanoi, 144 Xuan Thuy, Cau Giay, Hanoi, 100000, Viet Nam.
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, 173 234, India
| | - Thanh Son Le
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hoan Kiem, Hanoi, 100000, Viet Nam
| | - Tien Duc Pham
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hoan Kiem, Hanoi, 100000, Viet Nam.
| |
Collapse
|
121
|
Siahaan SCPT, Santoso B, Widjiati. Effectiveness of Moringa oleifera Leaves on TNF-α Expression, Insulin Levels, Glucose Levels and Follicle Count in Rattus norvegicus PCOS Model. Diabetes Metab Syndr Obes 2022; 15:3255-3270. [PMID: 36304481 PMCID: PMC9595062 DOI: 10.2147/dmso.s385492] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/16/2022] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a syndrome characterized by ovulation disorders accompanied by hyperandrogens. Women with PCOS are prone to develop insulin resistance which has metabolic characteristics similar to type 2 diabetes and leads to disturbance of follicular formation. PCOS is also known to increase the concentration of proinflammatory cytokines, namely TNF-α. Moringa oleifera leaves have been shown to have compounds that can reduce insulin levels and glucose levels in diabetes mellitus and should be able to reduce TNF-α and follicle count. PURPOSE This study aims to prove the effectiveness of Moringa oleifera leaf in reducing insulin, glucose levels, TNF-α and follicle count in PCOS. METHODS The three-month-old white rats Wistar (Rattus norvegicus) 150-170 grams were divided into four groups (n = 10), namely normal rats, PCOS model rats, PCOS model rats given metformin, and PCOS rats given 500mg of Moringa oleifera. The method of this study is taking PCOS model rats by injecting the 100mg/kg BW hormone testosterone propionate for 21 days. After 21 days of therapy, we analyzed insulin, glucose levels, TNF-α and follicle count. RESULTS The PCOS control group showed an increase in insulin level, glucose levels, TNF-α expression, and a decrease in the follicle count compared to the normal control group. The insulin level, glucose level, TNF-α and follicle count in the Moringa oleifera 500 mg/kg BW treatment group were significantly lower than in the PCOS control group. CONCLUSION Moringa oleifera leaves have the potential in reducing insulin levels, blood glucose levels, TNF-α and follicle count in PCOS patients.
Collapse
Affiliation(s)
| | - Budi Santoso
- Department of Obstetrics and Gynecology, Faculty of Medicine, Dr. Soetomo Teaching Hospital, Universitas Airlangga, Surabaya, Indonesia
| | - Widjiati
- Department of Embryology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
122
|
Matabura VV, Rweyemamu LMP. Formulation of plant-based food and characterisation of the nutritional composition: A case study on soy-moringa beverage. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:3794-3805. [PMID: 36193372 PMCID: PMC9525469 DOI: 10.1007/s13197-022-05397-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 05/14/2023]
Abstract
Formulation of plant-based food ingredients rich in nutrients is becoming a viable intervention to enhance food security. In this study, a novel soy-moringa beverage was produced using two processing methods. Method I involved blending soymilk and moringa juice, whereas method II dealt with the co-grinding of soymilk together with blanched moringa leaves. The proximate and mineral compositions, pH, total dissolved solids, and viscosity of the soy-moringa beverages were carefully analysed using standard methods. The results showed different nutritional compositions in the soy-moringa beverages formulated. Moreover, method II was found to be the most effective technique to process the soy-moringa beverage. Hence, the proximate compositions were observed to increase significantly (p < 0.05) with an increase in moringa leaves. The amounts of protein, fat, ash, fibre and carbohydrates increased by 49.77%, 8.59%, 84.85%, 85.71%, and 114.56%, respectively with the increase of moringa leaves. The concentrations of β-carotene, iron, calcium, copper, magnesium, and potassium presented an increasing trend by 147%, 40%, 284%, 30%, 12% and 190%, respectively as moringa leaves increase. The quantitative data on nutritional values and physicochemical properties suggested that the soy-moringa beverages produced with 30 and 40% moringa leaves under method II could be suitable to address undernutrition for vulnerable people.
Collapse
Affiliation(s)
- Victor V. Matabura
- Department of Food Science and Technology, University of Dar es Salaam, P. O. Box, 35134, Dar es Salaam, Tanzania
| | - Leonard M. P. Rweyemamu
- Department of Food Science and Technology, University of Dar es Salaam, P. O. Box, 35134, Dar es Salaam, Tanzania
| |
Collapse
|
123
|
Nakata H, Nakayama SM, Kataba A, Toyomaki H, Doya R, Beyene Yohannes Y, Ikenaka Y, Ishizuka M. Does Moringa Oleifera affect element accumulation patterns and lead toxicity in Sprague–Dawley rats? J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
124
|
Arif MA, Inam-ur-Raheem M, Khalid W, Lima CMG, Jha RP, Khalid MZ, Santana RF, Sharma R, Alhasaniah AH, Emran TB. Effect of Antioxidant-Rich Moringa Leaves on Quality and Functional Properties of Strawberry Juice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:8563982. [PMID: 36212970 PMCID: PMC9546718 DOI: 10.1155/2022/8563982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/26/2022]
Abstract
Moringa oleifera and strawberry are cultivated extensively worldwide and are divinely blessed with an enormous amount of nutritional and medicinal constituents, such as vitamin C, vitamin E, iron, potassium, and phenolic antioxidants that play a pivotal role in treating, confining, and preventing diabetes and many kinds of cancer. The focus of the study is to develop different samples of highly acceptable ready to serve (RTS) Moringa strawberry juice blend by underutilizing Moringa and strawberry juice in different proportions. Moringa oleifera's bitter taste and green color steeply limits its acceptability and counter this drawback utilized with strawberry juice. The physicochemical analysis of blended juice was performed to investigate the suitability and keeping quality of the juice mixture. The collected data signify that pH titratable acidity (TA) and total soluble solids (TSS) the slight modification after the inclusion of Moringa juice extract and throughout the storage. The Moringa treatment positively improved the total phenolic content (TPC), antioxidant, and vitamin C from 12 to 49.17 mg GAE/100g, 61.41 to 87.69%, and 64.03 to 86.65 mg/100 mL, respectively, but there was a slight decline in antioxidant quantity while stored under refrigerated conditions for one month. An assimilative trend was noticed in TPC and vitamin C, which collapsed from 49.17-36.32 mg GAE to 86.65-79.19 mg, respectively. In accordance with sensory analysis T 2 (90% strawberry juice and 10% Moringa extract), the juice blend was rated best in context to flavor, color, and taste. This juice blend proved to be greatly effective especially for children suffering from malnutrition as well as women to counter with its appreciable number of nutritional constituents.
Collapse
Affiliation(s)
- Muhammad Adnan Arif
- National Institute of Food Science and Technology, University of Agricultural Faisalabad, Faisalabad, Pakistan
| | - Muhammad Inam-ur-Raheem
- National Institute of Food Science and Technology, University of Agricultural Faisalabad, Faisalabad, Pakistan
| | - Waseem Khalid
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | | | - Ravi Prakash Jha
- Department of Community Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | | | | | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Abdulaziz Hassan Alhasaniah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| |
Collapse
|
125
|
Gambo A, Gqaleni N. Does <em>Moringa oleifera</em> Lam. leaves supplementation have an impact on the weight and bone mass index of people living with HIV that are on antiretroviral therapy? A double-blind randomized control trial. J Public Health Afr 2022; 13:2126. [PMID: 36277954 PMCID: PMC9585613 DOI: 10.4081/jphia.2022.2126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/20/2022] [Indexed: 11/23/2022] Open
Abstract
Background HIV-related weight loss and wasting were the most common malnutrition and AIDS-defining conditions before HAART. HAART has led to more obese PLHIV. HIV-positive patients should eat micro- and macronutrient-rich foods to maintain optimal nutrition. This study examined whether Moringa oleifera Lam. leaf supplementation affects PLHIV receiving ART. Methods A randomized, double-blind, controlled trial was conducted. Two hundred patients with informed consent were randomly assigned to either the Moringa oleifera Lam. (MOG) group or the control group (COG). From baseline to six months of Moringa oleifera Lam. leaf supplementation, anthropometric parameters [weight; BMI] of the participants were assessed. Results One hundred seventy-seven patients completed the 6-month follow-up (89 MOG vs. 88 COG). During the study period, the MOG and COG had similar weights and BMIs (p>0.05). At baseline and six months, most participants in both study groups had a healthy BMI (18.5-24.9). Many participants were overweight; few were underweight ((BMI <18.5). MOG and COG BMI differences at baseline and six months were not significant (p> 0.05). All experiments were 95CI. Conclusions Moringa oleifera Lam. leaf powder had no effect on HIV-positive adults receiving antiretroviral therapy, in accordance with this study.
Collapse
|
126
|
Ndlovu SS, Ghazi T, Chuturgoon AA. The Potential of Moringa oleifera to Ameliorate HAART-Induced Pathophysiological Complications. Cells 2022; 11:2981. [PMID: 36230942 PMCID: PMC9563018 DOI: 10.3390/cells11192981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 12/06/2022] Open
Abstract
Highly active antiretroviral therapy (HAART) comprises a combination of two or three antiretroviral (ARV) drugs that are administered together in a single tablet. These drugs target different steps within the human immunodeficiency virus (HIV) life cycle, providing either a synergistic or additive antiviral effect; this enhances the efficiency in which viral replication is suppressed. HIV cannot be completely eliminated, making HAART a lifetime treatment. With long-term HAART usage, an increasing number of patients experience a broadening array of complications, and this significantly affects their quality of life, despite cautious use. The mechanism through which ARV drugs induce toxicity is associated with metabolic complications such as mitochondrial dysfunction, oxidative stress, and inflammation. To address this, it is necessary to improve ARV drug formulation without compromising its efficacy; alternatively, safe supplementary medicine may be a suitable solution. The medicinal plant Moringa oleifera (MO) is considered one of the most important sources of novel nutritionally and pharmacologically active compounds that have been shown to prevent and treat various diseases. MO leaves are rich in polyphenols, vitamins, minerals, and tannins; studies have confirmed the therapeutic properties of MO. MO leaves provide powerful antioxidants, scavenge free radicals, promote carbohydrate metabolism, and repair DNA. MO also induces anti-inflammatory, hepatoprotective, anti-proliferative, and anti-mutagenic effects. Therefore, MO can be a source of affordable and safe supplement therapy for HAART-induced toxicity. This review highlights the potential of MO leaves to protect against HAART-induced toxicity in HIV patients.
Collapse
Affiliation(s)
| | - Terisha Ghazi
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Anil A. Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| |
Collapse
|
127
|
Shami AY, Abulfaraj AA, Refai MY, Barqawi AA, Binothman N, Tashkandi MA, Baeissa HM, Baz L, Abuauf HW, Ashy RA, Jalal RS. Abundant antibiotic resistance genes in rhizobiome of the human edible Moringa oleifera medicinal plant. Front Microbiol 2022; 13:990169. [PMID: 36187977 PMCID: PMC9524394 DOI: 10.3389/fmicb.2022.990169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/17/2022] [Indexed: 11/30/2022] Open
Abstract
Moringa oleifera (or the miracle tree) is a wild plant species widely grown for its seed pods and leaves, and is used in traditional herbal medicine. The metagenomic whole genome shotgun sequencing (mWGS) approach was used to characterize antibiotic resistance genes (ARGs) of the rhizobiomes of this wild plant and surrounding bulk soil microbiomes and to figure out the chance and consequences for highly abundant ARGs, e.g., mtrA, golS, soxR, oleC, novA, kdpE, vanRO, parY, and rbpA, to horizontally transfer to human gut pathogens via mobile genetic elements (MGEs). The results indicated that abundance of these ARGs, except for golS, was higher in rhizosphere of M. oleifera than that in bulk soil microbiome with no signs of emerging new soil ARGs in either soil type. The most highly abundant metabolic processes of the most abundant ARGs were previously detected in members of phyla Actinobacteria, Proteobacteria, Acidobacteria, Chloroflexi, and Firmicutes. These processes refer to three resistance mechanisms namely antibiotic efflux pump, antibiotic target alteration and antibiotic target protection. Antibiotic efflux mechanism included resistance-nodulation-cell division (RND), ATP-binding cassette (ABC), and major facilitator superfamily (MFS) antibiotics pumps as well as the two-component regulatory kdpDE system. Antibiotic target alteration included glycopeptide resistance gene cluster (vanRO), aminocoumarin resistance parY, and aminocoumarin self-resistance parY. While, antibiotic target protection mechanism included RbpA bacterial RNA polymerase (rpoB)-binding protein. The study supports the claim of the possible horizontal transfer of these ARGs to human gut and emergence of new multidrug resistant clinical isolates. Thus, careful agricultural practices are required especially for plants used in circles of human nutrition industry or in traditional medicine.
Collapse
Affiliation(s)
- Ashwag Y. Shami
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11617, Saudi Arabia
| | - Aala A. Abulfaraj
- Biological Sciences Department, College of Science and Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Mohammed Y. Refai
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Aminah A. Barqawi
- Department of Chemistry, Al-Leith University College, Umm Al Qura University, Makkah, Saudi Arabia
| | - Najat Binothman
- Department of Chemistry, College of Sciences and Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Manal A. Tashkandi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Hanadi M. Baeissa
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Lina Baz
- Department of Biochemistry, Faculty of Science—King Abdulaziz University, Jeddah, Saudi Arabia
| | - Haneen W. Abuauf
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ruba A. Ashy
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Rewaa S. Jalal
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
- *Correspondence: Rewaa S. Jalal,
| |
Collapse
|
128
|
Bassey K, Mabowe M, Mothibe M, Witika BA. Chemical Characterization and Nutritional Markers of South African Moringa oleifera Seed Oils. Molecules 2022; 27:molecules27185749. [PMID: 36144484 PMCID: PMC9506141 DOI: 10.3390/molecules27185749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Moringa oleifera Lam (syn. M. ptreygosperma Gaertn.) leaves are globally acclaimed for their nutritional content and mitigation of malnutrition. In most impoverished rural communities including Limpopo, Mpumalanga and KwaZulu Natal of South Africa, powdered leaves of Moringa oleifera are applied as a nutritional supplement for readily available food such as porridge for malnourished children and even breast-feeding mothers. Widely practiced and admired is also the use of the plant seed in the do-it-yourself purification of water by rural South Africans. This study aimed at identifying the chemical and nutritional marker compounds present in South African Moringa oleifera seed oils using high resolution 1-2-dimension gas chromatography in order to give scientific validation to its uses in cosmetics and particularly in culinary practices. Results obtained from two-dimension tandem mass spectrometry chemical signature revealed over 250 compounds, five times more than those reported from one-dimension gas chromatography. Whereas previous reports from gas chromatography-mass spectrometry analysis reported oleic acid (70–78%) as the major compound from oil samples from other countries, M. oleifera seed oil from South Africa is marked by cis-13-octadeaconic acid with 78.62% and 41.9% as the predominant monounsaturated fatty acid in the hexane and dichloromethane extracts respectively. This was followed by cis-vaccenic acid, an isomer of oleic acid at 51% in the acetone extract, 9-octadecanoic acid-(z)-methyl ester at 39.18%, 21.34% and 10.06% in dichloromethane, hexane and acetone extracts respectively. However, a principal component analysis with R2 = 0.98 of the two-dimension tandem mass spectrometry cum chemometric analysis indicated n-hexadecanoic acid, oleic acid, 9-octadecanoic acid-(z)-methyl ester and cis-vaccenic acid with a probability of 0.96, 0.88, 0.80 and 0.79 respectively as the marker compounds that should be used for the quality control of moringa seed oils from South Africa. This study demonstrates that South African Moringa oleifera oils contain C-18 monounsaturated fatty acids similar to oils from Egypt (76.2%), Thailand (71.6%) and Pakistan (78.5%) just to mention but a few. These fatty acids are sunflower and olive oil type-compounds and therefore place moringa seed oil for consideration as a cooking oil amongst its other uses.
Collapse
Affiliation(s)
- Kokoette Bassey
- Pharmaceutical Sciences Division, School of Pharmacy, Sefako Makgatho Health Sciences University, Molotlegi Street, Ga-Rankuwa, Pretoria 0204, South Africa
- Correspondence:
| | - Malebelo Mabowe
- Pharmaceutical Sciences Division, School of Pharmacy, Sefako Makgatho Health Sciences University, Molotlegi Street, Ga-Rankuwa, Pretoria 0204, South Africa
| | - Mmamosheledi Mothibe
- Division of Pharmacology, Faculty of Pharmacy, Rhodes University, Makhanda 6139, South Africa
| | - Bwalya A. Witika
- Pharmaceutical Sciences Division, School of Pharmacy, Sefako Makgatho Health Sciences University, Molotlegi Street, Ga-Rankuwa, Pretoria 0204, South Africa
| |
Collapse
|
129
|
Identification, structure, and caseinolytic properties of milk-clotting proteases from Moringa oleifera flowers. Food Res Int 2022; 159:111598. [DOI: 10.1016/j.foodres.2022.111598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/18/2022] [Accepted: 06/28/2022] [Indexed: 11/04/2022]
|
130
|
Chakraborty M, Budhwar S, Kumar S. Enhancement of shelf life of Moringa bread using
Prosporis julifera
extract and gamma radiation. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Manali Chakraborty
- Department of Nutrition Biology Central University of Haryana Mahendergarh, Jant‐ Pali, Haryana‐ 123029 India
| | - Savita Budhwar
- Department of Nutrition Biology Central University of Haryana Mahendergarh, Jant‐ Pali, Haryana‐ 123029 India
| | - Suneel Kumar
- Department of Physics and Astrophysics Central University of Haryana Mahendergarh, Jant‐ Pali, Haryana‐ 123029 India
| |
Collapse
|
131
|
Mashamaite CV, Ngcobo BL, Manyevere A, Bertling I, Fawole OA. Assessing the Usefulness of Moringa oleifera Leaf Extract as a Biostimulant to Supplement Synthetic Fertilizers: A Review. PLANTS 2022; 11:plants11172214. [PMID: 36079596 PMCID: PMC9459878 DOI: 10.3390/plants11172214] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 01/24/2023]
Abstract
The extensive use of synthetic chemical fertilizers is associated with environmental pollution and soil degradation. In addition, the high costs of these fertilizers necessitate the search for alternative, eco-friendly and safe natural sources of phytonutrients. The liquid extracted from moringa (Moringa oleifera Lam.) leaves has been used in agriculture to improve the growth and productivity of several crops. The efficacy of moringa leaf extract (MLE) is attributed to its high content of mineral nutrients, protein, vitamins, sugars, fiber, phenolics and free proline. In addition, MLE contains significant amounts of phytohormones, such as auxins, cytokinins and gibberellins. Furthermore, MLE is a valuable product promoting seed germination, plant growth and deeper root development, delaying fruit senescence and increasing the yield and quality of crops grown under normal or stressful conditions. Here, we review the research on MLE as a biostimulant to enhance crop growth and productivity. Moreover, we emphasize its possible introduction to smallholder farming systems to provide phytonutrients, and we further highlight research gaps in the existing knowledge regarding MLE application. Generally, MLE is an inexpensive, sustainable, eco-friendly and natural biostimulant that can be used to improve the growth and productivity attributes of various crops under non-stressful and stressful conditions.
Collapse
Affiliation(s)
- Chuene Victor Mashamaite
- Department of Agronomy, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
- Correspondence:
| | - Bonga Lewis Ngcobo
- Postharvest Research Laboratory, Department of Botany and Plant Biotechnology, Faculty of Science, University of Johannesburg, P.O. Box 524, Johannesburg 2006, South Africa
| | - Alen Manyevere
- Department of Agronomy, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
| | - Isa Bertling
- School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, Pietermaritzburg 3209, South Africa
| | - Olaniyi Amos Fawole
- Postharvest Research Laboratory, Department of Botany and Plant Biotechnology, Faculty of Science, University of Johannesburg, P.O. Box 524, Johannesburg 2006, South Africa
| |
Collapse
|
132
|
Usai R, Majoni S, Rwere F. Natural products for the treatment and management of diabetes mellitus in Zimbabwe-a review. Front Pharmacol 2022; 13:980819. [PMID: 36091798 PMCID: PMC9449367 DOI: 10.3389/fphar.2022.980819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/02/2022] [Indexed: 12/19/2022] Open
Abstract
Use of medicinal plants and herbs in the treatment and management of diseases, including diabetes mellitus and its complications remains an integral part of African tradition. In Zimbabwe, nearly one million people are living with diabetes mellitus. The prevalence of diabetes mellitus in Zimbabwe is increasing every year due to lifestyle changes, and has accelerated the use of traditional medicines for its treatment and management in urban areas. In addition, the high cost of modern medicine has led many people in rural parts of Zimbabwe to rely on herbal plant medicine for the treatment of diabetes mellitus and its complications. This review highlights a number of studies carried out to evaluate the antidiabetic properties of indigenous plants found in Zimbabwe with the goal of treating diabetes mellitus. Further, we discuss the mechanism of action of various plant extracts in the treatment and management of diabetes mellitus. Together, this review article can open pathways leading to discovery of new plant derived medicines and regularization of use of crude plant remedies to treat diabetes mellitus by the Zimbabwean government and others across Africa.
Collapse
Affiliation(s)
- Remigio Usai
- Department of Chemistry, Marquette University, Milwaukee, WI, United States
| | - Stephen Majoni
- Department of Chemical and Forensic Sciences, Botswana International University of Science and Technology, Palapye, Botswana
| | - Freeborn Rwere
- Department Anesthesiology, Perioperative, and Pain Medicine, School of Medicine, Stanford University, Stanford, CA, United States
- Department of Chemistry, School of Natural Sciences and Mathematics, Chinhoyi University of Technology, Chinhoyi, Zimbabwe
- *Correspondence: Freeborn Rwere,
| |
Collapse
|
133
|
Yuniati N, Kusumiyati K, Mubarok S, Nurhadi B. The Role of Moringa Leaf Extract as a Plant Biostimulant in Improving the Quality of Agricultural Products. PLANTS 2022; 11:plants11172186. [PMID: 36079567 PMCID: PMC9460049 DOI: 10.3390/plants11172186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/12/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022]
Abstract
Ensuring high-quality agricultural products has become important in agriculture since society’s standard of living has risen. Meanwhile, Moringa oleifera L. leaf extract (MLE) has been used as a plant biostimulant to improve product quality. The effectiveness of MLE is associated with its beneficial components, consisting of nutrients, phytohormones, secondary metabolites, amino acids, and bioactive compounds. Previous studies have been carried out to find the effects of MLE application on the quality of different crops, including basil, kale, spinach, maize, radish, brinjal, pepper, tomato, grape, strawberry, and more. The results are generally positive concerning physical, nutritional, and chemical qualities. This review comprises recent findings regarding MLE application as a plant biostimulant to increase quality attributes, with its underlying mechanism.
Collapse
Affiliation(s)
- Nita Yuniati
- Faculty of Agriculture, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang Kilometer 21 Jatinangor, Sumedang 45363, Indonesia
| | - Kusumiyati Kusumiyati
- Faculty of Agriculture, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang Kilometer 21 Jatinangor, Sumedang 45363, Indonesia
- Correspondence:
| | - Syariful Mubarok
- Faculty of Agriculture, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang Kilometer 21 Jatinangor, Sumedang 45363, Indonesia
| | - Bambang Nurhadi
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang Kilometer 21 Jatinangor, Sumedang 45363, Indonesia
| |
Collapse
|
134
|
Proximate, Elemental, and Functional Properties of Novel Solid Dispersions of Moringa oleifera Leaf Powder. Molecules 2022; 27:molecules27154935. [PMID: 35956885 PMCID: PMC9370398 DOI: 10.3390/molecules27154935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Moringa oleifera leaf powder (MOLP) is a rich source of antioxidants, protein, minerals, vitamins, and various phytochemicals and has been used to combat malnutrition in many countries. However, despite its many benefits, MOLP has low a solubility in water, necessitating the development of ways to address this issue. To improve the solubility of MOLP, solid-dispersed Moringa oleifera leaf powders (SDMOLPs) have been developed through freeze-drying, melting, microwave irradiation, and solvent evaporation methods using polyethylene glycols (PEG4000 and PEG6000) (1:1) as hydrophilic carriers. The solid dispersions were evaluated for their proximate composition using standard analytical procedures. Elemental composition was characterized using scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS). Water absorption capacity (WAC) and water-solubility were further evaluated as functional properties. Proximate composition revealed that MOLP and SDMOLPs were rich in protein, energy, carbohydrate, ash, and fat contents. MOLP solid dispersions are a major source of minerals (Ca, Mg, Cu, and Zn), and can be used to alleviate many mineral deficiencies. All solid dispersions had significantly higher (p < 0.05) solubilities (ranging from 54 to 64%) and WAC (ranging from 468.86 to 686.37%), relative to that of pure MOLP. The increased solubility of SDMOLPs may be attributed to the hydrogen bonds and intermolecular interactions between MOLP and the hydrophilic carriers. The results indicate that the solid dispersion technique can be successfully employed to improve the solubility of MOLP. And the solid-dispersed MOLPs with enhanced functional properties may be useful as functional ingredients in foods and beverages, dietary supplements, or nutraceutical formulations.
Collapse
|
135
|
Golla SP, Ramesh Kumar R, Veerapandian C, Rangarajan J, Mariya Anthony TA. Meta analysis on color, total flavonoids, antioxidants, frictional, mechanical, and cutting force of moringa pods. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Sai Preetham Golla
- Department of Food Product Development, School of Sensory Sciences National Institute of Food Technology, Entrepreneurship and Management (NIFTEM) Thanjavur Tamil Nadu India
| | - Rashmitha Ramesh Kumar
- Department of Food Product Development, School of Sensory Sciences National Institute of Food Technology, Entrepreneurship and Management (NIFTEM) Thanjavur Tamil Nadu India
| | - Chandrasekar Veerapandian
- Department of Food Product Development, School of Sensory Sciences National Institute of Food Technology, Entrepreneurship and Management (NIFTEM) Thanjavur Tamil Nadu India
| | - Jaganmohan Rangarajan
- Department of Food Product Development, School of Sensory Sciences National Institute of Food Technology, Entrepreneurship and Management (NIFTEM) Thanjavur Tamil Nadu India
| | - Tito Anand Mariya Anthony
- Workshop and Fabrication Unit, National Institute of Food Technology Entrepreneurship and Management (NIFTEM) Thanjavur Tamil Nadu India
| |
Collapse
|
136
|
Patil SV, Mohite BV, Marathe KR, Salunkhe NS, Marathe V, Patil VS. Moringa Tree, Gift of Nature: a Review on Nutritional and Industrial Potential. CURRENT PHARMACOLOGY REPORTS 2022; 8:262-280. [PMID: 35600137 PMCID: PMC9108141 DOI: 10.1007/s40495-022-00288-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 04/18/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Satish V. Patil
- School of Life Sciences, KBC North Maharashtra University, Jalgaon, MH India
| | - Bhavana V. Mohite
- Department of Microbiology, Bajaj College of Science, Wardha, MH India
| | - Kiran R. Marathe
- School of Life Sciences, KBC North Maharashtra University, Jalgaon, MH India
| | | | | | - Vikas S. Patil
- University Institute of Chemical Technology, KBC North Maharashtra University, Jalgaon, MH India
| |
Collapse
|
137
|
Ao B, Lv J, Yang H, He F, Hu Y, Hu B, Jiang H, Huo X, Tu J, Xia X. Moringa oleifera extract mediated the synthesis of Bio-SeNPs with antibacterial activity against Listeria monocytogenes and Corynebacterium diphtheriae. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
138
|
Sharma S, Sharma S, Bharti AS, Tiwari MK, Uttam KN. Non-Destructive Assessment of the Nutrient Profile of Underutilized Seeds Using Spectroscopic Probes. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2099414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Shristi Sharma
- Saha’s Spectroscopy Laboratory, Department of Physics, University of Allahabad, Prayagraj, India
| | - Sweta Sharma
- Saha’s Spectroscopy Laboratory, Department of Physics, University of Allahabad, Prayagraj, India
- Department of Applied Science and Humanities, Faculty of Engineering and Technology, Khwaja Moinuddin Chishti Language University, Lucknow, India
| | - Abhi Sarika Bharti
- Saha’s Spectroscopy Laboratory, Department of Physics, University of Allahabad, Prayagraj, India
| | - M. K. Tiwari
- Indus Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore, India
| | - K. N. Uttam
- Saha’s Spectroscopy Laboratory, Department of Physics, University of Allahabad, Prayagraj, India
| |
Collapse
|
139
|
Kanyanee T, Tianrungarun K, Somboot W, Puangpila C, Jakmunee J. Open tubular capillary ion chromatography with online dilution for small ions determination in drinks. Food Chem 2022; 382:132055. [PMID: 35255354 DOI: 10.1016/j.foodchem.2022.132055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/05/2021] [Accepted: 01/02/2022] [Indexed: 11/04/2022]
Abstract
This work aims to develop a more robust, easy-to-use, low-pressure, and cost-effective nonsuppressed open tubular capillary ion chromatography (NS-OTIC) approach with online dialysis for small ions determination in drinks. The fabricated device was applied for two selected columns, including poly(butadiene-maleic acid) on a 50-μm bore and AS18 Latex on 25-µm bore fused silica capillaries, for the separation of mixed cations (Na+, K+, Ca2+, Mg2+) and mixed anions (Cl-, Br-, NO2-, NO3-), respectively. High concentrations of ions (up to 100 mM) level can be directly introduced into the NS-OTIC system without an off-line (manual) dilution step. The linear relationship of the peak area and concentration of model ions can be obtained with a resolution > 1.1. The repeatability of the peak area for both OTIC columns was < 6% RSD. Juice and tea samples were successfully analyzed with % recoveries of 77-112 and 90-119 for cation and anion determinations, respectively.
Collapse
Affiliation(s)
- Tinakorn Kanyanee
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Kanlayarat Tianrungarun
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; The Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wasin Somboot
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; The Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chanida Puangpila
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jaroon Jakmunee
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
140
|
Mthiyane FT, Dludla PV, Ziqubu K, Mthembu SXH, Muvhulawa N, Hlengwa N, Nkambule BB, Mazibuko-Mbeje SE. A Review on the Antidiabetic Properties of Moringa oleifera Extracts: Focusing on Oxidative Stress and Inflammation as Main Therapeutic Targets. Front Pharmacol 2022; 13:940572. [PMID: 35899107 PMCID: PMC9310029 DOI: 10.3389/fphar.2022.940572] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/21/2022] [Indexed: 12/02/2022] Open
Abstract
Moringa oleifera is one of the popular plants that have shown significant health benefits. Certainly, preclinical evidence (predominantly from animal models) summarized in the current review supports the beneficial effects of Moringa oleifera leaf extracts in combating the prominent characteristic features of diabetes mellitus. This includes effective control of blood glucose or insulin levels, enhancement of insulin tissue sensitivity, improvement of blood lipid profiles, and protecting against organ damage under sustained conditions of hyperglycemia. Interestingly, as major complications implicated in the progression of diabetes, including organ damage, Moringa oleifera leaf and seed extracts could efficiently block the detrimental effects of oxidative stress and inflammation in these preclinical models. Notably, these extracts (especially leaf extracts) showed enhanced effects in strengthening intracellular antioxidant defences like catalase, superoxide dismutase, and glutathione to lower lipid peroxidation products and reduce prominent pro-inflammatory markers such as tumor necrosis factor-α, interleukin (1L)-β, IL-6, monocyte chemoattractant protein-1 and nitric oxide synthase. From animal models of diabetes, the common and effective dose of leaf extracts of Moringa oleifera was 100-300 mg/kg, within the treatment duration of 2-8 weeks. Whereas supplementation with approximately 20 g leaf powder of Moringa oleifera for at least 2 weeks could improve postprandial blood glucose in subjects with prediabetes or diabetes. Although limited clinical studies have been conducted on the antidiabetic properties of Moringa oleifera, current findings provide an important platform for future research directed at developing this plant as a functional food to manage diabetic complications.
Collapse
Affiliation(s)
- Fikile T. Mthiyane
- Department of Biochemistry, North-West University, Mafikeng, South Africa
| | - Phiwayinkosi V. Dludla
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town, South Africa
| | - Khanyisani Ziqubu
- Department of Biochemistry, North-West University, Mafikeng, South Africa
| | - Sinenhlanhla X. H. Mthembu
- Department of Biochemistry, North-West University, Mafikeng, South Africa
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town, South Africa
| | - Ndivhuwo Muvhulawa
- Department of Biochemistry, North-West University, Mafikeng, South Africa
| | - Nokulunga Hlengwa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, South Africa
| | - Bongani B. Nkambule
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | | |
Collapse
|
141
|
Abera T, Tamtam MR, Koutavarapu R, Shim J. Low-cost production and healthy preservation of malt drink using Melkassa-7 and Moringa oleifera leaf extract. Int J Gastron Food Sci 2022. [DOI: 10.1016/j.ijgfs.2022.100568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
142
|
Benettayeb A, Usman M, Tinashe CC, Adam T, Haddou B. A critical review with emphasis on recent pieces of evidence of Moringa oleifera biosorption in water and wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:48185-48209. [PMID: 35585450 PMCID: PMC9252946 DOI: 10.1007/s11356-022-19938-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/23/2022] [Indexed: 06/01/2023]
Abstract
The increasing demand for using competent and inexpensive methods based on biomaterials, like adsorption and biosorption, has given rise to the low-priced alternative biosorbents. In the past few years, Moringa oleifera (MO) has emerged as a green and low-priced biosorbent for the treatment of contaminated waters with heavy metals and dyes, and given its availability, we can create another generation of effective biosorbents based on different parts of this plant. In this review paper, we have briefed on the application of MO as a miraculous biosorbent for water purification. Moreover, the primary and cutting-edge methods for the purification and modification of MO to improve its adsorption are discussed. It was found that MO has abundant availability in the regions where it is grown, and simple chemical treatments increase the effectiveness of this plant in the treatment of some toxic contaminants. The different parts of this miraculous plant's "seeds, leaves, or even husks" in their natural form also possess appreciable sorption capacities, high efficiency for treating low metal concentrations, and rapid adsorption kinetics. Thus, the advantages and disadvantages of different parts of MO as biosorbent, the conditions favorable to this biosorption, also, the proposal of a logical mechanism, which can justify the high efficiency of this plant, are discussed in this review. Finally, several conclusions have been drawn from some important works and which are examined in this review, and future suggestions are proposed.
Collapse
Affiliation(s)
- Asmaa Benettayeb
- Laboratoire de Génie Chimique et de catalyse hétérogène, Département de Génie Chimique, Université de Sciences et de la Technologie-Mohamed Boudiaf, USTO-MB, BP 1505 EL-M'NAOUAR, Oran, Algeria.
- Laboratoire Physico-Chimie des Matériaux - Catalyse et Environnement - LPCM-CE, Université des Sciences et de la Technologie d'Oran Mohamed Boudiaf (USTO-MB), BP 1505, El M'naouer, 31000, Oran, Algeria.
| | - Muhammad Usman
- Institute for Water Resources and Water Supply, Hamburg University of Technology, Am Schwarzenberg-Campus 3, 20173, Hamburg, Germany.
| | - Coffee Calvin Tinashe
- Laboratoire de Génie Chimique et de catalyse hétérogène, Département de Génie Chimique, Université de Sciences et de la Technologie-Mohamed Boudiaf, USTO-MB, BP 1505 EL-M'NAOUAR, Oran, Algeria
- Laboratoire Physico-Chimie des Matériaux - Catalyse et Environnement - LPCM-CE, Université des Sciences et de la Technologie d'Oran Mohamed Boudiaf (USTO-MB), BP 1505, El M'naouer, 31000, Oran, Algeria
| | - Traore Adam
- Laboratoire de Génie Chimique et de catalyse hétérogène, Département de Génie Chimique, Université de Sciences et de la Technologie-Mohamed Boudiaf, USTO-MB, BP 1505 EL-M'NAOUAR, Oran, Algeria
- Laboratoire Physico-Chimie des Matériaux - Catalyse et Environnement - LPCM-CE, Université des Sciences et de la Technologie d'Oran Mohamed Boudiaf (USTO-MB), BP 1505, El M'naouer, 31000, Oran, Algeria
| | - Boumediene Haddou
- Laboratoire Physico-Chimie des Matériaux - Catalyse et Environnement - LPCM-CE, Université des Sciences et de la Technologie d'Oran Mohamed Boudiaf (USTO-MB), BP 1505, El M'naouer, 31000, Oran, Algeria
| |
Collapse
|
143
|
Awad AM, Kumar P, Ismail‐Fitry MR, Jusoh S, Ab Aziz MF, Sazili AQ. Overview of plant extracts as natural preservatives in meat. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Pavan Kumar
- Halal Products Research Institute Universiti Putra Malaysia UPM Serdang Malaysia
- Department of Livestock Products Technology College of Veterinary Science Guru Angad Dev Veterinary and Animal Sciences University Ludhiana India
| | - Mohammad Rashedi Ismail‐Fitry
- Department of Food Technology, Faculty of Food Science and Technology Universiti Putra Malaysia UPM Serdang Malaysia
| | - Shokri Jusoh
- Department of Animal Science, Faculty of Agriculture Universiti Putra Malaysia UPM Serdang Malaysia
| | - Muhamad Faris Ab Aziz
- Department of Animal Science, Faculty of Agriculture Universiti Putra Malaysia UPM Serdang Malaysia
| | - Awis Qurni Sazili
- Halal Products Research Institute Universiti Putra Malaysia UPM Serdang Malaysia
- Department of Animal Science, Faculty of Agriculture Universiti Putra Malaysia UPM Serdang Malaysia
- Halal Product Research Institute Universiti Putra Malaysia UPM Serdang Malaysia
| |
Collapse
|
144
|
Rahayu I, Timotius KH. Phytochemical Analysis, Antimutagenic and Antiviral Activity of Moringa oleifera L. Leaf Infusion: In Vitro and In Silico Studies. Molecules 2022; 27:molecules27134017. [PMID: 35807260 PMCID: PMC9268431 DOI: 10.3390/molecules27134017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023] Open
Abstract
Moringa oleifera (M. oleifera) leaves are rich in nutrients and antioxidant compounds that can be consumed to prevent and overcome malnutrition. The water infusion of its leaf is the easiest way to prepare the herbal drink. So far, no information is available on the antioxidant, antimutagenic, and antivirus capacities of this infusion. This study aimed to determine the composition of the bioactive compounds in M. oleifera leaf infusion, measuring for antioxidant and antimutagenic activity, and evaluating any ability to inhibit the SARS-CoV-2 main protease (Mpro). The first two objectives were carried out in vitro. The third objective was carried out in silico. The phytochemical analysis of M. oleifera leaf infusion was carried out using liquid chromatography-mass spectrometry (LC-MS). Antioxidant activity was measured as a factor of the presence of the free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH). The antimutagenicity of M. oleifera leaf powder infusion was measured using the plasmid pBR322 (treated free radical). The interaction between bioactive compounds and Mpro of SARS-CoV-2 was analyzed via molecular docking. The totals of phenolic compound and flavonoid compound from M. oleifera leaf infusion were 1.780 ± 5.00 µg gallic acid equivalent/g (µg GAE/g) and 322.91 ± 0.98 µg quercetin equivalent/g (µg QE/g), respectively. The five main bioactive compounds involved in the infusion were detected by LC-MS. Three of these were flavonoid glucosides, namely quercetin 3-O-glucoside, kaempferol 3-O-neohesperidoside, and kaempferol 3-α-L-dirhamnosyl-(1→4)-β-D-glucopyranoside. The other two compounds were undulatoside A, which belongs to chromone-derived flavonoids, and gentiatibetine, which belongs to alkaloids. The antioxidant activity of M. oleifera leaf infusion was IC50 8.19 ± 0.005 µg/mL, which is stronger than the standard butylated hydroxytoluene (BHT) IC50 11.60 ± 0.30 µg/mL. The infusion has an antimutagenic effect and therefore protects against deoxyribonucleic acid (DNA) damage. In silico studies showed that the five main bioactive compounds have an antiviral capacity. There were strong energy bonds between Mpro molecules and gentiatibetine, quercetin, undulatoside A, kaempferol 3-o-neohesperidoside, and quercetin 3-O-glucoside. Their binding energy values are −5.1, −7.5, −7.7, −5.7, and −8.2 kcal/mol, respectively. Their antioxidant activity, ability to maintain DNA integrity, and antimutagenic properties were more potent than the positive controls. It can be concluded that leaf infusion of M. oleifera does provide a promising herbal drink with good antioxidant, antimutagenic, and antivirus capacities.
Collapse
Affiliation(s)
- Ika Rahayu
- Biochemistry Department, Faculty of Medicine and Health Sciences, Universitas Kristen Krida Wacana (UKRIDA), Jakarta 11510, Indonesia;
- Research Center for Jamu and Herbal Medicine, Universitas Kristen Krida Wacana (UKRIDA), Jakarta 11510, Indonesia
| | - Kris Herawan Timotius
- Biochemistry Department, Faculty of Medicine and Health Sciences, Universitas Kristen Krida Wacana (UKRIDA), Jakarta 11510, Indonesia;
- Research Center for Jamu and Herbal Medicine, Universitas Kristen Krida Wacana (UKRIDA), Jakarta 11510, Indonesia
- Correspondence:
| |
Collapse
|
145
|
Moringa oleifera: Miracle Plant with a Plethora of Medicinal, Therapeutic, and Economic Importance. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8060492] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Moringa oleifera Lam. (Moringaceae) is one of the most essential medicinal plants primarily found in the rainforest area and forest ecosystem, but is now well-adapted in an organized cultivation system. Moringa oleifera (M. oleifera) is well-known as Drumstick tree, Moringa kai, color, Marengo, Moringe, mulangay, Sahjan, and Sajna, which are its native names commonly used. It has nourishing, beneficial, and preventive effects when taken as food and has an extensive scope of high restorative properties with huge dietary benefits. Different parts of the M. oleifera plants, such as leaves, flowers, fruits, seeds, and roots, contain a significant amount of protein, ß-carotene, amino acids, important minerals, and various phenolic compounds. Because of its multifarious health benefits for its therapeutic value, it is considered an essential plant. The plant is found to be blessed with several medicinal characteristics such as antitumor, anti-inflammatory, antiulcer, antipyretic, antiepileptic, antispasmodic, diuretic, antihypertensive, antidiabetic, cholesterol-level down, cell reinforcement, and hepatoprotective. Moreover, it is used traditionally in the local curative system against cardiac problems, and the antifungal properties are efficiently utilized for the treatment of a wide range of ailments. The present review article was designed to explore the nutritional and economic benefits, medicinal and therapeutic applications, and the future biomedical prospects of Moringa with a view towards human wellbeing.
Collapse
|
146
|
Ouahrani S, Tzompa‐Sosa DA, Dewettinck K, Zaidi F. Oxidative stability, structural, and textural properties of margarine enriched with
Moringa oleifera
leaves extract. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sara Ouahrani
- Département des Sciences Alimentaires, Faculté des Sciences de la Nature et de la Vie Université de Bejaia Bejaia Algeria
| | - Daylan Amelia Tzompa‐Sosa
- Food Structure and Function Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering Ghent University Ghent Belgium
| | - Koen Dewettinck
- Food Structure and Function Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering Ghent University Ghent Belgium
| | - Farid Zaidi
- Département des Sciences Alimentaires, Faculté des Sciences de la Nature et de la Vie Université de Bejaia Bejaia Algeria
| |
Collapse
|
147
|
Ding Y, Morozova K, Imperiale S, Angeli L, Asma U, Ferrentino G, Scampicchio M. HPLC-Triple detector (Coulometric array, diode array and mass spectrometer) for the analysis of antioxidants in officinal plants. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
148
|
Gautier A, Duarte CM, Sousa I. Moringa oleifera Seeds Characterization and Potential Uses as Food. Foods 2022; 11:1629. [PMID: 35681378 PMCID: PMC9180090 DOI: 10.3390/foods11111629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/16/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023] Open
Abstract
Despite the fact Moringa oleifera (MO)-based foods present a very good and nutritionally well-balanced composition, they face some issues related to seed bitterness, which is the most challenging barrier to consumer acceptance. Different processing methods were tested to produce MO toasted seeds, MO-based beverage, and yoghurt-like products which were chemically and rheologically analyzed. The protein content ranged from 3.68% in the beverage, to 14.73% in the yoghurt and 40.21% in MO toasted seeds. A totally debittered beverage could not be accomplished, but the MO yoghurt-like showed a very nice flavor. Nutrition claims for minerals in toasted seeds could be considered for magnesium, phosphorus, iron, copper, zinc, and manganese, which confirms the M. oleifera seed richness in several minerals. The MO beverage presented less extended shear-thinning behavior (17.4 Pa·s) than commercial vegetable beverages and two pulse-based beverages developed in a previous study. The MO yoghurt-like product showed a gel structure similar to the dairy yoghurt, making it a promising new plant-based alternative. Further work must be performed in the future to debitter more efficiently the raw seeds to achieve a more pleasant MO-based beverage. The developed MO seed-based products may settle another font of high protein plant-based food.
Collapse
Affiliation(s)
| | | | - Isabel Sousa
- LEAF—Linking Landscape, Environment, Agriculture and Food, Higher Institute of Agronomy, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (A.G.); (C.M.D.)
| |
Collapse
|
149
|
Chikasa B, Shoniwa A, Mangwiro C, Dhliwayo M, Tinashe Tekedza T. The effect of partial substitution of Moringa oleifera leaf meal on the relative growth performance and incidence of scours in piglets. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2058621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Bright Chikasa
- Department of Animal Science, Faculty of Agriculture and Environmental Science, Bindura University of Science Education, Bindura, Zimbabwe
| | | | - Clement Mangwiro
- Department of Animal Science, Faculty of Agriculture and Environmental Science, Bindura University of Science Education, Bindura, Zimbabwe
| | - Marshall Dhliwayo
- Department of Animal Science, Faculty of Agriculture and Environmental Science, Bindura University of Science Education, Bindura, Zimbabwe
- Pig Industry Board of Zimbabwe, Harare, Zimbabwe
| | - Trevor Tinashe Tekedza
- Department of Animal Science, Faculty of Agriculture and Environmental Science, Bindura University of Science Education, Bindura, Zimbabwe
| |
Collapse
|
150
|
Marinho YF, de Oliveira APS, Oliveira CYB, Napoleão TH, Guedes Paiva PM, de Sant’Anna MCS, Malafaia CB, Gálvez AO. Usage of Moringa oleifera residual seeds promotes efficient flocculation of Tetradesmus dimorphus biomass. BIOMASS CONVERSION AND BIOREFINERY 2022:1-9. [PMID: 35582461 PMCID: PMC9101992 DOI: 10.1007/s13399-022-02789-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/13/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Bio-flocculation is a sustainable low-cost harvesting technique for microalgae biomass production; however, it is generally less efficient than chemical flocculants. This study aims to investigate the efficiency of Moringa oleifera seeds as a bio-flocculant for harvesting Tetradesmus dimorphus biomass. Four extracts from integral and residual (seeds without lipids) biomass of M. oleifera seeds using salt or aqueous solutions were used at four concentrations (100, 200, 300, and 400 ppm). Flocculation efficiency (FE) increased as the pH decreased. The addition of the extracts reduced the pH of the cultures, dispensing pH adjustment after dosing the flocculating agent. Salt extracts exhibited higher flocculation efficiency than aqueous extracts. The highest flocculation efficiency (~ 98%) was obtained using a salt extract of residual biomass of seeds in any concentration varying from 100 to 400 ppm. The predicted values obtained from a data modeling using response surface methodology approached the real values (r 2 = 0.9382), resulting in an adequate optimization of the flocculant concentration of ~ 335 ppm and pH 5.6 for a predicted FE of ~ 106%. The findings of the present study confirmed that the salt extract from residual biomass of M. oleifera seeds is an effective bio-flocculant for T. dimorphus biomass harvesting.
Collapse
Affiliation(s)
- Yllana F. Marinho
- Centro de Ciências Humanas, Naturais, Saúde e Tecnologia, Universidade Federal do Maranhão, Pinheiro, Maranhão 65200-000 Brazil
| | | | - Carlos Yure B. Oliveira
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, St. Dom Manuel de Medeiros, s/n - Dois Irmãos, Recife, Pernambuco 52171-900 Brazil
| | - Thiago H. Napoleão
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, Pernambuco 50670-420 Brazil
| | - Patrícia M. Guedes Paiva
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, Pernambuco 50670-420 Brazil
| | | | - Carolina B. Malafaia
- Centro de Tecnologias Estratégicas do Nordeste, Cidade Universitária, Av. Prof. Luís Freire, 01, Recife, Pernambuco CEP 50740-540 Brazil
| | - Alfredo O. Gálvez
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, St. Dom Manuel de Medeiros, s/n - Dois Irmãos, Recife, Pernambuco 52171-900 Brazil
| |
Collapse
|