101
|
Auch C, Harms M, Golitsyn Y, Reichert D, Mäder K. Miniaturized Measurement of Drug-Polymer Interactions via Viscosity Increase for Polymer Selection in Amorphous Solid Dispersions. Mol Pharm 2019; 16:2214-2225. [PMID: 30920843 DOI: 10.1021/acs.molpharmaceut.9b00186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Drug-polymer interactions have a substantial impact on stability and performance of amorphous solid dispersions (ASD) but are difficult to analyze. Whereas there are many screening methods described for polymer selection based for example on glass forming ability, drug-polymer miscibility, supersaturation, or inhibition of recrystallization, the distinct detection of physico-chemical interactions mostly lacks miniaturized techniques. This work presents an interaction screening assessing the relative viscosity increase between highly concentrated polymer solutions with and without the model drug ketoconazole (KTZ). The fluorescent molecular rotor 9-(2-carboxy-2-cyanovinyl)julolidine was added to the solutions in a miniaturized setup in μL-scale. Due to its environment-sensitive emission behavior, the integrated fluorescence intensity can be used as a viscosity dye within this screening approach (FluViSc). Differences in relative viscosity increases through addition of KTZ were proposed to rank polymers regarding KTZ-polymer interactions. Absolute viscosities were measured with a cone-plate rheometer as a complimentary method and supported the results acquired by the FluViSc. Solid-state nuclear magnetic resonance (ss-NMR) relaxation time measurements and Raman spectroscopy were utilized to investigate drug-polymer interactions at a molecular level. Whereas Raman spectroscopy was not suited to reveal KTZ-polymer interactions, ss-NMR relaxation time measurements differentiated between the selected polymeric carriers hydroxypropylmethylcellulose acetate succinate (HPMCAS) and polyvinylpyrrolidone vinyl acetate 60:40 (PVP-VA64). Interactions were detected for HPMCAS/KTZ ASD while there was no hint for interactions between KTZ and PVP-VA64. These results were in correlation with the FluViSc. The findings were correlated with the dissolution performance of ASD and found to be predictive for supersaturation and inhibition of precipitation during dissolution.
Collapse
Affiliation(s)
- Carolin Auch
- Institute of Pharmacy, Faculty of Natural Sciences I , Martin Luther University Halle-Wittenberg , Wolfgang-Langenbeck-Str. 4 , 06120 Halle/Saale , Germany.,Department Pharmaceutical Technologies , Merck KGaA , Frankfurter Str. 250 , 64293 Darmstadt , Germany
| | - Meike Harms
- Department Pharmaceutical Technologies , Merck KGaA , Frankfurter Str. 250 , 64293 Darmstadt , Germany
| | - Yury Golitsyn
- Department of Physics, Faculty of Natural Sciences II , Martin Luther University Halle-Wittenberg , Betty-Heimann-Str. 7 , 06120 Halle/Saale , Germany
| | - Detlef Reichert
- Department of Physics, Faculty of Natural Sciences II , Martin Luther University Halle-Wittenberg , Betty-Heimann-Str. 7 , 06120 Halle/Saale , Germany
| | - Karsten Mäder
- Institute of Pharmacy, Faculty of Natural Sciences I , Martin Luther University Halle-Wittenberg , Wolfgang-Langenbeck-Str. 4 , 06120 Halle/Saale , Germany
| |
Collapse
|
102
|
Mizoguchi R, Waraya H, Hirakura Y. Application of Co-Amorphous Technology for Improving the Physicochemical Properties of Amorphous Formulations. Mol Pharm 2019; 16:2142-2152. [PMID: 30946778 DOI: 10.1021/acs.molpharmaceut.9b00105] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Co-amorphous technology was recently introduced to stabilize drugs in the amorphous state for drug development. We examined the predictability of the formation of co-amorphous systems and identified two reliable indicators of successful formation: (1) a negative Δ Hmix value and (2) small Δlog P between components. Moreover, we found that the stability of co-amorphous systems was improved when (1) Δ Hmix was negative and (2) amorphous forms of the constituent compounds were stable. Furthermore, we concluded that co-amorphous systems with small (negatively large) Δ Hmix values had lower hygroscopicity. Typically, amorphous solid dispersions exhibit hygroscopicity because polymers exhibit large hygroscopicity. We proved the superiority of co-amorphous technology over amorphous solid dispersion in this respect. Our results provide methods for (1) establishing a screening method and (2) improving hygroscopicity, which may make co-amorphous technology more useful than amorphous solid dispersion technology.
Collapse
Affiliation(s)
- Ryo Mizoguchi
- Analytical Research Labs. , Astellas Pharma Inc. , 180, Ozumi , Yaizu-shi , Shizuoka 425-0072 , Japan
| | - Haruka Waraya
- Analytical Research Labs. , Astellas Pharma Inc. , 180, Ozumi , Yaizu-shi , Shizuoka 425-0072 , Japan
| | - Yutaka Hirakura
- Pharmaceutical Science & Technology Labs. , Astellas Pharma Inc. , 21, Miyukigaoka , Tsukuba-shi , Ibaraki 305-8585 , Japan
| |
Collapse
|
103
|
Hashim Ali K, Mohsin Ansari M, Ali Shah F, Ud Din F, Abdul Basit M, Kim JK, Zeb A. Enhanced dissolution of valsartan-vanillin binary co-amorphous system loaded in mesoporous silica particles. J Microencapsul 2019; 36:10-20. [DOI: 10.1080/02652048.2019.1579265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Khan Hashim Ali
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Muhammad Mohsin Ansari
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Fawad Ali Shah
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Fakhar Ud Din
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Abdul Basit
- Department of Materials Science and Engineering, Institute of Space Technology, Islamabad, Pakistan
| | - Jin-Ki Kim
- College of Pharmacy, Institute of Pharmaceutical Science and Technology Hanyang University, Ansan, Gyeonggi, Republic of Korea
| | - Alam Zeb
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| |
Collapse
|
104
|
Aljohani M, MacFhionnghaile P, McArdle P, Erxleben A. Investigation of the formation of drug-drug cocrystals and coamorphous systems of the antidiabetic drug gliclazide. Int J Pharm 2019; 561:35-42. [DOI: 10.1016/j.ijpharm.2019.02.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/30/2019] [Accepted: 02/11/2019] [Indexed: 11/30/2022]
|
105
|
Cruz-Angeles J, Videa M, Martínez LM. Highly Soluble Glimepiride and Irbesartan Co-amorphous Formulation with Potential Application in Combination Therapy. AAPS PharmSciTech 2019; 20:144. [PMID: 30887140 DOI: 10.1208/s12249-019-1359-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/03/2019] [Indexed: 11/30/2022] Open
Abstract
One-third of the population of the USA suffers from metabolic syndrome (MetS). Treatment of patients with MetS regularly includes drugs prescribed simultaneously to treat diabetes and cardiovascular diseases. Therefore, the development of novel multidrug formulations is recommended. However, the main problem with these drugs is their low solubility. The use of binary co-amorphous systems emerges as a promising strategy to increase drug solubility. In the present study, irbesartan (IBS) and glimepiride (GMP), class II active pharmaceutical ingredients (API), widely used in the treatment of arterial hypertension and diabetes, were selected to develop a novel binary co-amorphous system with remarkable enhancement in the dissolution of both APIs. The phase diagram of IBS-GMP was constructed and co-amorphous systems were prepared by melt-quench, in a wide range of compositions. Dissolution profile (studied at pH 1.2 and 37°C for mole fractions 0.01, 0.1, and 0.5) demonstrated that the xGMP = 0.01 formulation presents the highest enhancement in its dissolution. GMP went from being practically insoluble to reach 3.9 ± 0.9 μg/mL, and IBS showed a 12-fold increment with respect to the dissolution of its crystalline form. Infrared studies showed that the increase in the dissolution profile is related to the intermolecular interactions (hydrogen bonds), which were dependent of composition. Results of structural and thermal characterization performed by XRD and DSC showed that samples have remained in amorphous state for more than 10 months of storage. This work contributes to the development of a highly soluble co-amorphous drugs with potential used in the treatment of MetS.
Collapse
|
106
|
Petry I, Löbmann K, Grohganz H, Rades T, Leopold CS. In situ co-amorphisation in coated tablets – The combination of carvedilol with aspartic acid during immersion in an acidic medium. Int J Pharm 2019; 558:357-366. [DOI: 10.1016/j.ijpharm.2018.12.091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/23/2018] [Accepted: 12/28/2018] [Indexed: 11/17/2022]
|
107
|
Shi Q, Moinuddin SM, Cai T. Advances in coamorphous drug delivery systems. Acta Pharm Sin B 2019; 9:19-35. [PMID: 30766775 PMCID: PMC6361732 DOI: 10.1016/j.apsb.2018.08.002] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/11/2018] [Accepted: 08/12/2018] [Indexed: 01/18/2023] Open
Abstract
In recent years, the coamorphous drug delivery system has been established as a promising formulation approach for delivering poorly water-soluble drugs. The coamorphous solid is a single-phase system containing an active pharmaceutical ingredient (API) and other low molecular weight molecules that might be pharmacologically relevant APIs or excipients. These formulations exhibit considerable advantages over neat crystalline or amorphous material, including improved physical stability, dissolution profiles, and potentially enhanced therapeutic efficacy. This review provides a comprehensive overview of coamorphous drug delivery systems from the perspectives of preparation, physicochemical characteristics, physical stability, in vitro and in vivo performance. Furthermore, the challenges and strategies in developing robust coamorphous drug products of high quality and performance are briefly discussed.
Collapse
Key Words
- API, active pharmaceutical ingredient;
- AUC, area under plasma concentrations-time curve
- BCS, bio-pharmaceutics classification systems
- Bioavailability
- Characterization
- Cmax, maximum plasma concentration
- Coamorphous
- Css, plasma concentration at steady state
- DSC, differential scanning calorimetry
- DVS, dynamic vapor sorption
- Dc, relative degree of crystallization
- Dissolution
- FT-IR, fourier transform infrared spectroscopy
- HME, hot melt extrusion
- HPLC, high performance liquid chromatography
- IDR, intrinsic dissolution rate
- LFRS, low-frequency Raman spectroscopy
- LLPS, liquid—liquid phase separation
- MTDSC, modulated temperature differential scanning calorimetry
- NMR, nuclear magnetic resonance
- P-gp, P-glycoprotein
- PXRD, powder X-ray diffraction
- Physical stability
- Preparation
- RH, relative humidity
- SEM, scanning electron microscope
- TGA, thermogravimetric analysis
- Tg, glass transition temperature
- Tmax, time of maximum plasma concentration
- UV, ultraviolet spectroscopy
Collapse
Affiliation(s)
| | | | - Ting Cai
- Corresponding author. Tel.: +86 25 83271123.
| |
Collapse
|
108
|
Zhang M, Xiong X, Suo Z, Hou Q, Gan N, Tang P, Ding X, Li H. Co-amorphous palbociclib–organic acid systems with increased dissolution rate, enhanced physical stability and equivalent biosafety. RSC Adv 2019; 9:3946-3955. [PMID: 35518078 PMCID: PMC9060427 DOI: 10.1039/c8ra09710k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/23/2019] [Indexed: 12/31/2022] Open
Abstract
The preparation of co-amorphous drug systems by adding a small molecular excipient is a promising formulation in the modern pharmaceutical industry to improve the solubility, dissolution rate, and bioavailability of poorly soluble drugs. In this study, palbociclib co-amorphous systems with organic acids (succinic, tartaric, citric, and malic acid) at molar ratios of 1 : 1 were prepared by co-milling and characterized by differential scanning calorimetry (DSC), fourier transform infrared spectroscopy (FTIR) and solid-state nuclear magnetic resonance (SS-NMR). These solid-state investigations have confirmed the formation of co-amorphous salts between PAL and organic acids. The solubility, dissolution rate and stability of the four co-amorphous drug systems were significantly improved compared with these of crystalline and amorphous palbociclib. The biosafety of the co-amorphous drug systems was the same as that of palbociclib without affecting the efficacy of the drug and eliciting toxic side effects. These comprehensive approaches for the palbociclib–acid co-amorphous drug systems provided a theoretical basis for its clinical applications. The study of co-amorphous systems presented a safe and effective formulation technology for the development of new palbociclib solid forms with great dissolution rates, good physical stability, and high bioavailability.![]()
Collapse
Affiliation(s)
- Man Zhang
- School of Chemical Engineering
- Sichuan University
- Chengdu
- China
| | - Xinnuo Xiong
- School of Chemical Engineering
- Sichuan University
- Chengdu
- China
| | - Zili Suo
- School of Chemical Engineering
- Sichuan University
- Chengdu
- China
| | - Quan Hou
- School of Chemical Engineering
- Sichuan University
- Chengdu
- China
| | - Na Gan
- School of Chemical Engineering
- Sichuan University
- Chengdu
- China
| | - Peixiao Tang
- School of Chemical Engineering
- Sichuan University
- Chengdu
- China
| | - Xiaohui Ding
- School of Chemical Engineering
- Sichuan University
- Chengdu
- China
| | - Hui Li
- School of Chemical Engineering
- Sichuan University
- Chengdu
- China
| |
Collapse
|
109
|
Arabiani MR, Lodagekar A, Yadav B, Chavan RB, Shastri NR, Purohit PY, Shelat P, Dave D. Mechanochemical synthesis of brexpiprazole cocrystals to improve its pharmaceutical attributes. CrystEngComm 2019. [DOI: 10.1039/c8ce01689e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the present study, cocrystallization of a new piprazole analogue drug, brexpiprazole (BREX), with coformers such as succinic acid and catechol was carried out using ball milling to address the poor solubility and dissolution rate of the molecule.
Collapse
Affiliation(s)
- Mohsin R. Arabiani
- Global IP
- Amneal Pharmaceuticals Pvt. Ltd
- Ahmedabad–380015
- India
- Kadi Sarva Vishwavidyalaya
| | - Anurag Lodagekar
- Solid State Pharmaceutical Research Group (SSPRG)
- Department of Pharmaceutics
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad
- India
| | - Balvant Yadav
- Solid State Pharmaceutical Research Group (SSPRG)
- Department of Pharmaceutics
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad
- India
| | - Rahul B. Chavan
- Global IP
- Amneal Pharmaceuticals Pvt. Ltd
- Ahmedabad–380015
- India
| | - Nalini R. Shastri
- Solid State Pharmaceutical Research Group (SSPRG)
- Department of Pharmaceutics
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad
- India
| | | | - Pragna Shelat
- K. B. Institute of Pharmaceutical Education and Research
- Kadi Sarva Vishwavidyalaya
- Gandhinagar
- India
| | - Divyang Dave
- K. B. Institute of Pharmaceutical Education and Research
- Kadi Sarva Vishwavidyalaya
- Gandhinagar
- India
| |
Collapse
|
110
|
In situ co-amorphisation of arginine with indomethacin or furosemide during immersion in an acidic medium – A proof of concept study. Eur J Pharm Biopharm 2018; 133:151-160. [DOI: 10.1016/j.ejpb.2018.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/15/2018] [Accepted: 10/15/2018] [Indexed: 11/19/2022]
|
111
|
Ditzinger F, Scherer U, Schönenberger M, Holm R, Kuentz M. Modified Polymer Matrix in Pharmaceutical Hot Melt Extrusion by Molecular Interactions with a Carboxylic Coformer. Mol Pharm 2018; 16:141-150. [DOI: 10.1021/acs.molpharmaceut.8b00920] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | - René Holm
- Drug Product Development, Janssen Research and Development, Johnson and Johnson, B-2340 Beerse, Belgium
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | | |
Collapse
|
112
|
Chavan RB, Rathi S, Jyothi VGSS, Shastri NR. Cellulose based polymers in development of amorphous solid dispersions. Asian J Pharm Sci 2018; 14:248-264. [PMID: 32104456 PMCID: PMC7032228 DOI: 10.1016/j.ajps.2018.09.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/27/2018] [Accepted: 09/10/2018] [Indexed: 12/11/2022] Open
Abstract
Cellulose derivatives have gained immense popularity as stabilizers for amorphous solid dispersion owing to their diverse physicochemical properties. More than 20 amorphous solid dispersion-based products that have been approved for marketing consist of cellulose derivatives as stabilizers, thus highlighting their importance in generation of amorphous solid dispersions. These polymers offer numerous advantages like drug solubilization, crystallization inhibition and improvement in release patterns of drugs. Exploring their potential and exploiting their chemistry and pH responsive behaviour have led to the synthesis of new derivatives that has broadened the scope of the use of cellulose derivatives in amorphous formulation development. The present review aims to provide an overview of different mechanisms by which these cellulose derivatives inhibit the crystallization of drugs in the solid state and from supersaturated solution. A summary of different categories of cellulose derivatives along with the newly explored polymers has been provided. A special segment on strengths, weaknesses, opportunities, and threats (SWOT) analysis and critical quality attributes (CQAs) which affect the performance of the cellulose based amorphous solid dispersion will aid the researchers in identifying the major challenges in the development of cellulose based solid dispersion and serve as a guide for further formulation development.
Collapse
Affiliation(s)
| | | | | | - Nalini R Shastri
- Corresponding author. Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Balanagar, Hyderabad 500037, India. Tel.: +91 040 23423749.
| |
Collapse
|
113
|
Yu H, Ming Lim L, Dong B, Hadinoto K. Proof-of-concept preparation and characterization of dual-drug amorphous nanoparticle complex as fixed-dose combination of poorly soluble drugs. Drug Dev Ind Pharm 2018; 45:105-116. [DOI: 10.1080/03639045.2018.1522327] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Hong Yu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Li Ming Lim
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Bingxue Dong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Kunn Hadinoto
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
114
|
Ojarinta R, Saarinen J, Strachan CJ, Korhonen O, Laitinen R. Preparation and characterization of multi-component tablets containing co-amorphous salts: Combining multimodal non-linear optical imaging with established analytical methods. Eur J Pharm Biopharm 2018; 132:112-126. [PMID: 30248394 DOI: 10.1016/j.ejpb.2018.09.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/11/2018] [Accepted: 09/11/2018] [Indexed: 11/29/2022]
Abstract
Co-amorphous mixtures have rarely been formulated as oral dosage forms, even though they have been shown to stabilize amorphous drugs in the solid state and enhance the dissolution properties of poorly soluble drugs. In the present study we formulated tablets consisting of either spray dried co-amorphous ibuprofen-arginine or indomethacin-arginine, mannitol or xylitol and polyvinylpyrrolidone K30 (PVP). Experimental design was used for the selection of tablet compositions, and the effect of tablet composition on tablet characteristics was modelled. Multimodal non-linear imaging, including coherent anti-Stokes Raman scattering (CARS) and sum frequency/second harmonic generation (SFG/SHG) microscopies, as well as scanning electron microscopy, X-ray diffractometry and Fourier-transform infrared spectroscopy were utilized to characterize the tablets. The tablets possessed sufficient strength, but modelling produced no clear evidence about the compaction characteristics of co-amorphous salts. However, co-amorphous drug-arginine mixtures resulted in enhanced dissolution behaviour, and the PVP in the tableting mixture stabilized the supersaturation. The co-amorphous mixtures were physically stable during compaction, but the excipient selection affected the long term stability of the ibuprofen-arginine mixture. CARS and SFG/SHG proved feasible techniques in imaging the component distribution on the tablet surfaces, but possibly due to the limited imaging area, recrystallization detected with x-ray diffraction was not detected.
Collapse
Affiliation(s)
- Rami Ojarinta
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland.
| | - Jukka Saarinen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, 00014 University of Helsinki, Finland
| | - Clare J Strachan
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, 00014 University of Helsinki, Finland
| | - Ossi Korhonen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Riikka Laitinen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| |
Collapse
|
115
|
Crystalline/Amorphous Blend Identification from Cobalt Adsorption by Layered Double Hydroxides. MATERIALS 2018; 11:ma11091706. [PMID: 30217008 PMCID: PMC6164505 DOI: 10.3390/ma11091706] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/04/2018] [Accepted: 09/11/2018] [Indexed: 11/22/2022]
Abstract
In this study, the adsorption behavior of CaAl-Cl layered double hydroxide (CaAl-Cl-LDH) with a controlled pH value (pH = 6) on Co(II) ions ([Co] = 8 mM) is investigated. The comprehensively accepted mechanism of cobalt adsorption on LDH is considered to be co-precipitation, and the final adsorbed products are normally crystalline Co-LDH. One unanticipated finding is that crystalline/amorphous blends are found in the X-ray diffraction (XRD) pattern of Co-adsorbed LDH. To shed light on the adsorption products and the mechanisms in the adsorption process of Co(II) in an aqueous solution by CaAl-Cl-LDH, a series of testing methods including Fourier-transform infrared spectroscopy (FT-IR), Scanning electron microscope (SEM), High-resolution transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy (XPS), and inductively coupled plasma (ICP) are applied to clarify the interaction between cobalt and CaAl-Cl-LDH. According to the comprehensive analysis, the formation of the crystalline/amorphous blends corresponds to two adsorption mechanisms. The crystalline phases are identified as Co6Al2CO3(OH)16·4H2O, which is attributed to the co-precipitation process occurring in the interaction between Co(II) and CaAl-Cl-LDH. The formation of the amorphous phases is due to surface complexation on amorphous Al(OH)3 hydrolyzed from CaAl-Cl-LDH.
Collapse
|
116
|
Karagianni A, Kachrimanis K, Nikolakakis I. Co-Amorphous Solid Dispersions for Solubility and Absorption Improvement of Drugs: Composition, Preparation, Characterization and Formulations for Oral Delivery. Pharmaceutics 2018; 10:pharmaceutics10030098. [PMID: 30029516 PMCID: PMC6161132 DOI: 10.3390/pharmaceutics10030098] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/13/2018] [Accepted: 07/16/2018] [Indexed: 02/06/2023] Open
Abstract
The amorphous solid state offers an improved apparent solubility and dissolution rate. However, due to thermodynamic instability and recrystallization tendencies during processing, storage and dissolution, their potential application is limited. For this reason, the production of amorphous drugs with adequate stability remains a major challenge and formulation strategies based on solid molecular dispersions are being exploited. Co-amorphous systems are a new formulation approach where the amorphous drug is stabilized through strong intermolecular interactions by a low molecular co-former. This review covers several topics applicable to co-amorphous drug delivery systems. In particular, it describes recent advances in the co-amorphous composition, preparation and solid-state characterization, as well as improvements of dissolution performance and absorption are detailed. Examples of drug-drug, drug-carboxylic acid and drug-amino acid co-amorphous dispersions interacting via hydrogen bonding, π−π interactions and ionic forces, are presented together with corresponding final dosage forms.
Collapse
Affiliation(s)
- Anna Karagianni
- Department of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Kyriakos Kachrimanis
- Department of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Ioannis Nikolakakis
- Department of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
117
|
A Novel Desloratadine-Benzoic Acid Co-Amorphous Solid: Preparation, Characterization, and Stability Evaluation. Pharmaceutics 2018; 10:pharmaceutics10030085. [PMID: 29986403 PMCID: PMC6161109 DOI: 10.3390/pharmaceutics10030085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/01/2018] [Accepted: 07/04/2018] [Indexed: 11/21/2022] Open
Abstract
Low physical stability is the limitation of the widespread use of amorphous drugs. The co-amorphous drug system is a new and emerging method for preparing a stable amorphous form. Co-amorphous is a single-phase amorphous multicomponent system consisting of two or more small molecules that are a combination of drugs or drugs and excipients. The co-amorphous system that uses benzoic acid (BA) as an excipient was studied to improve the physical stability, dissolution, and solubility of desloratadine (DES). In this study, the co-amorphous formation of DES and BA (DES–BA) was prepared by melt-quenching method and characterized by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction (PXRD), and polarized light microscopy (PLM). Dissolution, solubility, and physical stability profiles of DES–BA were determined. The DES crystals were converted into DES–BA co-amorphous form to reveal the molecular interactions between DES and BA. Solid-state analysis proved that the co-amorphous DES–BA system (1:1) is amorphous and homogeneous. The DSC experiment showed that the glass transition temperature (Tg) of tested DES–BA co-amorphous had a higher single Tg compared to the amorphous DES. FTIR revealed strong interactions, especially salt formation. The dissolution rate and solubility of co-amorphous DES–BA (1:1) obtained were larger than the DES in crystalline form. The PXRD technique was used to assess physical stability for three months at 40 °C with 75% RH. The DES–BA co-amorphous system demonstrated better physical stability than a single form of amorphous DES. Co-amorphous DES–BA has demonstrated the potential for improving solid-state stability, as the formation of DES–BA co-amorphous salt increased solubility and dissolution when compared to pure crystalline DES. This study also demonstrated the possibility for developing a DES–BA co-amorphous system toward oral formulations to improve DES solubility and bioavailability.
Collapse
|
118
|
Mangal S, Nie H, Xu R, Guo R, Cavallaro A, Zemlyanov D, Zhou QT. Physico-Chemical Properties, Aerosolization and Dissolution of Co-Spray Dried Azithromycin Particles with L-Leucine for Inhalation. Pharm Res 2018; 35:28. [PMID: 29374368 DOI: 10.1007/s11095-017-2334-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 12/19/2017] [Indexed: 02/07/2023]
Abstract
PURPOSE Inhalation therapy is popular to treat lower respiratory tract infections. Azithromycin is effective against some bacteria that cause respiratory tract infections; but it has poor water solubility that may limit its efficacy when administrated as inhalation therapy. In this study, dry powder inhaler formulations were developed by co-spray drying azithromycin with L-leucine with a purpose to improve dissolution. METHODS The produced powder formulations were characterized regarding particle size, morphology, surface composition and in-vitro aerosolization performance. Effects of L-leucine on the solubility and in-vitro dissolution of azithromycin were also evaluated. RESULTS The spray dried azithromycin alone formulation exhibited a satisfactory aerosol performance with a fine particle fraction (FPF) of 62.5 ± 4.1%. Addition of L-leucine in the formulation resulted in no significant change in particle morphology and FPF, which can be attributed to enrichment of azithromycin on the surfaces of composite particles. Importantly, compared with the spray-dried amorphous azithromycin alone powder, the co-spray dried powder formulations of azithromycin and L-leucine demonstrated a substantially enhanced in-vitro dissolution rate. Such enhanced dissolution of azithromycin could be attributed to the formation of composite system and the acidic microenvironment around azithromycin molecules created by the dissolution of acidic L-leucine in the co-spray dried powder. Fourier transform infrared spectroscopic data showed intermolecular interactions between azithromycin and L-leucine in the co-spray dried formulations. CONCLUSIONS We developed the dry powder formulations with satisfactory aerosol performance and enhanced dissolution for a poorly water soluble weak base, azithromycin, by co-spray drying with an amino acid, L-leucine.
Collapse
Affiliation(s)
- Sharad Mangal
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana, 47907, USA
| | - Haichen Nie
- Teva Pharmaceuticals, 145 Brandywine Pkwy, West Chester, Pennsylvania, 19380, USA
| | - Rongkun Xu
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana, 47907, USA.,Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China
| | - Rui Guo
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana, 47907, USA
| | - Alex Cavallaro
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Dmitry Zemlyanov
- Birck Nanotechnology Center, Purdue University, 1205 West State Street, West Lafayette, Indiana, 47907, USA
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana, 47907, USA.
| |
Collapse
|
119
|
Wong JJL, Yu H, Lim LM, Hadinoto K. A trade-off between solubility enhancement and physical stability upon simultaneous amorphization and nanonization of curcumin in comparison to amorphization alone. Eur J Pharm Sci 2018; 114:356-363. [PMID: 29309874 DOI: 10.1016/j.ejps.2018.01.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/26/2017] [Accepted: 01/04/2018] [Indexed: 01/21/2023]
Abstract
The numerous health benefits of curcumin (CUR) have not been fully realized due to its low aqueous solubility, resulting in poor bioavailability. While amorphization of CUR via amorphous solid dispersion (ASD) represents a well-established CUR solubility enhancement strategy, simultaneous amorphization and nanonization of CUR via amorphous CUR nanoparticles (or nano-CUR in short) have emerged only recently as the plausibly superior alternative to ASD. Herein we examined for the first time the amorphous nano-CUR versus the ASD of CUR in terms of their (1) in vitro solubility enhancement capability and (2) long-term physical stability. The ASD of CUR was prepared by spray drying with hydroxypropylmethylcellulose (HPMC) acting as crystallization inhibitor. The amorphous nano-CUR was investigated in both its (i) aqueous suspension and (ii) dry-powder forms in which the latter was prepared by spray drying with adjuvants (i.e. HPMC, trehalose, and soy lecithin). The results showed that the amorphous nano-CUR (in both its aqueous suspension and dry-powder forms) exhibited superior solubility enhancement to the ASD of CUR attributed to its faster dissolution rates. This was despite the ASD formulation contained a larger amount of HPMC. The superior solubility enhancement, however, came at the expense of low physical stability, where the amorphous nano-CUR showed signs of transformation to crystalline after three-month accelerated storage, which was not observed with the ASD. Thus, despite its inferior solubility enhancement, the conventional ASD of CUR was found to represent the more feasible CUR solubility enhancement strategy.
Collapse
Affiliation(s)
- Jerome Jie Long Wong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459
| | - Hong Yu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459
| | - Li Ming Lim
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459
| | - Kunn Hadinoto
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459.
| |
Collapse
|
120
|
Zhu S, Gao H, Babu S, Garad S. Co-Amorphous Formation of High-Dose Zwitterionic Compounds with Amino Acids To Improve Solubility and Enable Parenteral Delivery. Mol Pharm 2017; 15:97-107. [PMID: 29164901 DOI: 10.1021/acs.molpharmaceut.7b00738] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Solubilization of parenteral drugs is a high unmet need in both preclinical and clinical drug development. Recently, co-amorphous drug formulation has emerged as a new strategy to solubilize orally dosed drugs. The aim of the present study is to explore the feasibility of using the co-amorphous strategy to enable the dosing of parenteral zwitterionic drugs at a high concentration. A new screening procedure was established with solubility as the indicator for co-amorphous co-former selection, and lyophilization was established as the method for co-amorphous formulation preparation. Various amino acids were screened, and tryptophan was found to be the most powerful in improving the solubility of ofloxacin when lyophilized with ofloxacin at a 1:1 weight ratio, with more than 10 times solubility increase. X-ray powder diffraction showed complete amorphization of both components, and an elevated Tg compared with the theoretical value was observed in differential scanning calorimetry. Fourier transform infrared spectroscopy revealed that hydrogen bonding and π-π stacking were possibly involved in the formation of a co-amorphous system in the solid state. Further solution-state characterization revealed the involvement of ionic interactions and π-π stacking in maintaining a high concentration of ofloxacin in solution. Furthermore, co-amorphous ofloxacin/tryptophan at 1:1 weight ratio was both physically and chemically stable for at least 2 months at 40 °C/75% RH. Lastly, the same screening procedure was validated with two more zwitterionic compounds, showing its promise as a routine screening methodology to solubilize and enable the parenteral delivery of zwitterionic compounds.
Collapse
Affiliation(s)
- Saijie Zhu
- Chemical and Pharmaceutical Profiling, Technical Research and Development, China Novartis Institutes for Biomedical Research Co., Ltd , Shanghai 201203, China
| | - Huisheng Gao
- Chemical and Pharmaceutical Profiling, Technical Research and Development, China Novartis Institutes for Biomedical Research Co., Ltd , Shanghai 201203, China
| | - Sreehari Babu
- Chemical and Pharmaceutical Profiling, Technical Research and Development, China Novartis Institutes for Biomedical Research Co., Ltd , Shanghai 201203, China
| | - Sudhakar Garad
- Chemical and Pharmaceutical Profiling, Technical Research and Development, Novartis Pharmaceuticals , Cambridge, Massachusetts 02139, United States
| |
Collapse
|
121
|
Yang R, Li Y, Li J, Liu C, Du P, Zhang T. Application of scCO2 technology for preparing CoQ10 solid dispersion and SFC-MS/MS for analyzing in vivo bioavailability. Drug Dev Ind Pharm 2017; 44:289-295. [DOI: 10.1080/03639045.2017.1391833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Rujie Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Yingchao Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Jing Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Cuiru Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Ping Du
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Tianhong Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, PR China
| |
Collapse
|
122
|
Laitinen R, Löbmann K, Grohganz H, Priemel P, Strachan CJ, Rades T. Supersaturating drug delivery systems: The potential of co-amorphous drug formulations. Int J Pharm 2017; 532:1-12. [DOI: 10.1016/j.ijpharm.2017.08.123] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/24/2017] [Accepted: 08/31/2017] [Indexed: 11/16/2022]
|
123
|
Ojarinta R, Lerminiaux L, Laitinen R. Spray drying of poorly soluble drugs from aqueous arginine solution. Int J Pharm 2017; 532:289-298. [DOI: 10.1016/j.ijpharm.2017.09.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/05/2017] [Accepted: 09/07/2017] [Indexed: 12/20/2022]
|
124
|
Moinuddin SM, Ruan S, Huang Y, Gao Q, Shi Q, Cai B, Cai T. Facile formation of co-amorphous atenolol and hydrochlorothiazide mixtures via cryogenic-milling: Enhanced physical stability, dissolution and pharmacokinetic profile. Int J Pharm 2017; 532:393-400. [PMID: 28893583 DOI: 10.1016/j.ijpharm.2017.09.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/10/2017] [Accepted: 09/07/2017] [Indexed: 10/18/2022]
Abstract
The development of poorly water-soluble drugs faces the risk of low bioavailability and therapeutic efficacy. The co-amorphous drug delivery system has recently gained considerable interest because it offers an alternative approach to modify properties of poorly water-soluble drugs. Herein, we developed a co-amorphous system of atenolol (ATE) and poorly water-soluble hydrochlorothiazide (HCT) by means of cryogenic milling. The co-administration of ATE and HCT has been reported to show therapeutic advantages for patients with uncomplicated hypertension. The co-amorphous ATE-HCT sample with 1:1 molar ratio showed excellent physical stability, which could be attributed to the formation of strong molecular interactions between ATE and HCT as evidenced by FT-IR spectra. Compared to the pure crystalline form, amorphous form and physical mixture, HCT in the co-amorphous form exhibited the significantly increased intrinsic dissolution rate, as well as the enhanced bioavailability in the pharmacokinetic study. It was found that the enhanced bioavailability of HCT in the co-amorphous formulation was achieved by the synergistic effect of amorphized HCT and the water-soluble coformer ATE. The present study provides an improved approach to implement the combination therapy of ATE and HCT for potential clinical treatments.
Collapse
Affiliation(s)
- Sakib M Moinuddin
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Sida Ruan
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yuting Huang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qin Gao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Qin Shi
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Baochang Cai
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ting Cai
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
125
|
Pardhi V, Chavan RB, Thipparaboina R, Thatikonda S, Naidu VGM, Shastri NR. Preparation, characterization, and cytotoxicity studies of niclosamide loaded mesoporous drug delivery systems. Int J Pharm 2017; 528:202-214. [DOI: 10.1016/j.ijpharm.2017.06.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 11/17/2022]
|