101
|
Zhang X, Xia Y, Xia C, Wang H. Insights into Practical-Scale Electrochemical H2O2 Synthesis. TRENDS IN CHEMISTRY 2020. [DOI: 10.1016/j.trechm.2020.07.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
102
|
Wang K, Huang J, Chen H, Wang Y, Song S. Recent advances in electrochemical 2e oxygen reduction reaction for on-site hydrogen peroxide production and beyond. Chem Commun (Camb) 2020; 56:12109-12121. [PMID: 32959823 DOI: 10.1039/d0cc05156j] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The electroproduction of H2O2 through 2e oxygen reduction reaction (ORR) as an alternative strategy for the conventional anthraquinone process is highly energy-efficient and environment-friendly. Different kinds of electrocatalysts with high selectivity, activity, and stability have been recently reported, and are an essential part of the whole electroproduction process of H2O2. In this review, we expound the ORR mechanism and introduce some methods to screen out potential electrocatalysts through theoretical calculations and experimental verifications. In addition, recent advances in reactor design for large-scale on-site production of H2O2 and integrated systems for electricity-H2O2 co-generation are mentioned. With ideal electrocatalysts and rational reactor design, different concentrations of H2O2 can be obtained depending on the practical applications. Utilizing the solar or chemical energy, it can promote energy efficiency and sustainability of the process. Finally, we make a brief conclusion about recent developments in electrocatalysts, device design, as well as integrated systems, and give an outlook for future research challenges, which are meaningful for advancing the electrochemical on-site production of H2O2via 2e ORR to the marketplace.
Collapse
Affiliation(s)
- Kun Wang
- The Key Lab of Low-carbon Chemistry & Energy Conservation of Guangdong Province, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| | | | | | | | | |
Collapse
|
103
|
An J, Li N, Wu Y, Wang S, Liao C, Zhao Q, Zhou L, Li T, Wang X, Feng Y. Revealing Decay Mechanisms of H 2O 2-Based Electrochemical Advanced Oxidation Processes after Long-Term Operation for Phenol Degradation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10916-10925. [PMID: 32786563 DOI: 10.1021/acs.est.0c03233] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hydrogen peroxide (H2O2)-based electrochemical advanced oxidation processes (EAOPs) have been widely attempted for various wastewater treatments. So far, stability tests of EAOPs are rarely addressed and the decay mechanism is still unclear. Here, three H2O2-based EAOP systems (electro-Fenton, photoelectro-Fenton, and photo+ electro-generated H2O2) were built for phenol degradation. More than 97% phenol was removed in all three EAOPs in 1 h at 10 mA·cm-2. As a key component in EAOPs, the cathodic H2O2 productivity is directly related to the performance of the system. We for the first time systematically investigated the decay mechanisms of the active cathode by operating the cathodes under multiple conditions over 200 h. Compared with the fresh cathode (H2O2 yield of 312 ± 22 mg·L-1·h-1 with a current efficiency of 84 ± 5% at 10 mA·cm-2), the performance of the cathode for H2O2 synthesis alone decayed by only 17.8%, whereas the H2O2 yields of cathodes operated in photoelectro-generated H2O2, electro-Fenton, and photoelectro-Fenton systems decayed by 60.0, 90.1, and 89.6%, respectively, with the synergistic effect of salt precipitation, •OH erosion, organic contamination, and optional Fe contamination. The lower current decay of 16.1-32.3% in the electrochemical tests manifested that the cathodes did not lose activity severely. Therefore, the significant decrease of H2O2 yield was because the active sites were altered to catalyze the four-electron oxygen reduction reaction, which was induced by the long-term erosion of •OH. Our findings provided new insights into cathode performance decay, offering significant information for the improvement of cathodic longevity in the future.
Collapse
Affiliation(s)
- Jingkun An
- School of Environmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
- Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Nan Li
- School of Environmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
- Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Yu Wu
- School of Environmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Shu Wang
- School of Environmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Chengmei Liao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Qian Zhao
- School of Environmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Lean Zhou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Tian Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Yujie Feng
- School of Environmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
- Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China
| |
Collapse
|
104
|
Hu X, Zeng X, Liu Y, Lu J, Zhang X. Carbon-based materials for photo- and electrocatalytic synthesis of hydrogen peroxide. NANOSCALE 2020; 12:16008-16027. [PMID: 32720961 DOI: 10.1039/d0nr03178j] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The high demand for hydrogen peroxide (H2O2) has been dominantly supplied by the anthraquinone process for various applications globally, including chemical synthesis and wastewater treatment. However, the centralized manufacturing and intensive energy input and waste output are significant challenges associated with this process. Accordingly, the on-site production of H2O2via electro- and photocatalytic water oxidation and oxygen reduction partially is greener and easier to handle and has recently emerged with extensive research aiming to seek active, selective and stable catalysts. Herein, we review the current status and future perspectives in this field focused on carbon-based catalysts and their hybrids, since they are relatively inexpensive, bio-friendly and flexible for structural modulation. We present state-of-the-art progress, typical strategies for catalyst engineering towards selective and active H2O2 production, discussion on electro- and photochemical mechanisms and H2O2 formation through both reductive and oxidative reaction pathways, and conclude with the key challenges to be overcome. We expect promising developments would be inspired in the near future towards practical decentralized H2O2 production and its direct use.
Collapse
Affiliation(s)
- Xiaoyi Hu
- Department of Chemical Engineering, Monash University, Clayton, VIC 3168, Australia.
| | | | | | | | | |
Collapse
|
105
|
Hota I, Debnath AK, Muthe KP, Varadwaj KSK, Parhi P. Electrocatalytic Production of Hydrogen‐peroxide from Molecular Oxygen by Rare Earth (Pr, Nd, Sm or Gd) Oxide Nanorods. ELECTROANAL 2020. [DOI: 10.1002/elan.202060099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ipsha Hota
- Department of Chemistry Ravenshaw University, Cuttack Odisha 753003 India
| | - A. K Debnath
- Technical Physics Division Bhabha Atomic Research Centre Mumbai 400085 India
| | - K. P Muthe
- Technical Physics Division Bhabha Atomic Research Centre Mumbai 400085 India
| | - K. S. K Varadwaj
- Department of Chemistry Ravenshaw University, Cuttack Odisha 753003 India
| | - Purnendu Parhi
- Department of Chemistry Ravenshaw University, Cuttack Odisha 753003 India
| |
Collapse
|
106
|
Siahrostami S, Villegas SJ, Bagherzadeh Mostaghimi AH, Back S, Farimani AB, Wang H, Persson KA, Montoya J. A Review on Challenges and Successes in Atomic-Scale Design of Catalysts for Electrochemical Synthesis of Hydrogen Peroxide. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01641] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Samira Siahrostami
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta Canada T2N 1N4
| | - Santiago Jimenez Villegas
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta Canada T2N 1N4
| | | | - Seoin Back
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea
| | - Amir Barati Farimani
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Haotian Wang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas United States
| | - Kristin Aslaug Persson
- Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Joseph Montoya
- Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
- Toyota Research Institute, 4440 EL Camino Real, Los Altos, California 94022, United States
| |
Collapse
|
107
|
Pang Y, Wang K, Xie H, Sun Y, Titirici MM, Chai GL. Mesoporous Carbon Hollow Spheres as Efficient Electrocatalysts for Oxygen Reduction to Hydrogen Peroxide in Neutral Electrolytes. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00584] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yongyu Pang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), Fuzhou 350002 Fujian People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100039, People’s Republic of China
| | - Ke Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), Fuzhou 350002 Fujian People’s Republic of China
| | - Huan Xie
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), Fuzhou 350002 Fujian People’s Republic of China
| | - Yuan Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), Fuzhou 350002 Fujian People’s Republic of China
| | | | - Guo-Liang Chai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), Fuzhou 350002 Fujian People’s Republic of China
| |
Collapse
|
108
|
Li N, Song X, Wang L, Geng X, Wang H, Tang H, Bian Z. Single-Atom Cobalt Catalysts for Electrocatalytic Hydrodechlorination and Oxygen Reduction Reaction for the Degradation of Chlorinated Organic Compounds. ACS APPLIED MATERIALS & INTERFACES 2020; 12:24019-24029. [PMID: 32356652 DOI: 10.1021/acsami.0c05159] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Electrochemical reduction-oxidation processes with the aid of cathode catalysts are promising technologies for the decomposition of organic compounds. High-efficiency and low-cost catalysts for electrochemical reductive dechlorination and two-electron oxygen reduction reaction (ORR) are vital to the overall degradation of chlorinated organic compounds. This study reports electrochemical dechlorination using a single-atom Co-loaded sulfide graphene (Co-SG) catalyst via atomic hydrogen generated from the electrochemical reduction of H2O and electrolysis of hydrogen. The Co-SG electrocatalyst exhibited a remarkable performance for H2O2 synthesis with a half-wave potential of 0.70 V (vs RHE) and selectivity over 90%. The high electrochemical performance was achieved for bifunctional electrocatalysis with regard to the smaller overpotentials, faster kinetics, and higher cycling stability compared to the noble metal-based electrocatalysts. In this study, 2,4-dichlorobenzoic acid was well degraded and the TOC concentration was effectively reduced. This work introduces the preparation of a new active site for high-performance single-atom catalysts and also promotes its application in the electrochemical degradation of chlorinated organic pollutants.
Collapse
Affiliation(s)
- Ning Li
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Xiaozhe Song
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Li Wang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Xinle Geng
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Hui Wang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Hanyu Tang
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Zhaoyong Bian
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| |
Collapse
|
109
|
Wang J, Chen R, Zhang T, Wan J, Cheng X, Zhao J, Wang X. Technological Optimization for H 2O 2 Electrosynthesis and Economic Evaluation on Electro-Fenton for Treating Refractory Organic Wastewater. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00742] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jianshe Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan 450000, P. R. China
| | - Ruirui Chen
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan 450000, P. R. China
| | - Tianyi Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan 450000, P. R. China
| | - Junfeng Wan
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan 450000, P. R. China
| | - Xianglin Cheng
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan 450000, P. R. China
| | - Jianhong Zhao
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan 450000, P. R. China
| | - Xinhai Wang
- Henan Engineering Research Center of Industrial Circulating Water Treatment, College of Chemistry and Chemical Engineering. Henan University, Kaifeng 475004, P. R. China
| |
Collapse
|
110
|
Yin H, Dou Y, Chen S, Zhu Z, Liu P, Zhao H. 2D Electrocatalysts for Converting Earth-Abundant Simple Molecules into Value-Added Commodity Chemicals: Recent Progress and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904870. [PMID: 31573704 DOI: 10.1002/adma.201904870] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/05/2019] [Indexed: 06/10/2023]
Abstract
The electrocatalytic conversion of earth-abundant simple molecules into value-added commodity chemicals can transform current chemical production regimes with enormous socioeconomic and environmental benefits. For these applications, 2D electrocatalysts have emerged as a new class of high-performance electrocatalyst with massive forward-looking potential. Recent advances in 2D electrocatalysts are reviewed for emerging applications that utilize naturally existing H2 O, N2 , O2 , Cl- (seawater) and CH4 (natural gas) as reactants for nitrogen reduction (N2 → NH3 ), two-electron oxygen reduction (O2 → H2 O2 ), chlorine evolution (Cl- → Cl2 ), and methane partial oxidation (CH4 → CH3 OH) reactions to generate NH3 , H2 O2 , Cl2 , and CH3 OH. The unique 2D features and effective approaches that take advantage of such features to create high-performance 2D electrocatalysts are articulated with emphasis. To benefit the readers and expedite future progress, the challenges facing the future development of 2D electrocatalysts for each of the above reactions and the related perspectives are provided.
Collapse
Affiliation(s)
- Huajie Yin
- Centre for Clean Environment and Energy, Griffith University, Southport, Queensland, 4222, Australia
| | - Yuhai Dou
- Centre for Clean Environment and Energy, Griffith University, Southport, Queensland, 4222, Australia
| | - Shan Chen
- Centre for Clean Environment and Energy, Griffith University, Southport, Queensland, 4222, Australia
| | - Zhengju Zhu
- Centre for Clean Environment and Energy, Griffith University, Southport, Queensland, 4222, Australia
| | - Porun Liu
- Centre for Clean Environment and Energy, Griffith University, Southport, Queensland, 4222, Australia
| | - Huijun Zhao
- Centre for Clean Environment and Energy, Griffith University, Southport, Queensland, 4222, Australia
- Centre for Environmental and Energy Nanomaterials, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| |
Collapse
|
111
|
Liu M, Zhang H, Li Y, Su H, Zhou W, Zhao X, Cheng W, Liu Q. Crystallinity dependence for high-selectivity electrochemical oxygen reduction to hydrogen peroxide. Chem Commun (Camb) 2020; 56:5299-5302. [PMID: 32271333 DOI: 10.1039/d0cc00139b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We report a semiconducting metal-organic graphene analog, Ni3(HITP)2, with an adjustable crystalline structure for mediating efficient selectivity toward hydrogen peroxide. The as-prepared 5-Ni3(HITP)2 catalyst with low crystallinity can electrocatalyze O2 to H2O2 with a high selectivity of 80% over a wide potential range of 0.2-0.6 V vs. RHE and with a large mass activity of 292 A gNi-1 at 0.25 V in 0.1 M KOH.
Collapse
Affiliation(s)
- Meihuan Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, Anhui, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
112
|
Zhang J, Zhang H, Cheng MJ, Lu Q. Tailoring the Electrochemical Production of H 2 O 2 : Strategies for the Rational Design of High-Performance Electrocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1902845. [PMID: 31539208 DOI: 10.1002/smll.201902845] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/30/2019] [Indexed: 06/10/2023]
Abstract
The production of H2 O2 via the electrochemical oxygen reduction reaction (ORR) presents an attractive decentralized alternative to the current industry-dominant anthraquinone process. However, in order to achieve viable commercialization of this process, a state-of-the-art electrocatalyst exhibiting high activity, selectivity, and long-term stability is imperative for industrial applications. Herein, an in-depth discussion on the current frontiers in electrocatalyst design is provided, emphasizing the influences of electronic and geometric effects, surface structure, and the effects of heteroatom functionalization on the catalytic performance of commonly studied materials (metals, alloys, carbons). The limitations on the performance of the current catalyst materials are also discussed, together with alternative strategies to overcome the impediments. Finally, directions of future research efforts for the discovery of next-generation ORR electrocatalysts are highlighted.
Collapse
Affiliation(s)
- Jiayi Zhang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Haochen Zhang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Mu-Jeng Cheng
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Qi Lu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
113
|
Yeddala M, Thakur P, A A, Narayanan TN. Electrochemically derived functionalized graphene for bulk production of hydrogen peroxide. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:432-442. [PMID: 32215230 PMCID: PMC7082696 DOI: 10.3762/bjnano.11.34] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
On-site peroxide generation via electrochemical reduction is gaining tremendous attention due to its importance in many fields, including water treatment technologies. Oxidized graphitic carbon-based materials have been recently proposed as an alternative to metal-based catalysts in the electrochemical oxygen reduction reaction (ORR), and in this work we unravel the role of C=O groups in graphene towards sustainable peroxide formation. We demonstrate a versatile single-step electrochemical exfoliation of graphite to graphene with a controllable degree of oxygen functionalities and thickness, leading to the formation of large quantities of functionalized graphene with tunable rate parameters, such as the rate constant and exchange current density. Higher oxygen-containing exfoliated graphene is known to undergo a two-electron reduction path in ORR having an efficiency of about 80 ± 2% even at high overpotential. Bulk production of H2O2 via electrolysis was also demonstrated at low potential (0.358 mV vs RHE), yielding ≈34 mg/L peroxide with highly functionalized (≈23 atom %) graphene and ≈16 g/L with low functionalized (≈13 atom %) graphene, which is on par with the peroxide production using state-of-the-art precious-metal-based catalysts. Hence this method opens a new scheme for the single-step large-scale production of functionalized carbon-based catalysts (yield ≈45% by weight) that have varying functionalities and can deliver peroxide via the electrochemical ORR process.
Collapse
Affiliation(s)
- Munaiah Yeddala
- Tata Institute of Fundamental Research - Hyderabad, Sy. No. 36/P, Gopanapally Village, Serilingampally Mandal, Hyderabad 500107, India
| | - Pallavi Thakur
- Tata Institute of Fundamental Research - Hyderabad, Sy. No. 36/P, Gopanapally Village, Serilingampally Mandal, Hyderabad 500107, India
| | - Anugraha A
- Tata Institute of Fundamental Research - Hyderabad, Sy. No. 36/P, Gopanapally Village, Serilingampally Mandal, Hyderabad 500107, India
| | - Tharangattu N Narayanan
- Tata Institute of Fundamental Research - Hyderabad, Sy. No. 36/P, Gopanapally Village, Serilingampally Mandal, Hyderabad 500107, India
| |
Collapse
|
114
|
Zhang B, Xu W, Lu Z, Sun J. Recent Progress on Carbonaceous Material Engineering for Electrochemical Hydrogen Peroxide Generation. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s12209-020-00240-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AbstractElectrochemical synthesis of hydrogen peroxide (H2O2) provides a clean and safe technology for large-scale H2O2 production. The core of this project is the development of highly active and highly selective catalysts. Recent studies demonstrate that carbonaceous materials are favorable catalysts because of their low-cost and tunable surface structures. This brief review first summarizes the strategies of carbonaceous material engineering for selective two-electron O2 reduction reaction and discusses potential mechanisms. In addition, several device designs using carbonaceous materials as catalysts for H2O2 production are introduced. Finally, research directions are proposed for practical application and performance improvement.
Collapse
|
115
|
Qin M, Fan S, Wang L, Gan G, Wang X, Cheng J, Hao Z, Li X. Oxygen and nitrogen co-doped ordered mesoporous carbon materials enhanced the electrochemical selectivity of O2 reduction to H2O2. J Colloid Interface Sci 2020; 562:540-549. [DOI: 10.1016/j.jcis.2019.11.080] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 11/26/2022]
|
116
|
Wang C, Gu Y, Wu S, Yu H, Chen S, Su Y, Guo Y, Wang X, Chen H, Kang W, Quan X. Construction of a Microchannel Electrochemical Reactor with a Monolithic Porous-Carbon Cathode for Adsorption and Degradation of Organic Pollutants in Several Minutes of Retention Time. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1920-1928. [PMID: 31917552 DOI: 10.1021/acs.est.9b06266] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A monolithic porous-carbon (MPC) electrode was fabricated to simultaneously intensify mass transfer and enhance reaction activity. The MPC involved channel arrays (about 50 μm of diameter for each channel) with mesopores and micropores in channel walls. The abundant surface pores may improve the reaction efficiency of the reduction of O2 to produce H2O2 and •OH. The function of channel arrays was to shorten the mass-transfer distance not only from O2 to the electrode surface but also from pollutants to the electrode surface and •OH. A microchannel electrochemical reactor was assembled to evaluate the performance of the MPC cathode. For 20 mg/L of phenol, sulfamethoxazole or atrazine, effluent concentration and total organic carbon (TOC) decreased down to 1.5 and 3 mg/L, respectively, in a retention time of only 100-300 s. Phenol removal was dominated by the MPC cathode, and the contribution of cathodic adsorption, cathodic degradation, and anodic reaction was 46, 33, and 8%, respectively. The proper working potential for the MPC cathode was +0.26 to +0.6 V versus reversible hydrogen electrode; in this potential range, no scaling was observed. For the real surface water (the initial TOC was 41.5 mg/L), TOC in effluent (the retention time was 335 s) was stable at 31.0 mg/L.
Collapse
Affiliation(s)
- Chunna Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Yuwei Gu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Shuai Wu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Hongtao Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Shuo Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Yan Su
- Faculty of Chemical, Environmental and Biological Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Yunfei Guo
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Xiaoting Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Hui Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Wenda Kang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| |
Collapse
|
117
|
Cao P, Quan X, Zhao K, Chen S, Yu H, Niu J. Selective electrochemical H 2O 2 generation and activation on a bifunctional catalyst for heterogeneous electro-Fenton catalysis. JOURNAL OF HAZARDOUS MATERIALS 2020; 382:121102. [PMID: 31518772 DOI: 10.1016/j.jhazmat.2019.121102] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/22/2019] [Accepted: 08/25/2019] [Indexed: 06/10/2023]
Abstract
Heterogeneous electro-Fenton is attractive for pollutants removal, where H2O2 is in-situ generated and simultaneously activated to ·OH at the cathodic catalyst. However, the heterogeneous electro-Fenton efficiency is limited by low H2O2 production and slow Fe(II) regeneration, which can be improved by tuning oxygen reduction selectivity and facilitating electron transfer to Fe(III) centers. Herein, we designed a bifunctional catalyst with FeOx nanoparticles embedded into N-doped hierarchically porous carbon (FeOx/NHPC). The activity and selectivity for H2O2 production were improved by regulating N doping configurations and contents. The obtained FeOx/NHPC750 presented high catalytic activity for H2O2 production with a low overpotential of 190 mV and high H2O2 selectivity of 95%˜98% at -0.3 V to -0.8 V. The Fe(II) regeneration was enhanced by the strong interfacial interaction between FeOx and N-doped porous carbon support, which leaded to a rapid decomposition of H2O2 into ·OH. FeOx/NHPC750 exhibited excellent electro-Fenton performance for the degradation and mineralization of phenol, sulfamethoxazole, atrazine, rhodamine B and 2,4-dichlorophenol in neutral reaction solution. This study offered a new strategy to construct an efficient and durable bifunctional catalyst for heterogeneous electro-Fenton system for advanced treatment of refractory wastewater.
Collapse
Affiliation(s)
- Peike Cao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Kun Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shuo Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hongtao Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Junfeng Niu
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| |
Collapse
|
118
|
Xia C, Back S, Ringe S, Jiang K, Chen F, Sun X, Siahrostami S, Chan K, Wang H. Confined local oxygen gas promotes electrochemical water oxidation to hydrogen peroxide. Nat Catal 2020. [DOI: 10.1038/s41929-019-0402-8] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
119
|
Zhao X, Li A, Quan X, Chen S, Yu H, Zhang S. Efficient electrochemical reduction of nitrobenzene by nitrogen doped porous carbon. CHEMOSPHERE 2020; 238:124636. [PMID: 31470308 DOI: 10.1016/j.chemosphere.2019.124636] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/21/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
Electrochemical reduction process is a promising method for wastewater treatment, and its performance is determined by cathode material. Nitrogen doped carbon is a kind of favorable cathode material for electrochemical reduction, but deep understanding for the effect of nitrogen concentration and reduction pathway is still needed. In this paper, nitrogen doped porous carbon (NPC) with different nitrogen concentration were fabricated by directly carbonization of ZIF-8 under various temperatures. The electrochemical reduction performance of NPCs was evaluated by reducing nitrobenzene (NB), and the effects of nitrogen concentration were discussed. NPC with 22.7% nitrogen concentration exhibited the best NB reduction performance with the NB removal constant about 1.0 h-1 under optimal conditions; the NB removal rate and aniline (AN) production on this NPC are 4.2 and 8.5 times higher than graphite electrode. Further H* quenching experiment indicates the NPC electrochemical reduction process mainly following an indirect hydrogenation reduction pathway. These results offer some insights into the electrochemical reduction process on nitrogen doped carbon, which may facilitate the design of efficient metal free carbon based catalyst for wastewater electrochemical pretreatment.
Collapse
Affiliation(s)
- Xueyang Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education China, School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Ailin Li
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education China, School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education China, School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China.
| | - Shuo Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education China, School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Hongtao Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education China, School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Shushen Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education China, School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| |
Collapse
|
120
|
Paz EC, Pinheiro VS, Joca JFS, de Souza RAS, Gentil TC, Lanza MRV, de Oliveira HPM, Neto AMP, Gaubeur I, Santos MC. Removal of Orange II (OII) dye by simulated solar photoelectro-Fenton and stability of WO 2.72/Vulcan XC72 gas diffusion electrode. CHEMOSPHERE 2020; 239:124670. [PMID: 31505441 DOI: 10.1016/j.chemosphere.2019.124670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/23/2019] [Accepted: 08/24/2019] [Indexed: 06/10/2023]
Abstract
The objectives of this study were to determine the viability of removing Orange II (OII) dye by simulated solar photoelectro-Fenton (SSPEF) and to evaluate the stability of a WO2.72/Vulcan XC72 gas diffusion electrode (GDE) and thus determine its best operating parameters. The GDE cathode was combined with a BDD anode for decolorization and mineralization of 350 mL of 0.26 mM OII by anodic oxidation with electrogenerated H2O2 (AO-H2O2), electro-Fenton (EF) and photoelectro-Fenton (PEF) at 100, 150 and 200 mA cm-2 and SSPEF at 150 mA cm-2. The GDE showed successful operation for electrogeneration, good reproducibility and low leaching of W. Decolorization and OII decay were directly proportional to the current density (j). AO-H2O2 had a reduced performance that was only half of the SSPEF, PEF and EF treatments. The mineralization efficiency was in the following order: AO-H2O2 < EF < PEF ≈ SSPEF. This showed that the GDE, BDD anode and light radiation combination was advantageous and indicated that the SSPEF process is promising with both a lower cost than using UV lamps and simulating solar photoelectro-Fenton process. The PEF process with the lowest j (100 mA cm-2) showed the best performance-mineralization current efficiency.
Collapse
Affiliation(s)
- Edson C Paz
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal Do ABC (UFABC), Rua Santa Adélia, 166, CEP 09.210-170, Santo André, SP, Brazil; Instituto Federal de Educação, Ciência e Tecnologia Do Maranhão (IFMA), Campus Açailândia, R. Projetada, s/n, CEP 65.930-000, Açailândia, MA, Brazil
| | - Victor S Pinheiro
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal Do ABC (UFABC), Rua Santa Adélia, 166, CEP 09.210-170, Santo André, SP, Brazil
| | - Jhonny Frank Sousa Joca
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal Do ABC (UFABC), Rua Santa Adélia, 166, CEP 09.210-170, Santo André, SP, Brazil
| | - Rafael Augusto Sotana de Souza
- Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas (CECS), Universidade Federal Do ABC (UFABC), Rua Santa Adélia, 166, CEP 09.210-170, Santo André, SP, Brazil
| | - Tuani C Gentil
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal Do ABC (UFABC), Rua Santa Adélia, 166, CEP 09.210-170, Santo André, SP, Brazil
| | - Marcos R V Lanza
- Instituto de Química de São Carlos (IQSC), Universidade de São Paulo (USP), Caixa Postal, 780, CEP 13.566-590, São Carlos, SP, Brazil; Instituto Nacional de Tecnologias Alternativas Para Detecção, Avaliação Toxicológica e Remoção de Micropoluentes e Radioativos (INCT-DATREM), Instituto de Química, UNESP, CEP 14800-900, Araraquara, SP, Brazil
| | - Hueder Paulo Moisés de Oliveira
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal Do ABC (UFABC), Rua Santa Adélia, 166, CEP 09.210-170, Santo André, SP, Brazil
| | - Ana Maria Pereira Neto
- Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas (CECS), Universidade Federal Do ABC (UFABC), Rua Santa Adélia, 166, CEP 09.210-170, Santo André, SP, Brazil
| | - Ivanise Gaubeur
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal Do ABC (UFABC), Rua Santa Adélia, 166, CEP 09.210-170, Santo André, SP, Brazil
| | - Mauro C Santos
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal Do ABC (UFABC), Rua Santa Adélia, 166, CEP 09.210-170, Santo André, SP, Brazil.
| |
Collapse
|
121
|
Sun X, Ding R. Recent progress with electrocatalysts for urea electrolysis in alkaline media for energy-saving hydrogen production. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02618e] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Urea electrolysis is a promising energy-saving avenue for hydrogen production owing to the low cell voltage, wastewater remediation and abundant electrocatalysts.
Collapse
Affiliation(s)
- Xiujuan Sun
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education
- College of Chemistry
- Xiangtan University (XTU)
- Xiangtan
- P.R. China
| | - Rui Ding
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education
- College of Chemistry
- Xiangtan University (XTU)
- Xiangtan
- P.R. China
| |
Collapse
|
122
|
Sun Y, Han L, Strasser P. A comparative perspective of electrochemical and photochemical approaches for catalytic H2O2 production. Chem Soc Rev 2020; 49:6605-6631. [DOI: 10.1039/d0cs00458h] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent advances in the design, preparation, and applications of different catalysts for electrochemical and photochemical H2O2 production are summarized, and some invigorating perspectives for future developments are also provided.
Collapse
Affiliation(s)
- Yanyan Sun
- Department of Chemistry
- Technical University of Berlin
- 10623 Berlin
- Germany
| | - Lei Han
- College of Materials Science and Engineering
- Hunan University
- Changsha
- China
| | - Peter Strasser
- Department of Chemistry
- Technical University of Berlin
- 10623 Berlin
- Germany
| |
Collapse
|
123
|
Muddemann T, Haupt D, Sievers M, Kunz U. Electrochemical Reactors for Wastewater Treatment. CHEMBIOENG REVIEWS 2019. [DOI: 10.1002/cben.201900021] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Thorben Muddemann
- Clausthal University of TechnologyInstitute of Chemical and Electrochemical Process Engineering Leibnizstrasse 17 38678 Clausthal-Zellerfeld Germany
| | - Dennis Haupt
- Clausthal University of TechnologyCUTEC Clausthal Research Center for Environmental Technologies Leibnizstrasse 23 38678 Clausthal Germany
| | - Michael Sievers
- Clausthal University of TechnologyCUTEC Clausthal Research Center for Environmental Technologies Leibnizstrasse 23 38678 Clausthal Germany
| | - Ulrich Kunz
- Clausthal University of TechnologyInstitute of Chemical and Electrochemical Process Engineering Leibnizstrasse 17 38678 Clausthal-Zellerfeld Germany
| |
Collapse
|
124
|
Zhao K, Quan X, Chen S, Yu H, Zhao J. Preparation of fluorinated activated carbon for electro-Fenton treatment of organic pollutants in coking wastewater: The influences of oxygen-containing groups. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.05.058] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
125
|
Zhao Q, An J, Wang S, Qiao Y, Liao C, Wang C, Wang X, Li N. Superhydrophobic Air-Breathing Cathode for Efficient Hydrogen Peroxide Generation through Two-Electron Pathway Oxygen Reduction Reaction. ACS APPLIED MATERIALS & INTERFACES 2019; 11:35410-35419. [PMID: 31465198 DOI: 10.1021/acsami.9b09942] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Electrochemical catalysis of carbon-based material via two-electron pathway oxygen reduction reaction (ORR) offers great potential for in situ hydrogen peroxide (H2O2) production. In this work, we tuned catalyst mesostructure and hydrophilicity/hydrophobicity by adjusting polytetrafluoroethylene (PTFE) content in graphite/carbon black/PTFE hybrid catalyst layer (CL), aimed to improving the two-electron ORR activity for efficient H2O2 generation. As the only superhydrophobic CL with initiating contact angles of 141.11°, PTFE0.57 obtained the highest H2O2 yield of 3005 ± 58 mg L-1 h-1 (at 25 mA cm-2) and highest current efficiency (CE) of 84% (at 20 mA cm-2). Rotating ring disk electrode (RRDE) results demonstrated that less PTFE content in CLs results in less electrons transferred and better selectivity toward two-electron ORR. Though the highest H2 concentration (2 μmol L-1 at 25 mA cm-2) was monitored from PTFE0.57 which contained the lowest PTFE, the CE decreased inversely with increasing content of PTFE, which proved that the H2O2 decomposition reaction was the major side reaction. Higher PTFE content increased the hydrophilicity of CL for excessive H+ and insufficient O2 diffusion, which induced H2O2 decomposition into H2O. Simultaneously, the electroactive surface area of CLs decreased with higher PTFE content, from 0.0041 m2 g-1 of PTFE0.57 to 0.0019 m2 g-1 of PTFE4.56. Besides, higher PTFE content in CL leads to the increase of total impedance (from 14.5 Ω of PTFE0.57 to 18.3 Ω of PTFE4.56), which further hinders the electron transfer and ORR activity.
Collapse
Affiliation(s)
- Qian Zhao
- Tianjin Key Lab Indoor Air Environmental Quality Control, School of Environmental Science and Engineering , Tianjin University , No. 92 Weijin Road, Nankai District , Tianjin 300072 , China
| | - Jingkun An
- Tianjin Key Lab Indoor Air Environmental Quality Control, School of Environmental Science and Engineering , Tianjin University , No. 92 Weijin Road, Nankai District , Tianjin 300072 , China
| | - Shu Wang
- Tianjin Key Lab Indoor Air Environmental Quality Control, School of Environmental Science and Engineering , Tianjin University , No. 92 Weijin Road, Nankai District , Tianjin 300072 , China
| | - Yujie Qiao
- Tianjin Key Lab Indoor Air Environmental Quality Control, School of Environmental Science and Engineering , Tianjin University , No. 92 Weijin Road, Nankai District , Tianjin 300072 , China
| | - Chengmei Liao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control , Nankai University , No. 38 Tongyan Road, Jinnan District , Tianjin 300350 , China
| | - Cong Wang
- Tianjin Key Lab Indoor Air Environmental Quality Control, School of Environmental Science and Engineering , Tianjin University , No. 92 Weijin Road, Nankai District , Tianjin 300072 , China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control , Nankai University , No. 38 Tongyan Road, Jinnan District , Tianjin 300350 , China
| | - Nan Li
- Tianjin Key Lab Indoor Air Environmental Quality Control, School of Environmental Science and Engineering , Tianjin University , No. 92 Weijin Road, Nankai District , Tianjin 300072 , China
| |
Collapse
|
126
|
Liao M, Wang Y, Li S, Li J, Chen P. Electrocatalyst Derived from Abundant Biomass and its Excellent Activity for In Situ H
2
O
2
Production. ChemElectroChem 2019. [DOI: 10.1002/celc.201901321] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Min‐Ji Liao
- School of Chemistry and Chemical EngineeringAnhui University Hefei, Anhui 230601 P. R. China
| | - Yun‐Lu Wang
- School of Chemistry and Chemical EngineeringAnhui University Hefei, Anhui 230601 P. R. China
| | - Shi‐Song Li
- School of Chemistry and Chemical EngineeringAnhui University Hefei, Anhui 230601 P. R. China
| | - Jiang‐Feng Li
- Department of ChemistryLishui University Lishui 323000 P. R. China
| | - Ping Chen
- School of Chemistry and Chemical EngineeringAnhui University Hefei, Anhui 230601 P. R. China
- Anhui UniversityInstitute of Physical Science and Information Technology Hefei, Anhui 230601 P. R. China
- Anhui Province Key Laboratory of Chemistry for Inorganic/OrganicHybrid Functionalized Materials Anhui 230601 P. R. China
| |
Collapse
|
127
|
|
128
|
Zhang HX, Yang SC, Wang YL, Xi JC, Huang JC, Li JF, Chen P, Jia R. Electrocatalyst derived from fungal hyphae and its excellent activity for electrochemical production of hydrogen peroxide. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.04.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
129
|
Zhou W, Meng X, Gao J, Alshawabkeh AN. Hydrogen peroxide generation from O 2 electroreduction for environmental remediation: A state-of-the-art review. CHEMOSPHERE 2019; 225:588-607. [PMID: 30903840 PMCID: PMC6921702 DOI: 10.1016/j.chemosphere.2019.03.042] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 05/12/2023]
Abstract
The electrochemical production of hydrogen peroxide (H2O2) by 2-electron oxygen reduction reaction (ORR) is an attractive alternative to the present complex anthraquinone process. The objective of this paper is to provide a state-of-the-arts review of the most important aspects of this process. First, recent advances in H2O2 production are reviewed and the advantages of H2O2 electrogeneration via 2-electron ORR are highlighted. Second, the selectivity of the ORR pathway towards H2O2 formation as well as the development process of H2O2 production are presented. The cathode characteristics are the decisive factors of H2O2 production. Thus the focus is shifted to the introduction of commonly used carbon cathodes and their modification methods, including the introduction of other active carbon materials, hetero-atoms doping (i.e., O, N, F, B, and P) and decoration with metal oxides. Cathode stability is evaluated due to its significance for long-term application. Effects of various operational parameters, such as electrode potential/current density, supporting electrolyte, electrolyte pH, temperature, dissolved oxygen, and current mode on H2O2 production are then discussed. Additionally, the environmental application of electrogenerated H2O2 on aqueous and gaseous contaminants removal, including dyes, pesticides, herbicides, phenolic compounds, drugs, VOCs, SO2, NO, and Hg0, are described. Finally, a brief conclusion about the recent progress achieved in H2O2 electrogeneration via 2-electron ORR and an outlook on future research challenges are proposed.
Collapse
Affiliation(s)
- Wei Zhou
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 PR China; Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Xiaoxiao Meng
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 PR China
| | - Jihui Gao
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 PR China.
| | - Akram N Alshawabkeh
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
130
|
Zhou W, Rajic L, Meng X, Nazari R, Zhao Y, Wang Y, Gao J, Qin Y, Alshawabkeh AN. Efficient H 2O 2 electrogeneration at graphite felt modified via electrode polarity reversal: Utilization for organic pollutants degradation. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2019; 364:428-439. [PMID: 32581640 PMCID: PMC7314056 DOI: 10.1016/j.cej.2019.01.175] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Electrochemical synthesis of H2O2 offers a great potential for water treatment. However, a significant challenge is the development of efficient cathode materials for the process. Herein, we implement a practical electrochemical cathode modification to support efficient H2O2 electrogeneration via the reduction of dissolved anodic O2. Graphite felt (GF) is in situ anodically modified by electrode polarity reversal technique in an acid-free, low-conductivity electrolyte. The modified GF exhibits a significantly higher activity towards O2 reduction. Up to 183.3% higher H2O2 yield is obtained by the anodized GF due to the increased concentrations of oxygen-containing groups and the hydrophilicity of the surface, which facilitates electron and mass transfer between GF and the electrolyte. Another significant finding is the ability to produce H2O2 at a high yield under neutral pH and low current intensity by the modified GF (35% of the charge need to produce the same amount by unmodified GF). Long-term stability testing of the modified GF showed a decay in the electrode's activity for H2O2 production after 30 consecutive applications. However, the electrode regained its optimal activity for H2O2 production after a secondary modification by electrode polarity reversal. Finally, in situ electrochemically modified GF is more effective for removal of reactive blue 19 (RB19, 20 mg/L) and ibuprofen (IBP, 10 mg/L) by the electro-Fenton process. The modified GF removed 62.7% of RB19 compared to only 28.1% by the unmodified GF in batch reactors after 50 min. Similarly, 75.3% IBP is removed by the modified GF compared to 57.6% by the unmodified GF in a flow-through reactor after 100 min.
Collapse
Affiliation(s)
- Wei Zhou
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
- Department of Civil and Environmental Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Ljiljana Rajic
- Pioneer Valley Coral and Natural Science Institute, 1 Mill Valley Road, Hadley, MA 01035, USA
| | - Xiaoxiao Meng
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Roya Nazari
- Department of Civil and Environmental Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Yuwei Zhao
- Department of Civil and Environmental Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Yan Wang
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Jihui Gao
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Yukun Qin
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Akram N. Alshawabkeh
- Department of Civil and Environmental Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
131
|
Muddemann T, Haupt D, Sievers M, Kunz U. Elektrochemische Reaktoren für die Wasserbehandlung. CHEM-ING-TECH 2019. [DOI: 10.1002/cite.201800193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Thorben Muddemann
- Technische Universität ClausthalInstitut für Chemische und Elektrochemische Verfahrenstechnik Leibnizstraße 17 38678 Clausthal-Zellerfeld Deutschland
| | - Dennis Haupt
- Technische Universität ClausthalClausthaler Umwelttechnik Forschungszentrum Leibnizstraße 23 38678 Clausthal-Zellerfeld Deutschland
| | - Michael Sievers
- Technische Universität ClausthalClausthaler Umwelttechnik Forschungszentrum Leibnizstraße 23 38678 Clausthal-Zellerfeld Deutschland
| | - Ulrich Kunz
- Technische Universität ClausthalInstitut für Chemische und Elektrochemische Verfahrenstechnik Leibnizstraße 17 38678 Clausthal-Zellerfeld Deutschland
| |
Collapse
|
132
|
Sun Y, Li S, Jovanov ZP, Bernsmeier D, Wang H, Paul B, Wang X, Kühl S, Strasser P. Structure, Activity, and Faradaic Efficiency of Nitrogen-Doped Porous Carbon Catalysts for Direct Electrochemical Hydrogen Peroxide Production. CHEMSUSCHEM 2018; 11:3388-3395. [PMID: 30102456 DOI: 10.1002/cssc.201801583] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/12/2018] [Indexed: 06/08/2023]
Abstract
Carbon materials doped with nitrogen are active catalysts for the electrochemical two-electron oxygen reduction reaction (ORR) to hydrogen peroxide. Insights into the individual role of the various chemical nitrogen functionalities in the H2 O2 production, however, have remained scarce. Here, we explore a catalytically very active family of nitrogen-doped porous carbon materials, prepared by direct pyrolysis of ordered mesoporous carbon (CMK-3) with polyethylenimine (PEI). Voltammetric rotating ring-disk analysis in combination with chronoamperometric bulk electrolysis measurements in electrolysis cells demonstrate a pronounced effect of the applied potentials, current densities, and electrolyte pH on the H2 O2 selectivity and absolute production rates. H2 O2 selectivity up to 95.3 % was achieved in acidic environment, whereas the largest H2 O2 production rate of 570.1 mmol g-1 catalyst h-1 was observed in neutral solution. X-ray photoemission spectroscopy (XPS) analysis suggests a key mechanistic role of pyridinic-N in the catalytic process in acid, whereas graphitic-N groups appear to be catalytically active moieties in neutral and alkaline conditions. Our results contribute to the understanding and aid the rational design of efficient carbon-based H2 O2 production catalysts.
Collapse
Affiliation(s)
- Yanyan Sun
- Department of Chemistry, Chemical Engineering Division, Technical University of Berlin, 10623, Berlin, Germany
| | - Shuang Li
- Department of Chemistry, Chemical Engineering Division, Technical University of Berlin, 10623, Berlin, Germany
| | - Zarko Petar Jovanov
- Department of Chemistry, Chemical Engineering Division, Technical University of Berlin, 10623, Berlin, Germany
| | - Denis Bernsmeier
- Department of Chemistry, Chemical Engineering Division, Technical University of Berlin, 10623, Berlin, Germany
| | - Huan Wang
- Department of Chemistry, Chemical Engineering Division, Technical University of Berlin, 10623, Berlin, Germany
| | - Benjamin Paul
- Department of Chemistry, Chemical Engineering Division, Technical University of Berlin, 10623, Berlin, Germany
| | - Xingli Wang
- Department of Chemistry, Chemical Engineering Division, Technical University of Berlin, 10623, Berlin, Germany
| | - Stefanie Kühl
- Department of Chemistry, Chemical Engineering Division, Technical University of Berlin, 10623, Berlin, Germany
| | - Peter Strasser
- Department of Chemistry, Chemical Engineering Division, Technical University of Berlin, 10623, Berlin, Germany
| |
Collapse
|
133
|
He Z, Chen J, Chen Y, Makwarimba CP, Huang X, Zhang S, Chen J, Song S. An activated carbon fiber-supported graphite carbon nitride for effective electro-Fenton process. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.04.195] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
134
|
Gurusamy T, Gayathri P, Mandal S, Ramanujam K. Redox-Active Copper-Benzotriazole Stacked Multiwalled Carbon Nanotubes for the Oxygen Reduction Reaction. ChemElectroChem 2018. [DOI: 10.1002/celc.201800110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | - Sudip Mandal
- Department of Chemistry; IIT Madras; Chennai 600 036 India
| | | |
Collapse
|