101
|
Weids AJ, Ibstedt S, Tamás MJ, Grant CM. Distinct stress conditions result in aggregation of proteins with similar properties. Sci Rep 2016; 6:24554. [PMID: 27086931 PMCID: PMC4834537 DOI: 10.1038/srep24554] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/23/2016] [Indexed: 12/14/2022] Open
Abstract
Protein aggregation is the abnormal association of proteins into larger aggregate structures which tend to be insoluble. This occurs during normal physiological conditions and in response to age or stress-induced protein misfolding and denaturation. In this present study we have defined the range of proteins that aggregate in yeast cells during normal growth and after exposure to stress conditions including an oxidative stress (hydrogen peroxide), a heavy metal stress (arsenite) and an amino acid analogue (azetidine-2-carboxylic acid). Our data indicate that these three stress conditions, which work by distinct mechanisms, promote the aggregation of similar types of proteins probably by lowering the threshold of protein aggregation. The proteins that aggregate during physiological conditions and stress share several features; however, stress conditions shift the criteria for protein aggregation propensity. This suggests that the proteins in aggregates are intrinsically aggregation-prone, rather than being proteins which are affected in a stress-specific manner. We additionally identified significant overlaps between stress aggregating yeast proteins and proteins that aggregate during ageing in yeast and C. elegans. We suggest that similar mechanisms may apply in disease- and non-disease settings and that the factors and components that control protein aggregation may be evolutionary conserved.
Collapse
Affiliation(s)
- Alan J Weids
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - Sebastian Ibstedt
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-405 30 Gothenburg, Sweden
| | - Markus J Tamás
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-405 30 Gothenburg, Sweden
| | - Chris M Grant
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
102
|
Abstract
Despite major efforts devoted to understanding the phenomenon of prion transmissibility, it is still poorly understood how this property is encoded in the amino acid sequence. In recent years, experimental data on yeast prion domains allow to start at least partially decrypting the sequence requirements of prion formation. These experiments illustrate the need for intrinsically disordered sequence regions enriched with a particularly high proportion of glutamine and asparagine. Bioinformatic analysis suggests that these regions strike a balance between sufficient amyloid nucleation propensity on the one hand and disorder on the other, which ensures availability of the amyloid prone regions but entropically prevents unwanted nucleation and facilitates brittleness required for propagation.
Collapse
Affiliation(s)
- Raimon Sabate
- a Departament de Fisicoquímica ; Facultat de Farmàcia; and Institut de Nanociència i Nanotecnologia (IN2UB); Universitat de Barcelona ; Barcelona , Spain
| | | | | | | | | |
Collapse
|
103
|
Ensemble Modeling and Intracellular Aggregation of an Engineered Immunoglobulin-Like Domain. J Mol Biol 2016; 428:1365-1374. [DOI: 10.1016/j.jmb.2016.02.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/28/2016] [Accepted: 02/12/2016] [Indexed: 11/21/2022]
|
104
|
Structural hot spots for the solubility of globular proteins. Nat Commun 2016; 7:10816. [PMID: 26905391 PMCID: PMC4770091 DOI: 10.1038/ncomms10816] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 01/25/2016] [Indexed: 12/25/2022] Open
Abstract
Natural selection shapes protein solubility to physiological requirements and recombinant applications that require higher protein concentrations are often problematic. This raises the question whether the solubility of natural protein sequences can be improved. We here show an anti-correlation between the number of aggregation prone regions (APRs) in a protein sequence and its solubility, suggesting that mutational suppression of APRs provides a simple strategy to increase protein solubility. We show that mutations at specific positions within a protein structure can act as APR suppressors without affecting protein stability. These hot spots for protein solubility are both structure and sequence dependent but can be computationally predicted. We demonstrate this by reducing the aggregation of human α-galactosidase and protective antigen of Bacillus anthracis through mutation. Our results indicate that many proteins possess hot spots allowing to adapt protein solubility independently of structure and function. Mutations in aggregation prone regions of recombinant proteins often improve their solubility, although they might cause negative effects on their structure and function. Here, the authors identify proteins hot spots that can be exploited to optimize solubility without compromising stability.
Collapse
|
105
|
Aguilera P, Marcoleta A, Lobos-Ruiz P, Arranz R, Valpuesta JM, Monasterio O, Lagos R. Identification of Key Amino Acid Residues Modulating Intracellular and In vitro Microcin E492 Amyloid Formation. Front Microbiol 2016; 7:35. [PMID: 26858708 PMCID: PMC4729943 DOI: 10.3389/fmicb.2016.00035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/11/2016] [Indexed: 12/30/2022] Open
Abstract
Microcin E492 (MccE492) is a pore-forming bacteriocin produced and exported by Klebsiella pneumoniae RYC492. Besides its antibacterial activity, excreted MccE492 can form amyloid fibrils in vivo as well as in vitro. It has been proposed that bacterial amyloids can be functional playing a biological role, and in the particular case of MccE492 it would control the antibacterial activity. MccE492 amyloid fibril's morphology and formation kinetics in vitro have been well-characterized, however, it is not known which amino acid residues determine its amyloidogenic propensity, nor if it forms intracellular amyloid inclusions as has been reported for other bacterial amyloids. In this work we found the conditions in which MccE492 forms intracellular amyloids in Escherichia coli cells, that were visualized as round-shaped inclusion bodies recognized by two amyloidophilic probes, 2-4'-methylaminophenyl benzothiazole and thioflavin-S. We used this property to perform a flow cytometry-based assay to evaluate the aggregation propensity of MccE492 mutants, that were designed using an in silico prediction of putative aggregation hotspots. We established that the predicted amino acid residues 54-63, effectively act as a pro-amyloidogenic stretch. As in the case of other amyloidogenic proteins, this region presented two gatekeeper residues (P57 and P59), which disfavor both intracellular and in vitro MccE492 amyloid formation, preventing an uncontrolled aggregation. Mutants in each of these gatekeeper residues showed faster in vitro aggregation and bactericidal inactivation kinetics, and the two mutants were accumulated as dense amyloid inclusions in more than 80% of E. coli cells expressing these variants. In contrast, the MccE492 mutant lacking residues 54-63 showed a significantly lower intracellular aggregation propensity and slower in vitro polymerization kinetics. Electron microscopy analysis of the amyloids formed in vitro by these mutants revealed that, although with different efficiency, all formed fibrils morphologically similar to wild-type MccE492. The physiological implication of MccE492 intracellular amyloid formation is probably similar to the inactivation process observed for extracellular amyloids, and could be used as a mean of sequestering potentially toxic species inside the cell when this bacteriocin is produced in large amounts.
Collapse
Affiliation(s)
- Paulina Aguilera
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile Santiago, Chile
| | - Andrés Marcoleta
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile Santiago, Chile
| | - Pablo Lobos-Ruiz
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile Santiago, Chile
| | - Rocío Arranz
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - José M Valpuesta
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Octavio Monasterio
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile Santiago, Chile
| | - Rosalba Lagos
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile Santiago, Chile
| |
Collapse
|
106
|
Ventura S. Curing bacterial infections with protein aggregates. Mol Microbiol 2016; 99:827-30. [PMID: 26714186 DOI: 10.1111/mmi.13293] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2015] [Indexed: 12/14/2022]
Abstract
A growing number of human diseases seem to be associated with protein misfolding and deposition into aggregates. Bednarska and colleagues exploit the cytotoxic nature of protein aggregates to target bacterial infections. Protein aggregation is at the same time generic and sequence dependent; this allowed the authors to develop novel aggregation-prone antimicrobial peptides that penetrate bacteria and induce a peptide specific proteostatic collapse that leads to fast bacterial death, without any observable effects on host cells. The applicability of this intriguing strategy was demonstrated by curing animal models from bacterial sepsis. Although the precise mechanisms underlying the bactericidal activity of the peptide aggregates are still not clear, there is no doubt that this approach offers an exciting therapeutic alternative to conventional antibiotics.
Collapse
Affiliation(s)
- Salvador Ventura
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193-, Bellaterra, (Barcelona), Spain
| |
Collapse
|
107
|
Pashley CL, Hewitt EW, Radford SE. Comparison of the aggregation of homologous β2-microglobulin variants reveals protein solubility as a key determinant of amyloid formation. J Mol Biol 2016; 428:631-643. [PMID: 26780548 PMCID: PMC4773402 DOI: 10.1016/j.jmb.2016.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/06/2016] [Accepted: 01/12/2016] [Indexed: 10/30/2022]
Abstract
The mouse and human β2-microglobulin protein orthologs are 70% identical in sequence and share 88% sequence similarity. These proteins are predicted by various algorithms to have similar aggregation and amyloid propensities. However, whilst human β2m (hβ2m) forms amyloid-like fibrils in denaturing conditions (e.g. pH2.5) in the absence of NaCl, mouse β2m (mβ2m) requires the addition of 0.3M NaCl to cause fibrillation. Here, the factors which give rise to this difference in amyloid propensity are investigated. We utilise structural and mutational analyses, fibril growth kinetics and solubility measurements under a range of pH and salt conditions, to determine why these two proteins have different amyloid propensities. The results show that, although other factors influence the fibril growth kinetics, a striking difference in the solubility of the proteins is a key determinant of the different amyloidogenicity of hβ2m and mβ2m. The relationship between protein solubility and lag time of amyloid formation is not captured by current aggregation or amyloid prediction algorithms, indicating a need to better understand the role of solubility on the lag time of amyloid formation. The results demonstrate the key contribution of protein solubility in determining amyloid propensity and lag time of amyloid formation, highlighting how small differences in protein sequence can have dramatic effects on amyloid formation.
Collapse
Affiliation(s)
- Clare L Pashley
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Eric W Hewitt
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
108
|
Bednarska NG, van Eldere J, Gallardo R, Ganesan A, Ramakers M, Vogel I, Baatsen P, Staes A, Goethals M, Hammarström P, Nilsson KPR, Gevaert K, Schymkowitz J, Rousseau F. Protein aggregation as an antibiotic design strategy. Mol Microbiol 2015; 99:849-65. [PMID: 26559925 DOI: 10.1111/mmi.13269] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2015] [Indexed: 12/12/2022]
Abstract
Taking advantage of the xenobiotic nature of bacterial infections, we tested whether the cytotoxicity of protein aggregation can be targeted to bacterial pathogens without affecting their mammalian hosts. In particular, we examined if peptides encoding aggregation-prone sequence segments of bacterial proteins can display antimicrobial activity by initiating toxic protein aggregation in bacteria, but not in mammalian cells. Unbiased in vitro screening of aggregating peptide sequences from bacterial genomes lead to the identification of several peptides that are strongly bactericidal against methicillin-resistant Staphylococcus aureus. Upon parenteral administration in vivo, the peptides cured mice from bacterial sepsis without apparent toxic side effects as judged from histological and hematological evaluation. We found that the peptides enter and accumulate in the bacterial cytosol where they cause aggregation of bacterial polypeptides. Although the precise chain of events that leads to cell death remains to be elucidated, the ability to tap into aggregation-prone sequences of bacterial proteomes to elicit antimicrobial activity represents a rich and unexplored chemical space to be mined in search of novel therapeutic strategies to fight infectious diseases.
Collapse
Affiliation(s)
- Natalia G Bednarska
- Laboratory of Clinical Bacteriology and Mycology, Department of Microbiology and Immunology, KULeuven, Leuven, Belgium.,Switch Laboratory, VIB, Leuven, Belgium
| | - Johan van Eldere
- Laboratory of Clinical Bacteriology and Mycology, Department of Microbiology and Immunology, KULeuven, Leuven, Belgium
| | - Rodrigo Gallardo
- Switch Laboratory, VIB, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KULeuven, Leuven, Belgium
| | - Ashok Ganesan
- Switch Laboratory, VIB, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KULeuven, Leuven, Belgium
| | - Meine Ramakers
- Switch Laboratory, VIB, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KULeuven, Leuven, Belgium
| | - Isabel Vogel
- Laboratory of Immunology, Department of Microbiology and Immunology, KULeuven, Leuven, Belgium
| | - Pieter Baatsen
- Department of Molecular and Developmental Genetics (VIB11 and KULeuven), Electron Microscopy Network (EMoNe), Gasthuisberg, Leuven, Belgium
| | - An Staes
- Department of Medical Protein Research, VIB, Ghent, Belgium.,Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Marc Goethals
- Department of Medical Protein Research, VIB, Ghent, Belgium.,Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Per Hammarström
- Department of Chemistry, Linköping University, Linköping, Sweden
| | | | - Kris Gevaert
- Department of Medical Protein Research, VIB, Ghent, Belgium.,Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KULeuven, Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KULeuven, Leuven, Belgium
| |
Collapse
|
109
|
Tosatto L, Horrocks MH, Dear AJ, Knowles TPJ, Dalla Serra M, Cremades N, Dobson CM, Klenerman D. Single-molecule FRET studies on alpha-synuclein oligomerization of Parkinson's disease genetically related mutants. Sci Rep 2015; 5:16696. [PMID: 26582456 PMCID: PMC4652217 DOI: 10.1038/srep16696] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/19/2015] [Indexed: 12/22/2022] Open
Abstract
Oligomers of alpha-synuclein are toxic to cells and have been proposed to play a key role in the etiopathogenesis of Parkinson's disease. As certain missense mutations in the gene encoding for alpha-synuclein induce early-onset forms of the disease, it has been suggested that these variants might have an inherent tendency to produce high concentrations of oligomers during aggregation, although a direct experimental evidence for this is still missing. We used single-molecule Förster Resonance Energy Transfer to visualize directly the protein self-assembly process by wild-type alpha-synuclein and A53T, A30P and E46K mutants and to compare the structural properties of the ensemble of oligomers generated. We found that the kinetics of oligomer formation correlates with the natural tendency of each variant to acquire beta-sheet structure. Moreover, A53T and A30P showed significant differences in the averaged FRET efficiency of one of the two types of oligomers formed compared to the wild-type oligomers, indicating possible structural variety among the ensemble of species generated. Importantly, we found similar concentrations of oligomers during the lag-phase of the aggregation of wild-type and mutated alpha-synuclein, suggesting that the properties of the ensemble of oligomers generated during self-assembly might be more relevant than their absolute concentration for triggering neurodegeneration.
Collapse
Affiliation(s)
- Laura Tosatto
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, UK.,Istituto di Biofisica, Consiglio Nazionale delle Ricerche, via alla Cascata 56/C, 38123 Trento, Italy
| | - Mathew H Horrocks
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, UK
| | - Alexander J Dear
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, UK
| | - Tuomas P J Knowles
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, UK
| | - Mauro Dalla Serra
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, via alla Cascata 56/C, 38123 Trento, Italy
| | - Nunilo Cremades
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, UK.,Institute for Biocomputation and Physics of Complex Systems (BIFI), Universidad de Zaragoza, Mariano Esquillor, Edificio I+D, 50018 Zaragoza, Spain
| | - Christopher M Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, UK
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, UK
| |
Collapse
|
110
|
De Baets G, Van Doorn L, Rousseau F, Schymkowitz J. Increased Aggregation Is More Frequently Associated to Human Disease-Associated Mutations Than to Neutral Polymorphisms. PLoS Comput Biol 2015; 11:e1004374. [PMID: 26340370 PMCID: PMC4560525 DOI: 10.1371/journal.pcbi.1004374] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 06/03/2015] [Indexed: 12/22/2022] Open
Abstract
Protein aggregation is a hallmark of over 30 human pathologies. In these diseases, the aggregation of one or a few specific proteins is often toxic, leading to cellular degeneration and/or organ disruption in addition to the loss-of-function resulting from protein misfolding. Although the pathophysiological consequences of these diseases are overt, the molecular dysregulations leading to aggregate toxicity are still unclear and appear to be diverse and multifactorial. The molecular mechanisms of protein aggregation and therefore the biophysical parameters favoring protein aggregation are better understood. Here we perform an in silico survey of the impact of human sequence variation on the aggregation propensity of human proteins. We find that disease-associated variations are statistically significantly enriched in mutations that increase the aggregation potential of human proteins when compared to neutral sequence variations. These findings suggest that protein aggregation might have a broader impact on human disease than generally assumed and that beyond loss-of-function, the aggregation of mutant proteins involved in cancer, immune disorders or inflammation could potentially further contribute to disease by additional burden on cellular protein homeostasis. Protein aggregation has been recognized to contribute to the development of more than 30 human diseases such as Alzheimer and Parkinson disease. Here we have performed an in silico survey of human sequence variations to evaluate whether protein aggregation might impact human disease beyond the above-mentioned aggregation diseases. We find that human disease mutations are more likely to increase the aggregation potential of proteins than non-disease associated mutations. This survey therefore suggests the possibility that protein aggregation is a more widespread disease modifier than previously expected.
Collapse
Affiliation(s)
- Greet De Baets
- VIB Switch Laboratory, Flanders Institute for Biotechnology (VIB), Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Loic Van Doorn
- VIB Switch Laboratory, Flanders Institute for Biotechnology (VIB), Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Frederic Rousseau
- VIB Switch Laboratory, Flanders Institute for Biotechnology (VIB), Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
- * E-mail: (FR); (JS)
| | - Joost Schymkowitz
- VIB Switch Laboratory, Flanders Institute for Biotechnology (VIB), Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
- * E-mail: (FR); (JS)
| |
Collapse
|
111
|
Nedialkova DD, Leidel SA. Optimization of Codon Translation Rates via tRNA Modifications Maintains Proteome Integrity. Cell 2015; 161:1606-18. [PMID: 26052047 PMCID: PMC4503807 DOI: 10.1016/j.cell.2015.05.022] [Citation(s) in RCA: 421] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 02/28/2015] [Accepted: 04/10/2015] [Indexed: 01/15/2023]
Abstract
Proteins begin to fold as they emerge from translating ribosomes. The kinetics of ribosome transit along a given mRNA can influence nascent chain folding, but the extent to which individual codon translation rates impact proteome integrity remains unknown. Here, we show that slower decoding of discrete codons elicits widespread protein aggregation in vivo. Using ribosome profiling, we find that loss of anticodon wobble uridine (U34) modifications in a subset of tRNAs leads to ribosome pausing at their cognate codons in S. cerevisiae and C. elegans. Cells lacking U34 modifications exhibit gene expression hallmarks of proteotoxic stress, accumulate aggregates of endogenous proteins, and are severely compromised in clearing stress-induced protein aggregates. Overexpression of hypomodified tRNAs alleviates ribosome pausing, concomitantly restoring protein homeostasis. Our findings demonstrate that modified U34 is an evolutionarily conserved accelerator of decoding and reveal an unanticipated role for tRNA modifications in maintaining proteome integrity. tRNA anticodon modification loss slows translation at cognate codons in vivo Codon-specific translational pausing triggers protein misfolding in yeast and worms Codon translation rates and protein homeostasis are restored by tRNA overexpression
Collapse
Affiliation(s)
- Danny D Nedialkova
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Von-Esmarch-Strasse 54, 48149 Muenster, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany
| | - Sebastian A Leidel
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Von-Esmarch-Strasse 54, 48149 Muenster, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany; Faculty of Medicine, University of Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany.
| |
Collapse
|
112
|
Zambrano R, Conchillo-Sole O, Iglesias V, Illa R, Rousseau F, Schymkowitz J, Sabate R, Daura X, Ventura S. PrionW: a server to identify proteins containing glutamine/asparagine rich prion-like domains and their amyloid cores. Nucleic Acids Res 2015; 43:W331-7. [PMID: 25977297 PMCID: PMC4489250 DOI: 10.1093/nar/gkv490] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/02/2015] [Indexed: 11/12/2022] Open
Abstract
Prions are a particular type of amyloids with the ability to self-perpetuate and propagate in vivo. Prion-like conversion underlies important biological processes but is also connected to human disease. Yeast prions are the best understood transmissible amyloids. In these proteins, prion formation from an initially soluble state involves a structural conversion, driven, in many cases, by specific domains enriched in glutamine/asparagine (Q/N) residues. Importantly, domains sharing this compositional bias are also present in the proteomes of higher organisms, thus suggesting that prion-like conversion might be an evolutionary conserved mechanism. We have recently shown that the identification and evaluation of the potency of amyloid nucleating sequences in putative prion domains allows discrimination of genuine prions. PrionW is a web application that exploits this principle to scan sequences in order to identify proteins containing Q/N enriched prion-like domains (PrLDs) in large datasets. When used to scan the complete yeast proteome, PrionW identifies previously experimentally validated prions with high accuracy. Users can analyze up to 10 000 sequences at a time, PrLD-containing proteins are identified and their putative PrLDs and amyloid nucleating cores visualized and scored. The output files can be downloaded for further analysis. PrionW server can be accessed at http://bioinf.uab.cat/prionw/.
Collapse
Affiliation(s)
- Rafael Zambrano
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Oscar Conchillo-Sole
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Valentin Iglesias
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Ricard Illa
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Frederic Rousseau
- VIB Switch Laboratory and Department for Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Joost Schymkowitz
- VIB Switch Laboratory and Department for Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Raimon Sabate
- Institut de Nanociència i Nanotecnologia (INUB) and Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain
| | - Xavier Daura
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| |
Collapse
|
113
|
Abstract
Owing to its association with a diverse range of human diseases, the determinants of protein aggregation are studied intensively. It is generally accepted that the effective aggregation tendency of a protein depends on many factors such as folding efficiency towards the native state, thermodynamic stability of that conformation, intrinsic aggregation propensity of the polypeptide sequence and its ability to be recognized by the protein quality control system. The intrinsic aggregation propensity of a polypeptide sequence is related to the presence of short APRs (aggregation-prone regions) that self-associate to form intermolecular β-structured assemblies. These are typically short sequence segments (5-15 amino acids) that display high hydrophobicity, low net charge and a high tendency to form β-structures. As the presence of such APRs is a prerequisite for aggregation, a plethora of methods have been developed to identify APRs in amino acid sequences. In the present chapter, the methodological basis of these approaches is discussed, as well as some practical applications.
Collapse
|
114
|
De Baets G, Van Durme J, van der Kant R, Schymkowitz J, Rousseau F. Solubis: optimize your protein: Fig. 1. Bioinformatics 2015; 31:2580-2. [DOI: 10.1093/bioinformatics/btv162] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/16/2015] [Indexed: 11/12/2022] Open
|
115
|
Espargaró A, Busquets MA, Estelrich J, Sabate R. Predicting the aggregation propensity of prion sequences. Virus Res 2015; 207:127-35. [PMID: 25747492 DOI: 10.1016/j.virusres.2015.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 02/19/2015] [Accepted: 03/02/2015] [Indexed: 11/19/2022]
Abstract
The presence of prions can result in debilitating and neurodegenerative diseases in mammals and protein-based genetic elements in fungi. Prions are defined as a subclass of amyloids in which the self-aggregation process becomes self-perpetuating and infectious. Like all amyloids, prions polymerize into fibres with a common core formed of β-sheet structures oriented perpendicular to the fibril axes which form a structure known as a cross-β structure. The intermolecular β-sheet propensity, a characteristic of the amyloid pattern, as well as other key parameters of amyloid fibril formation can be predicted. Mathematical algorithms have been proposed to predict both amyloid and prion propensities. However, it has been shown that the presence of amyloid-prone regions in a polypeptide sequence could be insufficient for amyloid formation. It has also often been stated that the formation of amyloid fibrils does not imply that these are prions. Despite these limitations, in silico prediction of amyloid and prion propensities should help detect potential new prion sequences in mammals. In addition, the determination of amyloid-prone regions in prion sequences could be very useful in understanding the effect of sporadic mutations and polymorphisms as well as in the search for therapeutic targets.
Collapse
Affiliation(s)
- Alba Espargaró
- Department of Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Avda. Joan XXIII 27-31, E-08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology of the University of Barcelona (IN(2)UB), Spain
| | - Maria Antònia Busquets
- Department of Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Avda. Joan XXIII 27-31, E-08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology of the University of Barcelona (IN(2)UB), Spain
| | - Joan Estelrich
- Department of Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Avda. Joan XXIII 27-31, E-08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology of the University of Barcelona (IN(2)UB), Spain
| | - Raimon Sabate
- Department of Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Avda. Joan XXIII 27-31, E-08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology of the University of Barcelona (IN(2)UB), Spain.
| |
Collapse
|
116
|
Sabate R, Rousseau F, Schymkowitz J, Ventura S. What makes a protein sequence a prion? PLoS Comput Biol 2015; 11:e1004013. [PMID: 25569335 PMCID: PMC4288708 DOI: 10.1371/journal.pcbi.1004013] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 10/29/2014] [Indexed: 11/18/2022] Open
Abstract
Typical amyloid diseases such as Alzheimer's and Parkinson's were thought to exclusively result from de novo aggregation, but recently it was shown that amyloids formed in one cell can cross-seed aggregation in other cells, following a prion-like mechanism. Despite the large experimental effort devoted to understanding the phenomenon of prion transmissibility, it is still poorly understood how this property is encoded in the primary sequence. In many cases, prion structural conversion is driven by the presence of relatively large glutamine/asparagine (Q/N) enriched segments. Several studies suggest that it is the amino acid composition of these regions rather than their specific sequence that accounts for their priogenicity. However, our analysis indicates that it is instead the presence and potency of specific short amyloid-prone sequences that occur within intrinsically disordered Q/N-rich regions that determine their prion behaviour, modulated by the structural and compositional context. This provides a basis for the accurate identification and evaluation of prion candidate sequences in proteomes in the context of a unified framework for amyloid formation and prion propagation.
Collapse
Affiliation(s)
- Raimon Sabate
- Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, Barcelona, Spain
- * E-mail: (RS); (SV)
| | - Frederic Rousseau
- VIB Switch Laboratory, VIB, Leuven, Belgium
- Departement for Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Joost Schymkowitz
- VIB Switch Laboratory, VIB, Leuven, Belgium
- Departement for Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
- * E-mail: (RS); (SV)
| |
Collapse
|
117
|
Ganesan A, Debulpaep M, Wilkinson H, Van Durme J, De Baets G, Jonckheere W, Ramakers M, Ivarsson Y, Zimmermann P, Van Eldere J, Schymkowitz J, Rousseau F. Selectivity of Aggregation-Determining Interactions. J Mol Biol 2015; 427:236-47. [DOI: 10.1016/j.jmb.2014.09.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 08/26/2014] [Accepted: 09/02/2014] [Indexed: 01/11/2023]
|
118
|
Jalles A, 1 Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal;, Maciel P. The disruption of proteostasis in neurodegenerative disorders. AIMS MOLECULAR SCIENCE 2015. [DOI: 10.3934/molsci.2015.3.259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
119
|
Protein Aggregation and Its Prediction. MULTIFACETED ROLES OF CRYSTALLOGRAPHY IN MODERN DRUG DISCOVERY 2015. [DOI: 10.1007/978-94-017-9719-1_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
120
|
de Rosa M, Bemporad F, Pellegrino S, Chiti F, Bolognesi M, Ricagno S. Edge strand engineering prevents native-like aggregation in Sulfolobus solfataricus acylphosphatase. FEBS J 2014; 281:4072-84. [PMID: 24893801 DOI: 10.1111/febs.12861] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/19/2014] [Accepted: 05/23/2014] [Indexed: 01/09/2023]
Abstract
β-proteins are constantly threatened by the risk of aggregation because β-sheets are inherently structured for edge-to-edge interactions. To avoid native-like aggregation, evolution has resulted in a set of strategies that prevent intermolecular β-interactions. Acylphosphatase from Sulfolobus solfataricus (Sso AcP) represents a suitable model for the study of such a process. Under conditions promoting aggregation, Sso AcP acquires a native-like conformational state whereby an unstructured N-terminal segment interacts with the edge β-strand B4 of an adjacent Sso AcP molecule. Because B4 is poorly protected against aggregation, this interaction triggers the aggregation cascade without the need for unfolding. Recently, three single Sso AcP mutants (V84D, Y86E and V84P) were designed to engineer additional protection against aggregation in B4 and were observed to successfully impair native-like aggregation in all three variants at the expense of a lower stability. To understand the structural basis of the reduced aggregation propensity and lower stability, the crystal structures of the Sso AcP variants were determined in the present study. Structural analysis reveals that the V84D and Y86E mutations exert protection by the insertion of an edge negative charge. A conformationally less regular B4 underlies protection against aggregation in the V84P mutant. The thermodynamic basis of instability is discussed. Moreover, kinetic experiments indicate that aggregation of the three mutants is not native-like and is independent of the interaction between B4 and the unstructured N-terminal segment. The reported data rationalize previous evidence regarding Sso AcP native-like aggregation and provide a basis for the design of aggregation-free proteins. DATABASE The atomic coordinates and related experimental data for the Sso AcP mutants V84P, V84D, ΔN11 Y86E have been deposited in the Protein Data Bank under accession numbers 4OJ3, 4OJG and 4OJH, respectively. STRUCTURED DIGITAL ABSTRACT • Sso AcP and Sso AcP bind by fluorescence technology (View interaction).
Collapse
|
121
|
Sant'Anna R, Braga C, Varejão N, Pimenta KM, Graña-Montes R, Alves A, Cortines J, Cordeiro Y, Ventura S, Foguel D. The importance of a gatekeeper residue on the aggregation of transthyretin: implications for transthyretin-related amyloidoses. J Biol Chem 2014; 289:28324-37. [PMID: 25086037 PMCID: PMC4192486 DOI: 10.1074/jbc.m114.563981] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Protein aggregation into β-sheet-enriched amyloid fibrils is associated with an increasing number of human disorders. The adoption of such amyloid conformations seems to constitute a generic property of polypeptide chains. Therefore, during evolution, proteins have adopted negative design strategies to diminish their intrinsic propensity to aggregate, including enrichment of gatekeeper charged residues at the flanks of hydrophobic aggregation-prone segments. Wild type transthyretin (TTR) is responsible for senile systemic amyloidosis, and more than 100 mutations in the TTR gene are involved in familial amyloid polyneuropathy. The TTR 26–57 segment bears many of these aggressive amyloidogenic mutations as well as the binding site for heparin. We demonstrate here that Lys-35 acts as a gatekeeper residue in TTR, strongly decreasing its amyloidogenic potential. This protective effect is sequence-specific because Lys-48 does not affect TTR aggregation. Lys-35 is part of the TTR basic heparin-binding motif. This glycosaminoglycan blocks the protective effect of Lys-35, probably by neutralization of its side chain positive charge. A K35L mutation emulates this effect and results in the rapid self-assembly of the TTR 26–57 region into amyloid fibrils. This mutation does not affect the tetrameric protein stability, but it strongly increases its aggregation propensity. Overall, we illustrate how TTR is yet another amyloidogenic protein exploiting negative design to prevent its massive aggregation, and we show how blockage of conserved protective features by endogenous factors or mutations might result in increased disease susceptibility.
Collapse
Affiliation(s)
- Ricardo Sant'Anna
- From the Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Estrutural
| | - Carolina Braga
- From the Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Estrutural
| | - Nathalia Varejão
- From the Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Estrutural
| | - Karinne M Pimenta
- From the Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Estrutural
| | - Ricardo Graña-Montes
- the Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Aline Alves
- From the Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Estrutural
| | - Juliana Cortines
- the Instituto de Microbiologia Professor Paulo de Goés, Universidade Federal do Rio de Janeiro, Rio de Janeiro CEP 21941-590, Brazil and
| | | | - Salvador Ventura
- the Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Debora Foguel
- From the Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Estrutural,
| |
Collapse
|
122
|
De Baets G, Van Durme J, Rousseau F, Schymkowitz J. A genome-wide sequence-structure analysis suggests aggregation gatekeepers constitute an evolutionary constrained functional class. J Mol Biol 2014; 426:2405-12. [PMID: 24735868 DOI: 10.1016/j.jmb.2014.04.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/27/2014] [Accepted: 04/06/2014] [Indexed: 11/15/2022]
Abstract
Protein aggregation is geared by aggregation-prone regions that self-associate by β-strand interactions. Charged residues and prolines are enriched at the flanks of aggregation-prone regions resulting in decreased aggregation. It is still unclear what drives the overrepresentation of these "aggregation gatekeepers", that is, whether their presence results from structural constraints determining protein stability or whether they constitute a bona fide functional class selectively maintained to control protein aggregation. As functional residues are typically conserved regardless of their cost to protein stability, we compared sequence conservation and thermodynamic cost of these residues in 2659 protein families in Escherichia coli. Across protein families, we find gatekeepers to be under strong selective conservation while at the same time representing a significant thermodynamic cost to protein structure. This finding supports the notion that aggregation gatekeepers are not structurally determined but evolutionary selected to control protein aggregation.
Collapse
Affiliation(s)
- Greet De Baets
- Switch Laboratory, Flanders Institute for Biotechnology (Vlaams Instituut voor Biotechnologie), 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, University of Leuven, Herestraat 49, 3000 Leuven, Belgium; Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Joost Van Durme
- Switch Laboratory, Flanders Institute for Biotechnology (Vlaams Instituut voor Biotechnologie), 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, University of Leuven, Herestraat 49, 3000 Leuven, Belgium; Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Frederic Rousseau
- Switch Laboratory, Flanders Institute for Biotechnology (Vlaams Instituut voor Biotechnologie), 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, University of Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Joost Schymkowitz
- Switch Laboratory, Flanders Institute for Biotechnology (Vlaams Instituut voor Biotechnologie), 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, University of Leuven, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
123
|
Iram A, Naeem A. Protein Folding, Misfolding, Aggregation and Their Implications in Human Diseases: Discovering Therapeutic Ways to Amyloid-Associated Diseases. Cell Biochem Biophys 2014; 70:51-61. [DOI: 10.1007/s12013-014-9904-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
124
|
Redler RL, Shirvanyants D, Dagliyan O, Ding F, Kim DN, Kota P, Proctor EA, Ramachandran S, Tandon A, Dokholyan NV. Computational approaches to understanding protein aggregation in neurodegeneration. J Mol Cell Biol 2014; 6:104-15. [PMID: 24620031 DOI: 10.1093/jmcb/mju007] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The generation of toxic non-native protein conformers has emerged as a unifying thread among disorders such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Atomic-level detail regarding dynamical changes that facilitate protein aggregation, as well as the structural features of large-scale ordered aggregates and soluble non-native oligomers, would contribute significantly to current understanding of these complex phenomena and offer potential strategies for inhibiting formation of cytotoxic species. However, experimental limitations often preclude the acquisition of high-resolution structural and mechanistic information for aggregating systems. Computational methods, particularly those combine both all-atom and coarse-grained simulations to cover a wide range of time and length scales, have thus emerged as crucial tools for investigating protein aggregation. Here we review the current state of computational methodology for the study of protein self-assembly, with a focus on the application of these methods toward understanding of protein aggregates in human neurodegenerative disorders.
Collapse
Affiliation(s)
- Rachel L Redler
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Graña-Montes R, Marinelli P, Reverter D, Ventura S. N-terminal protein tails act as aggregation protective entropic bristles: the SUMO case. Biomacromolecules 2014; 15:1194-203. [PMID: 24564702 DOI: 10.1021/bm401776z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The formation of β-sheet enriched amyloid fibrils constitutes the hallmark of many diseases but is also an intrinsic property of polypeptide chains in general, because the formation of compact globular proteins comes at the expense of an inherent sequential aggregation propensity. In this context, identification of strategies that enable proteins to remain functional and soluble in the cell has become a central issue in chemical biology. We show here, using human SUMO proteins as a model system, that the recurrent presence of disordered tails flanking globular domains might constitute yet another of these protective strategies. These short, disordered, and highly soluble protein segments would act as intramolecular entropic bristles, reducing the overall protein intrinsic aggregation propensity and favoring thus the attainment and maintenance of functional conformations.
Collapse
Affiliation(s)
- Ricardo Graña-Montes
- Institut de Biotecnologia i Biomedicina and Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona , 08193 Bellaterra, Barcelona, Spain
| | | | | | | |
Collapse
|
126
|
Fedorova M, Bollineni RC, Hoffmann R. Protein carbonylation as a major hallmark of oxidative damage: update of analytical strategies. MASS SPECTROMETRY REVIEWS 2014; 33:79-97. [PMID: 23832618 DOI: 10.1002/mas.21381] [Citation(s) in RCA: 364] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 03/20/2013] [Accepted: 03/21/2013] [Indexed: 05/23/2023]
Abstract
Protein carbonylation, one of the most harmful irreversible oxidative protein modifications, is considered as a major hallmark of oxidative stress-related disorders. Protein carbonyl measurements are often performed to assess the extent of oxidative stress in the context of cellular damage, aging and several age-related disorders. A wide variety of analytical techniques are available to detect and quantify protein-bound carbonyls generated by metal-catalyzed oxidation, lipid peroxidation or glycation/glycoxidation. Here we review current analytical approaches for protein carbonyl detection with a special focus on mass spectrometry-based techniques. The utility of several carbonyl-derivatization reagents, enrichment protocols and especially advanced mass spectrometry techniques are compared and discussed in detail. Furthermore, the mechanisms and biology of protein carbonylation are summarized based on recent high-throughput proteomics data.
Collapse
Affiliation(s)
- Maria Fedorova
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Deutscher Platz 5, D-04103, Leipzig, Germany; Center for Biotechnology and Biomedicine (BBZ), Universität Leipzig, Deutscher Platz 5, D-04103, Leipzig, Germany
| | | | | |
Collapse
|
127
|
Niforou K, Cheimonidou C, Trougakos IP. Molecular chaperones and proteostasis regulation during redox imbalance. Redox Biol 2014; 2:323-32. [PMID: 24563850 PMCID: PMC3926111 DOI: 10.1016/j.redox.2014.01.017] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/11/2014] [Accepted: 01/18/2014] [Indexed: 02/05/2023] Open
Abstract
Free radicals originate from both exogenous environmental sources and as by-products of the respiratory chain and cellular oxygen metabolism. Sustained accumulation of free radicals, beyond a physiological level, induces oxidative stress that is harmful for the cellular homeodynamics as it promotes the oxidative damage and stochastic modification of all cellular biomolecules including proteins. In relation to proteome stability and maintenance, the increased concentration of oxidants disrupts the functionality of cellular protein machines resulting eventually in proteotoxic stress and the deregulation of the proteostasis (homeostasis of the proteome) network (PN). PN curates the proteome in the various cellular compartments and the extracellular milieu by modulating protein synthesis and protein machines assembly, protein recycling and stress responses, as well as refolding or degradation of damaged proteins. Molecular chaperones are key players of the PN since they facilitate folding of nascent polypeptides, as well as holding, folding, and/or degradation of unfolded, misfolded, or non-native proteins. Therefore, the expression and the activity of the molecular chaperones are tightly regulated at both the transcriptional and post-translational level at organismal states of increased oxidative and, consequently, proteotoxic stress, including ageing and various age-related diseases (e.g. degenerative diseases and cancer). In the current review we present a synopsis of the various classes of intra- and extracellular chaperones, the effects of oxidants on cellular homeodynamics and diseases and the redox regulation of chaperones. Free radicals originate from various sources and at physiological concentrations are essential for the modulation of cell signalling pathways. Abnormally high levels of free radicals induce oxidative stress and damage all cellular biomolecules, including proteins. Molecular chaperones facilitate folding of nascent polypeptides, as well as holding, folding, and/or degradation of damaged proteins. The expression and the activity of chaperones during oxidative stress are regulated at both the transcriptional and post-translational level.
Collapse
Key Words
- AGEs, Advanced Glycation End Products
- ALS, Autophagy Lysosome System
- AP-1, Activator Protein-1
- CLU, apolipoprotein J/Clusterin
- Chaperones
- Diseases
- EPMs, Enzymatic Protein Modifications
- ER, Endoplasmic Reticulum
- ERAD, ER-Associated protein Degradation
- Free radicals
- GPx7, Glutathione Peroxidase 7
- GRP78, Glucose Regulated Protein of 78 kDa
- HSF1, Heat Shock transcription Factor-1
- HSP, Heat Shock Protein
- Hb, Haemoglobin
- Keap1, Kelch-like ECH-associated protein 1
- NADH, Nicotinamide Adenine Dinucleotide
- NEPMs, Non-Enzymatic Protein Modifications
- NOS, Nitric Oxide Synthase
- NOx, NAD(P)H Oxidase
- Nrf2, NF-E2-related factor 2
- Oxidative stress
- PDI, Protein Disulfide Isomerase
- PDR, Proteome Damage Responses
- PN, Proteostasis Network
- Proteome
- RNS, Reactive Nitrogen Species
- ROS, Reactive Oxygen Species
- Redox signalling
- UPR, Unfolded Protein Response
- UPS, Ubiquitin Proteasome System
- α(2)M, α(2)-Macroglobulin
Collapse
Affiliation(s)
- Katerina Niforou
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens 15784, Greece
| | - Christina Cheimonidou
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens 15784, Greece
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens 15784, Greece
| |
Collapse
|
128
|
Andersen TCB, Lindsjø K, Hem CD, Koll L, Kristiansen PE, Skjeldal L, Andreotti AH, Spurkland A. Solubility of recombinant Src homology 2 domains expressed in E. coli can be predicted by TANGO. BMC Biotechnol 2014; 14:3. [PMID: 24423197 PMCID: PMC3922782 DOI: 10.1186/1472-6750-14-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 01/07/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Signalling proteins often contain several well defined and conserved protein domains. Structural analyses of such domains by nuclear magnetic spectroscopy or X-ray crystallography may greatly inform the function of proteins. A limiting step is often the production of sufficient amounts of the recombinant protein. However, there is no particular way to predict whether a protein will be soluble when expressed in E.coli. Here we report our experience with expression of a Src homology 2 (SH2) domain. RESULTS The SH2 domain of the SH2D2A protein (or T cell specific adapter protein, TSAd) forms insoluble aggregates when expressed as various GST-fusion proteins in Escherichia coli (E. coli). Alteration of the flanking sequences, or growth temperature influenced expression and solubility of TSAd-SH2, however overall yield of soluble protein remained low. The algorithm TANGO, which predicts amyloid fibril formation in eukaryotic cells, identified a hydrophobic sequence within the TSAd-SH2 domain with high propensity for beta-aggregation. Mutation to the corresponding amino acids of the related HSH2- (or ALX) SH2 domain increased the yield of soluble TSAd-SH2 domains. High beta-aggregation values predicted by TANGO correlated with low solubility of recombinant SH2 domains as reported in the literature. CONCLUSIONS Solubility of recombinant proteins expressed in E.coli can be predicted by TANGO, an algorithm developed to determine the aggregation propensity of peptides. Targeted mutations representing corresponding amino acids in similar protein domains may increase solubility of recombinant proteins.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Anne Spurkland
- Department of Anatomy, Institute of Basal Medical Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
129
|
Buck PM, Kumar S, Singh SK. On the role of aggregation prone regions in protein evolution, stability, and enzymatic catalysis: insights from diverse analyses. PLoS Comput Biol 2013; 9:e1003291. [PMID: 24146608 PMCID: PMC3798281 DOI: 10.1371/journal.pcbi.1003291] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 08/30/2013] [Indexed: 11/18/2022] Open
Abstract
The various roles that aggregation prone regions (APRs) are capable of playing in proteins are investigated here via comprehensive analyses of multiple non-redundant datasets containing randomly generated amino acid sequences, monomeric proteins, intrinsically disordered proteins (IDPs) and catalytic residues. Results from this study indicate that the aggregation propensities of monomeric protein sequences have been minimized compared to random sequences with uniform and natural amino acid compositions, as observed by a lower average aggregation propensity and fewer APRs that are shorter in length and more often punctuated by gate-keeper residues. However, evidence for evolutionary selective pressure to disrupt these sequence regions among homologous proteins is inconsistent. APRs are less conserved than average sequence identity among closely related homologues (≥80% sequence identity with a parent) but APRs are more conserved than average sequence identity among homologues that have at least 50% sequence identity with a parent. Structural analyses of APRs indicate that APRs are three times more likely to contain ordered versus disordered residues and that APRs frequently contribute more towards stabilizing proteins than equal length segments from the same protein. Catalytic residues and APRs were also found to be in structural contact significantly more often than expected by random chance. Our findings suggest that proteins have evolved by optimizing their risk of aggregation for cellular environments by both minimizing aggregation prone regions and by conserving those that are important for folding and function. In many cases, these sequence optimizations are insufficient to develop recombinant proteins into commercial products. Rational design strategies aimed at improving protein solubility for biotechnological purposes should carefully evaluate the contributions made by candidate APRs, targeted for disruption, towards protein structure and activity. Biotechnology requires the large-scale expression, yield, and storage of recombinant proteins. Each step in protein production has the potential to cause aggregation as proteins, not evolved to exist outside the cell, endure the various steps involved in commercial manufacturing processes. Mechanistic studies into protein aggregation have revealed that certain sequence regions contribute more to the aggregation propensity of a protein than other sequence regions do. Efforts to disrupt these regions have thus far indicated that rational sequence engineering is a useful technique to reduce the aggregation of biotechnologically relevant proteins. To improve our ability to rationally engineer proteins with enhanced expression, solubility, and shelf-life we conducted extensive analyses of aggregation prone regions (APRs) within protein sequences to characterize the various roles these regions play in proteins. Findings from this work indicate that protein sequences have evolved by minimizing their aggregation propensities. However, we also found that many APRs are conserved in protein families and are essential to maintain protein stability and function. Therefore, the contributions that APRs, targeted for disruption, make towards protein stability and function should be carefully evaluated when improving protein solubility via rational design.
Collapse
Affiliation(s)
- Patrick M Buck
- Pharmaceutical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Chesterfield, Missouri, United States of America
| | | | | |
Collapse
|
130
|
Xu C, Liu R, Mehta AK, Guerrero-Ferreira RC, Wright ER, Dunin-Horkawicz S, Morris K, Serpell LC, Zuo X, Wall JS, Conticello VP. Rational Design of Helical Nanotubes from Self-Assembly of Coiled-Coil Lock Washers. J Am Chem Soc 2013; 135:15565-78. [DOI: 10.1021/ja4074529] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chunfu Xu
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Rui Liu
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Anil K. Mehta
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Ricardo C. Guerrero-Ferreira
- Division
of Pediatric Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Children’s Healthcare of Atlanta, 2015 Uppergate Drive, Suite 500, Atlanta, Georgia 30322, United States
| | - Elizabeth R. Wright
- Division
of Pediatric Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Children’s Healthcare of Atlanta, 2015 Uppergate Drive, Suite 500, Atlanta, Georgia 30322, United States
| | - Stanislaw Dunin-Horkawicz
- Laboratory
of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, Warsaw 02-109, Poland
| | - Kyle Morris
- School
of Life Sciences, University of Sussex, Lewes Road, Falmer, East Sussex BN1
9QG, United Kingdom
| | - Louise C. Serpell
- School
of Life Sciences, University of Sussex, Lewes Road, Falmer, East Sussex BN1
9QG, United Kingdom
| | - Xiaobing Zuo
- X-ray
Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Joseph S. Wall
- Brookhaven National Laboratory, P.O. Box 5000, Upton, New York 11973, United States
| | - Vincent P. Conticello
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| |
Collapse
|
131
|
Bednarska NG, Schymkowitz J, Rousseau F, Van Eldere J. Protein aggregation in bacteria: the thin boundary between functionality and toxicity. MICROBIOLOGY-SGM 2013; 159:1795-1806. [PMID: 23894132 DOI: 10.1099/mic.0.069575-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Misfolding and aggregation of proteins have a negative impact on all living organisms. In recent years, aggregation has been studied in detail due to its involvement in neurodegenerative diseases, including Alzheimer's, Parkinson's and Huntington's diseases, and type II diabetes--all associated with accumulation of amyloid fibrils. This research highlighted the central importance of protein homeostasis, or proteostasis for short, defined as the cellular state in which the proteome is both stable and functional. It implicates an equilibrium between synthesis, folding, trafficking, aggregation, disaggregation and degradation. In accordance with the eukaryotic systems, it has been documented that protein aggregation also reduces fitness of bacterial cells, but although our understanding of the cellular protein quality control systems is perhaps most detailed in bacteria, the use of bacterial proteostasis as a drug target remains little explored. Here we describe protein aggregation as a normal physiological process and its role in bacterial virulence and we shed light on how bacteria defend themselves against the toxic threat of aggregates. We review the impact of aggregates on bacterial viability and look at the ways that bacteria use to maintain a balance between aggregation and functionality. The proteostasis in bacteria can be interrupted via overexpression of proteins, certain antibiotics such as aminoglycosides, as well as antimicrobial peptides--all leading to loss of cell viability. Therefore intracellular protein aggregation and disruption of proteostatic balance in bacteria open up another strategy that should be explored towards the discovery of new antimicrobials.
Collapse
Affiliation(s)
- Natalia G Bednarska
- Laboratory of Clinical Bacteriology and Mycology, Department of Microbiology & Immunology, KU Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Belgium
- Switch Laboratory, VIB, Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Belgium
- Switch Laboratory, VIB, Leuven, Belgium
| | - Johan Van Eldere
- Laboratory of Clinical Bacteriology and Mycology, Department of Microbiology & Immunology, KU Leuven, Belgium
| |
Collapse
|
132
|
A structural modeling approach for the understanding of initiation and elongation of ALS-linked superoxide dismutase fibrils. J Mol Model 2013; 19:3695-704. [PMID: 23780345 DOI: 10.1007/s00894-013-1896-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 05/23/2013] [Indexed: 10/26/2022]
Abstract
Familial amyotrophic lateral sclerosis caused by mutations in copper-zinc superoxide dismutase (SOD1) is characterized by the presence of SOD1-rich inclusions in spinal cords. It has been shown that a reduced intra-subunit disulfide bridge apo-SOD1 can rapidly initiate fibrillation forming an inter-subunits disulfide under mild, physiologically accessible conditions. Once initiated, elongation can proceed via recruitment of either apo or partially metallated disulfide-intact SOD1 and the presence of copper, but not zinc, ions inhibit fibrillation. We propose a structural model, refined through molecular dynamics simulations, that, taking into account these experimental findings, provides a molecular explanation for the initiation and the elongation of SOD1 fibrils in physiological conditions. The model indicates the occurrence of a new dimeric unit, prone to interact one with the other due to the presence of a wide hydrophobic surface and specific electrostatic interactions. The model has dimensions consistent with the SOD1 fibril size observed through electron microscopy and provides a structural basis for the understanding of SOD1 fibrillation.
Collapse
|
133
|
Shirota M, Kinoshita K. Analyses of the general rule on residue pair frequencies in local amino acid sequences of soluble, ordered proteins. Protein Sci 2013; 22:725-33. [PMID: 23526551 DOI: 10.1002/pro.2255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 01/26/2013] [Accepted: 03/14/2013] [Indexed: 11/10/2022]
Abstract
The amino acid sequences of soluble, ordered proteins with stable structures have evolved due to biological and physical requirements, thus distinguishing them from random sequences. Previous analyses have focused on extracting the features that frequently appear in protein substructures, such as α-helix and β-sheet, but the universal features of protein sequences have not been addressed. To clarify the differences between native protein sequences and random sequences, we analyzed 7368 soluble, ordered protein sequences, by inspecting the observed and expected occurrences of 400 amino acid pairs in local proximity, up to 10 residues along the sequence in comparison with their expected occurrence in random sequence. We found the trend that the hydrophobic residue pairs and the polar residue pairs are significantly decreased, whereas the pairs between a hydrophobic residue and a polar residue are increased. This trend was universally observed regardless of the secondary structure content but was not observed in protein sequences that include intrinsically disordered regions, indicating that it can be a general rule of protein foldability. The possible benefits of this rule are discussed from the viewpoints of protein aggregation and disorder, which are both caused by low-complexity regions of hydrophobic or polar residues.
Collapse
Affiliation(s)
- Matsuyuki Shirota
- Department of Applied Information Sciences, Graduate School of Information Sciences, Tohoku University, Sendai, Miyagi, Japan.
| | | |
Collapse
|
134
|
Stewart KL, Dodds ED, Wysocki VH, Cordes MHJ. A polymetamorphic protein. Protein Sci 2013; 22:641-9. [PMID: 23471712 DOI: 10.1002/pro.2248] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 02/25/2013] [Accepted: 03/01/2013] [Indexed: 11/10/2022]
Abstract
Arc repressor is a homodimeric protein with a ribbon-helix-helix fold. A single polar-to-hydrophobic substitution (N11L) at a solvent-exposed position leads to population of an alternate dimeric fold in which 3₁₀ helices replace a β-sheet. Here we find that the variant Q9V/N11L/R13V (S-VLV), with two additional polar-to-hydrophobic surface mutations in the same β-sheet, forms a highly stable, reversibly folded octamer with approximately half the α-helical content of wild-type Arc. At low protein concentration and low ionic strength, S-VLV also populates both dimeric topologies previously observed for N11L, as judged by NMR chemical shift comparisons. Thus, accumulation of simple hydrophobic mutations in Arc progressively reduces fold specificity, leading first to a sequence with two folds and then to a manifold bridge sequence with at least three different topologies. Residues 9-14 of S-VLV form a highly hydrophobic stretch that is predicted to be amyloidogenic, but we do not observe aggregates of higher order than octamer. Increases in sequence hydrophobicity can promote amyloid aggregation but also exert broader and more complex effects on fold specificity. Altered native folds, changes in fold coupled to oligomerization, toxic pre-amyloid oligomers, and amyloid fibrils may represent a near continuum of accessible alternatives in protein structure space.
Collapse
Affiliation(s)
- Katie L Stewart
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA
| | | | | | | |
Collapse
|
135
|
Theillet FX, Kalmar L, Tompa P, Han KH, Selenko P, Dunker AK, Daughdrill GW, Uversky VN. The alphabet of intrinsic disorder: I. Act like a Pro: On the abundance and roles of proline residues in intrinsically disordered proteins. INTRINSICALLY DISORDERED PROTEINS 2013; 1:e24360. [PMID: 28516008 PMCID: PMC5424786 DOI: 10.4161/idp.24360] [Citation(s) in RCA: 199] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 03/17/2013] [Indexed: 11/19/2022]
Abstract
A significant fraction of every proteome is occupied by biologically active proteins that do not form unique three-dimensional structures. These intrinsically disordered proteins (IDPs) and IDP regions (IDPRs) have essential biological functions and are characterized by extensive structural plasticity. Such structural and functional behavior is encoded in the amino acid sequences of IDPs/IDPRs, which are enriched in disorder-promoting residues and depleted in order-promoting residues. In fact, amino acid residues can be arranged according to their disorder-promoting tendency to form an alphabet of intrinsic disorder that defines the structural complexity and diversity of IDPs/IDPRs. This review is the first in a series of publications dedicated to the roles that different amino acid residues play in defining the phenomenon of protein intrinsic disorder. We start with proline because data suggests that of the 20 common amino acid residues, this one is the most disorder-promoting.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- In-cell NMR Spectroscopy; Leibniz Institute of Molecular Pharmacology (FMP Berlin); Berlin, Germany
| | - Lajos Kalmar
- VIB Department of Structural Biology; Vrije Universiteit Brussel; Brussels, Belgium
| | - Peter Tompa
- VIB Department of Structural Biology; Vrije Universiteit Brussel; Brussels, Belgium.,Institute of Enzymology; Research Centre for Natural Sciences; Hungarian Academy of Sciences; Budapest, Hungary
| | - Kyou-Hoon Han
- Department of Bioinformatics; University of Science and Technology; Daejeon, Yuseong-gu, Korea.,Biomedical Translational Research Center; Division of Convergent Biomedical Research; Korea Research Institute of Bioscience and Biotechnology; Daejeon, Yuseong-gu, Korea
| | - Philipp Selenko
- In-cell NMR Spectroscopy; Leibniz Institute of Molecular Pharmacology (FMP Berlin); Berlin, Germany
| | - A Keith Dunker
- Center for Computational Biology and Bioinformatics; Department of Biochemistry and Molecular Biology; Indiana University School of Medicine; Indianapolis, IN USA
| | - Gary W Daughdrill
- Center for Drug Discovery and Innovation; Department of Cell Biology, Microbiology and Molecular Biology; University of South Florida; Tampa, FL USA
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute; College of Medicine; University of South Florida; Tampa, FL USA.,Institute for Biological Instrumentation; Russian Academy of Sciences; Moscow Region, Russia
| |
Collapse
|
136
|
Wood M, Rae GM, Wu RM, Walton EF, Xue B, Hellens RP, Uversky VN. Actinidia DRM1--an intrinsically disordered protein whose mRNA expression is inversely correlated with spring budbreak in kiwifruit. PLoS One 2013; 8:e57354. [PMID: 23516402 PMCID: PMC3596386 DOI: 10.1371/journal.pone.0057354] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Accepted: 01/21/2013] [Indexed: 11/27/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) are a relatively recently defined class of proteins which, under native conditions, lack a unique tertiary structure whilst maintaining essential biological functions. Functional classification of IDPs have implicated such proteins as being involved in various physiological processes including transcription and translation regulation, signal transduction and protein modification. Actinidia DRM1 (Ade DORMANCY ASSOCIATED GENE 1), represents a robust dormancy marker whose mRNA transcript expression exhibits a strong inverse correlation with the onset of growth following periods of physiological dormancy. Bioinformatic analyses suggest that DRM1 is plant specific and highly conserved at both the nucleotide and protein levels. It is predicted to be an intrinsically disordered protein with two distinct highly conserved domains. Several Actinidia DRM1 homologues, which align into two distinct Actinidia-specific families, Type I and Type II, have been identified. No candidates for the Arabidopsis DRM1-Homologue (AtDRM2) an additional family member, has been identified in Actinidia.
Collapse
Affiliation(s)
- Marion Wood
- Genomics Research, The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
137
|
Abstract
Protein aggregation is being found to be associated with an increasing number of human diseases. Aggregation can lead to a loss of function (lack of active protein) or to a toxic gain of function (cytotoxicity associated with protein aggregates). Although potentially harmful, protein sequences predisposed to aggregation seem to be ubiquitous in all kingdoms of life, which suggests an evolutionary advantage to having such segments in polypeptide sequences. In fact, aggregation-prone segments are essential for protein folding and for mediating certain protein-protein interactions. Moreover, cells use protein aggregates for a wide range of functions. Against this background, life has adapted to tolerate the presence of potentially dangerous aggregation-prone sequences by constraining and counteracting the aggregation process. In the present review, we summarize the current knowledge of the advantages associated with aggregation-prone stretches in proteomes and the strategies that cellular systems have developed to control the aggregation process.
Collapse
|
138
|
Structural features and cytotoxicity of amyloid oligomers: Implications in Alzheimer's disease and other diseases with amyloid deposits. Prog Neurobiol 2012; 99:226-45. [DOI: 10.1016/j.pneurobio.2012.03.002] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 03/08/2012] [Accepted: 03/09/2012] [Indexed: 12/22/2022]
|
139
|
Abstract
Protein aggregation into amyloid fibrils is associated with the onset of an increasing number of human disorders, including Alzheimer's disease, diabetes, and some types of cancer. The ability to form toxic amyloids appears to be a property of most polypeptides. Accordingly, it has been proposed that reducing aggregation and its effect in cell fitness is a driving force in the evolution of proteins sequences. This control of protein solubility should be especially important for regulatory hubs in biological networks, like protein kinases. These enzymes are implicated in practically all processes in normal and abnormal cell physiology, and phosphorylation is one of the most frequent protein modifications used to control protein activity. Here, we use the AGGRESCAN algorithm to study the aggregation propensity of kinase sequences. We compared them with the rest of globular proteins to decipher whether they display differential aggregation properties. In addition, we compared the human kinase complement with the kinomes of other organisms to see if we can identify any evolutionary trend in the aggregational properties of this protein superfamily. Our analysis indicates that kinase domains display significant aggregation propensity, a property that decreases with increasing organism complexity.
Collapse
Affiliation(s)
- Ricardo Graña-Montes
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona Bellaterra (Barcelona), Spain
| | | | | |
Collapse
|
140
|
Gsponer J, Babu M. Cellular strategies for regulating functional and nonfunctional protein aggregation. Cell Rep 2012; 2:1425-37. [PMID: 23168257 PMCID: PMC3607227 DOI: 10.1016/j.celrep.2012.09.036] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 07/23/2012] [Accepted: 09/27/2012] [Indexed: 12/20/2022] Open
Abstract
Growing evidence suggests that aggregation-prone proteins are both harmful and functional for a cell. How do cellular systems balance the detrimental and beneficial effect of protein aggregation? We reveal that aggregation-prone proteins are subject to differential transcriptional, translational, and degradation control compared to nonaggregation-prone proteins, which leads to their decreased synthesis, low abundance, and high turnover. Genetic modulators that enhance the aggregation phenotype are enriched in genes that influence expression homeostasis. Moreover, genes encoding aggregation-prone proteins are more likely to be harmful when overexpressed. The trends are evolutionarily conserved and suggest a strategy whereby cellular mechanisms specifically modulate the availability of aggregation-prone proteins to (1) keep concentrations below the critical ones required for aggregation and (2) shift the equilibrium between the monomeric and oligomeric/aggregate form, as explained by Le Chatelier’s principle. This strategy may prevent formation of undesirable aggregates and keep functional assemblies/aggregates under control.
Collapse
Affiliation(s)
- Jörg Gsponer
- Centre for High-Throughput Biology, Department of Biochemistry and Molecular Biology, University of British Columbia, East Mall, Vancouver V6T 1Z4, Canada
- Corresponding author
| | - M. Madan Babu
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
- Corresponding author
| |
Collapse
|
141
|
Wu JW, Liu HL. In silico investigation of the disease-associated retinoschisin C110Y and C219G mutants. J Biomol Struct Dyn 2012; 29:937-59. [PMID: 22292953 DOI: 10.1080/07391102.2012.10507420] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The juvenile X-linked retinoschisis (XLRS) is a retinal disease caused by mutations in the secretory protein, retinoschisin (RS1). Majority of the disease is resulted from single point mutations on the RS1 discoidin domain with cysteine mutations being related to some of the more severe cases of XLRS. Previous studies have indicated that two mutations (C110Y and C219G), which involve cysteines that form intramolecular disulfide bonds in the native discoidin domain, resulted in different oligomerization states of the proteins and did not correlate with the degree of protein stability as calculated by the change in folding free energy. Through homology modeling, bioinformatics predictions, molecular dynamics (MD) and docking simulations, we attempt to investigate the effects of these two mutations on the structure of the RS1 discoidin domain in relevance to the discrepancy found between structural stability and aggregation propensity. Based on our findings, this discrepancy can be explained by the ability of C110Y mutant to establish suitable modules for initiating amorphous aggregation and to expand the aggregating mass through predominantly hydrophobic interactions. The low capability of C219G mutant to oligomerize, on the other hand, may be due to its greater structural instability and lesser hydrophobic tendency, two properties that may be unsupportive of aggregation. The results, altogether, indicate that aggregation propensity in the RS1 C110Y mutant is dependent upon the formation of suitable aggregating substrates for propagation of aggregation and not directly related to or determined by overall structural instability. As for the wildtype protein, the binding specificity of the spikes for biological function and the formation of octameric structure are contributed by important loop interactions, as well as evolved structural and sequence-based properties that prevent aggregation.
Collapse
Affiliation(s)
- Josephine W Wu
- Institute of Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
| | | |
Collapse
|
142
|
Panda A, Begum T, Ghosh TC. Insights into the evolutionary features of human neurodegenerative diseases. PLoS One 2012; 7:e48336. [PMID: 23118989 PMCID: PMC3484049 DOI: 10.1371/journal.pone.0048336] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 09/24/2012] [Indexed: 02/06/2023] Open
Abstract
Comparative analyses between human disease and non-disease genes are of great interest in understanding human disease gene evolution. However, the progression of neurodegenerative diseases (NDD) involving amyloid formation in specific brain regions is still unknown. Therefore, in this study, we mainly focused our analysis on the evolutionary features of human NDD genes with respect to non-disease genes. Here, we observed that human NDD genes are evolutionarily conserved relative to non-disease genes. To elucidate the conserved nature of NDD genes, we incorporated the evolutionary attributes like gene expression level, number of regulatory miRNAs, protein connectivity, intrinsic disorder content and relative aggregation propensity in our analysis. Our studies demonstrate that NDD genes have higher gene expression levels in favor of their lower evolutionary rates. Additionally, we observed that NDD genes have higher number of different regulatory miRNAs target sites and also have higher interaction partners than the non-disease genes. Moreover, miRNA targeted genes are known to have higher disorder content. In contrast, our analysis exclusively established that NDD genes have lower disorder content. In favor of our analysis, we found that NDD gene encoded proteins are enriched with multi interface hubs (party hubs) with lower disorder contents. Since, proteins with higher disorder content need to adapt special structure to reduce their aggregation propensity, NDD proteins found to have elevated relative aggregation propensity (RAP) in support of their lower disorder content. Finally, our categorical regression analysis confirmed the underlined relative dominance of protein connectivity, 3'UTR length, RAP, nature of hubs (singlish/multi interface) and disorder content for such evolutionary rates variation between human NDD genes and non-disease genes.
Collapse
Affiliation(s)
- Arup Panda
- Bioinformatics Centre, Bose Institute, Kolkata, India
| | - Tina Begum
- Bioinformatics Centre, Bose Institute, Kolkata, India
| | | |
Collapse
|
143
|
Botelho HM, Leal SS, Cardoso I, Yanamandra K, Morozova-Roche LA, Fritz G, Gomes CM. S100A6 amyloid fibril formation is calcium-modulated and enhances superoxide dismutase-1 (SOD1) aggregation. J Biol Chem 2012; 287:42233-42. [PMID: 23076148 DOI: 10.1074/jbc.m112.396416] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
S100A6 is a small EF-hand calcium- and zinc-binding protein involved in the regulation of cell proliferation and cytoskeletal dynamics. It is overexpressed in neurodegenerative disorders and a proposed marker for Amyotrophic Lateral Sclerosis (ALS). Following recent reports of amyloid formation by S100 proteins, we investigated the aggregation properties of S100A6. Computational analysis using aggregation predictors Waltz and Zyggregator revealed increased propensity within S100A6 helices H(I) and H(IV). Subsequent analysis of Thioflavin-T binding kinetics under acidic conditions elicited a very fast process with no lag phase and extensive formation of aggregates and stacked fibrils as observed by electron microscopy. Ca(2+) exerted an inhibitory effect on the aggregation kinetics, which could be reverted upon chelation. An FT-IR investigation of the early conformational changes occurring under these conditions showed that Ca(2+) promotes anti-parallel β-sheet conformations that repress fibrillation. At pH 7, Ca(2+) rendered the fibril formation kinetics slower: time-resolved imaging showed that fibril formation is highly suppressed, with aggregates forming instead. In the absence of metals an extensive network of fibrils is formed. S100A6 oligomers, but not fibrils, were found to be cytotoxic, decreasing cell viability by up to 40%. This effect was not observed when the aggregates were formed in the presence of Ca(2+). Interestingly, native S1006 seeds SOD1 aggregation, shortening its nucleation process. This suggests a cross-talk between these two proteins involved in ALS. Overall, these results put forward novel roles for S100 proteins, whose metal-modulated aggregation propensity may be a key aspect in their physiology and function.
Collapse
Affiliation(s)
- Hugo M Botelho
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2781-901 Oeiras, Portugal
| | | | | | | | | | | | | |
Collapse
|
144
|
Abstract
The assembly of proteins into amyloid fibrils can be an element of both protein aggregation diseases and a functional unit in healthy biological pathways. In both cases, it must be kept under tight control to prevent undesired aggregation. In normophysiology, proteins can self-chaperone amyloidogenic segments by restricting their conformational flexibility in an overall stabilizing protein fold. However, some aggregation-prone segments cannot be controlled in this manner and require additional regulatory elements to limit fibrillation. The present review summarizes different molecular mechanisms that proteins use to control their own assembly into fibrils, such as the inclusion of a chaperoning domain or a blocking segment in the proform, the controlled release of an amyloidogenic region from the folded protein, or the adjustment of fibrillation propensity according to pH. Autoregulatory elements can control disease-related as well as functional fibrillar protein assemblies and distinguish a group of self-regulating amyloids across a wide range of biological functions and organisms.
Collapse
|
145
|
Siekierska A, De Baets G, Reumers J, Gallardo R, Rudyak S, Broersen K, Couceiro J, Van Durme J, Schymkowitz J, Rousseau F. α-Galactosidase aggregation is a determinant of pharmacological chaperone efficacy on Fabry disease mutants. J Biol Chem 2012; 287:28386-97. [PMID: 22773828 DOI: 10.1074/jbc.m112.351056] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Fabry disease is a lysosomal storage disorder caused by loss of α-galactosidase function. More than 500 Fabry disease mutants have been identified, the majority of which are structurally destabilized. A therapeutic strategy under development for lysosomal storage diseases consists of using pharmacological chaperones to stabilize the structure of the mutant protein, thereby promoting lysosomal delivery over retrograde degradation. The substrate analog 1-deoxygalactonojirimycin (DGJ) has been shown to restore activity of mutant α-galactosidase and is currently in clinical trial for treatment of Fabry disease. However, only ∼65% of tested mutants respond to treatment in cultured patient fibroblasts, and the structural underpinnings of DGJ response remain poorly explained. Using computational modeling and cell culture experiments, we show that the DGJ response is negatively affected by protein aggregation of α-galactosidase mutants, revealing a qualitative difference between misfolding-associated and aggregation-associated loss of function. A scoring function combining predicted thermodynamic stability and intrinsic aggregation propensity of mutants captures well their aggregation behavior under overexpression in HeLa cells. Interestingly, the same classifier performs well on DGJ response data of patient-derived cultured lymphoblasts, showing that protein aggregation is an important determinant of chemical chaperone efficiency under endogenous expression levels as well. Our observations reinforce the idea that treatment of aggregation-associated loss of function observed for the more severe α-galactosidase mutants could be enhanced by combining pharmacological chaperone treatment with the suppression of mutant aggregation, e.g. via proteostatic regulator compounds that increase cellular chaperone expression.
Collapse
|
146
|
Beerten J, Jonckheere W, Rudyak S, Xu J, Wilkinson H, De Smet F, Schymkowitz J, Rousseau F. Aggregation gatekeepers modulate protein homeostasis of aggregating sequences and affect bacterial fitness. Protein Eng Des Sel 2012; 25:357-66. [PMID: 22706763 DOI: 10.1093/protein/gzs031] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The most common mechanism by which proteins aggregate consists in the assembly of short hydrophobic primary sequence segments into extended β-structured agglomerates. A significant enrichment of charged residues is observed at the flank of these aggregation-prone sequence segments, suggesting selective pressure against aggregation. These so-called aggregation gatekeepers act by increasing the intrinsic solubility of aggregating sequences in vitro, but it has been suggested that they could also facilitate chaperone interactions. Here, we address whether aggregation gatekeepers affect bacterial fitness. In Escherichia coli MC4100 we overexpressed GFP fusions with an aggregation-prone segment of σ32 (further termed σ32β) flanked by gatekeeper and non-gatekeeper residues and measured pairwise competitive growth. We found that the identity of flanking residues had significant effect on bacterial growth. Overexpression of σ32β flanked by its natural gatekeepers displayed the greatest competitive fitness, followed by other combinations of gatekeepers, while absence of gatekeepers strongly affects bacterial fitness. Further analysis showed the diversity of effects of gatekeepers on the proteostasis of σ32β including synthesis and degradation rates, in vivo aggregation propensity and chaperone response. Our results suggest that gatekeeper residues affect bacterial fitness not only by modulating the intrinsic aggregation propensity of proteins but also by the manner in which they affect the processing of σ32β-GFP by the protein quality control machinery of the cell. In view of these observations, we hypothesize that variation at gatekeeper positions offers a flexible selective strategy to modulate the proteostatic regulation of proteins to the match intrinsic aggregation propensities of proteins with required expression levels.
Collapse
Affiliation(s)
- Jacinte Beerten
- Switch Laboratory, VIB, University of Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
147
|
Sabate R, Espargaro A, Graña-Montes R, Reverter D, Ventura S. Native Structure Protects SUMO Proteins from Aggregation into Amyloid Fibrils. Biomacromolecules 2012; 13:1916-26. [DOI: 10.1021/bm3004385] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Raimon Sabate
- Departament de Fisicoquímica,
Facultat de Farmàcia, Universitat de Barcelona, Avda. Joan XXIII s/n, E-08028-Barcelona, Spain
| | | | | | | | | |
Collapse
|
148
|
Inoue M, Konno T, Tainaka K, Nakata E, Yoshida HO, Morii T. Positional effects of phosphorylation on the stability and morphology of tau-related amyloid fibrils. Biochemistry 2012; 51:1396-406. [PMID: 22304362 DOI: 10.1021/bi201451z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hyperphosphorylated forms of tau protein are the main component of paired helical filaments (PHFs) of neurofibrillary tangles in the brain of Alzheimer's disease patients. To understand the effect of phosphorylation on the fibrillation of tau, we utilized tau-derived phosphorylated peptides. The V(306)QIVYK(311) sequence (PHF6) in the microtubule-binding domain is known to play a key role in the fibrillation of tau, and the short peptide corresponding to the PHF6 sequence forms amyloid-type fibrils similar to those generated by full-length tau. We focused on the amino acid residue located at the N-terminus of the PHF6 sequence, serine or lysine in the native isoform of tau, and synthesized the PHF6 derivative peptides with serine or lysine at the N-terminus of PHF6. Peptides phosphorylated at serine and/or tyrosine were synthesized to mimic the possible phosphorylation at these positions. The critical concentrations of the fibrillation of peptides were determined to quantitatively assess fibril stability. The peptide with the net charge of near zero tended to form stable fibrils. Interestingly, the peptide phosphorylated at the N-terminal serine residue exhibited remarkably low fibrillation propensity as compared to the peptide possessing the same net charge. Transmission electron microscopy measurements of the fibrils visualized the paired helical or straight fibers and segregated masses of the fibers or heterogeneous rodlike fibers depending on the phosphorylation status. Further analyses of the fibrils by the X-ray fiber diffraction method and Fourier transform infrared spectroscopic measurements indicated that all the peptides shared a common cross-β structure. In addition, the phosphoserine-containing peptides showed the characteristics of β-sandwiches that could interact with both faces of the β-sheet. On the basis of these observations, possible protofilament models with four β-sheets were constructed to consider the positional effects of the serine and/or tyrosine phosphorylations. The electrostatic intersheet interaction between phosphate groups and the amino group of lysine enhanced the lateral association between β-sheets to compensate for the excess charge. In addition to the previously postulated net charge of the peptide, the position of the charged residue plays a critical role in the amyloid fibrillation of tau.
Collapse
Affiliation(s)
- Masafumi Inoue
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | | | |
Collapse
|
149
|
Ramazzotti M, Monsellier E, Kamoun C, Degl'Innocenti D, Melki R. Polyglutamine repeats are associated to specific sequence biases that are conserved among eukaryotes. PLoS One 2012; 7:e30824. [PMID: 22312432 PMCID: PMC3270027 DOI: 10.1371/journal.pone.0030824] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 12/23/2011] [Indexed: 12/20/2022] Open
Abstract
Nine human neurodegenerative diseases, including Huntington's disease and several spinocerebellar ataxia, are associated to the aggregation of proteins comprising an extended tract of consecutive glutamine residues (polyQs) once it exceeds a certain length threshold. This event is believed to be the consequence of the expansion of polyCAG codons during the replication process. This is in apparent contradiction with the fact that many polyQs-containing proteins remain soluble and are encoded by invariant genes in a number of eukaryotes. The latter suggests that polyQs expansion and/or aggregation might be counter-selected through a genetic and/or protein context. To identify this context, we designed a software that scrutinize entire proteomes in search for imperfect polyQs. The nature of residues flanking the polyQs and that of residues other than Gln within polyQs (insertions) were assessed. We discovered strong amino acid residue biases robustly associated to polyQs in the 15 eukaryotic proteomes we examined, with an over-representation of Pro, Leu and His and an under-representation of Asp, Cys and Gly amino acid residues. These biases are conserved amongst unrelated proteins and are independent of specific functional classes. Our findings suggest that specific residues have been co-selected with polyQs during evolution. We discuss the possible selective pressures responsible of the observed biases.
Collapse
Affiliation(s)
- Matteo Ramazzotti
- Dipartimento di Scienze Biochimiche, Università degli Studi di Firenze, Florence, Italy
- * E-mail: (MR); (EM)
| | - Elodie Monsellier
- Laboratoire d'Enzymologie et de Biochimie Structurales, UPR 3082 CNRS, Gif sur Yvette, France
- * E-mail: (MR); (EM)
| | - Choumouss Kamoun
- Laboratoire d'Enzymologie et de Biochimie Structurales, UPR 3082 CNRS, Gif sur Yvette, France
| | | | - Ronald Melki
- Laboratoire d'Enzymologie et de Biochimie Structurales, UPR 3082 CNRS, Gif sur Yvette, France
| |
Collapse
|
150
|
Abstract
Protein aggregation underlies the development of an increasing number of conformational human diseases of growing incidence, such as Alzheimer's and Parkinson's diseases. Furthermore, the accumulation of recombinant proteins as intracellular aggregates represents a critical obstacle for the biotechnological production of polypeptides. Also, ordered protein aggregates constitute novel and versatile nanobiomaterials. Consequently, there is an increasing interest in the development of methods able to forecast the aggregation properties of polypeptides in order to modulate their intrinsic solubility. In this context, we have developed AGGRESCAN, a simple and fast algorithm that predicts aggregation-prone segments in protein sequences, compares the aggregation properties of different proteins or protein sets and analyses the effect of mutations on protein aggregation propensities.
Collapse
|