101
|
Kryeziu A, Slovák V, Parchaňská A. Liquefaction of Cellulose for Production of Advanced Porous Carbon Materials. Polymers (Basel) 2022; 14:polym14081621. [PMID: 35458371 PMCID: PMC9032830 DOI: 10.3390/polym14081621] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 02/04/2023] Open
Abstract
Cellulose is a renewable resource for the production of advanced carbonaceous materials for various applications. In addition to direct carbonization, attention has recently been paid to the preparation of porous carbons from liquid cellulose-based precursors. Possible pathways of cellulose conversion to a liquid state suitable for the preparation of porous carbons are summarized in this review. Hydrothermal liquefaction leading to liquid mixtures of low-molecular-weight organics is described in detail together with less common decomposition techniques (microwave or ultrasound assisted liquefaction, decomposition in a strong gravitation field). We also focus on dissolution of cellulose without decomposition, with special attention paid to dissolution of nonderivatized cellulose. For this purpose, cold alkalines, hot acids, ionic liquids, or alcohols are commonly used.
Collapse
Affiliation(s)
- Arjeta Kryeziu
- Department of Chemistry, University of Ostrava, 30. Dubna 22, 701 03 Ostrava, Czech Republic; (V.S.); (A.P.)
- Institut de Science des Matériaux de Mulhouse (IS2M), UMR 7361 CNRS-UHA, Université de Haute-Alsace, 15 Rue Jean Starcky, 68057 Mulhouse, France
- Correspondence:
| | - Václav Slovák
- Department of Chemistry, University of Ostrava, 30. Dubna 22, 701 03 Ostrava, Czech Republic; (V.S.); (A.P.)
| | - Alžběta Parchaňská
- Department of Chemistry, University of Ostrava, 30. Dubna 22, 701 03 Ostrava, Czech Republic; (V.S.); (A.P.)
| |
Collapse
|
102
|
Zhang X, Qu Q, Cheng W, Zhou A, Deng Y, Ma W, Zhu M, Xiong R, Huang C. A Prussian blue alginate microparticles platform based on gas-shearing strategy for antitumor and antibacterial therapy. Int J Biol Macromol 2022; 209:794-800. [PMID: 35427638 DOI: 10.1016/j.ijbiomac.2022.04.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/29/2022] [Accepted: 04/08/2022] [Indexed: 01/10/2023]
Abstract
Prussian blue (PB) with distinct hollow mesoporous structure and favorable properties has captured the attention of extensive biomaterial researchers. However, there is an unmet need for biocompatible PB microparticles with recyclability fabricated by a facile method. Herein, a size-controlled PB alginate microparticles (PBAMs) generated by a one-step and large batch production gas-shearing strategy. With the characteristic of porous and surface-modifiable, PBAMs used as vehicles may effectively load and release drug to improve the therapeutic efficacy. Meanwhile, Fe2+ in PBAMs exerts a catalyze for chemodynamic therapy (CDT) to produce reactive oxygen species (ROS), which synergizes with the photothermal therapy (PTT) induced by PB particles with effective photothermal conversion, achieving active tri-modality combination antitumor and antibacterial. The new concept for the low-cost and facile preparation of biocompatible PBAMs here illustrated opens a novel pathway toward the effective multifunctional platform.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Qingli Qu
- Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Weixia Cheng
- Children's Hospital of Nanjing Medical University, Nanjing 210008, PR China
| | - Aying Zhou
- Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Yankang Deng
- Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Wenjing Ma
- Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Miaomiao Zhu
- Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Ranhua Xiong
- Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Chaobo Huang
- Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China.
| |
Collapse
|
103
|
Mohi-ud-din R, Mir RH, Wani TU, Alsharif KF, Alam W, Albrakati A, Saso L, Khan H. The Regulation of Endoplasmic Reticulum Stress in Cancer: Special Focuses on Luteolin Patents. Molecules 2022; 27:molecules27082471. [PMID: 35458669 PMCID: PMC9031790 DOI: 10.3390/molecules27082471] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer is a major health problem across the globe, and is expeditiously growing at a faster rate worldwide. The endoplasmic reticulum (ER) is a membranous cell organelle having inextricable links in cellular homeostasis. Altering ER homeostasis initiates various signaling events known as the unfolded protein response (UPR). The basic purpose of the UPR is to reinstate the homeostasis; however, a continuous UPR can stimulate pathways of cell death, such as apoptosis. As a result, there is great perturbation to target particular signaling pathways of ER stress. Flavonoids have gained significant interest as a potential anticancer agent because of their considerable role in causing cytotoxicity of the cancerous cells. Luteolin, a flavonoid isolated from natural products, is a promising phytochemical used in the treatment of cancer. The current study is designed to review the different endoplasmic reticulum stress pathways involved in the cancer, mechanistic insights of luteolin as an anticancer agent in modulating ER stress, and the available luteolin patent formulations were also highlighted. The patents were selected on the basis of pre-clinical and/or clinical trials, and established antitumor effects using patent databases of FPO IP and Espacenet. The patented formulation of luteolin studied so far has shown promising anticancer potential against different cancer cell lines. However, further research is still required to determine the molecular targets of such bioactive molecules so that they can be used as anticancer drugs.
Collapse
Affiliation(s)
- Roohi Mohi-ud-din
- Pharmacognosy & Phytochemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, India
- Correspondence: (R.M.-u.-d.); (H.K.)
| | - Reyaz Hassan Mir
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, India;
| | - Taha Umair Wani
- Pharmaceutics Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, India;
| | - Khalaf F. Alsharif
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan;
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Luciano Saso
- Department of Physiology and Pharmacology, Sapienza University, 00158 Rome, Italy;
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan;
- Correspondence: (R.M.-u.-d.); (H.K.)
| |
Collapse
|
104
|
Limoee M, Allahdad M, Samadian H, Bahrami G, Pourmanouchehri Z, Hosseinzadeh L, Mohammadi B, Vosoughi A, Forouhar K, Behbood L. Preparation and Evaluation of Extended-Release Nanofibers Loaded with Pramipexole as a Novel Oral Drug Delivery System: Hybridization of Hydrophilic and Hydrophobic Polymers. J Pharm Innov 2022. [DOI: 10.1007/s12247-022-09625-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
105
|
Bezerra GSN, Colbert DM, O’Donnell C, Cao Z, Geever J, Geever L. Compatibility Study Between Fenbendazole and Poly(Ethylene Oxide) with Application in Solid Dispersion Formulations Using Hot-Melt Extrusion. J Pharm Innov 2022. [DOI: 10.1007/s12247-022-09644-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
106
|
Chen S, Wu M, Lv X, Xiao Y, Jiang Z, Wen G. A novel resonance Rayleigh scattering assay for trace formaldehyde detection based on Ce-MOF probe and acetylacetone reaction. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
107
|
Sohrabi H, Arbabzadeh O, Falaki M, Majidi MR, Han N, Yoon Y, Khataee A. Electrochemical layered double hydroxide (LDH)-based biosensors for pesticides detection in food and environment samples: A review of status and prospects. Food Chem Toxicol 2022; 164:113010. [DOI: 10.1016/j.fct.2022.113010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/29/2022] [Accepted: 04/09/2022] [Indexed: 12/27/2022]
|
108
|
|
109
|
Colorimetric/spectral dual-mode analysis of sensitive fluorescent probe based on 2,3,3-trimethyl-3H-benzo[e]indole detection of acid pH. Bioorg Chem 2022; 124:105792. [DOI: 10.1016/j.bioorg.2022.105792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/14/2022] [Accepted: 04/03/2022] [Indexed: 11/22/2022]
|
110
|
Multiscale Mechanical Performance of Wood: From Nano- to Macro-Scale across Structure Hierarchy and Size Effects. NANOMATERIALS 2022; 12:nano12071139. [PMID: 35407258 PMCID: PMC9000298 DOI: 10.3390/nano12071139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 02/07/2023]
Abstract
This review describes methods and results of studying the mechanical properties of wood at all scales: from nano- to macro-scale. The connection between the mechanical properties of material and its structure at all these levels is explored. It is shown that the existing size effects in the mechanical properties of wood, in a range of the characteristic sizes of the structure of about six orders of magnitude, correspond to the empirical Hall-Petch relation. This “law” was revealed more than 60 years ago in metals and alloys and later in other materials. The nature, as well as the particular type of the size dependences in different classes of materials can vary, but the general trend, “the smaller the stronger”, remains true both for wood and for other cellulose-containing materials. The possible mechanisms of the size effects in wood are being discussed. The correlations between the mechanical and thermophysical properties of wood are described. Several examples are used to demonstrate the possibility to forecast the macromechanical properties of wood by means of contactless thermographic express methods based on measuring temperature diffusivity. The research technique for dendrochronological and dendroclimatological studies by means of the analysis of microhardness and Young’s modulus radial dependences in annual growth rings is described.
Collapse
|
111
|
Amara U, Mahmood K, Awais M, Khalid M, Nasir M, Riaz S, Hayat A, Nawaz MH. Nickel -doped iron oxide nanoparticle-conjugated porphyrin interface (porphyrin/Fe 2O 3@Ni) for the non-enzymatic detection of dopamine from lacrimal fluid. Dalton Trans 2022; 51:5098-5107. [PMID: 35266502 DOI: 10.1039/d2dt00074a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein, we synthesized nickel (Ni)-doped iron oxide nanoparticles (Fe2O3). The presence of the dopant afforded anchoring sites for the porphyrinic hetero cavity of 5,10,15,20-(tetra-4-carboxyphenyl)porphyrin to produce the porphyrin/Fe2O3@Ni composite. The crystalline structure and morphology of porphyrin/Fe2O3@Ni were assessed using various tools including Fourier transform spectroscopy (FTIR), scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD) and Raman spectroscopy. Porphyrin/Fe2O3@Ni has proven to be an excellent dopamine (DA) probe material with good selectivity, reproducibility, stability and reliability owing to its clever morphology, which induces numerous active sites along with good active surface area. It consequently provides good accessibility to DA and allows for the smooth tunneling of electrons between the analyte and sensing interface. Meanwhile, the porphyrin molecules provide good carbon-based resilient support, inhibit the leaching of the electrode matrix and enhance electron shuttling, resulting in the robust oxidation of DA with amplified transduction signals. The designed porphyrin/Fe2O3@Ni interface showed a low detection limit (1.2 nm) with good sensitivity (1.2 nM) in the linear bounds of 10 μM to 3500 μM. Additionally, the interface was employed successfully to analyze DA from lacrimal fluid with good percentage recoveries (99.8% to 100.1%). We anticipate that such a design will simplify the in vitro screening of DA in rarely studied tear samples with sensitivity and selectivity.
Collapse
Affiliation(s)
- Umay Amara
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus 54000, Pakistan. .,Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | - Khalid Mahmood
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | - Muhammad Awais
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | - Muhammad Khalid
- Department of Basic Sciences & Humanities, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Muhammad Nasir
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus 54000, Pakistan.
| | - Sara Riaz
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus 54000, Pakistan
| | - Akhtar Hayat
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus 54000, Pakistan.
| | - Mian Hasnain Nawaz
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus 54000, Pakistan.
| |
Collapse
|
112
|
Alizadeh M, Demir E, Aydogdu N, Zare N, Karimi F, Kandomal SM, Rokni H, Ghasemi Y. Recent advantages in electrochemical monitoring for the analysis of amaranth and carminic acid food colors. Food Chem Toxicol 2022; 163:112929. [PMID: 35307455 DOI: 10.1016/j.fct.2022.112929] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 12/19/2022]
Abstract
This study provides a comprehensive review of the latest developments in the electrochemical impressions of the important dyestuffs including amaranth and carminic acid. Food colors are organic substances that have important effects on human health and food safety. While these substances do not pose a problem when used in the daily intake (ADI) amounts, they harm human health when consumed excessively. Amaranth and carminic acid are synthetic and natural food colors ingredients, respectively. Analysis of these substances in food, pharmaceutical, cosmetic and textile samples is extremely important because of their genotoxicity, cytostatic and cytotoxic effects. Electroanalytical methods, which have great advantages over traditional analytical methods, shed light on the scientific world. Electrochemical monitoring modules, which are fast, simple, accurate, reliable, and highly selective, are promising for the determination of both substances. Until now, amaranth and carminic acid food determinations have been carried out successfully with electrochemical monitoring techniques in many numbers in the literature. Voltammetric techniques are the most widely used among these electroanalytical methods. In particular, square wave and differential pulse voltammetric techniques, which have extraordinary properties, have been heavily preferred. Limits of detection (LOD) comparable to the standard analytical method have been achieved using these methods, which have very quick analysis durations, high precision and accuracy, do not require long preprocessing, and have great selectivity. In addition, more sensitive and selective analyses of amaranth and carminic acid in natural samples were carried out with numerous indicator electrodes. The merits of powerful electrochemical monitoring studies for the determination of both food colors during the last decade are presented in this study. Moreover, parameters such as analytical applications, detection limits, electrochemical methods, selectivity, working electrodes, and working ranges are summarized in detail.
Collapse
Affiliation(s)
- Marzieh Alizadeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Laboratory of Basic Sciences, Mohammad Rasul Allah Research Tower, Shiraz University of Medical Sciences, Shiraz, 71348-14336, Iran
| | - Ersin Demir
- Afyonkarahisar Health Sciences University, Faculty of Pharmacy, Department of Analytical Chemistry, 03030, Afyonkarahisar, Turkey.
| | - Nida Aydogdu
- Afyonkarahisar Health Sciences University, Faculty of Pharmacy, Department of Analytical Chemistry, 03030, Afyonkarahisar, Turkey
| | - Najmeh Zare
- Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran
| | - Fatemeh Karimi
- Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran.
| | - S Masoud Kandomal
- Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran
| | - Hassan Rokni
- Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
113
|
Employing Cellulose Nanofiber-Based Hydrogels for Burn Dressing. Polymers (Basel) 2022; 14:polym14061207. [PMID: 35335540 PMCID: PMC8951233 DOI: 10.3390/polym14061207] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/07/2022] [Accepted: 03/15/2022] [Indexed: 01/29/2023] Open
Abstract
The aim of this research was to fabricate a burn dressing in the form of hydrogel films constructed with cellulose nanofibers (CNF) that has pain-relieving properties, in addition to wound healing. In this study, the hydrogels were prepared in the form of film. For this, CNF at weight ratios of 1, 2, and 3 wt.%, 1 wt.% of hydroxyethyl cellulose (HEC), and citric acid (CA) crosslinker with 10 and 20 wt.% were used. FE-SEM analysis showed that the structure of the CNF was preserved after hydrogel preparation. Cationization of CNF by C6H14NOCl was confirmed by FTIR spectroscopy. The drug release analysis results showed a linear relationship between the amount of absorption and the concentration of the drug. The MTT test (assay protocol for cell viability and proliferation) showed the high effectiveness of cationization of CNF and confirmed the non-toxicity of the resulting hydrogels.
Collapse
|
114
|
Peng S, Sun Y, Ma C, Duan G, Liu Z, Ma C. Recent advances in dynamic covalent bond-based shape memory polymers. E-POLYMERS 2022. [DOI: 10.1515/epoly-2022-0032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
Dynamic covalent bond-based shape memory polymers (DCB-SMPs) are one of most important SMPs which have a wide potential application prospect. Different from common strong covalent bonds, DCBs own relatively weak bonding energy, similarly to the supramolecular interactions of noncovalent bonds, and can dynamically combine and dissociate these bonds. DCB-SMP solids, which can be designed to respond for different stimuli, can provide excellent self-healing, good reprocessability, and high mechanical performance, because DCBs can obtain dynamic cross-linking without sacrificing ultrahigh fixing rates. Furthermore, besides DCB-SMP solids, DCB-SMP hydrogels with responsiveness to various stimuli also have been developed recently, which have special biocompatible soft/wet states. Particularly, DCB-SMPs can be combined with emerging 3D-printing techniques to design various original shapes and subsequently complex shape recovery. This review has summarized recent research studies about SMPs based on various DCBs including DCB-SMP solids, DCB-SMP hydrogels, and the introduction of new 3D-printing techniques using them. Last but not least, the advantages/disadvantages of different DCB-SMPs have been analyzed via polymeric structures and the future development trends in this field have been predicted.
Collapse
Affiliation(s)
- Shuyi Peng
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University , Haikou 570228 , China
| | - Ye Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University , Haikou 570228 , China
| | - Chunming Ma
- Shenzhen Institute of Advanced Electronic Materials - Shenzhen Fundamental Research Institutions, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University , Nanjing , 210037 , China
| | - Zhenzhong Liu
- Research Institute of Zhejiang University-Taizhou , Taizhou 318000 , China
| | - Chunxin Ma
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University , Haikou 570228 , China
- Research Institute of Zhejiang University-Taizhou , Taizhou 318000 , China
| |
Collapse
|
115
|
Li H, Zong Y, He J, Ding Q, Jiang Y, Li X, Han W. Wood-inspired high strength and lightweight aerogel based on carbon nanotube and nanocellulose fiber for heat collection. Carbohydr Polym 2022; 280:119036. [PMID: 35027119 DOI: 10.1016/j.carbpol.2021.119036] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023]
Abstract
Wood is one of the most abundant materials in nature, with excellent mechanical properties and anisotropy. Its main component, cellulose has excellent dispersion properties and biocompatibility after nano-treatment, which has aroused the interest of researchers. Therefore, this study prepared a thermoelectric aerogel based on carboxylated nanocellulose fiber and carbon nanotube, and made it have a wood-like anisotropic structure through directional freezing technology. The aerogel exhibited excellent mechanical properties and had the stress of up to 152 kPa when compressed at 90%. It also exhibited low thermal conductivity (0.03-0.08 W/mK) and density (7.5 mg/cm3). When the device was at a temperature difference of 30 K, the single output power was 0.23 nW. This work confirmed the dispersion effect of carboxylated nanocellulose fiber on carbon nanotube, and the enhancement of the wood-like structure on thermoelectric generators. It provided new ideas and solutions for the construction of thermoelectric devices.
Collapse
Affiliation(s)
- Hongbing Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Yudong Zong
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Jia He
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Qijun Ding
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Yifei Jiang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xia Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Wenjia Han
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| |
Collapse
|
116
|
Gao Z, Sun Z, Ahmad M, Liu Y, Wei H, Wang S, Jin Y. Increased ion transport and high-efficient osmotic energy conversion through aqueous stable graphitic carbon nitride/cellulose nanofiber composite membrane. Carbohydr Polym 2022; 280:119023. [PMID: 35027125 DOI: 10.1016/j.carbpol.2021.119023] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/29/2021] [Accepted: 12/13/2021] [Indexed: 01/24/2023]
Abstract
Increased attention has evoked on the utilization of renewable energy, particularly osmotic power as a potential solution to the energy crisis and environmental pollution. Herein, we fabricate graphitic carbon nitride (g-C3N4)/cellulose nanofiber (CNF) composite membranes with tailored lamellar nanochannels for capturing osmotic energy from salinity gradients. Composite membranes exhibiting charge-governed ion conductivity were prepared via co-homogenization of g-C3N4 with CNF and vacuum filtration. Ion conductivity was efficiently modulated by fine-tuning the charge density through controlling the weight content of CNF in the composite membranes. Higher ion conductivity of 0.014 S cm-1 at low concentrations (<10-2 M KCl) was achieved due to the increased charge density of the lamellar nanochannels and the excellent aqueous stability of the membranes. We demonstrate the potential of the composite membranes in nanofluidic osmotic energy conversion, displaying thermo-enhanced power output performance. This work could inspire new designs of cellulose-based nanofluidic devices for improved osmotic energy conversion.
Collapse
Affiliation(s)
- Zongxia Gao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Zhe Sun
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Mehraj Ahmad
- Department of Food Science and Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, China
| | - Yuqian Liu
- Department of Food Science and Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, China
| | - Haiying Wei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Sha Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
117
|
Solid State NMR a Powerful Technique for Investigating Sustainable/Renewable Cellulose-Based Materials. Polymers (Basel) 2022; 14:polym14051049. [PMID: 35267872 PMCID: PMC8914817 DOI: 10.3390/polym14051049] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 01/27/2023] Open
Abstract
Solid state nuclear magnetic resonance (ssNMR) is a powerful and attractive characterization method for obtaining insights into the chemical structure and dynamics of a wide range of materials. Current interest in cellulose-based materials, as sustainable and renewable natural polymer products, requires deep investigation and analysis of the chemical structure, molecular packing, end chain motion, functional modification, and solvent–matrix interactions, which strongly dictate the final product properties and tailor their end applications. In comparison to other spectroscopic techniques, on an atomic level, ssNMR is considered more advanced, especially in the structural analysis of cellulose-based materials; however, due to a dearth in the availability of a broad range of pulse sequences, and time consuming experiments, its capabilities are underestimated. This critical review article presents the comprehensive and up-to-date work done using ssNMR, including the most advanced NMR strategies used to overcome and resolve the structural difficulties present in different types of cellulose-based materials.
Collapse
|
118
|
Yue Y, Shen S, Cheng W, Han G, Wu Q, Jiang J. Construction of mechanically robust and recyclable photocatalytic hydrogel based on nanocellulose-supported CdS/MoS2/Montmorillonite hybrid for antibiotic degradation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128035] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
119
|
Li Y, Zhu C, Wang Y, Wen F, Zhang X. Tumor reduction-sensitive self-delivery molecular prodrug nanomedicine for enhancing the therapeutic efficacy of chemotherapy. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
120
|
Azman Mohammad Taib MN, Hamidon TS, Garba ZN, Trache D, Uyama H, Hussin MH. Recent progress in cellulose-based composites towards flame retardancy applications. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
121
|
Ding Z, Tang Y, Zhu P. Reduced graphene oxide/cellulose nanocrystal composite films with high specific capacitance and tensile strength. Int J Biol Macromol 2022; 200:574-582. [PMID: 35077747 DOI: 10.1016/j.ijbiomac.2022.01.130] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 11/29/2022]
Abstract
Due to the environmental degradation and energy depletion, the strategy for fabricating high-performance supercapacitor electrode materials based on graphene and nanocellulose has received great attention. Herein, an environmentally friendly reduced graphene oxide (RGO)/cellulose nanocrystal (CNC) composite conductive film was prepared using L-ascorbic acid (L-AA) as the reductant of graphene oxide (GO). Based on chemical structure analysis, L-AA was proved to be an effective reductant to remove oxygen containing groups of GO. Through microstructure observation, a unique stacking structure of CNC and RGO was observed, which could be largely attributed to the hydrogen bond interaction. Furthermore, the effect of CNC amount on the performance of RGO/CNC composite films was also systematically investigated. Particularly, the addition of CNC was found to exert a positive effect on the tensile strength, which might be mainly due to a mass of hydrogen bonds between the CNCs. Meanwhile, the RGO/CNC composite conductive film featured ideal electrical double-layer capacitive (EDLC) behavior, exhibiting a gravity specific capacitance of 222.5 F/g and tensile strength of 32.17 MPa at 20 wt% CNC content. Therefore, the RGO/CNC composite conductive films may hold great promise for environmentally friendly electrode materials of supercapacitors and flexible electrical devices.
Collapse
Affiliation(s)
- Zejun Ding
- National Engineering Laboratory of Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yanjun Tang
- National Engineering Laboratory of Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China; Pulp and Papermaking Center, Zhejiang Sci-Tech University, Hangzhou 310023, China.
| | - Peng Zhu
- National Engineering Laboratory of Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
122
|
Bao Y, He J, Song K, Guo J, Zhou X, Liu S. Functionalization and Antibacterial Applications of Cellulose-Based Composite Hydrogels. Polymers (Basel) 2022; 14:polym14040769. [PMID: 35215680 PMCID: PMC8879376 DOI: 10.3390/polym14040769] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Pathogens, especially drug-resistant pathogens caused by the abuse of antibiotics, have become a major threat to human health and public health safety. The exploitation and application of new antibacterial agents is extremely urgent. As a natural biopolymer, cellulose has recently attracted much attention due to its excellent hydrophilicity, economy, biocompatibility, and biodegradability. In particular, the preparation of cellulose-based hydrogels with excellent structure and properties from cellulose and its derivatives has received increasing attention thanks to the existence of abundant hydrophilic functional groups (such as hydroxyl, carboxy, and aldehyde groups) within cellulose and its derivatives. The cellulose-based hydrogels have broad application prospects in antibacterial-related biomedical fields. The latest advances of preparation and antibacterial application of cellulose-based hydrogels has been reviewed, with a focus on the antibacterial applications of composite hydrogels formed from cellulose and metal nanoparticles; metal oxide nanoparticles; antibiotics; polymers; and plant extracts. In addition, the antibacterial mechanism and antibacterial characteristics of different cellulose-based antibacterial hydrogels were also summarized. Furthermore, the prospects and challenges of cellulose-based antibacterial hydrogels in biomedical applications were also discussed.
Collapse
Affiliation(s)
- Yunhui Bao
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie 427000, China; (Y.B.); (J.H.); (K.S.); (J.G.); (X.Z.)
| | - Jian He
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie 427000, China; (Y.B.); (J.H.); (K.S.); (J.G.); (X.Z.)
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Ke Song
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie 427000, China; (Y.B.); (J.H.); (K.S.); (J.G.); (X.Z.)
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Jie Guo
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie 427000, China; (Y.B.); (J.H.); (K.S.); (J.G.); (X.Z.)
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Xianwu Zhou
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie 427000, China; (Y.B.); (J.H.); (K.S.); (J.G.); (X.Z.)
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Shima Liu
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie 427000, China; (Y.B.); (J.H.); (K.S.); (J.G.); (X.Z.)
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
- Correspondence: ; Tel.: +86-0744-8231386
| |
Collapse
|
123
|
Ansari MJ, Jasim SA, Bokov DO, Thangavelu L, Yasin G, Khalaji AD. Preparation of new bio-based chitosan/Fe 2O 3/NiFe 2O 4 as an efficient removal of methyl green from aqueous solution. Int J Biol Macromol 2022; 198:128-134. [PMID: 34968538 DOI: 10.1016/j.ijbiomac.2021.12.082] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/20/2021] [Accepted: 12/14/2021] [Indexed: 12/26/2022]
Abstract
Modified chitosan with various functional groups has high potential as an efficient adsorbent in removing water pollution. In this study, new magnetic adsorbent, bio-based chitosan/Fe2O3/NiFe2O4, was successfully prepared by green chemistry route involving mixing of chitosan as core moiety and Fe2O3/NiFe2O4 nanocomposite, and slow evaporation of solvent. Synthesized chitosan/Fe2O3/NiFe2O4 was characterized by FT-IR, TGA, XRD, VSM and FE-SEM. The FT-IR and XRD results confirmed that the successful preparation of chitosan/Fe2O3/NiFe2O4. Uniform dispersion of Fe2O3/NiFe2O4 nanoparticles with low aggregation was confirmed by FE-SEM. The as-prepared magnetic chitosan/Fe2O3/NiFe2O4 was developed as solid phase adsorbent to remove methyl green (MG) dye from aqueous solutions. Several important parameters such as contact time, pH, temperature and adsorbent dosage were investigated systematically. The high and fast MG dye removal (≈ 80%) occurs after 30 min. The optimal conditions for MG removal was recorded at pH = 8, contact time of 60 min, adsorbent dosage of 0.2 g and 25 °C and displayed a high MG dye removal percentage of 96.51% and adsorption capacity of 77.22 mg/g.
Collapse
Affiliation(s)
- Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz, University, Al-kharj, Saudi Arabia.
| | - Saade Abdalkareem Jasim
- Al-maarif University College, Medical Laboratory Techniques Department, Al-anbar-Ramadi, Iraq
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow, 119991, Russian Federation; Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow, 109240, Russian Federation
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India.
| | - Ghulam Yasin
- Department of Chemistry, Faculty of Science, Golestan University, Gorgan, Iran
| | | |
Collapse
|
124
|
Golewski P, Sadowski T. Technological and Strength Aspects of Layers Made of Different Powders Laminated on a Polymer Matrix Composite Substrate. Molecules 2022; 27:molecules27041168. [PMID: 35208953 PMCID: PMC8875610 DOI: 10.3390/molecules27041168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 02/04/2023] Open
Abstract
This study presents a description of the new technology for producing external or internal layers made of different powders mixed with epoxy resin, which can perform various functions as a protection against impact, erosion, or elevated temperatures as well as provide interlayers during the manufacturing of a ceramic protective barrier by air plasma spraying (APS) on the PMC substrate made of carbon-epoxy. Six types of powders (copper, quartz sand, Al2O3, aluminum, crystalline silica, and microballoon) were used to manufacture (120 °C) different kinds of protective layers (PLs), perfectly joined with the PMCs, in one single autoclave process. The two-layered specimens (2 × 25 × 110 mm) were subjected to a three-point bending (3-PB) displacement-controlled deformation process to determine the critical values of deformations at which the PLs can work safely without being cracked or delaminated. The tests were performed up to the final failure, observing various damage and cracking phenomena. Finally, the numerical simulations were carried out using the representative volume element (RVE) model of the most efforted central parts of the samples to determine the effect of powder grain diameter and resin content on the elastic properties and damage growth of the newly proposed multifunctional PLs. The stress concentrations and damage processes, including cracking and delamination, were analyzed in the whole two-layered system. The best result, in terms of strength during 3-PB testing, was achieved with the PL made of aluminum powder.
Collapse
|
125
|
Abstract
Abstract
Graphene is one of most exceptional type of nanocarbon. It is a two-dimensional, one atom thick, nanosheet of sp2 hybridized carbon atoms. Graphene has been employed as nanofiller for shape memory polymeric nanocomposites due to outstanding electrical conductivity, mechanical strength, flexibility, and thermal stability characteristics. Consequently, graphene nanostructures have been reinforced in the polymer matrices to attain superior structural, physical, and shape recovery properties. This review basically addresses the important class of shape memory polymer (SMP)/graphene nanocomposites. This assessment is revolutionary to portray the scientific development and advancement in the field of polymer and graphene-based shape memory nanocomposites. In SMP/graphene nanocomposites, polymer shape has been fixed at above transition temperature and then converted to memorized shape through desired external stimuli. Presence of graphene has caused fast switching of temporary shape to original shape in polymer/graphene nanocomposites. In this regard, better graphene dispersion, interactions between matrix-nanofiller, and well-matched interface formation leading to high performance stimuli-responsive graphene derived nanocomposites, have been described. Incidentally, the fabrication, properties, actuation ways, and relevance of the SMP/graphene nanocomposite have been discussed here. The potential applications of these materials have been perceived for the aerospace/automotive components, self-healing nanocomposites, textiles, civil engineering, and biomaterials.
Collapse
Affiliation(s)
- Ayesha Kausar
- National Center for Physics, Quaid-i-Azam University Campus , Islamabad , Pakistan
| |
Collapse
|
126
|
Li Y, He Y, Zhuang J, Shi H. An intelligent natural fibrous membrane anchored with ZnO for switchable oil/water separation and water purification. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
127
|
Zhao J, Li Y, Wang Y, Zhang X, Zhang X. Silk sericin-decorated supramolecular photothermal nanocatalyst-based ferric sulfide for boosting high therapeutic performance of tumor cells. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
128
|
Qu Y, Lu K, Zheng Y, Huang C, Wang G, Zhang Y, Yu Q. Photothermal scaffolds/surfaces for regulation of cell behaviors. Bioact Mater 2022; 8:449-477. [PMID: 34541413 PMCID: PMC8429475 DOI: 10.1016/j.bioactmat.2021.05.052] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/18/2021] [Accepted: 05/31/2021] [Indexed: 12/22/2022] Open
Abstract
Regulation of cell behaviors and even cell fates is of great significance in diverse biomedical applications such as cancer treatment, cell-based therapy, and tissue engineering. During the past decades, diverse methods have been developed to regulate cell behaviors such as applying external stimuli, delivering exogenous molecules into cell interior and changing the physicochemical properties of the substrates where cells adhere. Photothermal scaffolds/surfaces refer to a kind of materials embedded or coated with photothermal agents that can absorb light with proper wavelength (usually in near infrared region) and convert light energy to heat; the generated heat shows great potential for regulation of cell behaviors in different ways. In the current review, we summarize the recent research progress, especially over the past decade, of using photothermal scaffolds/surfaces to regulate cell behaviors, which could be further categorized into three types: (i) killing the tumor cells via hyperthermia or thermal ablation, (ii) engineering cells by intracellular delivery of exogenous molecules via photothermal poration of cell membranes, and (iii) releasing a single cell or an intact cell sheet via modulation of surface physicochemical properties in response to heat. In the end, challenges and perspectives in these areas are commented.
Collapse
Affiliation(s)
- Yangcui Qu
- College of Biomedical Engineering & the Key Laboratory for Medical Functional Nanomaterials, Jining Medical University, Jining, 272067, PR China
| | - Kunyan Lu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Yanjun Zheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Guannan Wang
- College of Biomedical Engineering & the Key Laboratory for Medical Functional Nanomaterials, Jining Medical University, Jining, 272067, PR China
| | - Yanxia Zhang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, 215006, PR China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China
| |
Collapse
|
129
|
Highly Porous-Cellulose-Acetate-Nanofiber Filters Fabricated by Nonsolvent-Induced Phase Separation during Electrospinning for PM 2.5 Capture. NANOMATERIALS 2022; 12:nano12030404. [PMID: 35159748 PMCID: PMC8839121 DOI: 10.3390/nano12030404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 01/27/2023]
Abstract
Highly porous-cellulose-acetate (CA) nanofibers were prepared by an electrospinning process based on a nonsolvent-induced phase separation (NIPS) mechanism, and their PM2.5 capture efficiencies were evaluated. The NIPS condition during the electrospinning process was achieved by selecting appropriate good and poor solvents based on the Hansen solubility parameters of CA. N,N-dimethylacetamide (DMAc) was used as the good solvent, while dichloromethane (DCM), tetrahydrofuran (THF), and acetone were used as poor solvents. Porous-CA nanofibers were observed upon using the binary solvent systems of DCM:DMAc = 1:9, DCM:DMAc = 2:8, and THF:DMAc = 1:9, and the CA nanofibers formed using the DCM/DMAc system with DCM:DMAc = 1:9 were found to have the highest specific surface area of 1839 m2/g. Based on the optimized binary solvent system with DCM:DMAc = 1:9, porous-CA nanofibers were prepared and characterized according to the CA content in the electrospinning mixture. The results confirmed that a porous structure was formed well from the surface to the core of the nanofibers. The composition range of the ternary mixture of CA and two solvents capable of producing porous-CA nanofibers was mapped on a ternary phase diagram, and highly efficient PM2.5 capture with 98.2% efficiency was realized using porous-CA nanofibers obtained using a 10 wt.% CA solution. This work provides a new strategy for improving the efficiency of porous-nanofiber filters for PM2.5 capture.
Collapse
|
130
|
Chen Y, Luo H, Guo H, Liu K, Mei C, Li Y, Duan G, He S, Han J, Zheng J, E S, Jiang S. Anisotropic cellulose nanofibril composite sponges for electromagnetic interference shielding with low reflection loss. Carbohydr Polym 2022; 276:118799. [PMID: 34823805 DOI: 10.1016/j.carbpol.2021.118799] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/09/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022]
Abstract
With the development of the electronic industry bringing convenience to people, a series of caused electromagnetic pollution problems (e.g., electromagnetic interference (EMI)) have recently also become urgent tasks. In this work, an anisotropic composite sponge consisting of cellulose nanofibrils (CNFs) and chemical co-precipitated silver nanowire (AgNW)@Fe3O4 composites was successfully prepared. Due to the introduction of anisotropic structures and the synergistic effect among CNFs, AgNWs, and Fe3O4, this composite sponge exhibited low density (16.76 mg/cm3), good saturation magnetization (4.21 emu/g) and electrical conductivity (0.02 S/cm), and anisotropic EMI shielding ability. By adjusting the proportion (1:0.3) between AgNWs and Fe3O4 and their loading (0.15 vol%) inside the sponge, the reflection loss of the sponge with the improved interface impedance mismatch was only 2.3 dB, accounting for 7.2% of the total loss. It is expected to become a promising EMI shielding material, especially for effectively alleviating the secondary reflection EM pollution.
Collapse
Affiliation(s)
- Yiming Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Heng Luo
- School of Physics and Electronics, Central South University, Changsha 410083, China
| | - Hongtao Guo
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Kunming Liu
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Changtong Mei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Yang Li
- Powder Metallurgy Research Institute, Central South University, Changsha 410083, China
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shuijian He
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jingquan Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jiajia Zheng
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Shiju E
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
131
|
|
132
|
Cao Y. Potential roles of Kruppel-like factors in mediating adverse vascular effects of nanomaterials: A review. J Appl Toxicol 2022; 42:4-16. [PMID: 33837572 DOI: 10.1002/jat.4172] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022]
Abstract
The development of nanotechnology leads to the exposure of human beings to nanomaterials (NMs), and there is a health concern about the adverse vascular effects of NMs. Current data from epidemiology, controlled human exposure, and animal studies suggested that exposure to NMs could induce cardiopulmonary effects. In support of in vivo findings, in vitro studies showed that direct contact of vascular cells with NMs could induce endothelial cell (EC) activation and promote macrophage foam cell formation, although only limited studies showed that NMs could damage vascular smooth muscle cells and promote their phenotypic switch. It has been proposed that NMs induced adverse vascular effects via different mechanisms, but it is still necessary to understand the upstream events. Kruppel-like factors (KLFs) are a set of C2H2 zinc finger transcription factors (TFs) that can regulate various aspects of vascular biology, but currently, the roles of KLF2 in mediating the adverse vascular effects of NMs have gained little attention by toxicologists. This review summarized current knowledge about the adverse vascular effects of NMs and proposed the potential roles of KLFs in mediating these effects based on available data from toxicological studies as well as the current understanding about KLFs in vascular biology. Finally, the challenges in investigating the role of KLFs in vascular toxicology were also summarized. Considering the important roles of KLFs in vascular biology, further studies are needed to understand the influence of NMs on KLFs and the downstream events.
Collapse
Affiliation(s)
- Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, China
| |
Collapse
|
133
|
Wang SS, Kong XY, Wu W, Wu XY, Cai S, Lu CZ. Synergic coordination of multicomponents for the formation of a {Ni 30} cluster substituted polyoxometalate and its in situ assembly. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01073a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synergic coordination of trz, en, and PW9 resulted in a {Ni30} cluster substituted POM, [Ni(trz)3]2@[Ni30(H2O)16]POM, that was discovered as the SBU of four frameworks which served as heterogeneous catalysts for HERs.
Collapse
Affiliation(s)
- Sa-Sa Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Xiang-Yu Kong
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Weiming Wu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Xiao-Yuan Wu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Sheng Cai
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Can-Zhong Lu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Science, Beijing 100049, China
| |
Collapse
|
134
|
Jin L, Ying J, Zhang Y, Sun C, Tian A, Wang X. A series of polyoxometalate compounds by tuning N sites and numbers of ligands: syntheses, characterization and electrochemical sensing, and photocatalytic and supercapacitor properties. NEW J CHEM 2022. [DOI: 10.1039/d2nj00674j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Using morpholine derivatives with different N sites and numbers, we synthesized seven compounds by a hydrothermal method. They can photocatalytically degrade organic dyes and reduce Cr(vi) and can be used as electrochemical sensors. 4 has capacitor performance.
Collapse
Affiliation(s)
- Liang Jin
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China
| | - Jun Ying
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China
| | - Yanping Zhang
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China
| | - Chenxi Sun
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China
| | - Aixiang Tian
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China
| | - Xiuli Wang
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China
| |
Collapse
|
135
|
Pei L, Yang W, Cao Y. Influences of Unmodified and Carboxylated Carbon Nanotubes on Lipid Profiles in THP-1 Macrophages: A Lipidomics Study. Int J Toxicol 2022; 41:16-25. [PMID: 34886715 DOI: 10.1177/10915818211056633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Since the possible roles of surface modifications in determining multi-walled carbon nanotube (MWCNT)-promoted endoplasmic reticulum (ER) stress-mediated lipid-laden macrophage foam cell formation are still in debate, we compared unmodified and carboxylated MWCNT-induced cytotoxicity, lipid profile changes, and expression of ER stress genes in THP-1 macrophages. Particularly, we focused on lipid profile changes by using lipidomics approaches. We found that unmodified and carboxylated MWCNTs significantly decreased cellular viability and appeared to damage the cellular membrane to a similar extent. Likewise, the results from Oil Red O staining showed that both types of MWCNTs slightly but significantly induced lipid accumulation. In keeping with Oil Red O staining results, lipidomics data showed that both types of MWCNTs up-regulated most of the lipid classes. Interestingly, almost all lipid classes were relatively higher in carboxylated MWCNT-exposed THP-1 macrophages compared with unmodified MWCNT-exposed cells, indicating that carboxylated MWCNTs more effectively changed lipid profiles. But in contrast to our expectation, none of the MWCNTs significantly induced the expression of ER stress genes. Even, compared with carboxylated MWCNTs, unmodified MWCNTs induced higher expression of lipid genes, including macrophage scavenger receptor 1 and fatty acid synthase. Combined, our results suggested that even though carboxylation did not significantly affect MWCNT-induced lipid accumulation, carboxylated MWCNTs were more potent to alter lipid profiles in THP-1 macrophages, indicating the need to use omics techniques to understand the exact nanotoxicological effects of MWCNTs. However, the differential effects of unmodified and carboxylated MWCNTs on lipid profiles might not be related with the induction of ER stress.
Collapse
Affiliation(s)
- Lanjie Pei
- 498598Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
- 498598Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Wenxiang Yang
- 498598Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
- 498598Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
136
|
Lou H, Chu L, Zhou W, Dou J, Teng X, Tan W, Zhou B. Diselenium-bridged covalent organic framework with pH/GSH/photo-triple-responsiveness for highly controlled drug release toward joint chemo/photothermal/chemodynamic cancer therapy. J Mater Chem B 2022; 10:7955-7966. [PMID: 35792081 DOI: 10.1039/d2tb01015a] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, a novel joint chemo/photothermal/chemodynamic therapy was developed using a pH/GSH/photo triple-responsive 2D-covalent organic framework (COFs) drug carriers for passive target treatment of tumor with extraordinarily high efficiency. The well-designed...
Collapse
Affiliation(s)
- Han Lou
- School of Pharmacy, Weifang Medical University, Weifang, 261053, Shandong, P. R. China.
- Department of Urology, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Shandong, P. R. China
| | - Lichao Chu
- Department of Anesthesiology, The First Affiliated Hospital of Weifang Medical University (Weifang People's Hospital), Weifang, 261031, Shandong, P. R. China
| | - Wenbin Zhou
- Department of Urology, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Shandong, P. R. China
| | - Jinli Dou
- School of Pharmacy, Weifang Medical University, Weifang, 261053, Shandong, P. R. China.
| | - Xiaotong Teng
- Department of Respiratory Medicine, The First Affiliated Hospital of Weifang Medical University (Weifang People's Hospital), Weifang, 261031, Shandong, P. R. China
| | - Wei Tan
- Department of Respiratory Medicine, The First Affiliated Hospital of Weifang Medical University (Weifang People's Hospital), Weifang, 261031, Shandong, P. R. China
| | - Baolong Zhou
- School of Pharmacy, Weifang Medical University, Weifang, 261053, Shandong, P. R. China.
| |
Collapse
|
137
|
Luo D, Wang F, Liu CH, Wang ST, Sun YY, Fang WH, Zhang J. Combination of aluminum molecular rings with chemical reduction centers for iodine capture and aggregation. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01108e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Presented herein is the designed synthesis of porous materials by the assembly of aluminum molecular rings with flexible pseudo-tetracarboxylic acid ligands and their application in atomically precise iodine capture and aggregation.
Collapse
Affiliation(s)
- Dan Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002 Fuzhou, P.R. China
| | - Fei Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002 Fuzhou, P.R. China
| | - Chen-Hui Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002 Fuzhou, P.R. China
| | - San-Tai Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002 Fuzhou, P.R. China
| | - Ya-Yong Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002 Fuzhou, P.R. China
| | - Wei-Hui Fang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002 Fuzhou, P.R. China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002 Fuzhou, P.R. China
| |
Collapse
|
138
|
Strengthening Cellulose Nanopaper via Deep Eutectic Solvent and Ultrasound-Induced Surface Disordering of Nanofibers. Polymers (Basel) 2021; 14:polym14010078. [PMID: 35012101 PMCID: PMC8747671 DOI: 10.3390/polym14010078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/15/2021] [Accepted: 12/23/2021] [Indexed: 11/17/2022] Open
Abstract
The route for the preparation of cellulose nanofiber dispersions from bacterial cellulose using ethylene glycol- or glycerol-based deep eutectic solvents (DES) is demonstrated. Choline chloride was used as a hydrogen bond acceptor and the effect of the combined influence of DES treatment and ultrasound on the thermal and mechanical properties of bacterial cellulose nanofibers (BC-NFs) is demonstrated. It was found that the maximal Young’s modulus (9.2 GPa) is achieved for samples prepared using a combination of ethylene glycol-based DES and ultrasound treatment. Samples prepared with glycerol-based DES combined with ultrasound exhibit the maximal strength (132 MPa). Results on the mechanical properties are discussed based on the structural investigations that were performed using FTIR, Raman, WAXD, SEM and AFM measurements, as well as the determination of the degree of polymerization and the density of BC-NF packing during drying with the formation of paper. We propose that the disordering of the BC-NF surface structure along with the preservation of high crystallinity bulk are the key factors leading to the improved mechanical and thermal characteristics of prepared BC-NF-based papers.
Collapse
|
139
|
Giving Penetrable Remote-Control Ability to Thermoresponsive Fibrous Composite Actuator with Fast Response Induced by Alternative Magnetic Field. NANOMATERIALS 2021; 12:nano12010053. [PMID: 35010003 PMCID: PMC8746523 DOI: 10.3390/nano12010053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 01/25/2023]
Abstract
An alternative magnetic field (AMF)-induced electrospun fibrous thermoresponsive composite actuator showing penetrable remote-control ability with fast response is shown here for the first time. The built-in heater of magnetothermal Fe3O4 nanoparticles in the actuator and the porous structure of the fibrous layer contribute to a fast actuation with a curvature of 0.4 mm−1 in 2 s. The higher loading amount of the Fe3O4 nanoparticles and higher magnetic field strength result in a faster actuation. Interestingly, the composite actuator showed a similar actuation even when it was covered by a piece of Polytetrafluoroethylene (PTFE) film, which shows a penetrable remote-control ability.
Collapse
|
140
|
Recent advances and trends in nanoparticles based photothermal and photodynamic therapy. Photodiagnosis Photodyn Ther 2021; 37:102697. [PMID: 34936918 DOI: 10.1016/j.pdpdt.2021.102697] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022]
Abstract
Light-mediated therapies, including photodynamic therapy (PDT) and photothermal therapy (PTT) have been exploited as minimally invasive techniques for ablation of various tumors., Both modalities may eradicate tumors with minimal side effects to normal tissues and organs. Moreover, developments of light-mediated approaches using nanoparticles (NPs) and photosensitizer (PS) as diagnostic and therapeutic agents may have a crucial role in achieving successful cancer treatment. In recent years, novel nanoplatforms and strategies have been investigated to boost the therapeutic effect.. In this regard, gold, iron oxide, graphene oxide nanoparticles and hybrid nanocomposites have attracted attention.. Moreover, the combination of these materials with PS, in the form of hybrid NPs, reduces in vitro and in vivo normal tissue cytotoxicity, improves their solubility property in the biological environment and enhances the therapeutic effects. In this review, we look into the basic principles of PTT and PDT with their strengths and limitations to treat cancers. We also will discuss light-based nanoparticles and their PTT and PDT applications in the preclinical and clinical translation. Also, recent advances and trends in this field will be discussed along with the clinical challenges of PTT and PDT.
Collapse
|
141
|
Zhu S, Sun H, Lu Y, Wang S, Yue Y, Xu X, Mei C, Xiao H, Fu Q, Han J. Inherently Conductive Poly(dimethylsiloxane) Elastomers Synergistically Mediated by Nanocellulose/Carbon Nanotube Nanohybrids toward Highly Sensitive, Stretchable, and Durable Strain Sensors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59142-59153. [PMID: 34851617 DOI: 10.1021/acsami.1c19482] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
With the rapid development of soft electronics, flexible and stretchable strain sensors are highly desirable. However, coupling of high sensitivity and stretchability in a single strain sensor remains a challenge. Herein, a kind of conductive elastomer is constructed with poly(dimethylsiloxane) (PDMS) and silylated cellulose nanocrystal (SCNC)/carbon nanotube (CNT) nanohybrids through a facile one-pot solution-casting method. The hydrophobic SCNCs can effectively facilitate the dispersion of CNTs in PDMS and synergistically improve the interfacial compatibility between CNTs and the PDMS matrix, resulting in favorable stress and electron transfer in the polymer network. Due to the outstanding electrical conductivity of CNTs and the excellent dispersity and high mechanical performance of SCNCs, combined with the good compatibility between SCNC-mediated carbon nanotubes (SCNC-CNTs) and PDMS, the resulting composite elastomer (SCNC-CNT/PDMS) shows high electrical conductivity (∼2.77 S m-1), tensile strength (∼5.72 MPa), and fatigue resistance properties. The strain sensor assembled by SCNC-CNT/PDMS demonstrates a high strain range above 100%, appealing strain sensitivity with a gauge factor of 37.11 at 50-100% strain, and long-term stability and durability, which is capable of monitoring both real-time human motions and acoustic vibrations. This work paves a new way for the design and controllable preparation of flexible and stretchable conductive elastomers, demonstrating promising applications in wearable devices and intelligent electronics.
Collapse
Affiliation(s)
- Sailing Zhu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Haoyu Sun
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ya Lu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shaolin Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yiying Yue
- College of Biology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Xinwu Xu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Changtong Mei
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Chemical Engineering Department, New Brunswick University, Fredericton, New Brunswick E3B 5A3, Canada
| | - Qiliang Fu
- Scion, 49 Sala Street, Private Bag 3020, Rotorua 3046, New Zealand
| | - Jingquan Han
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
142
|
Double Narrow Fano Resonances via Diffraction Coupling of Magnetic Plasmon Resonances in Embedded 3D Metamaterials for High-Quality Sensing. NANOMATERIALS 2021; 11:nano11123361. [PMID: 34947710 PMCID: PMC8708183 DOI: 10.3390/nano11123361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/04/2021] [Accepted: 12/09/2021] [Indexed: 01/09/2023]
Abstract
We theoretically demonstrate an approach to generate the double narrow Fano resonances via diffraction coupling of magnetic plasmon (MP) resonances by embedding 3D metamaterials composed of vertical Au U-shaped split-ring resonators (VSRRs) array into a dielectric substrate. Our strategy offers a homogeneous background allowing strong coupling between the MP resonances of VSRRs and the two surface collective optical modes of a periodic array resulting from Wood anomaly, which leads to two narrow hybridized MP modes from the visible to near-infrared regions. In addition, the interaction effects in the VSRRs with various geometric parameters are also systematically studied. Owing to the narrow hybrid MP mode being highly sensitive to small changes in the surrounding media, the sensitivity and the figure of merit (FoM) of the embedded 3D metamaterials with fabrication feasibility were as high as 590 nm/RIU and 104, respectively, which holds practical applications in label-free biosensing, such as the detection of medical diagnoses and sport doping drugs.
Collapse
|
143
|
Ma W, Cao W, Lu T, Jiang Z, Xiong R, Samal SK, Huang C. Healable, Adhesive, and Conductive Nanocomposite Hydrogels with Ultrastretchability for Flexible Sensors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58048-58058. [PMID: 34842414 DOI: 10.1021/acsami.1c20271] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In recent years, conductive hydrogels have generated tremendous attention in biomedicals and bioelectronics fields due to their excellent physiochemical properties. In this study, a physically cross-linked conducting hydrogel has been designed in combination with cellulose nanocrystalline (CNC), polyacrylic acid (PAA) chains, laurel methacrylate, and sodium dodecyl sulfate. The obtained result shows that the hydrogel prepared is ultrastretchable, mechanically robust, transparent, biocompatible, conductive, and self-healing. The mechanical property of the prepared hydrogel is optimized through variation of the CNC content. The optimal hydrogel (CNC-1/PAA) exhibits an impressive mechanics, including high stretchability (∼1800%) and compressibility, good elasticity, and fatigue resistance. Furthermore, the conductivity of the hydrogel enables tensile strain- and pressure-sensing capabilities. The CNC/PAA-based flexible sensors are successfully designed, which shows high sensitivity, fast response (290 ms), and excellent cycle stability as well as the pressure sensing capability. As a result, the designed hydrogel has the ability to sense and detect diverse human motion, including elbow/finger/wrist bending and speaking, which demonstrates that the designed self-healing conductive hydrogels have significant potential for applications in flexible electronics.
Collapse
Affiliation(s)
- Wenjing Ma
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Wenxuan Cao
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Tao Lu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Zhicheng Jiang
- School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China
| | - Ranhua Xiong
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Sangram Keshari Samal
- Laboratory of Biomaterials and Regenerative Medicine for Advanced Therapies, Indian Council of Medical Research-Regional Medical Research Center, Bhubaneswar 751023, India
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China
| |
Collapse
|
144
|
Ge J, Jia Y, Cheng C, Sun K, Peng Y, Tu Y, Qiang Y, Hua Z, Zheng Z, Ye X, Xue L, Jiang G. Polydimethylsiloxane‐functionalized
polyacrylonitrile nanofibrous aerogels for efficient oil absorption and oil/water separation. J Appl Polym Sci 2021. [DOI: 10.1002/app.51339] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Junyan Ge
- Zhijiang College, Zhejiang University of Technology Shaoxing China
| | - Yuxin Jia
- Zhijiang College, Zhejiang University of Technology Shaoxing China
| | - Chuang Cheng
- Zhijiang College, Zhejiang University of Technology Shaoxing China
| | - Ke Sun
- Zhijiang College, Zhejiang University of Technology Shaoxing China
| | - Yuying Peng
- Zhijiang College, Zhejiang University of Technology Shaoxing China
| | - Yingfang Tu
- Zhijiang College, Zhejiang University of Technology Shaoxing China
| | - Yingying Qiang
- Zhijiang College, Zhejiang University of Technology Shaoxing China
| | - Zheyi Hua
- Zhijiang College, Zhejiang University of Technology Shaoxing China
| | - Zhong Zheng
- Zhijiang College, Zhejiang University of Technology Shaoxing China
| | - Xiangyu Ye
- Zhijiang College, Zhejiang University of Technology Shaoxing China
| | - Lixin Xue
- Center for Membrane Separation and Water Science & Technology, College of Chemical Engineering Zhejiang University of Technology Hangzhou China
| | - Guojun Jiang
- Zhijiang College, Zhejiang University of Technology Shaoxing China
| |
Collapse
|
145
|
A self assembled dextran-stearic acid-spermine nanocarrier for delivery of rapamycin as a hydrophobic drug. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
146
|
Yang Y, Wang K, Pan Y, Rao L, Luo G. Engineered Cell Membrane-Derived Nanoparticles in Immune Modulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102330. [PMID: 34693653 PMCID: PMC8693058 DOI: 10.1002/advs.202102330] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/19/2021] [Indexed: 05/26/2023]
Abstract
Immune modulation is one of the most effective approaches in the therapy of complex diseases, including public health emergency. However, most immune therapeutics such as drugs, vaccines, and cellular therapy suffer from the limitations of poor efficacy and adverse side effects. Fortunately, cell membrane-derived nanoparticles (CMDNs) have superior compatibility with other therapeutics and offer new opportunities to push the limits of current treatments in immune modulation. As the interface between cells and outer surroundings, cell membrane contains components which instruct intercellular communication and the plasticity of cytomembrane has significantly potentiated CMDNs to leverage our immune system. Therefore, cell membranes employed in immunomodulatory CMDNs have gradually shifted from natural to engineered. In this review, unique properties of immunomodulatory CMDNs and engineering strategies of emerging CMDNs for immune modulation, with an emphasis on the design logic are summarized. Further, this review points out some pressing problems to be solved during clinical translation and put forward some suggestions on the prospect of immunoregulatory CMDNs. It is anticipated that this review can provide new insights on the design of immunoregulatory CMDNs and expand their potentiation in the precise control of the dysregulated immune system.
Collapse
Affiliation(s)
- Yixiao Yang
- Institute of Burn ResearchThe First Affiliated HospitalState Key Lab of TraumaBurn and Combined InjuryChongqing Key Laboratory for Disease ProteomicsThird Military Medical University (Army Medical University)Chongqing400038China
| | - Kai Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS)School of Basic Medical Sciences and Shanghai Public Health Clinical CenterShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Yuanwei Pan
- Institute of Biomedical Health Technology and EngineeringShenzhen Bay LaboratoryShenzhen518132China
| | - Lang Rao
- Institute of Biomedical Health Technology and EngineeringShenzhen Bay LaboratoryShenzhen518132China
| | - Gaoxing Luo
- Institute of Burn ResearchThe First Affiliated HospitalState Key Lab of TraumaBurn and Combined InjuryChongqing Key Laboratory for Disease ProteomicsThird Military Medical University (Army Medical University)Chongqing400038China
| |
Collapse
|
147
|
Design and fabrication of cellulose derived free-standing carbon nanofiber membranes for high performance supercapacitors. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
148
|
Yan M, Tian C, Wu T, Huang X, Zhong Y, Yang P, Zhang L, Ma J, Lu H, Zhou X. Insights into structure and properties of cellulose nanofibrils (CNFs) prepared by screw extrusion and deep eutectic solvent permeation. Int J Biol Macromol 2021; 191:422-431. [PMID: 34563572 DOI: 10.1016/j.ijbiomac.2021.09.105] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 12/29/2022]
Abstract
To achieve the balance on economy and ecology, it is indispensable to explore the greener and more inexpensive method for the production of cellulose nanofibrils (CNFs). Herein, a deep eutectic solvent (DES) system based on choline chloride (ChCl) and ethylene glycol (EG) was employed as the swollen solvent, combining with screw extrusion and permeant, to fabricate unmodified CNFs with high yield and thermal stability. The proposed method in this work was simple, convenient, and industrially viable. The hydrous DESs were applied in the process of CNFs preparation and dispersion to reduce the cost and viscosity of DES. To reveal the principle of CNFs preparation, the impact of sulfuric acid and water content of DES system on the chemical, physical, morphological, thermal, and dispersive properties of CNFs was systematically studied. Properties of the dispersed solvents were characterized by solvatochromic parameters and viscosity parameters to evaluate the potential influence on the preparation and dispersion of CNFs. In general, this work would play valuable guidance in realizing the preparation and dispersion of CNFs via a versatile DES solvent system, thus endowing cellulose materials high-value utilization.
Collapse
Affiliation(s)
- Ming Yan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Chaochao Tian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Ting Wu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Jiangsu Province Key Lab. of Biomass Energy and Materials, Nanjing, Jiangsu Province 210042, PR China
| | - Xingyu Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Yidan Zhong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Pei Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Lili Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Jinxia Ma
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Hailong Lu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Lab for Biomass Chemical Utilization, Key and Open Lab of Forest Chemical Engineering of State Administration of Forestry and Grassland, Key Lab of Biomass Energy and Material of Jiangsu Province, No. 16 Suojinwucun Road, Xuanwu District, Nanjing 210042, China.
| | - Xiaofan Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
149
|
Salama A, Abouzeid RE, Owda ME, Cruz-Maya I, Guarino V. Cellulose-Silver Composites Materials: Preparation and Applications. Biomolecules 2021; 11:1684. [PMID: 34827681 PMCID: PMC8615592 DOI: 10.3390/biom11111684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/04/2021] [Accepted: 11/07/2021] [Indexed: 01/05/2023] Open
Abstract
Cellulose has received great attention owing to its distinctive structural features, exciting physico-chemical properties, and varied applications. The combination of cellulose and silver nanoparticles currently allows to fabricate different promising functional nanocomposites with unique properties. The current work offers a wide and accurate overview of the preparation methods of cellulose-silver nanocomposite materials, also providing a punctual discussion of their potential applications in different fields (i.e., wound dressing, high-performance textiles, electronics, catalysis, sensing, antimicrobial filtering, and packaging). In particular, different preparation methods of cellulose/silver nanocomposites based on in situ thermal reduction, blending and dip-coating, or additive manufacturing techniques were thoroughly described. Hence, the correlations among the structure and physico-chemical properties in cellulose/silver nanocomposites were investigated in order to better control the final properties of the nanocomposites and analyze the key points and limitations of the current manufacturing approaches.
Collapse
Affiliation(s)
- Ahmed Salama
- Cellulose and Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt;
| | - Ragab E. Abouzeid
- Cellulose and Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt;
| | - Medhat E. Owda
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt;
| | - Iriczalli Cruz-Maya
- Institute of Polymers, Composite and Biomaterials, National Research Council of Italy, Mostra D’Oltremare, Pad 20, V. J.F. Kennedy 54, 80125 Naples, Italy;
| | - Vincenzo Guarino
- Institute of Polymers, Composite and Biomaterials, National Research Council of Italy, Mostra D’Oltremare, Pad 20, V. J.F. Kennedy 54, 80125 Naples, Italy;
| |
Collapse
|
150
|
Dai H, Wang X, Shao J, Wang W, Mou X, Dong X. NIR-II Organic Nanotheranostics for Precision Oncotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102646. [PMID: 34382346 DOI: 10.1002/smll.202102646] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Precision oncotherapy can remove tumors without causing any apparent iatrogenic damage or irreversible side effects to normal tissues. Second near-infrared (NIR-II) nanotheranostics can simultaneously perform diagnostic and therapeutic modalities in a single nanoplatform, which exhibits prominent perspectives in tumor precision treatment. Among all NIR-II nanotheranostics, NIR-II organic nanotheranostics have shown an exceptional promise for translation in clinical tumor treatment than NIR-II inorganic nanotheranostics in virtue of their good biocompatibility, excellent reproducibility, desirable excretion, and high biosafety. In this review, recent progress of NIR-II organic nanotheranostics with the integration of tumor diagnosis and therapy is systematically summarized, focusing on the theranostic modes and performances. Furthermore, the current status quo, problems, and challenges are discussed, aiming to provide a certain guiding significance for the future development of NIR-II organic nanotheranostics for precision oncotherapy.
Collapse
Affiliation(s)
- Hanming Dai
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Xiaorui Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Jinjun Shao
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Wenjun Wang
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng, 252059, China
| | - Xiaozhou Mou
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| |
Collapse
|