101
|
Advances in microbial electrochemistry-enhanced constructed wetlands. World J Microbiol Biotechnol 2022; 38:239. [PMID: 36260261 DOI: 10.1007/s11274-022-03413-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/09/2022] [Indexed: 10/24/2022]
Abstract
Constructed wetland (CW) is an effective ecological technology to treat water pollution and has the significant advantages of high impact resistance, simple construction process, and low maintenance cost. However, under extreme conditions such as low temperature, high salt concentration, and multiple types of pollutants, some bottlenecks exist, including the difficulty in improving operating efficiency and the low pollutant removal rate. Microbial electrochemical technology is an emerging clean energy technology and has the similar structure and pollutant removal mechanism to CW. Microbial electrochemistry combined with CW can improve the overall removal effect of pollutants in wetlands. This review summarizes characterization methods of microbial electrochemistry-enhanced constructed wetland systems, construction methods of different composite systems, mechanisms of single and composite systems, and removal effects of composite systems on different pollutants in water bodies. Based on the shortcomings of existing studies, the potential breakthroughs in microbial electrochemistry-enhanced constructed wetlands are proposed for developing the optimization solution of constructed wetlands.
Collapse
|
102
|
Ning H, Zhang Z, Shi C, Ma X, Li J, Zhu H, Hu J. Fe/N codoped porous graphitic carbon derived from macadamia shells as an efficient cathode oxygen reduction catalyst in microbial fuel cells. RSC Adv 2022; 12:30145-30156. [PMID: 36329934 PMCID: PMC9589823 DOI: 10.1039/d2ra04214b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/13/2022] [Indexed: 05/27/2023] Open
Abstract
In this study, Fe/N codoped porous graphitic carbon derived from macadamia shells was prepared at different temperatures as cathodic catalysts for microbial fuel cells (MFCs), with K2FeO4 as a bifunctional catalyst for porosity and graphitization. The catalyst prepared at 750 °C (referred to as MSAC-750) showed a large specific surface area (1670.3 m2 g-1), graphite structure, and high pyridine-N and Fe-N X contents. Through the electrochemical workstation test, MSAC-750 shows excellent oxygen reduction reaction (ORR) activity, with an onset potential of 0.172 V and a half-wave potential of -0.028 V (vs. Ag/AgCl) in a neutral medium, and the ORR electron transfer number is 3.89. When applied to the MFCs as cathodic catalysts, a higher maximum power density and voltage of 378.68 mW m-2 and 0.425 V were achieved with the MSAC-750 catalyst and is superior to that of the Pt/C catalyst (300.85 mW m-2 and 0.402 V). In this case, a promising method is hereby established for the preparation of an excellent electrochemical catalyst for microbial fuel cells using inexpensive and easily available macadamia shells.
Collapse
Affiliation(s)
- Haoming Ning
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University Chongqing 400045 China
- College of Environment and Ecology, Chongqing University Chongqing 400045 China
| | - Zhi Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University Chongqing 400045 China
- College of Environment and Ecology, Chongqing University Chongqing 400045 China
| | - Chunhai Shi
- Northwest China Municipal Engineering Northwest Design and Research Institute Lanzhou 730000 China
| | - Xiaolei Ma
- Northwest China Municipal Engineering Northwest Design and Research Institute Lanzhou 730000 China
| | - Jian Li
- Northwest China Municipal Engineering Northwest Design and Research Institute Lanzhou 730000 China
| | - Hongyi Zhu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University Chongqing 400045 China
- College of Environment and Ecology, Chongqing University Chongqing 400045 China
| | - Jiawei Hu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University Chongqing 400045 China
- College of Environment and Ecology, Chongqing University Chongqing 400045 China
| |
Collapse
|
103
|
Ávila Vázquez V, Enciso Hernández EA, Kamaraj SK, Aguilera Flores MM, Espinosa Lumbreras JR, Durón Torres SM, Labrada Delgado GJ. Use of activated carbon and camphor carbon as cathode and clay cup as proton exchange membrane in a microbial fuel cell for the bioenergy production from crude glycerol biodegradation. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2022; 57:947-957. [PMID: 36250290 DOI: 10.1080/10934529.2022.2132789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
This work characterizes two alternative materials to substitute the most expensive microbial fuel cells (MFCs) components: proton exchange membrane (PEM) and cathode. Crude glycerol biodegradation was studied in MFCs using a clay cup as a PEM and activated carbon and camphor carbon mixture (CAC) as a cathode. The cathode performance was compared with Platinum on carbon cloth. Two clay cup single-chamber MFCs were operated with each cathode and fed with 2000 mg/L of crude glycerol. Electrochemical properties were characterized by linear sweep voltammetry, electrochemical impedance spectroscopy, and chronoamperometry. Biodegradation efficiencies were estimated with the chemical oxygen demand (COD) removal percentage. MFCs with CAC showed a maximum power density of 100 mW/m2. This result was a 43.47% power response regarding MFCs with Platinum. COD removal efficiencies of 94% were achieved in 37 days for both cells. The Columbic efficiencies were 24.04% and 22.78% for the MFCs with Platinum and CAC. The economic analysis showed a cost of USD 9.97 for MFCs with CAC. This cost is five times lower than when using Platinum. MFCs utilizing clay cups and CAC showed an acceptable performance for the bioenergy production from crude glycerol biodegradation above all economic advantage in the cell cost.
Collapse
Affiliation(s)
- Verónica Ávila Vázquez
- Instituto Politécnico Nacional, Interdisciplinary Professional Unit of Engineering Campus Zacatecas, Zacatecas, Mexico
| | | | - Sathish Kumar Kamaraj
- Tecnológico Nacional de México Campus El Llano Aguascalientes, Aguascalientes, Mexico
| | | | | | | | | |
Collapse
|
104
|
Degradation of Hydroquinone Coupled with Energy Generation through Microbial Fuel Cells Energized by Organic Waste. Processes (Basel) 2022. [DOI: 10.3390/pr10102099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Microbial fuel cell (MFC) technology has captured the scientific community’s attention in recent years owing to its ability to directly transform organic waste into electricity through electrochemical processes. Currently, MFC systems faces a number of barriers, with one of the most significant being the lack of organic substrate to provide enough energy for bacterial growth and activity. In the current work, rotten rice was utilized as an organic substrate to boost bacterial activity to produce more energy and break down the organic pollutant hydroquinone in an effort to improve the performance of MFCs. There are only a few studies that considered the waste as an organic substrate and simultaneously degraded the organic pollutant vis-à-vis MFCs. The oxidation of glucose derived from rotten rice generated electrons that were transported to the anode surface and subsequently flowed through an external circuit to the cathode, where they were used to degrade the organic pollutant hydroquinone. The results were consistent with the MFC operation, where the 168-mV voltage was generated over the course of 29 days with a 1000 Ω external resistance. The maximum power and current densities were 1.068 mW/m2 and 123.684 mA/m2, respectively. The hydroquinone degradation was of 68%. For the degradation of organic pollutants and the production of energy, conductive pili-type bacteria such as Lacticaseibacillus, Pediococcus acidilactici and Secundilactobacillus silagincola species were identified during biological characterization. Future recommendations and concluding remarks are also included.
Collapse
|
105
|
Chin MY, Phuang ZX, Woon KS, Hanafiah MM, Zhang Z, Liu X. Life cycle assessment of bioelectrochemical and integrated microbial fuel cell systems for sustainable wastewater treatment and resource recovery. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115778. [PMID: 35952559 DOI: 10.1016/j.jenvman.2022.115778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/08/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Bioelectrochemical system (BES) is an emerging technology that can treat wastewater via microbial activity while producing energy simultaneously. The system can couple with conventional systems to improve system performance. This study aims to compare the environmental performance of BES and the integrated microbial fuel cell (MFC) systems via a life cycle assessment methodology and identify the major environmental hotspots of the system. Fifteen treatment options are assessed with the ReCiPe 2016 characterization method using SimaPro 9.2 software. The results show double chamber air-cathode microbial electrolysis cell (MEC1) and membrane distillation integrated MFC (MD + MFC) treatment options present as the most environmental favourable among the BES and integrated MFC systems, respectively, due to the offset of the environmental loads from the avoided impacts contributed by their value-added by-product, which is hydrogen fuel for MEC1 and tap water for MD + MFC. Electricity consumption dominates the environmental loads of all the BES options for up to 90% of the global warming impact category. The environmental benefits from the electricity generation of BES are minor (i.e., MFC: 0.01-2% while microbial desalination cell: 0.01-7% of the total environmental impact in a system) to offset the environmental loads incurred by the system. Platinum-based cathode incurs 2.5-24 times higher environmental burdens than non-platinum configurations in MFC under the human carcinogenic toxicity impact category. In line with Sustainable Development Goals 6 and 13, this study provides scientific references to wastewater treatment stakeholders in selecting suitable BES and integrated MFC systems to improve water sanitation and address climate change simultaneously.
Collapse
Affiliation(s)
- Min Yee Chin
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900, Sepang, Selangor, Malaysia
| | - Zhen Xin Phuang
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900, Sepang, Selangor, Malaysia
| | - Kok Sin Woon
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900, Sepang, Selangor, Malaysia.
| | - Marlia M Hanafiah
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia; Centre for Tropical Climate Change System, Institute of Climate Change, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Zhen Zhang
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoming Liu
- School of Materials and Environmental Engineering, Shenzhen Polytechnic, Guangdong, 518055, China
| |
Collapse
|
106
|
Rossi R, Logan BE. Impact of reactor configuration on pilot-scale microbial fuel cell performance. WATER RESEARCH 2022; 225:119179. [PMID: 36206685 DOI: 10.1016/j.watres.2022.119179] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/02/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Different microbial fuel cell (MFC) configurations have been successfully operated at pilot-scale levels (>100 L) to demonstrate electricity generation while accomplishing domestic or industrial wastewater treatment. Two cathode configurations have been primarily used based on either oxygen transfer by aeration of a liquid catholyte or direct oxygen transfer using air-cathodes. Analysis of several pilot-scale MFCs showed that air-cathode MFCs outperformed liquid catholyte reactors based on power density, producing 233% larger area-normalized power densities and 181% higher volumetric power densities. Reactors with higher electrode packing densities improved performance by enabling larger power production while minimizing the reactor footprint. Despite producing more power than the liquid catholyte MFCs, and reducing energy consumption for catholyte aeration, pilot MFCs based on air-cathode configuration failed to produce effluents with chemical oxygen demand (COD) levels low enough to meet typical threshold for discharge. Therefore, additional treatment would be required to further reduce the organic matter in the effluent to levels suitable for discharge. Scaling up MFCs must incorporate designs that can minimize electrode and solution resistances to maximize power and enable efficient wastewater treatment.
Collapse
Affiliation(s)
- Ruggero Rossi
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Bruce E Logan
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
107
|
Szydlowski L, Ehlich J, Szczerbiak P, Shibata N, Goryanin I. Novel species identification and deep functional annotation of electrogenic biofilms, selectively enriched in a microbial fuel cell array. Front Microbiol 2022; 13:951044. [PMID: 36188001 PMCID: PMC9517587 DOI: 10.3389/fmicb.2022.951044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, electrogenic microbial communities originating from a single source were multiplied using our custom-made, 96-well-plate-based microbial fuel cell (MFC) array. Developed communities operated under different pH conditions and produced currents up to 19.4 A/m3 (0.6 A/m2) within 2 days of inoculation. Microscopic observations [combined scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS)] revealed that some species present in the anodic biofilm adsorbed copper on their surface because of the bioleaching of the printed circuit board (PCB), yielding Cu2 + ions up to 600 mg/L. Beta- diversity indicates taxonomic divergence among all communities, but functional clustering is based on reactor pH. Annotated metagenomes showed the high presence of multicopper oxidases and Cu-resistance genes, as well as genes encoding aliphatic and aromatic hydrocarbon-degrading enzymes, corresponding to PCB bioleaching. Metagenome analysis revealed a high abundance of Dietzia spp., previously characterized in MFCs, which did not grow at pH 4. Binning metagenomes allowed us to identify novel species, one belonging to Actinotalea, not yet associated with electrogenicity and enriched only in the pH 7 anode. Furthermore, we identified 854 unique protein-coding genes in Actinotalea that lacked sequence homology with other metagenomes. The function of some genes was predicted with high accuracy through deep functional residue identification (DeepFRI), with several of these genes potentially related to electrogenic capacity. Our results demonstrate the feasibility of using MFC arrays for the enrichment of functional electrogenic microbial consortia and data mining for the comparative analysis of either consortia or their members.
Collapse
Affiliation(s)
- Lukasz Szydlowski
- Biological Systems Unit, Okinawa Institute of Science and Technology, Onna, Japan
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- *Correspondence: Lukasz Szydlowski,
| | - Jiri Ehlich
- Faculty of Chemistry, Brno University of Technology, Brno, Czechia
| | - Pawel Szczerbiak
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Noriko Shibata
- Biological Systems Unit, Okinawa Institute of Science and Technology, Onna, Japan
| | - Igor Goryanin
- Biological Systems Unit, Okinawa Institute of Science and Technology, Onna, Japan
- School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
- Tianjin Institute of Industrial Biotechnology, Tianjin, China
| |
Collapse
|
108
|
Halobacterium salinarum NRC-1 Sustains Voltage Production in a Dual-Chambered Closed Microbial Fuel Cell. ScientificWorldJournal 2022; 2022:3885745. [PMID: 36132437 PMCID: PMC9484973 DOI: 10.1155/2022/3885745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 06/24/2022] [Accepted: 08/18/2022] [Indexed: 12/03/2022] Open
Abstract
Sustained bioenergy production from organisms that thrive in high salinity, low oxygen, and low nutrition levels is useful in monitoring hypersaline polluted environments. Microbial fuel cell (MFC) studies utilizing single species halophiles under salt concentrations higher than 1 M and as a closed microbial system are limited. The current study aimed to establish baseline voltage, current, and power density from a dual-chambered MFC utilizing the halophile Halobacterium salinarum NRC-1. MFC performance was determined with two different electrode sizes (5 cm2 and 10 cm2), under oscillating and nonoscillating conditions, as well as in a stacked series. A closed dual-chamber MFC system of 100 mL capacity was devised with Halobacterium media (4.3 M salt concentration) as both anolyte and catholyte, with H. salinarum NRC-1 being the anodic organism. The MFC measured electrical output over 7, 14, 28, and 42 days. MFC output increased with 5 cm2 sized electrodes under nonoscillating (p < 0.0001) relative to oscillating conditions. However, under oscillating conditions, doubling the electrode size increased MFC output significantly (p = 0.01). The stacked series MFC, with an electrode size of 10 cm2, produced the highest power density (1.2672 mW/m2) over 14 days under oscillation. Our results highlight the potentiality of H. salinarum as a viable anodic organism to produce sustained voltage in a closed-MFC system.
Collapse
|
109
|
Tian Y, Li C, Liang D, Xie T, He W, Li D, Feng Y. Fungus-sourced filament-array anode facilitates Geobacter enrichment and promotes anodic bio-capacitance improvement for efficient power generation in microbial fuel cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155926. [PMID: 35588840 DOI: 10.1016/j.scitotenv.2022.155926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/07/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Microbial fuel cells (MFC) are emerging as new generation eco-friendly technology for the superiorities of energy harvest and simultaneous wastewater treatment. However, the power generation performance was strongly restricted by the material/biofilm electron transfer rate. In this research, the fungus-sourced electrode with filament-array structure was firstly proposed and prepared by one-step carbonization method. After 2 h pyrolysis, the functional groups containing N and O elements highly remained in the as-prepared material, which was beneficial to the electron transfer for the current generation. The lowest electron transfer resistance was obtained at 2.2 Ω, which showed a great reduction that compared with graphite sheet anode. With filament-array structure, the lowest mass diffusion resistance was obtained at 26.9 Ω for anodic oxidation reaction, which also supported the highest current generation performance. In addition, the relative abundance of typical electrochemical bacterium Geobacter was highly improved to 45.5% with an extraordinary electroactive biofilm loading of about 1203 ± 256 μg cm-2. More importantly, the high biocatalytic activity biofilm supported a remarkably observed bio-capacitance of about 1.14 F in 3DFfv anode, which exhibited the highest power density in 3.5 ± 0.2 W m-2. In addition, the fungus-sourced material was one kind of economical and readily available material. Overall, this work provided one efficient strategy for electrode preparation and higher power generation in MFCs, which would reduce the capital cost and improve the efficiency in further applications of MFCs.
Collapse
Affiliation(s)
- Yan Tian
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Chao Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - DanDan Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Ting Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Weihua He
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Da Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China.
| |
Collapse
|
110
|
Fuentes Schweizer P, Cárdenas D, Uribe Lorío L, Sanabria Chinchilla J, Villegas JR, Solís Chacón C. Evaluación del desempeño de una celda de combustible microbiana con electrodo de grafito modificado para el tratamiento de agua residual del procesamiento del café. REVISTA COLOMBIANA DE QUÍMICA 2022. [DOI: 10.15446/rev.colomb.quim.v51n1.101185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
La actividad cafetalera en Costa Rica procesa aproximadamente 69.000 toneladas de café mediante la técnica de beneficiado húmedo. Esta actividad conlleva un alto impacto ambiental debido a la generación de 8 L de agua residual/kg de café oro producido. El presente trabajo tiene como objetivo utilizar el agua residual del procesamiento de café como sustrato en celdas combustibles microbianas (CCM), con el propósito de generar energía eléctrica a través de su uso y, a la vez, disminuir la carga orgánica del residuo. La CCM empleó un cátodo modificado con ftalocianinas de hierro (FePc), generó una eficiencia coulómbica de 0,7% y una densidad de potencia de 89 μW/cm2 en un ciclo de operación de cinco días. Además, se determinó que la CCM disminuye la demanda química de oxígeno (DQO) del residuo hasta en 27% bajo las condiciones de operación nativas del sustrato, a temperatura ambiente, sin mediadores químicos para la reacción anódica y con el uso de electrodos de platino para el cátodo. El estudio confirma la oportunidad de emplear el sustrato con una flora microbiana nativa apta para la operación de la tecnología de la CCM, y así perfilar el dispositivo como una opción novedosa para el tratamiento de este residuo en Costa Rica.
Collapse
|
111
|
Spinel structure of activated carbon supported MFe2O4 composites as an economic and efficient electrocatalyst for oxygen reduction reaction in neutral media. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05269-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
AbstractFor more sustainability and marketing of microbial fuel cells (MFCs) in wastewater treatment, the sluggish kinetics of cathode oxygen reduction reaction (ORR) and platinum scarcity (with its high cost) should be swept away. So, this work aimed to synthesize metal ferrite (MFe2O4; M = Mn, Cu, and Ni) -based activated carbon composites as inexpensive ORR cathode catalysts. The composites were synthesized using a facile modified co-precipitation approach with low-thermal treatment and labeled as MnFe2O4/AC, CuFe2O4/AC, and NiFe2O4/AC. The as-synthesized catalysts are physicochemically characterized by X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared microscopy (FTIR), Barrett-Joyner-Halenda (BJH), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), and electron spin resonance (ESR). The electrochemical catalytic performance toward ORR was studied in a phosphate buffer solution (PBS) at neutral media via cyclic voltammetry (CV) and linear sweep voltammetry (LSV). MnFe2O4/AC has the highest onset potential (Eonset) value of − 0.223 V compared to CuFe2O4/AC (− 0.280 V) and NiFe2O4/AC (− 0.270 V). MnFe2O4/AC also has the highest kinetic current density (jK) and lowest Tafel slope (− 5 mA cm−2 and − 330 mV dec−1) compared to CuFe2O4/AC (− 3.05 mA cm−2 and − 577 mV dec−1) and NiFe2O4/AC (− 2.67 mA cm−2 and − 414 mV dec−1). The ORR catalyzed by MnFe2O4/AC at pH = 7 proceeds via a 4e− -kinetic pathway. The ESR is in good agreement with the electrochemical analysis due to the highest ∆Hppvalue for MnFe2O4/AC compared to CuFe2O4/AC and NiFe2O4/AC. Thus, MnFe2O4/AC is suggested as a promising alternative to Pt- electrocatalyst cathode for MFCs at neutral conditions.
Graphical Abstract
Collapse
|
112
|
Effectiveness of biophotovoltaics system modified with fuller-clay composite separators for chromium removal. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
113
|
Combined effect of phosphorus, magnesium, yeast extract on lipid productivity of Yarrowia lipolytica grown with molasses. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1186-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
114
|
Wang S, Zhang X, Marsili E. Electrochemical Characteristics of Shewanella loihica PV-4 on Reticulated Vitreous Carbon (RVC) with Different Potentials Applied. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165330. [PMID: 36014568 PMCID: PMC9413302 DOI: 10.3390/molecules27165330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 12/24/2022]
Abstract
The current output of an anodic bioelectrochemical system (BES) depends upon the extracellular electron transfer (EET) rate from electricigens to the electrodes. Thus, investigation of EET mechanisms between electricigens and solid electrodes is essential. Here, reticulated vitreous carbon (RVC) electrodes are used to increase the surface available for biofilm formation of the known electricigen Shewanella loihica PV-4, which is limited in conventional flat electrodes. S. loihica PV-4 utilizes flavin-mediated EET at potential lower than the outer membrane cytochromes (OMC), while at higher potential, both direct electron transfer (DET) and mediated electron transfer (MET) contribute to the current output. Results show that high electrode potential favors cell attachment on RVC, which enhances the current output. DET is the prevailing mechanism in early biofilm, while the contribution of MET to current output increased as the biofilm matured. Electrochemical analysis under starvation shows that the mediators could be confined in the biofilm. The morphology of biofilm shows bacteria distributed on the top layer of honeycomb structures, preferentially on the flat areas. This study provides insights into the EET pathways of S. loihica PV-4 on porous RVC electrodes at different biofilm ages and different set potential, which is important for the design of real-world BES.
Collapse
Affiliation(s)
- Shixin Wang
- School of Science, Minzu University of China, Beijing 100081, China
| | - Xiaoming Zhang
- School of Science, Minzu University of China, Beijing 100081, China
- Correspondence: (X.Z.); (E.M.)
| | - Enrico Marsili
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
- Correspondence: (X.Z.); (E.M.)
| |
Collapse
|
115
|
Quantification of Internal Resistance Contributions of Sediment Microbial Fuel Cells Using Petroleum-Contaminated Sediment Enriched with Kerosene. Catalysts 2022. [DOI: 10.3390/catal12080871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Anaerobic biodegradation of petroleum-contaminated sediments can be accomplished by a sediment microbial fuel cell (SMFC), but the recovered energy is very low (~4 mW m−2). This is due to a high internal resistance (Ri) that develops in the SMFC. The evaluation of the main experimental parameters that contribute to Ri is essential for developing a feasible SMFC design and this task is normally performed by electrochemical impedance spectroscopy (EIS). A faster and easier alternative procedure to EIS is to fit the SMFC polarization curve to an electrochemical model. From there, the main resistance contributions to Ri are partitioned. This enables the development of a useful procedure for attaining a low SMFC Ri while improving its power output. In this study, the carbon-anode surface was increased, the biodegradation activity of the indigenous populations was improved (by the biostimulation method, i.e., the addition of kerosene), the oxygen reduction reaction was catalyzed, and a 0.8 M Na2SO4 solution was used as a catholyte at pH 2. As a result, the initial SMFC Ri was minimized 20 times, and its power output was boosted 47 times. For a given microbial fuel cell (MFC), the main resistance contributions to Ri, evaluated by the electrochemical model, were compared with their corresponding experimental results obtained by the EIS technique. Such a validation is also discussed herein.
Collapse
|
116
|
Organic Waste Substrates for Bioenergy Production via Microbial Fuel Cells: A Key Point Review. ENERGIES 2022. [DOI: 10.3390/en15155616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
High-energy consumption globally has raised questions about the low environmentally friendly and high-cost processes used until now for energy production. Microbial fuel cells (MFCs) may support alternative more economically and environmentally favorable ways of bioenergy production based on their advantage of using waste. MFCs work as bio-electrochemical devices that consume organic substrates in order for the electrogenic bacteria and/or enzyme cultures to produce electricity and simultaneously lower the environmental hazardous value of waste such as COD. The utilization of organic waste as fuels in MFCs has opened a new research path for testing a variety of by-products from several industry sectors. This review presents several organic waste substrates that can be employed as fuels in MFCs for bioenergy generation and the effect of their usage on power density, COD (chemical oxygen demand) removal, and Coulombic efficiency enhancement. Moreover, a demonstration and comparison of the different types of mixed waste regarding their efficiency for energy generation via MFCs are presented. Future perspectives for manufacturing and cost analysis plans can support scale-up processes fulfilling waste-treatment efficiency and energy-output densities.
Collapse
|
117
|
Jyoti D, Sinha R, Faggio C. Advances in biological methods for the sequestration of heavy metals from water bodies: A review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 94:103927. [PMID: 35809826 DOI: 10.1016/j.etap.2022.103927] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/26/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Pollution is a major concern of the modern era as it affects all the principal aspects of the environment, especially the hydrosphere. Pollution with heavy metals has unequivocally threatened aquatic bodies and organisms as these metals are persistent, non-biodegradable, and toxic. Heavy metals tend to accumulate in the environment and eventually in humans, which makes their efficient removal a topic of paramount importance. Treatment of metal-contaminated water can be done both via chemical and biological methods. Where remediation through conventional methods is expensive and generates a large amount of sludge, biological methods are favoured over older and prevalent chemical purification processes because they are cheaper and environment friendly. The present review attempts to summarise effective methods for the remediation of water contaminated with heavy metals. We concluded that in biological techniques, bio-sorption is among the most employed and successful mechanisms because of its high efficacy and eco-friendly nature.
Collapse
Affiliation(s)
- Divya Jyoti
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, HP 173 229, India.
| | - Reshma Sinha
- Department of Animal Science, School of Life Sciences, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, 176206, India.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| |
Collapse
|
118
|
Zafar H, Ishaq S, Peleato N, Roberts D. Meta-analysis of operational performance and response metrics of microbial fuel cells (MFCs) fed with complex food waste. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 315:115152. [PMID: 35525044 DOI: 10.1016/j.jenvman.2022.115152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/24/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
This study reports on a meta-analysis covering the impact of design and operating factors on published MFC performance data to inform MFC research and implementations. Factors of substrate composition, operating phase, electrode material, configuration, and pre-treatments employed were considered. The meta-analysis results indicate that dual-chamber MFCs overall achieve 18% higher COD removal and 73% higher coulombic efficiencies over that of single-chamber MFCs. MFCs using a solid operating phase achieved ˃38% higher coulombic efficiencies than those using a liquid operating phase. Statistical analyses comparing brush vs flat surface anodes revealed that brush anodes can achieve 130% higher power density than flat surface anodes. The use of a platinum catalyst was found to improve power density, as opposed to catalyst-free cathodes. However, coulombic efficiency is less likely to be influenced by the catalyst used and more likely to be dependent on the inclusion of a membrane separator. The meta-analysis results indicate that even in the presence of expensive catalysts like platinum, membrane separators are of prime importance to maintain a stable MFC operation on a long-term basis and achieve high coulombic efficiency in an MFC. Results presented in this paper outline the impact of MFC design choices on performance and can be used to guide future MFC research. These findings can be beneficial for municipalities as it provides a pathway for future MFC design and optimization by analyzing critical associations between MFC response parameters and multiple varying factors.
Collapse
Affiliation(s)
- Hirra Zafar
- School of Engineering, University of British Columbia, Okanagan Campus, 1137 Alumni Avenue, Kelowna, British Columbia, V1V 1V7, Canada.
| | - Sadia Ishaq
- School of Engineering, University of British Columbia, Okanagan Campus, 1137 Alumni Avenue, Kelowna, British Columbia, V1V 1V7, Canada.
| | - Nicolas Peleato
- School of Engineering, University of British Columbia, Okanagan Campus, 1137 Alumni Avenue, Kelowna, British Columbia, V1V 1V7, Canada.
| | - Deborah Roberts
- Faculty of Science and Engineering, University of Northern British Columbia, 3333 University Way, Prince George, British Columbia, V2N 4Z9, Canada.
| |
Collapse
|
119
|
Kausaite-Minkstimiene A, Kaminskas A, Ramanaviciene A. Development of a membraneless single-enzyme biofuel cell powered by glucose. Biosens Bioelectron 2022; 216:114657. [DOI: 10.1016/j.bios.2022.114657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/02/2022]
|
120
|
Wang H, Long X, Sun Y, Wang D, Wang Z, Meng H, Jiang C, Dong W, Lu N. Electrochemical impedance spectroscopy applied to microbial fuel cells: A review. Front Microbiol 2022; 13:973501. [PMID: 35935199 PMCID: PMC9355145 DOI: 10.3389/fmicb.2022.973501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022] Open
Abstract
Electrochemical impedance spectroscopy (EIS) is an efficient and non-destructive test for analyzing the bioelectrochemical processes of microbial fuel cells (MFCs). The key factors limiting the output performance of an MFC can be identified by quantifying the contribution of its various internal parts to the total impedance. However, little attention has been paid to the measurement conditions and diagrammatic processes of the EIS for MFC. This review, starting with the analysis of admittance of bioelectrode, introduces conditions for the EIS measurement and summarizes the representative equivalent circuit plots for MFC. Despite the impedance from electron transfer and diffusion process, the effect of unnoticeable capacitance obtained from the Nyquist plot on MFCs performance is evaluated. Furthermore, given that distribution of relaxation times (DRT) is an emerging method for deconvoluting EIS data in the field of fuel cell, the application of DRT-analysis to MFC is reviewed here to get insight into bioelectrode reactions and monitor the biofilm formation. Generally, EIS measurement is expected to optimize the construction and compositions of MFCs to overcome the low power generation.
Collapse
Affiliation(s)
- Hui Wang
- Department of Municipal and Environmental Engineering, Faculty of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an, China
| | - Xizi Long
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Tsukuba, Japan
- *Correspondence: Xizi Long,
| | - Yingying Sun
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co., Ltd., and Xi’an Jiaotong University, Xi'an, China
| | - Dongqi Wang
- Department of Municipal and Environmental Engineering, Faculty of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an, China
| | - Zhe Wang
- Department of Municipal and Environmental Engineering, Faculty of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an, China
| | - Haiyu Meng
- Department of Municipal and Environmental Engineering, Faculty of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an, China
| | - Chunbo Jiang
- Department of Municipal and Environmental Engineering, Faculty of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an, China
| | - Wen Dong
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co., Ltd., and Xi’an Jiaotong University, Xi'an, China
| | - Nan Lu
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co., Ltd., and Xi’an Jiaotong University, Xi'an, China
| |
Collapse
|
121
|
Fang C, Li J, Feng Z, Li X, Cheng M, Qiao Y, Hu W. Spatiotemporal Mapping of Extracellular Electron Transfer Flux in a Microbial Fuel Cell Using an Oblique Incident Reflectivity Difference Technique. Anal Chem 2022; 94:10841-10849. [PMID: 35863931 DOI: 10.1021/acs.analchem.2c01912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Extracellular electron transfer (EET) is a critical process involved in microbial fuel cells. Spatially resolved mapping of EET flux is of essential significance due to the inevitable spatial inhomogeneity over the bacteria/electrode interface. In this work, EET flux of a typical bioanode constructed by inhabiting Shewanella putrefaciens CN32 on a porous polyaniline (PANI) film was successfully mapped using a newly established oblique incident reflectivity difference (OIRD) technique. In the open-circuit state, the PANI film was reduced by the electrons released from the bacteria via the EET process, and the resultant redox state change of PANI was sensitively imaged by OIRD in a real-time and noninvasive manner. Due to the strong correlation between the EET flux and OIRD signal, the OIRD differential image represents spatially resolved EET flux, and the in situ OIRD signal reveals the dynamic behavior during the EET process, thus providing important spatiotemporal information complementary to the bulky electrochemical data.
Collapse
Affiliation(s)
- Changxiang Fang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
| | - Junying Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
| | - Zhihao Feng
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
| | - Xiaoyi Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
| | - Min Cheng
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
| | - Yan Qiao
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
| | - Weihua Hu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
122
|
Su C, Wang W, Jiang B, Zhang M, Wang Y, Wang H, SONG H. Fabrication of multi‐pore structure Cu, N‐codoped porous carbon‐based catalyst and its oxygen reduction reaction catalytic performance for microbial fuel cell. ELECTROANAL 2022. [DOI: 10.1002/elan.202200266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chang Su
- Northeast Petroleum University CHINA
| | | | | | | | | | - Huan Wang
- Northeast Petroleum University CHINA
| | - Hua SONG
- Northeast Petroleum University CHINA
| |
Collapse
|
123
|
Li Y, Li Y, Chen Y, Cheng M, Yu H, Song H, Cao Y. Coupling riboflavin de novo biosynthesis and cytochrome expression for improving extracellular electron transfer efficiency in Shewanella oneidensis. Biotechnol Bioeng 2022; 119:2806-2818. [PMID: 35798677 DOI: 10.1002/bit.28172] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 11/06/2022]
Abstract
Shewanella oneidensis MR-1, as a model exoelectrogen with divergent extracellular electron transfer (EET) pathways, has been widely used in microbial fuel cells (MFCs). The electron transfer rate is largely determined by riboflavin (RF) and c-type cytochromes (c-Cyts). However, relatively low RF production and inappropriate amount of c-Cyts substantially impedes the capacity of improving the EET rate. In this work, coupling of riboflavin de novo biosynthesis and c-Cyts expression was implemented to enhance the efficiency of EET in S. oneidensis. Firstly, the upstream pathway of RF de novo biosynthesis was divided into four modules, and the expression level of 22 genes in above four modules was fine-tuned by employing promoters with different strength. Among them, genes zwf*, glyA, ybjU which exhibited the optimal RF production were combinatorially overexpressed, leading to enhancement of maximum output power density by 166%. Secondly, the diverse c-Cyts genes were overexpressed to match high RF production, and omcA was selected for further combination. Thirdly, RF de novo biosynthesis and c-Cyts expression were combined, resulting in 2.34-fold higher power output than the parent strain. This modular and combinatorial manipulation strategy provides a generalized reference to advance versatile practical applications of electroactive microorganisms. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yan Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Yuanyuan Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Yaru Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Meijie Cheng
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Huan Yu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Hao Song
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Yingxiu Cao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China
| |
Collapse
|
124
|
Kolajo OO, Pandit C, Thapa BS, Pandit S, Mathuriya AS, Gupta PK, Jadhav D, Lahiri D, Nag M, Upadhye VJ. Impact of cathode biofouling in microbial fuel cells and mitigation techniques. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
125
|
Accelerating electricity power generation and shortening incubation period of microbial fuel cell operated in tidal flat sediment by artificial surfactant anode modification. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
126
|
Borja-Maldonado F, López Zavala MÁ. Contribution of configurations, electrode and membrane materials, electron transfer mechanisms, and cost of components on the current and future development of microbial fuel cells. Heliyon 2022; 8:e09849. [PMID: 35855980 PMCID: PMC9287189 DOI: 10.1016/j.heliyon.2022.e09849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/01/2022] [Accepted: 06/28/2022] [Indexed: 10/25/2022] Open
Abstract
Microbial fuel cells (MFCs) are a technology that can be applied to both the wastewater treatment and bioenergy generation. This work discusses the contribution of improvements regarding the configurations, electrode materials, membrane materials, electron transfer mechanisms, and materials cost on the current and future development of MFCs. Analysis of the most recent scientific publications on the field denotes that dual-chamber MFCs configuration offers the greatest potential due to the excellent ability to be adapted to different operating environments. Carbon-based materials show the best performance, biocompatibility of carbon-brush anode favors the formation of the biofilm in a mixed consortium and in wastewater as a substrate resembles the conditions of real scenarios. Carbon-cloth cathode modified with nanotechnology favors the conductive properties of the electrode. Ceramic clay membranes emerge as an interesting low-cost membrane with a proton conductivity of 0.0817 S cm-1, close to that obtained with the Nafion membrane. The use of nanotechnology in the electrodes also enhances electron transfer in MFCs. It increases the active sites at the anode and improves the interface with microorganisms. At the cathode, it favors its catalytic properties and the oxygen reduction reaction. These features together favor MFCs performance through energy production and substrate degradation with values above 2.0 W m-2 and 90% respectively. All the recent advances in MFCs are gradually contributing to enable technological alternatives that, in addition to wastewater treatment, generate energy in a sustainable manner. It is important to continue the research efforts worldwide to make MFCs an available and affordable technology for industry and society.
Collapse
Affiliation(s)
- Fátima Borja-Maldonado
- Tecnologico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, Monterrey, 64849, N.L., Mexico
| | - Miguel Ángel López Zavala
- Tecnologico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, Monterrey, 64849, N.L., Mexico
| |
Collapse
|
127
|
Nabgan W, Saeed M, Jalil AA, Nabgan B, Gambo Y, Ali MW, Ikram M, Fauzi AA, Owgi AHK, Hussain I, Thahe AA, Hu X, Hassan NS, Sherryna A, Kadier A, Mohamud MY. A state of the art review on electrochemical technique for the remediation of pharmaceuticals containing wastewater. ENVIRONMENTAL RESEARCH 2022; 210:112975. [PMID: 35196501 DOI: 10.1016/j.envres.2022.112975] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/29/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Pharmaceutical wastewater is a frequent kind of wastewater with high quantities of organic pollutants, although little research has been done in the area. Pharmaceutical wastewaters containing antibiotics and high salinity may impair traditional biological treatment, resulting in the propagation of antibiotic resistance genes. The potential for advanced oxidation processes (AOPs) to break down hazardous substances instead of present techniques that essentially transfer contaminants from wastewater to sludge, a membrane filter, or an adsorbent has attracted interest. Among a variety of AOPs, electrochemical systems are a feasible choice for treating pharmaceutical wastewater. Many electrochemical approaches exist now to remediate rivers polluted by refractory organic contaminants, like pharmaceutical micro-pollutants, which have become a severe environmental problem. The first part of this investigation provides the bibliometric analysis of the title search from 1970 to 2021 for keywords such as wastewater and electrochemical. We have provided information on relations between keywords, countries, and journals based on three fields plot, inter-country co-authorship network analysis, and co-occurrence network visualization. The second part introduces electrochemical water treatment approaches customized to these very distinct discarded flows, containing how processes, electrode materials, and operating conditions influence the results (with selective highlighting cathode reduction and anodic oxidation). This section looks at how electrochemistry may be utilized with typical treatment approaches to improve the integrated system's overall efficiency. We discuss how electrochemical cells might be beneficial and what compromises to consider when putting them into practice. We wrap up our analysis with a discussion of known technical obstacles and suggestions for further research.
Collapse
Affiliation(s)
- Walid Nabgan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| | - M Saeed
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - A A Jalil
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| | - B Nabgan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Y Gambo
- Chemical Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - M W Ali
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - M Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, 54000, Punjab, Pakistan.
| | - A A Fauzi
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - A H K Owgi
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - I Hussain
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Asad A Thahe
- Department of X- Ray and Sonar, Faculty Of Medical Technology, AL-Kitab University, Iraq
| | - Xun Hu
- School of Material Science and Engineering, University of Jinan, Jinan, 250022, PR China
| | - N S Hassan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - A Sherryna
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Abudukeremu Kadier
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences (CAS), Urumqi, 830011, China.
| | - M Y Mohamud
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| |
Collapse
|
128
|
Priya AK, Subha C, Kumar PS, Suresh R, Rajendran S, Vasseghian Y, Soto-Moscoso M. Advancements on sustainable microbial fuel cells and their future prospects: A review. ENVIRONMENTAL RESEARCH 2022; 210:112930. [PMID: 35182595 DOI: 10.1016/j.envres.2022.112930] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
A microbial fuel cell (MFC) is a sustainable device that produces electricity. The main components of MFC are electrodes (anode & cathode) and separators. The MFC's performance is ascertained by measuring its power density. Its components and other parameters, such as cell design and configuration, operation parameters (pH, salinity, and temperature), substrate characteristics, and microbes present in the substrate, all influence its performance. MFC can be scaled up and commercialized using low-cost materials without affecting its performance. Hence the choice of materials plays a significant role. In the past, precious and non-precious metals were mostly used. These were replaced by a variety of low-cost carbonaceous and non-carbonaceous materials. Nano materials, activated compounds, composite materials, have also found their way as components of MFC materials. This review describes the recently reported modified electrodes (anode and cathode), their improvisation, their merits, pollutant removal efficiency, and associated power density.
Collapse
Affiliation(s)
- A K Priya
- Department of Civil Engineering, KPR Institute of Engineering and Technology, Coimbatore, 641027, India
| | - C Subha
- Department of Civil Engineering, Ramco Institute of Technology, Rajapalayam, 626 117, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - R Suresh
- Laboratorio de Investigaciones Ambientales Zonas Áridas, Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile
| | - Saravanan Rajendran
- Laboratorio de Investigaciones Ambientales Zonas Áridas, Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile.
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea.
| | - Matias Soto-Moscoso
- Departamento de Física, Facultad de Ciencias, Universidad del Bío-bío, avenida Collao 1202, casilla 15-C, Concepción, Chile
| |
Collapse
|
129
|
Microbial fuel cell-based sensor for Enterobacter sp. KBH6958 activity monitoring during hydrogen production: the effects of pH and glucose concentration. J APPL ELECTROCHEM 2022. [DOI: 10.1007/s10800-022-01719-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
130
|
Pereira J, de Nooy S, Sleutels T, Ter Heijne A. Opportunities for visual techniques to determine characteristics and limitations of electro-active biofilms. Biotechnol Adv 2022; 60:108011. [PMID: 35753624 DOI: 10.1016/j.biotechadv.2022.108011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/10/2022] [Accepted: 06/18/2022] [Indexed: 11/02/2022]
Abstract
Optimization of bio-electrochemical systems (BESs) relies on a better understanding of electro-active biofilms (EABfs). These microbial communities are studied with a range of techniques, including electrochemical, visual and chemical techniques. Even though each of these techniques provides very valuable and wide-ranging information about EABfs, such as performance, morphology and biofilm composition, they are often destructive. Therefore, the information obtained from EABfs development and characterization studies are limited to a single characterization of EABfs and often limited to one time point that determines the end of the experiment. Despite being scarcer and not as commonly reported as destructive techniques, non-destructive visual techniques can be used to supplement EABfs characterization by adding in-situ information of EABfs functioning and its development throughout time. This opens the door to EABfs monitoring studies that can complement the information obtained with destructive techniques. In this review, we provide an overview of visual techniques and discuss the opportunities for combination with the established electrochemical techniques to study EABfs. By providing an overview of suitable visual techniques and discussing practical examples of combination of visual with electrochemical methods, this review aims at serving as a source of inspiration for future studies in the field of BESs.
Collapse
Affiliation(s)
- João Pereira
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911, MA, Leeuwarden, the Netherlands; Environmental Technology, Wageningen University, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands
| | - Sam de Nooy
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911, MA, Leeuwarden, the Netherlands; Environmental Technology, Wageningen University, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands
| | - Tom Sleutels
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911, MA, Leeuwarden, the Netherlands; Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, the Netherlands
| | - Annemiek Ter Heijne
- Environmental Technology, Wageningen University, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands.
| |
Collapse
|
131
|
Yadav A, Kumar P, Rawat D, Garg S, Mukherjee P, Farooqi F, Roy A, Sundaram S, Sharma RS, Mishra V. Microbial fuel cells for mineralization and decolorization of azo dyes: Recent advances in design and materials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154038. [PMID: 35202698 DOI: 10.1016/j.scitotenv.2022.154038] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Microbial fuel cells (MFCs) exhibit tremendous potential in the sustainable management of dye wastewater via degrading azo dyes while generating electricity. The past decade has witnessed advances in MFC configurations and materials; however, comprehensive analyses of design and material and its association with dye degradation and electricity generation are required for their industrial application. MFC models with high efficiency of dye decolorization (96-100%) and a wide variation in power generation (29.4-940 mW/m2) have been reported. However, only 28 out of 104 studies analyzed dye mineralization - a prerequisite to obviate dye toxicity. Consequently, the current review aims to provide an in-depth analysis of MFCs potential in dye degradation and mineralization and evaluates materials and designs as crucial factors. Also, structural and operation parameters critical to large-scale applicability and complete mineralization of azo dye were evaluated. Choice of materials, i.e., bacteria, anode, cathode, cathode catalyst, membrane, and substrate and their effects on power density and dye decolorization efficiency presented in review will help in economic feasibility and MFCs scalability to develop a self-sustainable solution for treating azo dye wastewater.
Collapse
Affiliation(s)
- Archana Yadav
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110 007, India
| | - Pankaj Kumar
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110 007, India
| | - Deepak Rawat
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110 007, India; Department of Environmental Studies, Janki Devi Memorial College, University of Delhi, Delhi 110060, India
| | - Shafali Garg
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110 007, India
| | - Paromita Mukherjee
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110 007, India
| | - Furqan Farooqi
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110 007, India
| | - Anurag Roy
- Environment and Sustainability Institute ESI Solar Lab, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK
| | - Senthilarasu Sundaram
- Environment and Sustainability Institute ESI Solar Lab, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK; Electrical & Electronic Engineering, School of Engineering and the Built Environment, Edinburgh Napier University, Edinburgh EH10 5DT, UK
| | - Radhey Shyam Sharma
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110 007, India; Delhi School of Climate Change & Sustainability, Institute of Eminence, University of Delhi, Delhi 110007, India
| | - Vandana Mishra
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110 007, India.
| |
Collapse
|
132
|
Building Improvised Microbial Fuel Cells: A Model Integrated STEM Curriculum for Middle-School Learners in Singapore. EDUCATION SCIENCES 2022. [DOI: 10.3390/educsci12060417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The benefits of STEM education for learning important knowledge, skills, and affect are widely accepted, though the former is currently absent in Singapore’s formal curriculum. This study therefore describes a model-integrated STEM curriculum at the middle-school level for developing scientific as well engineering literacy. Based on design-based inquiry (DBI), it incorporated inquiry science learning with an engineering design challenge for students to build improvised microbial fuel cells (MFC). Co-planned with science teachers from various disciplines, the curriculum was implemented as a 10-week enrichment program with two groups of Grade 8 students (N = 77) from one secondary school in Singapore. Through the use of vignettes, we show how learning about/of science and engineering occurred in the conceptual, epistemic, and social domains. In addition, students applied evidence-based reasoning, various epistemic skills, and a variety of problem-solving approaches as they iteratively improved their MFC set-ups, which often outperformed commercial kits. This proof-of-concept case study represents the first successful implementation of a STEM-integrated curriculum for middle-school students and can serve as a model for the development of similar programs elsewhere.
Collapse
|
133
|
Santoro C, Bollella P, Erable B, Atanassov P, Pant D. Oxygen reduction reaction electrocatalysis in neutral media for bioelectrochemical systems. Nat Catal 2022. [DOI: 10.1038/s41929-022-00787-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
134
|
Häuser L, Erben J, Pillot G, Kerzenmacher S, Dreher W, Küstermann E. In vivo characterization of electroactive biofilms inside porous electrodes with MR Imaging. RSC Adv 2022; 12:17784-17793. [PMID: 35765339 PMCID: PMC9199086 DOI: 10.1039/d2ra01162j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/30/2022] [Indexed: 12/03/2022] Open
Abstract
Identifying the limiting processes of electroactive biofilms is key to improve the performance of bioelectrochemical systems (BES). For modelling and developing BES, spatial information of transport phenomena and biofilm distribution are required and can be determined by Magnetic Resonance Imaging (MRI) in vivo, in situ and in operando even inside opaque porous electrodes. A custom bioelectrochemical cell was designed that allows MRI measurements with a spatial resolution of 50 μm inside a 500 μm thick porous carbon electrode. The MRI data showed that only a fraction of the electrode pore space is colonized by the Shewanella oneidensis MR-1 biofilm. The maximum biofilm density was observed inside the porous electrode close to the electrode-medium interface. Inside the biofilm, mass transport by diffusion is lowered down to 45% compared to the bulk growth medium. The presented data and the methods can be used for detailed models of bioelectrochemical systems and for the design of improved electrode structures. The use of magnetic resonance imaging can contribute to a better understanding of limiting processes occurring in electroactive biofilms especially inside opaque porous electrodes.![]()
Collapse
Affiliation(s)
- Luca Häuser
- Center for Environmental Research and Sustainable Technology (UFT), University of Bremen 28359 Bremen Germany
| | | | - Guillaume Pillot
- Center for Environmental Research and Sustainable Technology (UFT), University of Bremen 28359 Bremen Germany
| | - Sven Kerzenmacher
- Center for Environmental Research and Sustainable Technology (UFT), University of Bremen 28359 Bremen Germany
| | - Wolfgang Dreher
- In-vivo-MR Group, Faculty 02 (Biology/Chemistry), University of Bremen 28359 Bremen Germany
| | - Ekkehard Küstermann
- In-vivo-MR Group, Faculty 02 (Biology/Chemistry), University of Bremen 28359 Bremen Germany
| |
Collapse
|
135
|
Rafaqat S, Ali N, Torres C, Rittmann B. Recent progress in treatment of dyes wastewater using microbial-electro-Fenton technology. RSC Adv 2022; 12:17104-17137. [PMID: 35755587 PMCID: PMC9178700 DOI: 10.1039/d2ra01831d] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/02/2022] [Indexed: 01/24/2023] Open
Abstract
Globally, textile dyeing and manufacturing are one of the largest industrial units releasing huge amount of wastewater (WW) with refractory compounds such as dyes and pigments. Currently, wastewater treatment has been viewed as an industrial opportunity for rejuvenating fresh water resources and it is highly required in water stressed countries. This comprehensive review highlights an overall concept and in-depth knowledge on integrated, cost-effective cross-disciplinary solutions for domestic and industrial (textile dyes) WW and for harnessing renewable energy. This basic concept entails parallel or sequential modes of treating two chemically different WW i.e., domestic and industrial in the same system. In this case, contemporary advancement in MFC/MEC (METs) based systems towards Microbial-Electro-Fenton Technology (MEFT) revealed a substantial emerging scope and opportunity. Principally the said technology is based upon previously established anaerobic digestion and electro-chemical (photo/UV/Fenton) processes in the disciplines of microbial biotechnology and electro-chemistry. It holds an added advantage to all previously establish technologies in terms of treatment and energy efficiency, minimal toxicity and sludge waste, and environmental sustainable. This review typically described different dyes and their ultimate fate in environment and recently developed hierarchy of MEFS. It revealed detail mechanisms and degradation rate of dyes typically in cathodic Fenton system under batch and continuous modes of different MEF reactors. Moreover, it described cost-effectiveness of the said technology in terms of energy budget (production and consumption), and the limitations related to reactor fabrication cost and design for future upgradation to large scale application.
Collapse
Affiliation(s)
- Shumaila Rafaqat
- Department of Microbiology, Quaid-i-Azam University Islamabad Pakistan
| | - Naeem Ali
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad Pakistan
| | - Cesar Torres
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University USA
| | - Bruce Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University USA
| |
Collapse
|
136
|
Omenesa Idris M, Guerrero–Barajas C, Kim HC, Ali Yaqoob A, Nasir Mohamad Ibrahim M. Scalability of biomass-derived graphene derivative materials as viable anode electrode for a commercialized microbial fuel cell: A systematic review. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
137
|
Greenman J, Mendis BA, Gajda I, Ieropoulos IA. Microbial fuel cell compared to a chemostat. CHEMOSPHERE 2022; 296:133967. [PMID: 35176300 PMCID: PMC9023796 DOI: 10.1016/j.chemosphere.2022.133967] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/18/2022] [Accepted: 02/11/2022] [Indexed: 05/31/2023]
Abstract
Microbial Fuel Cells (MFCs) represent a green and sustainable energy conversion system that integrate bacterial biofilms within an electrochemical two-electrode set-up to produce electricity from organic waste. In this review, we focus on a novel exploratory model, regarding "thin" biofilms forming on highly perfusable (non-diffusible) anodes in small-scale, continuous flow MFCs due to the unique properties of the electroactive biofilm. We discuss how this type of MFC can behave as a chemostat in fulfilling common properties including steady state growth and multiple steady states within the limit of biological physicochemical conditions imposed by the external environment. With continuous steady state growth, there is also continuous metabolic rate and continuous electrical power production, which like the chemostat can be controlled. The model suggests that in addition to controlling growth rate and power output by changing the external resistive load, it will be possible instead to change the flow rate/dilution rate.
Collapse
Affiliation(s)
- John Greenman
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, BS16 1QY, UK; Biological, Biomedical and Analytical Sciences, University of the West of England, BS16 1QY, UK.
| | - Buddhi Arjuna Mendis
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, BS16 1QY, UK
| | - Iwona Gajda
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, BS16 1QY, UK
| | - Ioannis A Ieropoulos
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, BS16 1QY, UK.
| |
Collapse
|
138
|
Meng L, Feng M, Sun J, Wang R, Qu F, Yang C, Guo W. High-performance free-standing microbial fuel cell anode derived from Chinese date for enhanced electron transfer rates. BIORESOURCE TECHNOLOGY 2022; 353:127151. [PMID: 35421564 DOI: 10.1016/j.biortech.2022.127151] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Traditional anode materials have disadvantages like low specific surface area and poor electrical conductivity. Herein, carbonized Chinese dates (CCD) were synthesized as microbial fuel cells (MFC) anodes. The obtained materials exhibited excellent biocompatibility with fast start-up (within one day) and charge transfer (Rct 4.0 Ω). Their porous structure allows efficient ion transport and microbial community succession, favorable for long-term operation. The biomass analysis shows that CCD anodes can load higher weight of biomass. High-throughput sequencing (16S rRNA) discovered that CCD anode can enrich Geobacter spp., with highest abundance of 73.4%, much higher than carbon felt (CF, 39.2%). Benefit from these properties, the MFC with CCD anodes possess a maximum power density of 12.17 W m-3 (1.62 times of commercial carbon felt). In all, the CCD anode exhibits high performance with low cost and easy fabrication, certificating it a promising candidate for an ideal MFC anode material.
Collapse
Affiliation(s)
- Li Meng
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Min Feng
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Jinzhi Sun
- School of Life Science and Technology, Key Laboratory of Micro-systems and Micro-structures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin 150001, China
| | - Ruiwen Wang
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Harbin 150001, China
| | - Fengyu Qu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Chunyu Yang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Wei Guo
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China.
| |
Collapse
|
139
|
Recent advances in osmotic microbial fuel cell technology: A review. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
140
|
Joksimović K, Kodranov I, Randjelović D, Slavković Beškoski L, Radulović J, Lješević M, Manojlović D, Beškoski VP. Microbial fuel cells as an electrical energy source for degradation followed by decolorization of Reactive Black 5 azo dye. Bioelectrochemistry 2022; 145:108088. [DOI: 10.1016/j.bioelechem.2022.108088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/20/2022]
|
141
|
P A, Naina Mohamed S, Singaravelu DL, Brindhadevi K, Pugazhendhi A. A review on graphene / graphene oxide supported electrodes for microbial fuel cell applications: Challenges and prospects. CHEMOSPHERE 2022; 296:133983. [PMID: 35181417 DOI: 10.1016/j.chemosphere.2022.133983] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/27/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Microbial Fuel Cell (MFC) has gained great interest as an alternative green technology for bioenergy generation along with reduced sludge production, nutrient recovery, removal of COD and color, etc. during wastewater treatment. However, the MFC has several challenges for real-time applications due to less power output and high ohmic resistance and fabrication (electrode and membrane) cost. Several kinds of research have been carried out to increase energy production by reducing various losses associated with electrodes in the MFC. Though, carbonaceous electrodes (carbon and graphite) are the key materials for the anode and cathode side, since these have a higher surface area, good biocompatibility, low cost, and good mechanical strength. Graphene or graphene oxide-based nanocomposite can be an ideal substitute for electrode modifications and an alternative for an expensive anode and cathode catalyst in MFC. Graphene oxide synthesis from waste material such as waste biomass, agricultural, plastic waste, etc. is added advantages of minimizing the cost of the electrodes. But, the synthesis of graphene is quite expensive and has limitations in economic feasibility for bioelectricity production in MFC. Hence, the present review deals with the anode and cathode electrode modification with graphene-based nanocomposites, synthesis of graphene/graphene oxide from various raw materials, and its application in MFC. The current challenges and future outlook on graphene-based composites on MFC performance are also discussed.
Collapse
Affiliation(s)
- Aiswaria P
- Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli-15, Tamil Nadu, India
| | - Samsudeen Naina Mohamed
- Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli-15, Tamil Nadu, India.
| | - D Lenin Singaravelu
- Department of Production Engineering, National Institute of Technology, Tiruchirappalli-15, India
| | - Kathirvel Brindhadevi
- Center for Transdisciplinary Research (CFTR), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | | |
Collapse
|
142
|
Dessie Y, Tadesse S. Advancements in Bioelectricity Generation Through Nanomaterial-Modified Anode Electrodes in Microbial Fuel Cells. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.876014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The use of nanotechnology in bioelectrochemical systems to recover bioelectricity and metals from waste appears to be a potentially appealing alternative to existing established procedures. This trend exactly characterizes the current renewable energy production technology. Hence, this review focuses on the improvement of the anode electrode by using different functional metal oxide-conducting polymer nanocomposites to enhance microbial fuel cell (MFC) performance. Enhancement of interfacial bioelectrocatalysis between electroactive microorganisms and hierarchical porous nanocomposite materials could enhance cost-effective bioanode materials with superior bioelectrocatalytic activity for MFCs. In this review, improvement in efficiency of MFCs by using iron oxide- and manganese oxide-based polypyrrole hybrid composites as model anode modifiers was discussed. The review also extended to discussing and covering the principles, components, power density, current density, and removal efficiencies of biofuel cell systems. In addition, this research review demonstrates the application of MFCs for renewable energy generation, wastewater treatment, and metal recovery. This is due to having their own unique working principle under mild conditions and using renewable biodegradable organic matter as a direct fuel source.
Collapse
|
143
|
Li C, Feng Y, Liang D, Zhang L, Tian Y, Yadav RS, He W. Spatial-type skeleton induced Geobacter enrichment and tailored bio-capacitance of electroactive bioanode for efficient electron transfer in microbial fuel cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153123. [PMID: 35051486 DOI: 10.1016/j.scitotenv.2022.153123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Microbial fuel cell (MFC) is a promising alternative to energy-intensive conventional wastewater technology. However, poor electron transfer efficiency, low coulombic recovery (CR), and high capital cost highly restricted its practical application. In this work, spatial electroactive biofilm is successfully developed on the carbonaceous skeleton derived from phenolic foam, which highly improved the bio-capacitance and Geobacter abundance of bioanode. Compared with carbon cloth (CC) anode, the optimal spatial electroactive biofilm (3DP_900) enriched the Geobacter abundance up to 56.8% from 17.2%, and obtained an extraordinary electroactive biomass loading of about 339 ± 63 μg cm-2 and a remarkable bio-capacitance of about 3.4 F. In general, spatial biofilm highly reduces the barriers to electron transfer (Rct) and mass transfer (Rd) in anodic substrate oxidation reaction and obtains the lowest Rct of 2.0 ± 0.2 Ω and Rd of 35 ± 3.3 Ω in 3DP_900, which also supports the highest power density at 0.347 ± 0.027 W m-2 and the highest CR at 69.2%. More importantly, due to its mature preparation technology, carbonized phenolic foam (2 cm thick pieces) reduces the capital cost of electrode preparation by three orders of magnitude from 1157.3 USD m-2 of CC to 5.2 USD m-2. Overall, this work offers an effective and scalable electrode to achieve high substrate utilization rate and energy recovery efficiency, and considers the economic cost of electrode fabrication for the further construction of pilot-scale MFCs equipment.
Collapse
Affiliation(s)
- Chao Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Dandan Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Lijuan Zhang
- School of Environmental and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Yan Tian
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Ravi Shankar Yadav
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Weihua He
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China.
| |
Collapse
|
144
|
Hydrogen Production in Microbial Electrolysis Cells Based on Bacterial Anodes Encapsulated in a Small Bioreactor Platform. Microorganisms 2022; 10:microorganisms10051007. [PMID: 35630450 PMCID: PMC9142973 DOI: 10.3390/microorganisms10051007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 01/25/2023] Open
Abstract
Microbial electrolysis cells (MECs) are an emerging technology capable of harvesting part of the potential chemical energy in organic compounds while producing hydrogen. One of the main obstacles in MECs is the bacterial anode, which usually contains mixed cultures. Non-exoelectrogens can act as a physical barrier by settling on the anode surface and displacing the exoelectrogenic microorganisms. Those non-exoelectrogens can also compete with the exoelectrogenic microorganisms for nutrients and reduce hydrogen production. In addition, the bacterial anode needs to withstand the shear and friction forces existing in domestic wastewater plants. In this study, a bacterial anode was encapsulated by a microfiltration membrane. The novel encapsulation technology is based on a small bioreactor platform (SBP) recently developed for achieving successful bioaugmentation in wastewater treatment plants. The 3D capsule (2.5 cm in length, 0.8 cm in diameter) physically separates the exoelectrogenic biofilm on the carbon cloth anode material from the natural microorganisms in the wastewater, while enabling the diffusion of nutrients through the capsule membrane. MECs based on the SBP anode (MEC-SBPs) and the MECs based on a nonencapsulated anode (MEC control) were fed with Geobacter medium supplied with acetate for 32 days, and then with artificial wastewater for another 46 days. The electrochemical activity, chemical oxygen demand (COD), bacterial anode viability and relative distribution on the MEC-SBP anode were compared with the MEC control. When the MECs were fed with artificial wastewater, the MEC-SBP produced (at −0.6 V) 1.70 ± 0.22 A m−2, twice that of the MEC control. The hydrogen evolution rates were 0.017 and 0.005 m3 m−3 day−1, respectively. The COD consumption rate for both was about the same at 650 ± 70 mg L−1. We assume that developing the encapsulated bacterial anode using the SBP technology will help overcome the problem of contamination by non-exoelectrogenic bacteria, as well as the shear and friction forces in wastewater plants.
Collapse
|
145
|
Auer B, Telfer S, GROSS A. Metal Organic Frameworks for Bioelectrochemical Applications. ELECTROANAL 2022. [DOI: 10.1002/elan.202200145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
146
|
Pötschke L, Huber P, Stegschuster G, Schriever S, Kroppen N, Schmatz J, Gries T, Blank LM, Farber P, Rosenbaum MA. Customized Woven Carbon Fiber Electrodes for Bioelectrochemical Systems—A Study of Structural Parameters. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.765682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Commercial carbon fiber (CF) fabrics are popular electrode materials for bioelectrochemical systems (BES), but are usually not optimized for the specific application. This study investigates BES-relevant material characteristics on fabric level, such as weave types and weave parameters. The two contrasting weave types plain and leno weave were characterized with respect to their envisaged application types: 1) BES with mainly advective flow regimes and 2) stirred systems, which could benefit from fluid flow through a fabric electrode. Experiments with batch and continuously fed pure cultures of Geobacter sulfurreducens PCA and Shewanella oneidensis MR-1 reveal that µm-scale electrode topologies are of limited use for the thick biofilms of G. sulfurreducens, but can boost S. oneidensis’ current generation especially in batch and fed-batch reactors. For advective flow regimes, deeper layers of biofilm inside microporous electrodes are often mass transport limited, even with thin biofilms of S. oneidensis. Therefore, low porosity plain weave electrodes for advective flow operation as in wastewater treating BES should be thin and flat. A trade-off between maximized current density and electrode material utilization exists, which is optimized exemplarily for an advective flow operation. For stirred BES of biotechnological applications, a flow-through of electrolyte is desired. For this, leno weave fabrics with pores at cm-scale are produced from 100% CF for the first time. In a preliminary evaluation, they outperform plain weave fabrics. Mass transfer investigations in stirred BES demonstrate that the large pores enable efficient electrode utilization at lower power input in terms of stirring speed.
Collapse
|
147
|
Sun L, Mo Y, Zhang L. A mini review on bio-electrochemical systems for the treatment of azo dye wastewater: State-of-the-art and future prospects. CHEMOSPHERE 2022; 294:133801. [PMID: 35104551 DOI: 10.1016/j.chemosphere.2022.133801] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/17/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Azo dyes are typical toxic and refractory organic pollutants widely used in the textile industry. Bio-electrochemical systems (BESs) have great potential for the treatment of azo dyes with the help of microorganisms as biocatalysts and have advanced significantly in recent years. However, the latest and significant advancement and achievements of BESs treating azo dyes have not been reviewed since 8 years ago. This review thus focuses on the recent investigations of BESs treating azo dyes from the year of 2013-2020 in order to broaden the knowledge and deepen the understanding in this field. In this review, azo dyes degradation mechanisms of BESs are first elaborated, followed by the introduction of BES configurations with the emphasis on the novelties. The azo dye degradation performance of BESs is then presented to demonstrate their effectiveness in azo dye removal. Effects of various operating parameters on the overall performance of BESs are comprehensively elucidated, including electrode materials, external resistances and applied potentials, initial concentrations of azo dyes, and co-substrates. Predominant microorganisms responsible for degradation of azo dyes in BESs are highlighted in details. Furthermore, the combination of BESs with other processes to further improve the azo dye removal are discussed. Finally, an outlook on the future research directions and challenges is provided from the viewpoint of realistic applications of the technology.
Collapse
Affiliation(s)
- Liping Sun
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin, 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Yinghui Mo
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin, 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China.
| | - Lu Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin, 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| |
Collapse
|
148
|
Aswathi M, Ganesh V, Berchmans S. MOF based electrode platforms in the assembly of Biofuel cells and Self‐powered sensors. ChemElectroChem 2022. [DOI: 10.1002/celc.202200276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- M Aswathi
- CSIR-CECRI: Central Electrochemical Research Institute CSIR EEC division INDIA
| | - V. Ganesh
- CSIR-CECRI: Central Electrochemical Research Institute CSIR EEC division INDIA
| | - Sheela Berchmans
- CSIR-Central Electrochemical Research Institute: Central Electrochemical Research Institute CSIR Electrodics and electrocatalysis Division CECRI 630006 Karaikudi INDIA
| |
Collapse
|
149
|
Apollon W, Rusyn I, González-Gamboa N, Kuleshova T, Luna-Maldonado AI, Vidales-Contreras JA, Kamaraj SK. Improvement of zero waste sustainable recovery using microbial energy generation systems: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:153055. [PMID: 35032528 DOI: 10.1016/j.scitotenv.2022.153055] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/22/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Microbial energy generation systems, i.e., bioelectrochemical systems (BESs) are promising sustainable technologies that have been used in different fields of application such as biofuel production, biosensor, nutrient recovery, wastewater treatment, and heavy metals removal. However, BESs face great challenges such as large-scale application in real time, low power performance, and suitable materials for their configuration. This review paper aimed to discuss the use of BES systems such as conventional microbial fuel cells (MFCs), as well as plant microbial fuel cell (P-MFC), sediment microbial fuel cell (S-MFC), constructed wetland microbial fuel cell (CW-MFC), osmotic microbial fuel cell (OsMFC), photo-bioelectrochemical fuel cell (PBFC), and MFC-Fenton systems in the zero waste sustainable recovery process. Firstly, the configuration and electrode materials used in BESs as the main sources to improve the performance of these technologies are discussed. Additionally, zero waste recovery process from solid and wastewater feedstock, i.e., energy recovery: electricity generation (from 12 to 26,680 mW m-2) and fuel generation, i.e., H2 (170 ± 2.7 L-1 L-1 d-1) and CH4 (107.6 ± 3.2 mL-1 g-1), nutrient recovery of 100% (PO43-P), and 13-99% (NH4+-N), heavy metal removal/recovery: water recovery, nitrate (100%), sulfate (53-99%), and sulfide recovery/removal (99%), antibiotic, dye removal, and other product recovery are critically analyzed in this review paper. Finally, the perspective and challenges, and future outlook are highlighted. There is no doubt that BES technologies are an economical option for the simultaneous zero waste elimination and energy recovery. However, more research is required to carry out the large-scale application of BES, as well as their commercialization.
Collapse
Affiliation(s)
- Wilgince Apollon
- Department of Agricultural and Food Engineering, Faculty of Agronomy, Autonomous University of Nuevo León, Francisco Villa S/N, Ex-Hacienda El Canadá, General Escobedo, Nuevo León 66050, Mexico.
| | - Iryna Rusyn
- Department of Ecology and Sustainaible Environmental Management, Viacheslav Chornovil Institute of Sustainable Development, Lviv Polytechnic National University, Stepan Bandera st., 12, Lviv 79013, Ukraine
| | - Nancy González-Gamboa
- Renewable Energy Unit, Yucatan Center for Scientist Research, Carretera Sierra Papacal-Chuburná Puerto Km 5, CP 97302 Sierra Papacal, Yucatan, Mexico
| | - Tatiana Kuleshova
- Agrophysical Research Institute, Department of Plant Lightphysiology and Agroecosystem Bioproductivity, 195220 Saint-Petersburg 14, Grazhdanskiy pr., Russia
| | - Alejandro Isabel Luna-Maldonado
- Department of Agricultural and Food Engineering, Faculty of Agronomy, Autonomous University of Nuevo León, Francisco Villa S/N, Ex-Hacienda El Canadá, General Escobedo, Nuevo León 66050, Mexico
| | - Juan Antonio Vidales-Contreras
- Department of Agricultural and Food Engineering, Faculty of Agronomy, Autonomous University of Nuevo León, Francisco Villa S/N, Ex-Hacienda El Canadá, General Escobedo, Nuevo León 66050, Mexico
| | - Sathish-Kumar Kamaraj
- TecNM-Instituto Tecnológico El Llano Aguascalientes (ITEL), Laboratorio de Medio Ambiente Sostenible, Km.18 Carretera Aguascalientes-San Luis Potosí, El Llano Ags. C.P. 20330, Mexico.
| |
Collapse
|
150
|
Guadarrama-Pérez O, Bahena-Rabadan KY, Dehesa-Carrasco U, Guadarrama Pérez VH, Estrada-Arriaga EB. Bioelectricity production using shade macrophytes in constructed wetlands-microbial fuel cells. ENVIRONMENTAL TECHNOLOGY 2022; 43:1532-1543. [PMID: 33092463 DOI: 10.1080/09593330.2020.1841306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
The coupling of constructed wetlands (CW) to microbial fuel cells (MFC) has become a promising hybrid technology due to its high compatibility to generate electricity and remove pollutants from wastewater. In the present study, the bioelectricity production generated from constructed wetlands-microbial fuel cells (CW-MFCs) was evaluated using four species of shade macrophytes: Aglaonema commutatum, Epipremnum aureum, Dranacaena braunni, and Philodendron cordatum. The CW-MFCs were operated in a continuous upflow mode with a hydraulic retention time (HRT) of 4 d. The systems were fed with synthetic water without an external carbon source. The bioelectrochemical systems were operated under diffuse radiation conditions (shadow). Philodendron cordatum was the macrophyte species that produced a maximum voltage of 103 mV, with a power density of 12.5 mW/m2. High voltages were obtained when the diffuse radiation in the CW-MFCs was 3000-4000 µmol.m2/s. The maximum production of root exudates was 20.6 mg/L as total organic carbon for the Philodendron cordatum species. Philodendron cordatum was the macrophyte species that obtained high conversion efficiency (0.0014%), compared to other macrophyte species (< 0.0008%). In the CW-MFCs systems it was observed that the bioelectricity production was mainly due to the quantity of the root exudates released into the rhizospheres of the plants.
Collapse
Affiliation(s)
- Oscar Guadarrama-Pérez
- Subcoordinación de Tratamiento de Aguas Residuales, Instituto Mexicano de Tecnología del Agua, Jiutepec, México
- Subcoordinación de Posgrado, Instituto Mexicano de Tecnología del Agua, Jiutepec, México
| | | | - Ulises Dehesa-Carrasco
- Coordinación de Riego y Drenaje, Instituto Mexicano de Tecnología del Agua, Jiutepec, México
| | | | | |
Collapse
|