101
|
Advances in mass spectrometry imaging enabling observation of localised lipid biochemistry within tissues. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.07.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
102
|
Dufresne M, Patterson NH, Norris JL, Caprioli RM. Combining Salt Doping and Matrix Sublimation for High Spatial Resolution MALDI Imaging Mass Spectrometry of Neutral Lipids. Anal Chem 2019; 91:12928-12934. [DOI: 10.1021/acs.analchem.9b02974] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Martin Dufresne
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Ave S #9160, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
| | - Nathan Heath Patterson
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Ave S #9160, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
| | - Jeremy Lynn Norris
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Ave S #9160, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, Tennessee 37235, United States
| | - Richard Micheal Caprioli
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Ave S #9160, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, Tennessee 37235, United States
- Department of Pharmacology, Vanderbilt University, 442 Robinson Research Building, 2220 Pierce Avenue, Nashville, Tennessee 37232, United States
- Department of Medicine, Vanderbilt University, 465 21st Ave S #9160, Nashville, Tennessee 37235, United States
| |
Collapse
|
103
|
O'Rourke MB, Town SEL, Dalla PV, Bicknell F, Koh Belic N, Violi JP, Steele JR, Padula MP. What is Normalization? The Strategies Employed in Top-Down and Bottom-Up Proteome Analysis Workflows. Proteomes 2019; 7:proteomes7030029. [PMID: 31443461 PMCID: PMC6789750 DOI: 10.3390/proteomes7030029] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/20/2022] Open
Abstract
The accurate quantification of changes in the abundance of proteins is one of the main applications of proteomics. The maintenance of accuracy can be affected by bias and error that can occur at many points in the experimental process, and normalization strategies are crucial to attempt to overcome this bias and return the sample to its regular biological condition, or normal state. Much work has been published on performing normalization on data post-acquisition with many algorithms and statistical processes available. However, there are many other sources of bias that can occur during experimental design and sample handling that are currently unaddressed. This article aims to cast light on the potential sources of bias and where normalization could be applied to return the sample to its normal state. Throughout we suggest solutions where possible but, in some cases, solutions are not available. Thus, we see this article as a starting point for discussion of the definition of and the issues surrounding the concept of normalization as it applies to the proteomic analysis of biological samples. Specifically, we discuss a wide range of different normalization techniques that can occur at each stage of the sample preparation and analysis process.
Collapse
Affiliation(s)
- Matthew B O'Rourke
- Bowel Cancer & Biomarker Lab, Northern Clinical School, Faculty of Medicine and Health, The University of Sydney Lvl 8, Kolling Institute. Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| | - Stephanie E L Town
- School of Life Sciences and Proteomics Core Facility, Faculty of Science, The University of Technology Sydney, Ultimo 2007, Australia
| | - Penelope V Dalla
- School of Life Sciences and Proteomics Core Facility, Faculty of Science, The University of Technology Sydney, Ultimo 2007, Australia
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Glebe 2037, Australia
| | - Fiona Bicknell
- School of Life Sciences and Proteomics Core Facility, Faculty of Science, The University of Technology Sydney, Ultimo 2007, Australia
| | - Naomi Koh Belic
- School of Life Sciences and Proteomics Core Facility, Faculty of Science, The University of Technology Sydney, Ultimo 2007, Australia
| | - Jake P Violi
- School of Life Sciences and Proteomics Core Facility, Faculty of Science, The University of Technology Sydney, Ultimo 2007, Australia
| | - Joel R Steele
- School of Life Sciences and Proteomics Core Facility, Faculty of Science, The University of Technology Sydney, Ultimo 2007, Australia
| | - Matthew P Padula
- School of Life Sciences and Proteomics Core Facility, Faculty of Science, The University of Technology Sydney, Ultimo 2007, Australia.
| |
Collapse
|
104
|
Strnad Š, Pražienková V, Sýkora D, Cvačka J, Maletínská L, Popelová A, Vrkoslav V. The use of 1,5-diaminonaphthalene for matrix-assisted laser desorption/ionization mass spectrometry imaging of brain in neurodegenerative disorders. Talanta 2019; 201:364-372. [DOI: 10.1016/j.talanta.2019.03.117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/29/2019] [Accepted: 03/30/2019] [Indexed: 12/17/2022]
|
105
|
Neumann EK, Do TD, Comi TJ, Sweedler JV. Exploring the Fundamental Structures of Life: Non-Targeted, Chemical Analysis of Single Cells and Subcellular Structures. Angew Chem Int Ed Engl 2019; 58:9348-9364. [PMID: 30500998 PMCID: PMC6542728 DOI: 10.1002/anie.201811951] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Indexed: 01/14/2023]
Abstract
Cells are a basic functional and structural unit of living organisms. Both unicellular communities and multicellular species produce an astonishing chemical diversity, enabling a wide range of divergent functions, yet each cell shares numerous aspects that are common to all living organisms. While there are many approaches for studying this chemical diversity, only a few are non-targeted and capable of analyzing hundreds of different chemicals at cellular resolution. Here, we review the non-targeted approaches used to perform comprehensive chemical analyses, provide chemical imaging information, or obtain high-throughput single-cell profiling data. Single-cell measurement capabilities are rapidly increasing in terms of throughput, limits of detection, and completeness of the chemical analyses; these improvements enable their application to understand ever more complex physiological phenomena, such as learning, memory, and behavior.
Collapse
Affiliation(s)
- Elizabeth K. Neumann
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, 405 N. Mathews Avenue, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Thanh D. Do
- Department of Chemistry, 1420 Circle Drive, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Troy J. Comi
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, 405 N. Mathews Avenue, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Jonathan V. Sweedler
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, 405 N. Mathews Avenue, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
106
|
Tucker LH, Hamm GR, Sargeant RJE, Goodwin RJA, Mackay CL, Campbell CJ, Clarke DJ. Untargeted Metabolite Mapping in 3D Cell Culture Models Using High Spectral Resolution FT-ICR Mass Spectrometry Imaging. Anal Chem 2019; 91:9522-9529. [DOI: 10.1021/acs.analchem.9b00661] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Lulu H. Tucker
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| | - Gregory R. Hamm
- Pathology, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Rebecca J. E. Sargeant
- Pathology, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Richard J. A. Goodwin
- Pathology, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - C. Logan Mackay
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| | - Colin J. Campbell
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| | - David J. Clarke
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| |
Collapse
|
107
|
Optimization of MALDI-TOF mass spectrometry imaging for the visualization and comparison of peptide distributions in dry-cured ham muscle fibers. Food Chem 2019; 283:275-286. [DOI: 10.1016/j.foodchem.2018.12.126] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 12/29/2018] [Accepted: 12/29/2018] [Indexed: 01/02/2023]
|
108
|
Ucal Y, Coskun A, Ozpinar A. Quality will determine the future of mass spectrometry imaging in clinical laboratories: the need for standardization. Expert Rev Proteomics 2019; 16:521-532. [DOI: 10.1080/14789450.2019.1624165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yasemin Ucal
- School of Medicine, Department of Medical Biochemistry, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Abdurrahman Coskun
- School of Medicine, Department of Medical Biochemistry, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Aysel Ozpinar
- School of Medicine, Department of Medical Biochemistry, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| |
Collapse
|
109
|
Neumann EK, Do TD, Comi TJ, Sweedler JV. Erforschung der fundamentalen Strukturen des Lebens: Nicht zielgerichtete chemische Analyse von Einzelzellen und subzellulären Strukturen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201811951] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Elizabeth K. Neumann
- Department of Chemistry and the Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana-Champaign 405 N. Mathews Avenue Urbana IL 61801 USA
| | - Thanh D. Do
- Department of ChemistryUniversity of Tennessee 1420 Circle Drive Knoxville TN 37996 USA
| | - Troy J. Comi
- Department of Chemistry and the Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana-Champaign 405 N. Mathews Avenue Urbana IL 61801 USA
| | - Jonathan V. Sweedler
- Department of Chemistry and the Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana-Champaign 405 N. Mathews Avenue Urbana IL 61801 USA
| |
Collapse
|
110
|
Development and evaluation of matrix application techniques for high throughput mass spectrometry imaging of tissues in the clinic. CLINICAL MASS SPECTROMETRY 2019; 12:7-15. [DOI: 10.1016/j.clinms.2019.01.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 01/27/2019] [Accepted: 01/28/2019] [Indexed: 01/05/2023]
|
111
|
Han J, Permentier H, Bischoff R, Groothuis G, Casini A, Horvatovich P. Imaging of protein distribution in tissues using mass spectrometry: An interdisciplinary challenge. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.12.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
112
|
Xu J, Zhang Z, Liu R, Sun Y, Liu H, Nie Z, Zhao X, Pu X. Function of complement factor H and imaging of small molecules by MALDI-MSI in a methamphetamine behavioral sensitization model. Behav Brain Res 2019; 364:233-244. [PMID: 30731099 DOI: 10.1016/j.bbr.2019.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 02/01/2019] [Accepted: 02/01/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND At present, the harm of new-type drug, methamphetamine (METH), has gradually exceeded that of the traditional opioid drugs, and METH abuse has become a serious public health and social problem. In our previous study, complement factor H (CFH) was found to be upregulated in the sera of METH-addicted patients and rats and in certain brain regions in the rats. METHODS We used ELISA and immunofluorescence to confirm the changes in CFH in the serum and hippocampus of a METH behavioral sensitization mouse model, and C1q expression was also detected by immunofluorescence in the hippocampus. We aimed to elucidate the involvement of CFH and C1q in the mechanism of METH addiction. We also detected the distribution of various small molecules by matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) in select brain regions: the nucleus accumbens, the hippocampus and the ventral tegmental area. RESULTS The expression of CFH was upregulated in the serum and hippocampus of METH behavioral sensitization model mice, consistent with our previous research on conditioned place preference rats. In contrast, C1q decreased dramatically in the mossy fibers of the hippocampus. The results of small-molecule imaging by MALDI-MSI showed that the levels of K+, antioxidants, neurotransmitters, and ATP metabolism-related molecules were altered in different regions. CONCLUSIONS These results indicate the involvement of the complement system in the mechanism of METH addiction and validate the presence of oxidative stress, energy metabolism changes during addiction. This suggests the utility of further investigation into the above aspects.
Collapse
Affiliation(s)
- Jiamin Xu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China; Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhilin Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China; Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Runzhe Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China; Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yi Sun
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China; Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Huihui Liu
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China; Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Zongxiu Nie
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China; Beijing National Laboratory for Molecular Sciences, Beijing 100190, China; Beijing Center for Mass Spectrometry, Beijing 100190, China
| | - Xin Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China; Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiaoping Pu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China; Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
113
|
Schulz S, Becker M, Groseclose MR, Schadt S, Hopf C. Advanced MALDI mass spectrometry imaging in pharmaceutical research and drug development. Curr Opin Biotechnol 2019; 55:51-59. [DOI: 10.1016/j.copbio.2018.08.003] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/21/2018] [Accepted: 08/03/2018] [Indexed: 12/20/2022]
|
114
|
Parrot D, Blümel M, Utermann C, Chianese G, Krause S, Kovalev A, Gorb SN, Tasdemir D. Mapping the Surface Microbiome and Metabolome of Brown Seaweed Fucus vesiculosus by Amplicon Sequencing, Integrated Metabolomics and Imaging Techniques. Sci Rep 2019; 9:1061. [PMID: 30705420 PMCID: PMC6355876 DOI: 10.1038/s41598-018-37914-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/17/2018] [Indexed: 02/05/2023] Open
Abstract
The brown alga Fucus vesiculosus is a keystone marine species, which is subject to heavy surface colonisation. This study was designed to analyse the surface epibiome of F. vesiculosus in conjunction with the composition and spatial distribution of its surface metabolome. The amplicon sequencing, SEM and CARD-FISH imaging studies showed Alphaproteobacteria to predominate the epibiotic bacteria. Fungi of the class Eurotiomycetes were visualised for the first time on an algal surface. An untargeted metabolomics approach using molecular networks, in silico prediction and manual dereplication showed the differential metabolome of the surface and the whole tissue extracts. In total, 50 compounds were putatively dereplicated by UPLC-MS/MS, 37 of which were previously reported from both seaweeds and microorganisms. Untargeted spatial metabolomics by DESI-Imaging MS identified the specific localisation and distribution of various primary and secondary metabolites on surface imprints and in algal cross sections. The UPLC-MS, DESI-IMS and NMR analyses failed to confirm the presence of any surface-associated metabolite, except for mannitol, which were previously reported from F. vesiculosus. This is the first study analysing the seaweed surface microbiome in conjunction with untargeted surface metabolomics and spatial metabolomics approaches.
Collapse
Affiliation(s)
- Delphine Parrot
- GEOMAR Centre for Marine Biotechnology, Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, Kiel, 24106, Germany
| | - Martina Blümel
- GEOMAR Centre for Marine Biotechnology, Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, Kiel, 24106, Germany
| | - Caroline Utermann
- GEOMAR Centre for Marine Biotechnology, Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, Kiel, 24106, Germany
| | - Giuseppina Chianese
- GEOMAR Centre for Marine Biotechnology, Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, Kiel, 24106, Germany
| | - Stefan Krause
- Research Unit Marine Geosystems, GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstrasse 1-3, Kiel, 24148, Germany
| | - Alexander Kovalev
- Department of Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Am Botanischen Garten 9, Kiel, 24118, Germany
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Am Botanischen Garten 9, Kiel, 24118, Germany
| | - Deniz Tasdemir
- GEOMAR Centre for Marine Biotechnology, Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, Kiel, 24106, Germany.
- Kiel University, Christian-Albrechts-Platz 4, Kiel, 24118, Germany.
| |
Collapse
|
115
|
Vaysse PM, Heeren RMA, Porta T, Balluff B. Mass spectrometry imaging for clinical research - latest developments, applications, and current limitations. Analyst 2018. [PMID: 28642940 DOI: 10.1039/c7an00565b] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mass spectrometry is being used in many clinical research areas ranging from toxicology to personalized medicine. Of all the mass spectrometry techniques, mass spectrometry imaging (MSI), in particular, has continuously grown towards clinical acceptance. Significant technological and methodological improvements have contributed to enhance the performance of MSI recently, pushing the limits of throughput, spatial resolution, and sensitivity. This has stimulated the spread of MSI usage across various biomedical research areas such as oncology, neurological disorders, cardiology, and rheumatology, just to name a few. After highlighting the latest major developments and applications touching all aspects of translational research (i.e. from early pre-clinical to clinical research), we will discuss the present challenges in translational research performed with MSI: data management and analysis, molecular coverage and identification capabilities, and finally, reproducibility across multiple research centers, which is the largest remaining obstacle in moving MSI towards clinical routine.
Collapse
Affiliation(s)
- Pierre-Maxence Vaysse
- Maastricht MultiModal Molecular Imaging (M4I) institute, Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.
| | - Ron M A Heeren
- Maastricht MultiModal Molecular Imaging (M4I) institute, Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.
| | - Tiffany Porta
- Maastricht MultiModal Molecular Imaging (M4I) institute, Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.
| | - Benjamin Balluff
- Maastricht MultiModal Molecular Imaging (M4I) institute, Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.
| |
Collapse
|
116
|
Fernández R, Garate J, Martín-Saiz L, Galetich I, Fernández JA. Matrix Sublimation Device for MALDI Mass Spectrometry Imaging. Anal Chem 2018; 91:803-807. [DOI: 10.1021/acs.analchem.8b04765] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Roberto Fernández
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio
Sarriena S/N, Leioa 48940, Spain
| | - Jone Garate
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio
Sarriena S/N, Leioa 48940, Spain
| | - Lucia Martín-Saiz
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio
Sarriena S/N, Leioa 48940, Spain
| | - Igor Galetich
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio
Sarriena S/N, Leioa 48940, Spain
| | - José A. Fernández
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio
Sarriena S/N, Leioa 48940, Spain
| |
Collapse
|
117
|
Fincher JA, Dyer JE, Korte AR, Yadavilli S, Morris NJ, Vertes A. Matrix‐free mass spectrometry imaging of mouse brain tissue sections on silicon nanopost arrays. J Comp Neurol 2018; 527:2101-2121. [DOI: 10.1002/cne.24566] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Jarod A. Fincher
- George Washington University Washington District of Columbia 20052
| | | | - Andrew R. Korte
- George Washington University Washington District of Columbia 20052
| | - Sridevi Yadavilli
- Research Center for Genetic Medicine Children's National Medical Center Washington District of Columbia 20010
| | | | - Akos Vertes
- George Washington University Washington District of Columbia 20052
| |
Collapse
|
118
|
Gustafsson OJR, Winderbaum LJ, Condina MR, Boughton BA, Hamilton BR, Undheim EAB, Becker M, Hoffmann P. Balancing sufficiency and impact in reporting standards for mass spectrometry imaging experiments. Gigascience 2018; 7:5074354. [PMID: 30124809 PMCID: PMC6203951 DOI: 10.1093/gigascience/giy102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/24/2018] [Accepted: 08/07/2018] [Indexed: 02/06/2023] Open
Abstract
Reproducibility, or a lack thereof, is an increasingly important topic across many research fields. A key aspect of reproducibility is accurate reporting of both experiments and the resulting data. Herein, we propose a reporting guideline for mass spectrometry imaging (MSI). Previous standards have laid out guidelines sufficient to guarantee a certain quality of reporting; however, they set a high bar and as a consequence can be exhaustive and broad, thus limiting uptake.To help address this lack of uptake, we propose a reporting supplement-Minimum Information About a Mass Spectrometry Imaging Experiment (MIAMSIE)-and its abbreviated reporting standard version, MSIcheck. MIAMSIE is intended to improve author-driven reporting. It is intentionally not exhaustive, but is rather designed for extensibility and could therefore eventually become analogous to existing standards that aim to guarantee reporting quality. Conversely, its abbreviated form MSIcheck is intended as a diagnostic tool focused on key aspects in MSI reporting.We discuss how existing standards influenced MIAMSIE/MSIcheck and how these new approaches could positively impact reporting quality, followed by test implementation of both standards to demonstrate their use. For MIAMSIE, we report on author reviews of four articles and a dataset. For MSIcheck, we show a snapshot review of a one-month subset of the MSI literature that indicated issues with data provision and the reporting of both data analysis steps and calibration settings for MS systems. Although our contribution is MSI specific, we believe the underlying approach could be considered as a general strategy for improving scientific reporting.
Collapse
Affiliation(s)
- Ove J R Gustafsson
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology (CBNS), University of South Australia, Mawson Lakes, South Australia 5095, Australia
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Lyron J Winderbaum
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Mark R Condina
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Berin A Boughton
- Metabolomics Australia, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Brett R Hamilton
- Centre for Microscopy and Microanalysis, University of Queensland, St. Lucia, Queensland 4072, Australia
- Centre for Advanced Imaging, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Eivind A B Undheim
- Centre for Advanced Imaging, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Michael Becker
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riss 88397, Germany
| | - Peter Hoffmann
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| |
Collapse
|
119
|
Longuespée R, Kriegsmann K, Cremer M, Zgorzelski C, Casadonte R, Kazdal D, Kriegsmann J, Weichert W, Schwamborn K, Fresnais M, Schirmacher P, Kriegsmann M. In MALDI-Mass Spectrometry Imaging on Formalin-Fixed Paraffin-Embedded Tissue Specimen Section Thickness Significantly Influences m/z Peak Intensity. Proteomics Clin Appl 2018; 13:e1800074. [PMID: 30216687 DOI: 10.1002/prca.201800074] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/03/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND In matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) standardized sample preparation is important to obtain reliable results. Herein, the impact of section thickness in formalin-fixed paraffin embedded (FFPE) tissue microarrays (TMA) on spectral intensities is investigated. PATIENTS AND METHODS TMAs consisting of ten different tissues represented by duplicates of ten patients (n = 200 cores) are cut at 1, 3, and 5 μm. MSI analysis is performed and mean intensities of all evaluable cores are extracted. Measurements are merged and mean m/z intensities are compared. RESULTS Visual inspection of spectral intensities between 1, 3, and 5 μm reveals generally higher intensities in thinner tissue sections. Specifically, higher intensities are observed in the vast majority of peaks (98.6%, p < 0.01) in 1 μm compared with 5 μm sections. Note that 28.4% and 2.1% of m/z values exhibit a at least two- and threefold intensity difference (p < 0.01) in 1 μm compared to 5 μm sections, respectively. CONCLUSION A section thickness of 1 μm results in higher spectral intensities compared with 5 μm. The results highlight the importance of standardized protocols in light of recent efforts to identify clinically relevant biomarkers using MSI. The use of TMAs for comparative analysis seems advantageous, as section thickness displays less variability.
Collapse
Affiliation(s)
- Rémi Longuespée
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Katharina Kriegsmann
- Department of Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Martin Cremer
- Department of Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | | | | | - Daniel Kazdal
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Jörg Kriegsmann
- Proteopath Trier, Trier, Germany.,Institute of Molecular Pathology Trier, Trier, Germany
| | | | | | - Margaux Fresnais
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Heidelberg, Germany.,German Cancer Consortium (DKTK)German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Mark Kriegsmann
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
120
|
Yoon S, Lee TG. Biological tissue sample preparation for time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging. NANO CONVERGENCE 2018; 5:24. [PMID: 30467706 PMCID: PMC6153193 DOI: 10.1186/s40580-018-0157-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/05/2018] [Indexed: 05/03/2023]
Abstract
Time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging is an analytical technique rapidly expanding in use in biological studies. This technique is based on high spatial resolution (50-100 nm), high surface sensitivity (1-2 nm top-layer), and statistical analytic power. In mass spectrometry imaging (MSI), sample preparation is a crucial step to maintaining the natural state of the biomolecules and providing accurate spatial information. However, a number of problems associated with temperature changes in tissue samples such as loss of original distribution due to undesired molecular migration during the sample preparation or reduced ionization efficiency make it difficult to accurately perform MSI. Although frozen hydrate analysis is the ideal sample preparation method to eliminate the effects of temperature, this approach is hindered by mechanical limitations. Alternatively, an adhesive-tape-supported mounting and freeze-drying preparation has been proposed. This paper provides a concise review of the sample preparation procedures, a review of current issues, and proposes efficacious solutions for ToF-SIMS imaging in biological research.
Collapse
Affiliation(s)
- Sohee Yoon
- Center for Nano-Bio Measurement, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34113 Republic of Korea
| | - Tae Geol Lee
- Center for Nano-Bio Measurement, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34113 Republic of Korea
| |
Collapse
|
121
|
Li B, Zhang Y, Ge J, Liu K, Li P. Sample preparation for mass spectrometry imaging of leaf tissues: a case study on analyte delocalization. Anal Bioanal Chem 2018; 410:7449-7456. [PMID: 30215125 DOI: 10.1007/s00216-018-1355-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/23/2018] [Accepted: 08/30/2018] [Indexed: 02/07/2023]
Abstract
Appropriate sample preparation is pivotally important to obtain high-quality mass spectrometry imaging (MSI) data. Unlike mammalian tissues, preparation of cryosections from plant tissues for MSI measurement is quite challenging due to its intrinsic complex texture and cellular structure. This is especially true for leaf samples which are generally thin, water-rich, and fragile. In this work, a systematic study was performed, aiming to evaluate three embedding materials and five mounting approaches for matrix-assisted laser desorption ionization (MALDI) MSI of secondary metabolites in cross sections of the ginkgo leaf. Delocalization of endogenous metabolites was chosen as a major indicator for evaluation of three embedding materials including ice, carboxymethyl cellulose (CMC), and gelatin and different mounting approaches. Image distortion and analyte delocalization were observed when ice was used as an embedding medium. CMC embedding provided better results compared to the ice by using modified mounting approach. Among three embedding materials, no delocalization was observed in specimens embedded with gelatin, and gelatin embedding is the least affected by different mounting approaches. An alternative approach to mitigate analyte delocalization is the removal of embedding media embraced the tissue sections before mounting, which is particularly suitable for ice-embedded samples. Additionally, the extent of analyte delocalization was closely related to their lipophilicity/hydrophilicity properties, and less analyte diffusion was observed for hydrophobic analytes than for the water-soluble compounds.
Collapse
Affiliation(s)
- Bin Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China. .,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Ying Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Junyue Ge
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Kehui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China. .,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
122
|
Tucker LH, Conde-González A, Cobice D, Hamm GR, Goodwin RJA, Campbell CJ, Clarke DJ, Mackay CL. MALDI Matrix Application Utilizing a Modified 3D Printer for Accessible High Resolution Mass Spectrometry Imaging. Anal Chem 2018; 90:8742-8749. [DOI: 10.1021/acs.analchem.8b00670] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lulu H. Tucker
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom EH9 3FJ
| | - Antonio Conde-González
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom EH9 3FJ
| | - Diego Cobice
- School of Biomedical Sciences, University of Ulster, Coleraine, United Kingdom BT52 1SA
| | - Gregory R. Hamm
- Pathology Sciences, Drug Safety and Metabolism IMED Biotech Unit, AstraZeneca, Cambridge Science Park, Milton Road, Cambridge, United Kingdom CB4 0WG
| | - Richard J. A. Goodwin
- Pathology Sciences, Drug Safety and Metabolism IMED Biotech Unit, AstraZeneca, Cambridge Science Park, Milton Road, Cambridge, United Kingdom CB4 0WG
| | - Colin J. Campbell
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom EH9 3FJ
| | - David J. Clarke
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom EH9 3FJ
| | - C. Logan Mackay
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom EH9 3FJ
| |
Collapse
|
123
|
Ràfols P, Vilalta D, Brezmes J, Cañellas N, Del Castillo E, Yanes O, Ramírez N, Correig X. Signal preprocessing, multivariate analysis and software tools for MA(LDI)-TOF mass spectrometry imaging for biological applications. MASS SPECTROMETRY REVIEWS 2018; 37:281-306. [PMID: 27862147 DOI: 10.1002/mas.21527] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 10/11/2016] [Indexed: 06/06/2023]
Abstract
Mass spectrometry imaging (MSI) is a label-free analytical technique capable of molecularly characterizing biological samples, including tissues and cell lines. The constant development of analytical instrumentation and strategies over the previous decade makes MSI a key tool in clinical research. Nevertheless, most MSI studies are limited to targeted analysis or the mere visualization of a few molecular species (proteins, peptides, metabolites, or lipids) in a region of interest without fully exploiting the possibilities inherent in the MSI technique, such as tissue classification and segmentation or the identification of relevant biomarkers from an untargeted approach. MSI data processing is challenging due to several factors. The large volume of mass spectra involved in a MSI experiment makes choosing the correct computational strategies critical. Furthermore, pixel to pixel variation inherent in the technique makes choosing the correct preprocessing steps critical. The primary aim of this review was to provide an overview of the data-processing steps and tools that can be applied to an MSI experiment, from preprocessing the raw data to the more advanced strategies for image visualization and segmentation. This review is particularly aimed at researchers performing MSI experiments and who are interested in incorporating new data-processing features, improving their computational strategy, and/or desire access to data-processing tools currently available. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 37:281-306, 2018.
Collapse
Affiliation(s)
- Pere Ràfols
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), C/Monforte de Lemos 3-5, Madrid, 28029, Spain
- Department of Electronic Engineering, Institute of Health Research Pere Virgili, Rovira i Virgili University, IISPV, Avinguda Països Catalans 26, Tarragona, 43007, Spain
| | - Dídac Vilalta
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), C/Monforte de Lemos 3-5, Madrid, 28029, Spain
- Department of Electronic Engineering, Institute of Health Research Pere Virgili, Rovira i Virgili University, IISPV, Avinguda Països Catalans 26, Tarragona, 43007, Spain
| | - Jesús Brezmes
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), C/Monforte de Lemos 3-5, Madrid, 28029, Spain
- Department of Electronic Engineering, Institute of Health Research Pere Virgili, Rovira i Virgili University, IISPV, Avinguda Països Catalans 26, Tarragona, 43007, Spain
| | - Nicolau Cañellas
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), C/Monforte de Lemos 3-5, Madrid, 28029, Spain
- Department of Electronic Engineering, Institute of Health Research Pere Virgili, Rovira i Virgili University, IISPV, Avinguda Països Catalans 26, Tarragona, 43007, Spain
| | - Esteban Del Castillo
- Department of Electronic Engineering, Institute of Health Research Pere Virgili, Rovira i Virgili University, IISPV, Avinguda Països Catalans 26, Tarragona, 43007, Spain
| | - Oscar Yanes
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), C/Monforte de Lemos 3-5, Madrid, 28029, Spain
- Department of Electronic Engineering, Institute of Health Research Pere Virgili, Rovira i Virgili University, IISPV, Avinguda Països Catalans 26, Tarragona, 43007, Spain
| | - Noelia Ramírez
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), C/Monforte de Lemos 3-5, Madrid, 28029, Spain
- Department of Electronic Engineering, Institute of Health Research Pere Virgili, Rovira i Virgili University, IISPV, Avinguda Països Catalans 26, Tarragona, 43007, Spain
| | - Xavier Correig
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), C/Monforte de Lemos 3-5, Madrid, 28029, Spain
- Department of Electronic Engineering, Institute of Health Research Pere Virgili, Rovira i Virgili University, IISPV, Avinguda Països Catalans 26, Tarragona, 43007, Spain
| |
Collapse
|
124
|
Li W, Chen X, Wang Z, Wong YE, Wu R, Hung YLW, Chan TWD. Tissue imaging with in situ solid-phase extraction micro-funnel based spray ionization mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2018; 24:66-73. [PMID: 29232995 DOI: 10.1177/1469066717731940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Current imaging mass spectrometry techniques are faced with a major challenge related to ion suppression effect. Data regarding low-abundance components or low-polarity compounds cannot be normally obtained presumably because of the discrimination effect of easily ionized chemical components on desorption/ionization process. In this study, a new method was proposed to obtain images of chemical components in biological tissues or sections through in situ solid-phase extraction in sorbent mounted micro-funnel based spray ionization mass spectrometry. An imprint of a strawberry section was formed by gently pressing against a 2D array of micro-funnels. The sorbent mounted micro-funnels were then subjected to in situ single-pixel solid-phase extraction to alleviate the matrix-related ion suppression effect. The achievable spatial resolution is approximately 250 µm. The imaging of the spatial distribution of low-abundance or low-polarity chemicals in the strawberry imprint could be obtained by using a gradient elution strategy. Results demonstrated that the "not observed" remark does not necessarily indicate that a specific compound is non-existent when traditional imaging mass spectrometry techniques are used. The proposed method can be applied to conduct low-abundance chemical imaging through in situ single-pixel sample pretreatment.
Collapse
Affiliation(s)
- Wan Li
- 1 Department of Chemistry, The Chinese University of Hong Kong, Shatin, People's of Republic China
| | - Xiangfeng Chen
- 1 Department of Chemistry, The Chinese University of Hong Kong, Shatin, People's of Republic China
- 2 Key Laboratory for Applied Technology of Sophisticated Analytical Instruments, Shandong Academy of Sciences, Qilu University of Technology, Shandong, People's of Republic China
| | - Ze Wang
- 1 Department of Chemistry, The Chinese University of Hong Kong, Shatin, People's of Republic China
| | - Yl Elaine Wong
- 1 Department of Chemistry, The Chinese University of Hong Kong, Shatin, People's of Republic China
| | - Ri Wu
- 1 Department of Chemistry, The Chinese University of Hong Kong, Shatin, People's of Republic China
| | - Y-L Winnie Hung
- 1 Department of Chemistry, The Chinese University of Hong Kong, Shatin, People's of Republic China
| | - T-W Dominic Chan
- 1 Department of Chemistry, The Chinese University of Hong Kong, Shatin, People's of Republic China
| |
Collapse
|
125
|
Matrix-Assisted Laser Desorption/Ionisation Mass Spectrometry Imaging in the Study of Gastric Cancer: A Mini Review. Int J Mol Sci 2017; 18:ijms18122588. [PMID: 29194417 PMCID: PMC5751191 DOI: 10.3390/ijms18122588] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/25/2017] [Accepted: 11/28/2017] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer (GC) is one of the leading causes of cancer-related deaths worldwide and the disease outcome commonly depends upon the tumour stage at the time of diagnosis. However, this cancer can often be asymptomatic during the early stages and remain undetected until the later stages of tumour development, having a significant impact on patient prognosis. However, our comprehension of the mechanisms underlying the development of gastric malignancies is still lacking. For these reasons, the search for new diagnostic and prognostic markers for gastric cancer is an ongoing pursuit. Modern mass spectrometry imaging (MSI) techniques, in particular matrix-assisted laser desorption/ionisation (MALDI), have emerged as a plausible tool in clinical pathology as a whole. More specifically, MALDI-MSI is being increasingly employed in the study of gastric cancer and has already elucidated some important disease checkpoints that may help us to better understand the molecular mechanisms underpinning this aggressive cancer. Here we report the state of the art of MALDI-MSI approaches, ranging from sample preparation to statistical analysis, and provide a complete review of the key findings that have been reported in the literature thus far.
Collapse
|
126
|
Dexter A, Race AM, Steven RT, Barnes JR, Hulme H, Goodwin RJA, Styles IB, Bunch J. Two-Phase and Graph-Based Clustering Methods for Accurate and Efficient Segmentation of Large Mass Spectrometry Images. Anal Chem 2017; 89:11293-11300. [DOI: 10.1021/acs.analchem.7b01758] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Alex Dexter
- PSIBS
Doctoral Training Centre, University of Birmingham Edgbaston, Birmingham B15 2TT, United Kingdom
- National Physical
Laboratory, Teddington, Middlesex TW11 0LW, United Kingdom
| | - Alan M. Race
- National Physical
Laboratory, Teddington, Middlesex TW11 0LW, United Kingdom
| | - Rory T. Steven
- National Physical
Laboratory, Teddington, Middlesex TW11 0LW, United Kingdom
| | - Jennifer R. Barnes
- AstraZeneca, Drug Safety and Metabolism, Cambridge CB4 0WG, United Kingdom
| | - Heather Hulme
- AstraZeneca, Drug Safety and Metabolism, Cambridge CB4 0WG, United Kingdom
- University
of Glasgow, University Avenue, Glasgow, G12 8QQ, United Kingdom
| | | | - Iain B. Styles
- School
of Computer Science, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Josephine Bunch
- National Physical
Laboratory, Teddington, Middlesex TW11 0LW, United Kingdom
- School
of
Pharmacy, University of Nottingham, Nottingham, Nottinghamshire NG7 2RD, United Kingdom
| |
Collapse
|
127
|
Abstract
Secondary ion mass spectrometry (SIMS) has become an increasingly utilized tool in biologically relevant studies. Of these, high lateral resolution methodologies using the NanoSIMS 50/50L have been especially powerful within many biological fields over the past decade. Here, the authors provide a review of this technology, sample preparation and analysis considerations, examples of recent biological studies, data analyses, and current outlooks. Specifically, the authors offer an overview of SIMS and development of the NanoSIMS. The authors describe the major experimental factors that should be considered prior to NanoSIMS analysis and then provide information on best practices for data analysis and image generation, which includes an in-depth discussion of appropriate colormaps. Additionally, the authors provide an open-source method for data representation that allows simultaneous visualization of secondary electron and ion information within a single image. Finally, the authors present a perspective on the future of this technology and where they think it will have the greatest impact in near future.
Collapse
|
128
|
Kim SH, Kim J, Lee YJ, Lee TG, Yoon S. Sample Preparation of Corn Seed Tissue to Prevent Analyte Relocations for Mass Spectrometry Imaging. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1729-1732. [PMID: 28508286 DOI: 10.1007/s13361-017-1682-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/05/2017] [Accepted: 04/07/2017] [Indexed: 05/20/2023]
Abstract
Corn seed tissue sections were prepared by the tape support method using an adhesive tape, and mass spectrometry imaging (MSI) was performed. The effect of heat generated during sample preparation was investigated by time-of-flight secondary mass spectrometry (TOF-SIMS) imaging of corn seed tissue prepared by the tape support and the thaw-mounted methods. Unlike thaw-mounted sample preparation, the tape support method does not cause imaging distortion because of the absence of heat, which can cause migration of the analytes on the sample. By applying the tape-support method, the corn seed tissue was prepared without structural damage and MSI with accurate spatial information of analytes was successfully performed. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Shin Hye Kim
- Center for Nano-Bio Measurement, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34113, Republic of Korea
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jeongkwon Kim
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Young Jin Lee
- Department of Chemistry, Iowa State University of Science and Technology, Ames, IA, 50011, USA
| | - Tae Geol Lee
- Center for Nano-Bio Measurement, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34113, Republic of Korea.
| | - Sohee Yoon
- Center for Nano-Bio Measurement, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
129
|
Mourino-Alvarez L, Baldan-Martin M, Rincon R, Martin-Rojas T, Corbacho-Alonso N, Sastre-Oliva T, Barderas MG. Recent advances and clinical insights into the use of proteomics in the study of atherosclerosis. Expert Rev Proteomics 2017; 14:701-713. [PMID: 28689450 DOI: 10.1080/14789450.2017.1353912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION The application of new proteomics methods may help to identify new diagnostic/predictive molecular markers in an attempt to improve the clinical management of atherosclerosis. Areas covered: Technological advances in proteomics have enhanced its sensitivity and multiplexing capacity, as well as the possibility of studying protein interactions and tissue structure. These advances will help us better understand the molecular mechanisms at play in atherosclerosis as a biological system. Moreover, this should help identify new predictive/diagnostic biomarkers and therapeutic targets that may facilitate effective risk stratification and early diagnosis, with the ensuing rapid implementation of treatment. This review provides a comprehensive overview of the novel methods in proteomics, including state-of-the-art techniques, novel biological samples and applications for the study of atherosclerosis. Expert commentary: Collaboration between clinicians and researchers is crucial to further validate and introduce new molecular markers to manage atherosclerosis that are identified using the most up to date proteomic approaches.
Collapse
Affiliation(s)
- Laura Mourino-Alvarez
- a Department of Vascular Physiopathology , Hospital Nacional de Paraplejicos , Toledo , Spain
| | | | - Raul Rincon
- a Department of Vascular Physiopathology , Hospital Nacional de Paraplejicos , Toledo , Spain
| | - Tatiana Martin-Rojas
- a Department of Vascular Physiopathology , Hospital Nacional de Paraplejicos , Toledo , Spain
| | - Nerea Corbacho-Alonso
- a Department of Vascular Physiopathology , Hospital Nacional de Paraplejicos , Toledo , Spain
| | - Tamara Sastre-Oliva
- a Department of Vascular Physiopathology , Hospital Nacional de Paraplejicos , Toledo , Spain
| | - Maria G Barderas
- a Department of Vascular Physiopathology , Hospital Nacional de Paraplejicos , Toledo , Spain
| |
Collapse
|
130
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012. MASS SPECTROMETRY REVIEWS 2017; 36:255-422. [PMID: 26270629 DOI: 10.1002/mas.21471] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
This review is the seventh update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2012. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, and fragmentation are covered in the first part of the review and applications to various structural types constitute the remainder. The main groups of compound are oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:255-422, 2017.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
131
|
Wu Q, Chu JL, Rubakhin SS, Gillette MU, Sweedler JV. Dopamine-modified TiO 2 monolith-assisted LDI MS imaging for simultaneous localization of small metabolites and lipids in mouse brain tissue with enhanced detection selectivity and sensitivity. Chem Sci 2017; 8:3926-3938. [PMID: 28553535 PMCID: PMC5433501 DOI: 10.1039/c7sc00937b] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 03/14/2017] [Indexed: 12/03/2022] Open
Abstract
Localization of metabolites using multiplexed mass spectrometry imaging (MSI) provides important chemical information for biological research. In contrast to matrix-assisted laser desorption/ionization (MALDI), TiO2-assisted laser desorption/ionization (LDI) for MSI improves detection of low molecular mass metabolites (<500 Da) by reducing matrix background. However, the low UV absorption of TiO2 nanoparticles and their ester hydrolysis catalytic activity hinder the detection of phospholipids and many low-abundance molecules. To address these challenges, we evaluated and optimized the material morphology and composition of TiO2. Dopamine (DA) was found to be an efficient ligand for TiO2, resulting in increased UV light absorption, higher surface pH, and formation of monolithic TiO2-DA structures. The sub-micron scale and higher surface pH of the TiO2 particle sizes led to improved detection of phospholipid signals. Compared to unmodified TiO2 sub-micron particles, the DA-modified TiO2 monolith led to 10- to 30-fold increases in the signal-to-noise ratios of a number of compound peaks. The TiO2-DA monolith-assisted LDI MSI approach has higher selectivity and sensitivity for Lewis basic compounds, such as fatty acids, cholesterols, ceramides, diacylglycerols, and phosphatidylethanolamine, when analyzed in positive mode, than traditional MALDI MS. Using this new method, over 100 molecules, including amino acids, alkaloids, free fatty acids, peptides, and lipids, were localized in mouse brain sections. By comparing the presence and localization of those molecules in young and old mouse brains, the approach demonstrated good performance in the determination of aging-related neurochemical changes in the brain.
Collapse
Affiliation(s)
- Qian Wu
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 S. Mathews Ave, 63-5 , Urbana , Illinois 61801 , USA .
- Beckman Institute , University of Illinois at Urbana-Champaign , 405 N. Mathews Ave, 63-5 , Urbana , Illinois 61801 , USA
| | - James L Chu
- Department of Cell and Developmental Biology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , USA
| | - Stanislav S Rubakhin
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 S. Mathews Ave, 63-5 , Urbana , Illinois 61801 , USA .
- Beckman Institute , University of Illinois at Urbana-Champaign , 405 N. Mathews Ave, 63-5 , Urbana , Illinois 61801 , USA
| | - Martha U Gillette
- Department of Cell and Developmental Biology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , USA
- Beckman Institute , University of Illinois at Urbana-Champaign , 405 N. Mathews Ave, 63-5 , Urbana , Illinois 61801 , USA
| | - Jonathan V Sweedler
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 S. Mathews Ave, 63-5 , Urbana , Illinois 61801 , USA .
- Beckman Institute , University of Illinois at Urbana-Champaign , 405 N. Mathews Ave, 63-5 , Urbana , Illinois 61801 , USA
| |
Collapse
|
132
|
Organic matrices, ionic liquids, and organic matrices@nanoparticles assisted laser desorption/ionization mass spectrometry. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.01.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
133
|
Abstract
![]()
In the two decades since mass spectrometry imaging (MSI) was first
applied to visualize the distribution of peptides across biological
tissues and cells, the technique has become increasingly effective
and reliable. MSI excels at providing complementary information to
existing methods for molecular analysis—such as genomics, transcriptomics,
and metabolomics—and stands apart from other chemical imaging
modalities through its capability to generate information that is
simultaneously multiplexed and chemically specific. Today a diverse
family of MSI approaches are applied throughout the scientific community
to study the distribution of proteins, peptides, and small-molecule
metabolites across many biological models. The inherent strengths
of MSI make the technique valuable for studying
microbial systems. Many microbes reside in surface-attached multicellular
and multispecies communities, such as biofilms and motile colonies,
where they work together to harness surrounding nutrients, fend off
hostile organisms, and shield one another from adverse environmental
conditions. These processes, as well as many others essential for
microbial survival, are mediated through the production and utilization
of a diverse assortment of chemicals. Although bacterial cells are
generally only a few microns in diameter, the ecologies they influence
can encompass entire ecosystems, and the chemical changes that they
bring about can occur over time scales ranging from milliseconds to
decades. Because of their incredible complexity, our understanding
of and influence over microbial systems requires detailed scientific
evaluations that yield both chemical and spatial information. MSI
is well-positioned to fulfill these requirements. With small adaptations
to existing methods, the technique can be applied to study a wide
variety of chemical interactions, including those that occur inside
single-species microbial communities, between cohabitating microbes,
and between microbes and their hosts. In recognition of this
potential for scientific advancement, researchers
have adapted MSI methodologies for the specific needs of the microbiology
research community. As a result, workflows exist for imaging microbial
systems with many of the common MSI ionization methods. Despite this
progress, there is substantial room for improvements in instrumentation,
sample preparation, and data interpretation. This Account provides
a brief overview of the state of technology in microbial MSI, illuminates
selected applications that demonstrate the potential of the technique,
and highlights a series of development challenges that are needed
to move the field forward. In the coming years, as microbial MSI becomes
easier to use and more universally applicable, the technique will
evolve into a fundamental tool widely applied throughout many divisions
of science, medicine, and industry.
Collapse
Affiliation(s)
- Sage J. B. Dunham
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Joanna F. Ellis
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Bin Li
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Jonathan V. Sweedler
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
134
|
Arentz G, Mittal P, Zhang C, Ho YY, Briggs M, Winderbaum L, Hoffmann MK, Hoffmann P. Applications of Mass Spectrometry Imaging to Cancer. Adv Cancer Res 2017; 134:27-66. [PMID: 28110654 DOI: 10.1016/bs.acr.2016.11.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pathologists play an essential role in the diagnosis and prognosis of benign and cancerous tumors. Clinicians provide tissue samples, for example, from a biopsy, which are then processed and thin sections are placed onto glass slides, followed by staining of the tissue with visible dyes. Upon processing and microscopic examination, a pathology report is provided, which relies on the pathologist's interpretation of the phenotypical presentation of the tissue. Targeted analysis of single proteins provide further insight and together with clinical data these results influence clinical decision making. Recent developments in mass spectrometry facilitate the collection of molecular information about such tissue specimens. These relatively new techniques generate label-free mass spectra across tissue sections providing nonbiased, nontargeted molecular information. At each pixel with spatial coordinates (x/y) a mass spectrum is acquired. The acquired mass spectrums can be visualized as intensity maps displaying the distribution of single m/z values of interest. Based on the sample preparation, proteins, peptides, lipids, small molecules, or glycans can be analyzed. The generated intensity maps/images allow new insights into tumor tissues. The technique has the ability to detect and characterize tumor cells and their environment in a spatial context and combined with histological staining, can be used to aid pathologists and clinicians in the diagnosis and management of cancer. Moreover, such data may help classify patients to aid therapy decisions and predict outcomes. The novel complementary mass spectrometry-based methods described in this chapter will contribute to the transformation of pathology services around the world.
Collapse
Affiliation(s)
- G Arentz
- Adelaide Proteomics Centre, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia; Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, SA, Australia
| | - P Mittal
- Adelaide Proteomics Centre, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia; Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, SA, Australia
| | - C Zhang
- Adelaide Proteomics Centre, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia; Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, SA, Australia
| | - Y-Y Ho
- Adelaide Proteomics Centre, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - M Briggs
- Adelaide Proteomics Centre, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia; Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, SA, Australia; ARC Centre for Nanoscale BioPhotonics (CNBP), University of Adelaide, Adelaide, SA, Australia
| | - L Winderbaum
- Adelaide Proteomics Centre, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - M K Hoffmann
- Adelaide Proteomics Centre, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia; Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, SA, Australia
| | - P Hoffmann
- Adelaide Proteomics Centre, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia; Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
135
|
Nazari M, Muddiman DC. Polarity switching mass spectrometry imaging of healthy and cancerous hen ovarian tissue sections by infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI). Analyst 2017; 141:595-605. [PMID: 26402586 DOI: 10.1039/c5an01513h] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mass spectrometry imaging (MSI) is a rapidly evolving field for monitoring the spatial distribution and abundance of analytes in biological tissue sections. It allows for direct and simultaneous analysis of hundreds of different compounds in a label-free manner. In order to obtain a comprehensive metabolite and lipid data, a polarity switching MSI method using infrared matrix assisted laser desorption electrospray ionization (IR-MALDESI) was developed and optimized where the electrospray polarity was alternated from one voxel to the next. Healthy and cancerous ovarian hen tissue sections were analyzed using this method. Distribution and relative abundance of different metabolites and lipids within each tissue section were discerned, and differences between the two were revealed. Additionally, the utility of using mass spectrometry concepts such as spectral accuracy and sulfur counting for confident identification of analytes in an untargeted method are discussed.
Collapse
Affiliation(s)
- Milad Nazari
- W. M. Keck FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA.
| | - David C Muddiman
- W. M. Keck FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
136
|
Wisztorski M, Quanico J, Franck J, Fatou B, Salzet M, Fournier I. Droplet-Based Liquid Extraction for Spatially-Resolved Microproteomics Analysis of Tissue Sections. Methods Mol Biol 2017; 1618:49-63. [PMID: 28523499 DOI: 10.1007/978-1-4939-7051-3_6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Obtaining information on protein content while keeping their localization on tissue or organ is of importance in different domains to understand pathophysiological processes. There is increasing interest in studying the microenvironment and heterogeneity of tumors, which currently is difficult with existing proteomics techniques. The advent of new techniques, like MALDI Mass Spectrometry Imaging, made a significant progress in the last decade but is characterized by a number of inherent drawbacks. One of these is the limited identification of proteins. New alternative approaches such as spatially-resolved liquid microextraction have recently been proposed to overcome this limitation. In this chapter, we describe strategies using liquid microjunction to perform extraction of previously digested peptides or of intact proteins from tissue section in a localized manner.
Collapse
Affiliation(s)
- Maxence Wisztorski
- Univ. Lille, Inserm, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse-PRISM, Bat SN3, 1er étage, 59650, Villeneuve d'Ascq, France.
| | - Jusal Quanico
- Univ. Lille, Inserm, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse-PRISM, Bat SN3, 1er étage, 59650, Villeneuve d'Ascq, France
| | - Julien Franck
- Univ. Lille, Inserm, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse-PRISM, Bat SN3, 1er étage, 59650, Villeneuve d'Ascq, France
| | - Benoit Fatou
- Univ. Lille, Inserm, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse-PRISM, Bat SN3, 1er étage, 59650, Villeneuve d'Ascq, France
| | - Michel Salzet
- Univ. Lille, Inserm, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse-PRISM, Bat SN3, 1er étage, 59650, Villeneuve d'Ascq, France
| | - Isabelle Fournier
- Univ. Lille, Inserm, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse-PRISM, Bat SN3, 1er étage, 59650, Villeneuve d'Ascq, France
| |
Collapse
|
137
|
Quanico J, Franck J, Wisztorski M, Salzet M, Fournier I. Progress and Potential of Imaging Mass Spectrometry Applied to Biomarker Discovery. Methods Mol Biol 2017; 1598:21-43. [PMID: 28508356 DOI: 10.1007/978-1-4939-6952-4_2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Mapping provides a direct means to assess the impact of protein biomarkers and puts into context their relevance in the type of cancer being examined. To this end, mass spectrometry imaging (MSI) was developed to provide the needed spatial information which is missing in traditional liquid-based mass spectrometric proteomics approaches. Aptly described as a "molecular histology" technique, MSI gives an additional dimension in characterizing tumor biopsies, allowing for mapping of hundreds of molecules in a single analysis. A decade of developments focused on improving and standardizing MSI so that the technique can be translated into the clinical setting. This review describes the progress made in addressing the technological development that allows to bridge local protein detection by MSI to its identification and to illustrate its potential in studying various aspects of cancer biomarker discovery.
Collapse
Affiliation(s)
- Jusal Quanico
- Université de Lille 1, INSERM, U1192-Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), 59000, Lille, France
| | - Julien Franck
- Université de Lille 1, INSERM, U1192-Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), 59000, Lille, France
| | - Maxence Wisztorski
- Université de Lille 1, INSERM, U1192-Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), 59000, Lille, France
| | - Michel Salzet
- Université de Lille 1, INSERM, U1192-Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), 59000, Lille, France
| | - Isabelle Fournier
- Université de Lille 1, INSERM, U1192-Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), 59000, Lille, France.
| |
Collapse
|
138
|
Abstract
Over the last decade mass spectrometry imaging (MSI) has been integrated in to many areas of drug discovery and development. It can have significant impact in oncology drug discovery as it allows efficacy and safety of compounds to be assessed against the backdrop of the complex tumour microenvironment. We will discuss the roles of MSI in investigating compound and metabolite biodistribution and defining pharmacokinetic -pharmacodynamic relationships, analysis that is applicable to all drug discovery projects. We will then look more specifically at how MSI can be used to understand tumour metabolism and other applications specific to oncology research. This will all be described alongside the challenges of applying MSI to industry research with increased use of metrology for MSI.
Collapse
|
139
|
Abstract
Ambient ionization mass spectrometry was developed as a sample preparation-free alternative to traditional MS-based workflows. Desorption electrospray ionization (DESI)-MS methods were demonstrated to allow the direct analysis of a broad range of samples including unaltered biological tissue specimens. In contrast to this advantageous feature, nowadays DESI-MS is almost exclusively used for sample preparation intensive mass spectrometric imaging (MSI) in the area of cancer research. As an alternative to MALDI, DESI-MSI offers matrix deposition-free experiment with improved signal in the lower (<500m/z) range. DESI-MSI enables the spatial mapping of tumor metabolism and has been broadly demonstrated to offer an alternative to frozen section histology for intraoperative tissue identification and surgical margin assessment. Rapid evaporative ionization mass spectrometry (REIMS) was developed exclusively for the latter purpose by the direct combination of electrosurgical devices and mass spectrometry. In case of the REIMS technology, aerosol particles produced by electrosurgical dissection are subjected to MS analysis, providing spectral information on the structural lipid composition of tissues. REIMS technology was demonstrated to give real-time information on the histological nature of tissues being dissected, deeming it an ideal tool for intraoperative tissue identification including surgical margin control. More recently, the method has also been used for the rapid lipidomic phenotyping of cancer cell lines as it was demonstrated in case of the NCI-60 cell line collection.
Collapse
Affiliation(s)
- Z Takats
- Imperial College London, London, United Kingdom.
| | - N Strittmatter
- Drug Safety and Metabolism, AstraZeneca, Cambridge, United Kingdom
| | | |
Collapse
|
140
|
Electrospray deposition device used to precisely control the matrix crystal to improve the performance of MALDI MSI. Sci Rep 2016; 6:37903. [PMID: 27885266 PMCID: PMC5122855 DOI: 10.1038/srep37903] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 11/02/2016] [Indexed: 01/15/2023] Open
Abstract
MALDI MSI has been recently applied as an innovative tool for detection of molecular distribution within a specific tissue. MALDI MSI requires deposition of an organic compound, known as matrix, on the tissue of interest to assist analyte desorption and ionization, in which the matrix crystal homogeneity and size greatly influence the imaging reproducibility and spatial resolution in MALDI MSI. In this work, a homemade electrospray deposition device was developed for deposition of matrix in MALDI MSI. The device could be used to achieve 1 μm homogeneous matrix crystals in MALDI MSI analysis. Moreover, it was found, for the first time, that the electrospray deposition device could be used to precisely control the matrix crystal size, and the imaging spatial resolution was increased greatly as the matrix crystals size becoming smaller. In addition, the easily-built electrospray deposition device was durable for acid, base or organic solvent, and even could be used for deposition of nanoparticles matrix, which made it unparalleled for MALDI MSI analysis. The feasibility of the electrospray deposition device was investigated by combination with MALDI FTICR MSI to analyze the distributions of lipids in mouse brain and liver cancer tissue section.
Collapse
|
141
|
Dexter A, Race AM, Styles IB, Bunch J. Testing for Multivariate Normality in Mass Spectrometry Imaging Data: A Robust Statistical Approach for Clustering Evaluation and the Generation of Synthetic Mass Spectrometry Imaging Data Sets. Anal Chem 2016; 88:10893-10899. [DOI: 10.1021/acs.analchem.6b02139] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alex Dexter
- National Physical Laboratory, Teddington, Middlesex TW11 0LW, United Kingdom
| | - Alan M. Race
- National Physical Laboratory, Teddington, Middlesex TW11 0LW, United Kingdom
| | | | - Josephine Bunch
- National Physical Laboratory, Teddington, Middlesex TW11 0LW, United Kingdom
- School
of Pharmacy, University of Nottingham, Nottingham, Nottinghamshire NG7 2RD, United Kingdom
| |
Collapse
|
142
|
A Proof of Concept to Bridge the Gap between Mass Spectrometry Imaging, Protein Identification and Relative Quantitation: MSI~LC-MS/MS-LF. Proteomes 2016; 4:proteomes4040032. [PMID: 28248242 PMCID: PMC5260965 DOI: 10.3390/proteomes4040032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/04/2016] [Accepted: 10/17/2016] [Indexed: 01/08/2023] Open
Abstract
Mass spectrometry imaging (MSI) is a powerful tool to visualize the spatial distribution of molecules on a tissue section. The main limitation of MALDI-MSI of proteins is the lack of direct identification. Therefore, this study focuses on a MSI~LC-MS/MS-LF workflow to link the results from MALDI-MSI with potential peak identification and label-free quantitation, using only one tissue section. At first, we studied the impact of matrix deposition and laser ablation on protein extraction from the tissue section. Then, we did a back-correlation of the m/z of the proteins detected by MALDI-MSI to those identified by label-free quantitation. This allowed us to compare the label-free quantitation of proteins obtained in LC-MS/MS with the peak intensities observed in MALDI-MSI. We managed to link identification to nine peaks observed by MALDI-MSI. The results showed that the MSI~LC-MS/MS-LF workflow (i) allowed us to study a representative muscle proteome compared to a classical bottom-up workflow; and (ii) was sparsely impacted by matrix deposition and laser ablation. This workflow, performed as a proof-of-concept, suggests that a single tissue section can be used to perform MALDI-MSI and protein extraction, identification, and relative quantitation.
Collapse
|
143
|
Jorge TF, Rodrigues JA, Caldana C, Schmidt R, van Dongen JT, Thomas-Oates J, António C. Mass spectrometry-based plant metabolomics: Metabolite responses to abiotic stress. MASS SPECTROMETRY REVIEWS 2016; 35:620-49. [PMID: 25589422 DOI: 10.1002/mas.21449] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/02/2014] [Accepted: 10/14/2014] [Indexed: 05/08/2023]
Abstract
Metabolomics is one omics approach that can be used to acquire comprehensive information on the composition of a metabolite pool to provide a functional screen of the cellular state. Studies of the plant metabolome include analysis of a wide range of chemical species with diverse physical properties, from ionic inorganic compounds to biochemically derived hydrophilic carbohydrates, organic and amino acids, and a range of hydrophobic lipid-related compounds. This complexitiy brings huge challenges to the analytical technologies employed in current plant metabolomics programs, and powerful analytical tools are required for the separation and characterization of this extremely high compound diversity present in biological sample matrices. The use of mass spectrometry (MS)-based analytical platforms to profile stress-responsive metabolites that allow some plants to adapt to adverse environmental conditions is fundamental in current plant biotechnology research programs for the understanding and development of stress-tolerant plants. In this review, we describe recent applications of metabolomics and emphasize its increasing application to study plant responses to environmental (stress-) factors, including drought, salt, low oxygen caused by waterlogging or flooding of the soil, temperature, light and oxidative stress (or a combination of them). Advances in understanding the global changes occurring in plant metabolism under specific abiotic stress conditions are fundamental to enhance plant fitness and increase stress tolerance. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 35:620-649, 2016.
Collapse
Affiliation(s)
- Tiago F Jorge
- Plant Metabolomics Laboratory, Instituto de Tecnologia Química e Biológica António Xavier-Universidade Nova de Lisboa (ITQB-UNL), Avenida República, 2780-157, Oeiras, Portugal
| | - João A Rodrigues
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - Camila Caldana
- Max-Planck-partner group at the Brazilian Bioethanol Science and Technology Laboratory/CNPEM, 13083-970, Campinas-SP, Brazil
| | - Romy Schmidt
- Institute of Biology I, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Joost T van Dongen
- Institute of Biology I, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Jane Thomas-Oates
- Jane Thomas-Oates, Centre of Excellence in Mass Spectrometry, and Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Carla António
- Plant Metabolomics Laboratory, Instituto de Tecnologia Química e Biológica António Xavier-Universidade Nova de Lisboa (ITQB-UNL), Avenida República, 2780-157, Oeiras, Portugal
| |
Collapse
|
144
|
Bokhart MT, Muddiman DC. Infrared matrix-assisted laser desorption electrospray ionization mass spectrometry imaging analysis of biospecimens. Analyst 2016; 141:5236-45. [PMID: 27484166 DOI: 10.1039/c6an01189f] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) mass spectrometry imaging (MSI) is a technique well suited for analysis of biological specimens. This tutorial review focuses on recent advancements and applications of IR-MALDESI MSI to better understand key biological questions. Through optimization of user-defined source parameters, comprehensive and quantitative MSI data can be obtained for a variety of analytes. The effect of an ice matrix layer is well defined in the context of desorption dynamics and resulting ion abundance. Optimized parameters and careful control of conditions affords quantitative MSI data which provides valuable information for targeted, label-free drug distribution studies and untargeted metabolomic datasets. Challenges and limitations of MSI using IR-MALDESI are addressed in the context of the bioimaging field.
Collapse
Affiliation(s)
- M T Bokhart
- W.M. Keck FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, USA.
| | | |
Collapse
|
145
|
Ly A, Buck A, Balluff B, Sun N, Gorzolka K, Feuchtinger A, Janssen KP, Kuppen PJK, van de Velde CJH, Weirich G, Erlmeier F, Langer R, Aubele M, Zitzelsberger H, McDonnell L, Aichler M, Walch A. High-mass-resolution MALDI mass spectrometry imaging of metabolites from formalin-fixed paraffin-embedded tissue. Nat Protoc 2016; 11:1428-43. [PMID: 27414759 DOI: 10.1038/nprot.2016.081] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Formalin-fixed and paraffin-embedded (FFPE) tissue specimens are the gold standard for histological examination, and they provide valuable molecular information in tissue-based research. Metabolite assessment from archived tissue samples has not been extensively conducted because of a lack of appropriate protocols and concerns about changes in metabolite content or chemical state due to tissue processing. We present a protocol for the in situ analysis of metabolite content from FFPE samples using a high-mass-resolution matrix-assisted laser desorption/ionization fourier-transform ion cyclotron resonance mass spectrometry imaging (MALDI-FT-ICR-MSI) platform. The method involves FFPE tissue sections that undergo deparaffinization and matrix coating by 9-aminoacridine before MALDI-MSI. Using this platform, we previously detected ∼1,500 m/z species in the mass range m/z 50-1,000 in FFPE samples; the overlap compared with fresh frozen samples is 72% of m/z species, indicating that metabolites are largely conserved in FFPE tissue samples. This protocol can be reproducibly performed on FFPE tissues, including small samples such as tissue microarrays and biopsies. The procedure can be completed in a day, depending on the size of the sample measured and raster size used. Advantages of this approach include easy sample handling, reproducibility, high throughput and the ability to demonstrate molecular spatial distributions in situ. The data acquired with this protocol can be used in research and clinical practice.
Collapse
Affiliation(s)
- Alice Ly
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Achim Buck
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Benjamin Balluff
- Maastricht MultiModal Molecular Imaging Institute (M4I), Maastricht University, Maastricht, the Netherlands
| | - Na Sun
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Karin Gorzolka
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Klaus-Peter Janssen
- Department of Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Gregor Weirich
- Institute of Pathology, Technische Universität München, Munich, Germany
| | | | - Rupert Langer
- Institute of Pathology, Technische Universität München, Munich, Germany
| | - Michaela Aubele
- Institute of Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Horst Zitzelsberger
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Liam McDonnell
- Centre for Proteomics and Metabolomics, Leiden University Medical Centre, Leiden, the Netherlands.,Fondazione Pisana per la Scienza ONLUS, Pisa, Italy
| | - Michaela Aichler
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
146
|
Trim PJ, Snel MF. Small molecule MALDI MS imaging: Current technologies and future challenges. Methods 2016; 104:127-41. [DOI: 10.1016/j.ymeth.2016.01.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 01/19/2016] [Accepted: 01/21/2016] [Indexed: 11/25/2022] Open
|
147
|
Galli M, Zoppis I, Smith A, Magni F, Mauri G. Machine learning approaches in MALDI-MSI: clinical applications. Expert Rev Proteomics 2016; 13:685-96. [PMID: 27322705 DOI: 10.1080/14789450.2016.1200470] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Despite the unquestionable advantages of Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging in visualizing the spatial distribution and the relative abundance of biomolecules directly on-tissue, the yielded data is complex and high dimensional. Therefore, analysis and interpretation of this huge amount of information is mathematically, statistically and computationally challenging. AREAS COVERED This article reviews some of the challenges in data elaboration with particular emphasis on machine learning techniques employed in clinical applications, and can be useful in general as an entry point for those who want to study the computational aspects. Several characteristics of data processing are described, enlightening advantages and disadvantages. Different approaches for data elaboration focused on clinical applications are also provided. Practical tutorial based upon Orange Canvas and Weka software is included, helping familiarization with the data processing. Expert commentary: Recently, MALDI-MSI has gained considerable attention and has been employed for research and diagnostic purposes, with successful results. Data dimensionality constitutes an important issue and statistical methods for information-preserving data reduction represent one of the most challenging aspects. The most common data reduction methods are characterized by collecting independent observations into a single table. However, the incorporation of relational information can improve the discriminatory capability of the data.
Collapse
Affiliation(s)
- Manuel Galli
- a Department of Medicine and Surgery , University of Milano Bicocca , Monza Brianza , Italy
| | - Italo Zoppis
- b Department of Informatics, Systems and Communication , University of Milano Bicocca , Milano , Italy
| | - Andrew Smith
- a Department of Medicine and Surgery , University of Milano Bicocca , Monza Brianza , Italy
| | - Fulvio Magni
- a Department of Medicine and Surgery , University of Milano Bicocca , Monza Brianza , Italy
| | - Giancarlo Mauri
- b Department of Informatics, Systems and Communication , University of Milano Bicocca , Milano , Italy
| |
Collapse
|
148
|
Wu Q, Comi TJ, Li B, Rubakhin SS, Sweedler JV. On-Tissue Derivatization via Electrospray Deposition for Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging of Endogenous Fatty Acids in Rat Brain Tissues. Anal Chem 2016; 88:5988-95. [PMID: 27181709 PMCID: PMC4899806 DOI: 10.1021/acs.analchem.6b01021] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
![]()
Matrix-assisted
laser desorption/ionization (MALDI) mass spectrometry
imaging (MSI) is used for the multiplex detection and characterization
of diverse analytes over a wide mass range directly from tissues.
However, analyte coverage with MALDI MSI is typically limited to the
more abundant compounds, which have m/z values that are distinct from MALDI matrix-related ions. On-tissue
analyte derivatization addresses these issues by selectively tagging
functional groups specific to a class of analytes, while simultaneously
changing their molecular masses and improving their desorption and
ionization efficiency. We evaluated electrospray deposition of liquid-phase
derivatization agents as a means of on-tissue analyte derivatization
using 2-picolylamine; we were able to detect a range of endogenous
fatty acids with MALDI MSI. When compared with airbrush application,
electrospray led to a 3-fold improvement in detection limits and decreased
analyte delocalization. Six fatty acids were detected and visualized
from rat cerebrum tissue using a MALDI MSI instrument operating in
positive mode. MALDI MSI of the hippocampal area allowed targeted
fatty acid analysis of the dentate gyrus granule cell layer and the
CA1 pyramidal layer with a 20-μm pixel width, without degrading
the localization of other lipids during liquid-phase analyte derivatization.
Collapse
Affiliation(s)
- Qian Wu
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Troy J Comi
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Bin Li
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Stanislav S Rubakhin
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Jonathan V Sweedler
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| |
Collapse
|
149
|
Wang S, Bai H, Cai Z, Gao D, Jiang Y, Liu J, Liu H. MALDI imaging for the localization of saponins in root tissues and rapid differentiation of three Panax
herbs. Electrophoresis 2016; 37:1956-66. [DOI: 10.1002/elps.201600027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/05/2016] [Accepted: 03/08/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Shujuan Wang
- State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, Graduate School at Shenzhen; Tsinghua University; Shenzhen P. R. China
- Key Laboratory of Metabolomics at Shenzhen; Graduate School at Shenzhen, Tsinghua University; Shenzhen P. R. China
| | - Hangrui Bai
- State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, Graduate School at Shenzhen; Tsinghua University; Shenzhen P. R. China
- Key Laboratory of Metabolomics at Shenzhen; Graduate School at Shenzhen, Tsinghua University; Shenzhen P. R. China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry; Hong Kong Baptist University; Kowloon Tong, Hong Kong SAR P. R. China
| | - Dan Gao
- State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, Graduate School at Shenzhen; Tsinghua University; Shenzhen P. R. China
- Key Laboratory of Metabolomics at Shenzhen; Graduate School at Shenzhen, Tsinghua University; Shenzhen P. R. China
| | - Yuyang Jiang
- State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, Graduate School at Shenzhen; Tsinghua University; Shenzhen P. R. China
- School of Medicine; Tsinghua University; Beijing P. R. China
| | - Jianjun Liu
- Key Laboratory of Modern Toxicology of Shenzhen; Shenzhen Center for Disease Control and Prevention; Shenzhen P. R. China
| | - Hongxia Liu
- State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, Graduate School at Shenzhen; Tsinghua University; Shenzhen P. R. China
- Key Laboratory of Metabolomics at Shenzhen; Graduate School at Shenzhen, Tsinghua University; Shenzhen P. R. China
| |
Collapse
|
150
|
Aretz I, Meierhofer D. Advantages and Pitfalls of Mass Spectrometry Based Metabolome Profiling in Systems Biology. Int J Mol Sci 2016; 17:ijms17050632. [PMID: 27128910 PMCID: PMC4881458 DOI: 10.3390/ijms17050632] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/19/2016] [Accepted: 04/21/2016] [Indexed: 12/22/2022] Open
Abstract
Mass spectrometry-based metabolome profiling became the method of choice in systems biology approaches and aims to enhance biological understanding of complex biological systems. Genomics, transcriptomics, and proteomics are well established technologies and are commonly used by many scientists. In comparison, metabolomics is an emerging field and has not reached such high-throughput, routine and coverage than other omics technologies. Nevertheless, substantial improvements were achieved during the last years. Integrated data derived from multi-omics approaches will provide a deeper understanding of entire biological systems. Metabolome profiling is mainly hampered by its diversity, variation of metabolite concentration by several orders of magnitude and biological data interpretation. Thus, multiple approaches are required to cover most of the metabolites. No software tool is capable of comprehensively translating all the data into a biologically meaningful context yet. In this review, we discuss the advantages of metabolome profiling and main obstacles limiting progress in systems biology.
Collapse
Affiliation(s)
- Ina Aretz
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany.
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany.
| |
Collapse
|