101
|
Ionic and covalent crosslinking in chitosan-succinic acid membranes: Effect on physicochemical properties. Carbohydr Polym 2021; 251:117106. [DOI: 10.1016/j.carbpol.2020.117106] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/29/2020] [Accepted: 09/13/2020] [Indexed: 12/12/2022]
|
102
|
Sustainable Fabrication of Organic Solvent Nanofiltration Membranes. MEMBRANES 2020; 11:membranes11010019. [PMID: 33379224 PMCID: PMC7824500 DOI: 10.3390/membranes11010019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/01/2020] [Accepted: 11/06/2020] [Indexed: 12/14/2022]
Abstract
Organic solvent nanofiltration (OSN) has been considered as one of the key technologies to improve the sustainability of separation processes. Recently, apart from enhancing the membrane performance, greener fabricate on of OSN membranes has been set as a strategic objective. Considerable efforts have been made aiming to improve the sustainability in membrane fabrication, such as replacing membrane materials with biodegradable alternatives, substituting toxic solvents with greener solvents, and minimizing waste generation with material recycling. In addition, new promising fabrication and post-modification methods of solvent-stable membranes have been developed exploiting the concept of interpenetrating polymer networks, spray coating, and facile interfacial polymerization. This review compiles the recent progress and advances for sustainable fabrication in the field of polymeric OSN membranes.
Collapse
|
103
|
Castro-Muñoz R. Breakthroughs on tailoring pervaporation membranes for water desalination: A review. WATER RESEARCH 2020; 187:116428. [PMID: 33011568 DOI: 10.1016/j.watres.2020.116428] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/17/2020] [Accepted: 09/14/2020] [Indexed: 05/24/2023]
Abstract
Due to the increase in worldwide population and urbanization, water scarcity is today one of the tough challenges of society. To date, several ongoing initiatives and strategies are aiming to find feasible alternatives to produce drinking water. Seawater desalination is addressed as a latent alternative to solve such an issue. When dealing with desalination, membrane-based technologies (such as reverse osmosis, membrane distillation, pervaporation, among others) have been successfully proposed. Pervaporation (PV) is likely the membrane operation with the less permeation rate but providing high rejection of salts. Thereby, "membranologists" are extensively working in developing new suitable membranes for pervaporation desalination. Therefore, the goal of this review paper is to elucidate and provide a comprehensive outlook of the most recent works (over the last 5-years) at developing new concepts of membranes (e.g. ultra-thin, mixed matrix/composite and inorganic) for desalination, as well as the relevant strategies in fabricating enhanced PV membranes. At this point, an important emphasis has been paid to the relevant insights in the field. This paper also addresses some principles of PV and the main drawbacks of the technique and its membranes. Through reviewing the literature, the future trends, needs, and recommendations for the new researchers are given.
Collapse
Affiliation(s)
- Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, Avenida Eduardo Monroy Cárdenas 2000 San Antonio Buenavista, 50110Toluca de Lerdo, Mexico.
| |
Collapse
|
104
|
Zhang Y, Tan L, Yao A, Tan P, Guo R, Zhou M, Zhu P, Huang S, Wu Y. Improvement of filtration performance of polyvinyl chloride/cellulose acetate blend membrane via acid hydrolysis. J Appl Polym Sci 2020. [DOI: 10.1002/app.50312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yong Zhang
- College of Biomass Science and Engineering Sichuan University Chengdu China
- Sichuan Push Acetati Co.,Ltd. Yibin China
- Yibin Yuntong Plastic Additive Co., Ltd. Yibin China
| | - Lin Tan
- College of Biomass Science and Engineering Sichuan University Chengdu China
| | - Anrong Yao
- College of Biomass Science and Engineering Sichuan University Chengdu China
| | - Pengfei Tan
- College of Biomass Science and Engineering Sichuan University Chengdu China
| | - Ronghui Guo
- College of Biomass Science and Engineering Sichuan University Chengdu China
| | - Mi Zhou
- College of Biomass Science and Engineering Sichuan University Chengdu China
| | - Puxin Zhu
- College of Biomass Science and Engineering Sichuan University Chengdu China
| | | | - Yunheng Wu
- Yibin Yuntong Plastic Additive Co., Ltd. Yibin China
| |
Collapse
|
105
|
Castro-Muñoz R, Galiano F, Figoli A. Recent advances in pervaporation hollow fiber membranes for dehydration of organics. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.09.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
106
|
Tomietto P, Loulergue P, Paugam L, Audic JL. Biobased polyhydroxyalkanoate (PHA) membranes: Structure/performances relationship. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117419] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
107
|
Xu M, Li T, Zhang S, Li W, He J, Yin C. Preparation and characterization of cellulose carbamate membrane with high strength and transparency. J Appl Polym Sci 2020. [DOI: 10.1002/app.50068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mengmeng Xu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering Tiangong University Tianjin China
| | - Tao Li
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering Tiangong University Tianjin China
| | - Shaojie Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering Tiangong University Tianjin China
| | - Wenlong Li
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering Tiangong University Tianjin China
| | - Jianlong He
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering Tiangong University Tianjin China
| | - Cuiyu Yin
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering Tiangong University Tianjin China
| |
Collapse
|
108
|
Khademian E, Salehi E, Sanaeepur H, Galiano F, Figoli A. A systematic review on carbohydrate biopolymers for adsorptive remediation of copper ions from aqueous environments-part A: Classification and modification strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:139829. [PMID: 32526420 DOI: 10.1016/j.scitotenv.2020.139829] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Copper is one of the most toxic heavy metals which must be eliminated from aqueous environments, according to the environmental standards. Carbohydrate biopolymers are promising candidates for synthesizing copper-adsorbent composites. It is due to unique properties such as having potential adsorptive functional sites, availability, biocompatibility and biodegradability, formability, blending capacity, and reusability. Different types of copper-adsorbent carbohydrate biopolymers like chitosan and cellulose with particular focus on the synthesizing and modification approaches have been tackled in this review. Composites, functionality and morphological aspects of the biopolymer adsorbents have also been surveyed. Further progress in the fabrication and application of biopolymer adsorbents would be achievable with special attention to some critical challenges such as the process economy, copolymer and/or (nano) additive selection, and the physicochemical stability of the biopolymer composites in aqueous media.
Collapse
Affiliation(s)
- Einallah Khademian
- Faculty of Petrochemical Engineering, Amirkabir University of Technology, Mahshahr 6351-7-13178, Iran
| | - Ehsan Salehi
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak 38156-8-8349, Iran.
| | - Hamidreza Sanaeepur
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak 38156-8-8349, Iran
| | - Francesco Galiano
- Institute on Membrane Technology (CNR-ITM), Via P. Bucci 17/c, 87036 Rende, CS, Italy
| | - Alberto Figoli
- Institute on Membrane Technology (CNR-ITM), Via P. Bucci 17/c, 87036 Rende, CS, Italy
| |
Collapse
|
109
|
Pawlaczyk-Graja I, Balicki S, Ziewiecki R, Capek P, Matulová M, Wilk KA. New isolation process for bioactive food fiber from wild strawberry leaf. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
110
|
Cui Z, Pan J, Wang Z, Frappa M, Drioli E, Macedonio F. Hyflon/PVDF membranes prepared by NIPS and TIPS: Comparison in MD performance. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116992] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
111
|
Tomietto P, Carré M, Loulergue P, Paugam L, Audic JL. Polyhydroxyalkanoate (PHA) based microfiltration membranes: Tailoring the structure by the non-solvent induced phase separation (NIPS) process. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122813] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
112
|
Kim D, Kim IC, Kwon YN, Myung S. Novel bio-based polymer membranes fabricated from isosorbide-incorporated poly(arylene ether)s for water treatment. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109931] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
113
|
Alias SS, Harun Z, Manoh N, Jamalludin MR. Effects of temperature on rice husk silica ash additive for fouling mitigation by polysulfone–RHS ash mixed-matrix composite membranes. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-019-02950-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
114
|
|
115
|
Ramírez-Jiménez AK, Castro-Muñoz R. Emerging techniques assisting nixtamalization products and by-products processing: an overview. Crit Rev Food Sci Nutr 2020; 61:3407-3420. [PMID: 32715732 DOI: 10.1080/10408398.2020.1798352] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The production of worldwide nixtamalized products has increased in Latin American countries over the last years. For a better maize handling and exploitation of its nutritional elements, maize is subjected to a nixtamalization pretreatment protocol, which produces meaningful chemical, nutritional and quality changes in maize and its derived products, but large amounts of its primary by-product, well-known as 'nejayote', are also produced. Importantly, nejayote is usually discarded into the urbanized sewage with minimal treatment. Today, according to the recent research reports, new emerging techniques and protocols have been implemented to improve the nixtamalization products and by-products processing. New valorization approaches and biotechnological developments (including biotransformations) toward the reuse of nejayote have been developed according to its considerable content of biomolecules. Therefore, the goal of this paper is to provide a comprehensive review of the main development works at assisting nixtamalization products and by-products processing. Herein, particular attention is paid to experimental insights dealing with the valorization of nejayote.
Collapse
Affiliation(s)
- Aurea K Ramírez-Jiménez
- Tecnologico de Monterrey, Campus Toluca, Avenida Eduardo Monroy Cárdenas, Toluca de Lerdo, Mexico
| | - Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, Avenida Eduardo Monroy Cárdenas, Toluca de Lerdo, Mexico
| |
Collapse
|
116
|
Hassan ML, Fadel SM, Abouzeid RE, Abou Elseoud WS, Hassan EA, Berglund L, Oksman K. Water purification ultrafiltration membranes using nanofibers from unbleached and bleached rice straw. Sci Rep 2020; 10:11278. [PMID: 32647119 PMCID: PMC7347555 DOI: 10.1038/s41598-020-67909-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/28/2020] [Indexed: 11/17/2022] Open
Abstract
There has been an increasing interest in recent years in isolating cellulose nanofibers from unbleached cellulose pulps for economic, environmental, and functional reasons. In the current work, cellulose nanofibers isolated from high-lignin unbleached neutral sulfite pulp were compared to those isolated from bleached rice straw pulp in making thin-film ultrafiltration membranes by vacuum filtration on hardened filter paper. The prepared membranes were characterized in terms of their microscopic structure, hydrophilicity, pure water flux, protein fouling, and ability to remove lime nanoparticles and purify papermaking wastewater effluent. Using cellulose nanofibers isolated from unbleached pulp facilitated the formation of a thin-film membrane (with a shorter filtration time for thin-film formation) and resulted in higher water flux than that obtained using nanofibers isolated from bleached fibers, without sacrificing its ability to remove the different pollutants.
Collapse
Affiliation(s)
- Mohammad L Hassan
- Cellulose and Paper Department and Centre of Excellence for Advanced Sciences, National Research Centre, 33 El-Buhouth street, Dokki, 12622, Giza, Egypt.
| | - Shaimaa M Fadel
- Cellulose and Paper Department and Centre of Excellence for Advanced Sciences, National Research Centre, 33 El-Buhouth street, Dokki, 12622, Giza, Egypt
| | - Ragab E Abouzeid
- Cellulose and Paper Department and Centre of Excellence for Advanced Sciences, National Research Centre, 33 El-Buhouth street, Dokki, 12622, Giza, Egypt
| | - Wafaa S Abou Elseoud
- Cellulose and Paper Department and Centre of Excellence for Advanced Sciences, National Research Centre, 33 El-Buhouth street, Dokki, 12622, Giza, Egypt
| | - Enas A Hassan
- Cellulose and Paper Department and Centre of Excellence for Advanced Sciences, National Research Centre, 33 El-Buhouth street, Dokki, 12622, Giza, Egypt
| | - Linn Berglund
- Department of Engineering Sciences and Mathematics, Luleå University of Technology, 97187, Luleå, SE, Sweden
| | - Kristiina Oksman
- Department of Engineering Sciences and Mathematics, Luleå University of Technology, 97187, Luleå, SE, Sweden. .,Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON, M5S 3G8, Canada.
| |
Collapse
|
117
|
A Short Review on the Valorization of Green Seaweeds and Ulvan: FEEDSTOCK for Chemicals and Biomaterials. Biomolecules 2020; 10:biom10070991. [PMID: 32630631 PMCID: PMC7407860 DOI: 10.3390/biom10070991] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 11/25/2022] Open
Abstract
This short review analyzed the recent trend towards, progresses towards the preparation of chemicals of, and value-added biomaterials from marine macroalgae resources, especially green seaweeds and their derived ulvan polysaccharides for various applications. In recent years, ulvan both in pristine and modified forms has gained a large amount of attention for its effective utilization in various areas due to its unique physiochemical properties, lack of exploration, and higher green seaweed production. The pristine form of ulvan (sulfated polysaccharides) is used as a bio-component; food ingredient; or a raw material for the production of numerous chemicals such as fuels, cosmetics, and pharmaceuticals, whereas its modified form is used in the sector of composites, membranes, and scaffolds, among others, because of its physicochemical properties. This review highlights the utilization of green seaweed and its derived ulvan polysaccharides for the preparation of numerous chemicals (e.g., solvents, fuel, and gas) and also value-added biomaterials with various morphologies (e.g., gels, fibers, films, scaffolds, nanomaterials, and composites).
Collapse
|
118
|
Boughriba S, Souissi N, Jridi M, Li S, Nasri M. Thermal, mechanical and microstructural characterization and antioxidant potential of Rhinobatos cemiculus gelatin films supplemented by titanium dioxide doped silver nanoparticles. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105695] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
119
|
Castro-Muñoz R. The Role of New Inorganic Materials in Composite Membranes for Water Disinfection. MEMBRANES 2020; 10:E101. [PMID: 32422940 PMCID: PMC7281186 DOI: 10.3390/membranes10050101] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 01/22/2023]
Abstract
Today, there is an increasing interest in improving the physicochemical properties of polymeric membranes by merging the membranes with different inorganic materials. These so-called composite membranes have been implemented in different membrane-based technologies (e.g., microfiltration, ultrafiltration, nanofiltration, membrane bioreactors, among others) for water treatment and disinfection. This is because such inorganic materials (such as TiO2-, ZnO-, Ag-, and Cu-based nanoparticles, carbon-based materials, to mention just a few) can improve the separation performance of membranes and also some other properties, such as antifouling, mechanical, thermal, and physical and chemical stability. Moreover, such materials display specific biological activity towards viruses, bacteria, and protozoa, showing enhanced water disinfection properties. Therefore, the aim of this review is to collect the latest advances (in the last five years) in using composite membranes and new hybrid materials for water disinfection, paying particular emphasis on relevant results and new hydride composites together with their preparation protocols. Moreover, this review addresses the main mechanism of action of different conventional and novel inorganic materials toward biologically active matter.
Collapse
Affiliation(s)
- Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca. Avenida Eduardo Monroy Cárdenas 2000 San Antonio Buenavista, 50110 Toluca de Lerdo, Mexico
| |
Collapse
|
120
|
Hamdi M, Nasri R, Azaza YB, Li S, Nasri M. Conception of novel blue crab chitosan films crosslinked with different saccharides via the Maillard reaction with improved functional and biological properties. Carbohydr Polym 2020; 241:116303. [PMID: 32507187 DOI: 10.1016/j.carbpol.2020.116303] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 10/24/2022]
Abstract
This work aimed to modify blue crab chitosan-based films through the Maillard reaction (MR) as a novel alternative to improve their functional and biological properties. To this end, different saccharides (glucose (aldohexose), fructose (ketohexose), xylose (aldopentose) and arabinose (aldopentose)), at different weight ratios 0.5, 1.0 and 2.0 % (g/100 g polymer), were studied, and films were heated at 90 °C for 24 h. Based on color changes and browning index measurements, the extent of MR was the highest with aldopentoses, whereas hexoses and particularly ketohexoses, exhibited a relative crosslinking rate. These findings were further reflected with an improvement in treated films mechanical properties and thermal degradation temperatures, and advantageously, barrier properties against UV light and water. In addition, the MR-modified Cs-based films antioxidant activity was interestingly enhanced with mainly aldopentoses. Consequently, MR crosslinked chitosan-based films are promising alternative for active and functional packaging able of food oxidation hindering, especially using aldopentoses.
Collapse
Affiliation(s)
- Marwa Hamdi
- Laboratory of Enzyme Engineering and Microbiology, University of Sfax, National Engineering School of Sfax, B.P. 1173, 3038, Sfax, Tunisia.
| | - Rim Nasri
- Laboratory of Enzyme Engineering and Microbiology, University of Sfax, National Engineering School of Sfax, B.P. 1173, 3038, Sfax, Tunisia; Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia
| | - Youssra Ben Azaza
- Laboratory of Enzyme Engineering and Microbiology, University of Sfax, National Engineering School of Sfax, B.P. 1173, 3038, Sfax, Tunisia
| | - Suming Li
- European Institute of Films, UMR CNRS 5635, University of Montpellier, Place Eugene Bataillon, 34095, Montpellier Cedex 5, France
| | - Moncef Nasri
- Laboratory of Enzyme Engineering and Microbiology, University of Sfax, National Engineering School of Sfax, B.P. 1173, 3038, Sfax, Tunisia
| |
Collapse
|
121
|
Tuning rigidity and negative electrostriction of multi-walled carbon nanotube filled poly(lactic acid). POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122488] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
122
|
Zhang C, Wang C, Cao G, Wang D, Ho SH. A sustainable solution to plastics pollution: An eco-friendly bioplastic film production from high-salt contained Spirulina sp. residues. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:121773. [PMID: 31836373 DOI: 10.1016/j.jhazmat.2019.121773] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
Plastic products have become a major contaminant in environmental ecology due to their recalcitrant biodegradation, poor management and risky disposal. Therefore, much research attention has been paid to developing the biodegradable bio-based plastics. However, many of the substitute bioplastics derived from agricultural materials may present a potential threat to food security and eco-systems. Herein, we propose a sustainable, eco-friendly and simple procedure to convert the hazardous high-salt contained microalgal residues into bioplastic film. With 35 % poly (vinyl alcohol) (PVA) assistance, the composite bioplastic films achieved 22 MPa tensile strength under alkali condition and 77 % elongation at break under acidic condition. The average maximum contact angle of 94.4° confirmed a desirable water resistance potential. The synthesis mechanism demonstrated that the inorganic salts existed in microalgal residues could act as the filler in shape of sheets under alkali condition or as the cross linker under acidic condition, significantly enhancing the practical feasibility. This work demonstrates a promising biodegradable bioplastics formed from sustainable eco-friendly waste reutilization process, providing a new insight for fundamentally reducing the plastics pollution.
Collapse
Affiliation(s)
- Chaofan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Chengyu Wang
- Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
| | - Guoliang Cao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Dawei Wang
- School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| |
Collapse
|
123
|
Chen Y, Abdalkarim SYH, Yu HY, Li Y, Xu J, Marek J, Yao J, Tam KC. Double stimuli-responsive cellulose nanocrystals reinforced electrospun PHBV composites membrane for intelligent drug release. Int J Biol Macromol 2020; 155:330-339. [PMID: 32229207 DOI: 10.1016/j.ijbiomac.2020.03.216] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/15/2020] [Accepted: 03/22/2020] [Indexed: 01/09/2023]
Abstract
Double stimuli-responsive functionalized cellulose nanocrystal-poly[2-(dimethylamino)ethyl methacrylate] (CNC-g-PDMAEMA) reinforced poly(3-hydroxybutyrate-co-3-hydroxy valerate) (PHBV) electrospun composite membranes were explored as drug delivery vehicles using tetracycline hydrochloride (TH) as a model drug. It was found that rigid CNC-g-PDMAEMA nanoparticles enhanced thermal, crystallization and hydrophilic properties of PHBV. Moreover, great improvements in fiber diameter uniformity, crystallization ability and maximum decomposition temperature (Tmax) could be achieved at 6 wt% CNC-g-PDMAEMA. Furthermore, by introducing stimuli-responsive CNC-g-PDMAEMA nanofillers, intelligent and long-term sustained release behavior of composite membranes could be achieved. The releasing mechanism of composite membranes based on zero order, first order, Higuchi and Korsmeyere-Peppas mathematical models was clearly demonstrated, giving effective technical guidance for practical drug delivery systems.
Collapse
Affiliation(s)
- Yuxiang Chen
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| | - Somia Yassin Hussain Abdalkarim
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China; Zhejiang Institute of Technology and Automatic Control, College of Mechanical and Automatic Control, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Hou-Yong Yu
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China; Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada.
| | - Yingzhan Li
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| | - Jiaxin Xu
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada
| | - Jaromir Marek
- Institute for Nanomaterials, Advanced Technologies And Innovations, Studentska 1402/2, Liberec, Czech Republic
| | - Juming Yao
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| | - Kam Chiu Tam
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada
| |
Collapse
|
124
|
Siracusa V, Karpova S, Olkhov A, Zhulkina A, Kosenko R, Iordanskii A. Gas Transport Phenomena and Polymer Dynamics in PHB/PLA Blend Films as Potential Packaging Materials. Polymers (Basel) 2020; 12:polym12030647. [PMID: 32178319 PMCID: PMC7182844 DOI: 10.3390/polym12030647] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 12/19/2022] Open
Abstract
Actually, in order to replace traditional fossil-based polymers, many efforts are devoted to the design and development of new and high-performance bioplastics materials. Poly(hydroxy alkanoates) (PHAS) as well as polylactides are the main candidates as naturally derived polymers. The intention of the present study is to manufacture fully bio-based blends based on two polyesters: poly (3-hydroxybutyrate) (PHB) and polylactic acid (PLA) as real competitors that could be used to replace petrol polymers in packaging industry. Blends in the shape of films have been prepared by chloroform solvent cast solution methodology, at different PHB/PLA ratios: 1/0, 1/9, 3/7, 5/5, 0/1. A series of dynamic explorations have been performed in order to characterize them from a different point of view. Gas permeability to N2, O2, and CO2 gases and probe (TEMPO) electron spin resonance (ESR) analyses were performed. Blend surface morphology has been evaluated by Scanning Electron Microscopy (SEM) while their thermal behavior was analyzed by Differential Scanning Calorimetry (DSC) technique. Special attention was devoted to color and transparency estimation. Both probe rotation mobility and N2, O2, and CO2 permeation have monotonically decreased during the transition from PLA to PHB, for all contents of bio-blends, namely because of transferring from PLA with lower crystallinity to PHB with a higher one. Consequently, the role of the crystallinity was elucidated. The temperature dependences for CO2 permeability and diffusivity as well as for probe correlation time allowed the authors to evaluate the activation energy of both processes. The values of gas transport energy activation and TEMPO rotation mobility are substantially close to each other, which should testify that polymer segmental mobility determines the gas permeability modality.
Collapse
Affiliation(s)
- Valentina Siracusa
- Department of Chemical Science (DSC), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- Correspondence: ; Tel.: +39-3387275526
| | - Svetlana Karpova
- Plekhanov Russian University of Economics, Stremyanny per. 36, 117997 Moscow, Russian Federation; (S.K.); (A.O.)
| | - Anatoliy Olkhov
- Plekhanov Russian University of Economics, Stremyanny per. 36, 117997 Moscow, Russian Federation; (S.K.); (A.O.)
- Semenov Institute of Chemical Physics, Kosygin str. 4, 119991 Moscow, Russian Federation; (A.Z.); (R.K.); (A.I.)
| | - Anna Zhulkina
- Semenov Institute of Chemical Physics, Kosygin str. 4, 119991 Moscow, Russian Federation; (A.Z.); (R.K.); (A.I.)
| | - Regina Kosenko
- Semenov Institute of Chemical Physics, Kosygin str. 4, 119991 Moscow, Russian Federation; (A.Z.); (R.K.); (A.I.)
| | - Alexey Iordanskii
- Semenov Institute of Chemical Physics, Kosygin str. 4, 119991 Moscow, Russian Federation; (A.Z.); (R.K.); (A.I.)
| |
Collapse
|
125
|
Castro-Muñoz R, González-Valdez J, Ahmad MZ. High-performance pervaporation chitosan-based membranes: new insights and perspectives. REV CHEM ENG 2020. [DOI: 10.1515/revce-2019-0051] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Abstract
Today, the need of replacing synthetic polymers in the membrane preparation for diverse pervaporation (PV) applications has been recognized collectively and scientifically. Chitosan (CS), a bio-polymer, has been studied and proposed to achieve this goal especially in specific azeotropic water-organic, organic-water, and organic-organic separations, as well as in assisting specific processes (e.g. seawater desalination and chemical reactions). Different concepts of CS-based membranes have been developed, which include material blending and composite and mixed matrix membranes which have been tested for different separations. Hereby, the goal of this review is to provide a critical overview of the ongoing CS-based membrane developments, paying a special attention to the most relevant findings and results in the field. Furthermore, future trends of CS-based membranes in PV technology are presented, as well as concluding remarks and suggested strategies for the new scientist in the field.
Collapse
Affiliation(s)
- Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, Avenida Eduardo Monroy Cárdenas , 2000 San Antonio Buenavista , 50110 Toluca de Lerdo , Mexico
| | - José González-Valdez
- Tecnologico de Monterrey, School of Engineering and Science , Av. Eugenio Garza Sada 2501 , Monterrey, N.L. 64849 , Mexico
| | - M. Zamidi Ahmad
- Organic Materials Innovation Center (OMIC) , University of Manchester , Oxford Road , Manchester M13 9PL , UK
| |
Collapse
|
126
|
Production, Preparation and Characterization of Microalgae-Based Biopolymer as a Potential Bioactive Film. COATINGS 2020. [DOI: 10.3390/coatings10020120] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Six microalgae strains were screened according to their biomass productivity and polymer synthesis, showing biomass productivity between 0.14 and 0.68 g/(L·d) for a 21-day growth period. Extracellular biopolymers from the spent culture media of Nostoc sp. (No), Synechocystis sp. (Sy), and Porphyridium purpureum (Pp) was obtained, and the yields of the clean biopolymer were 323, 204, and 83 mg/L, respectively. The crude biopolymer was cleaned up using a solid-phase extraction technique. The emulsification index E24 values for the clean biopolymer were 77.5%, 68.8%, and 73.3% at 0.323, 0.083, and 0.204 mg/mL, respectively. The clean biopolymer of the No strain showed the highest fungal growth inhibition against Fusarium verticillioides (70.2%) and Fusarium sp. (61.4%) at 2.24 mg/mL. In general, transparent and flexible biofilms were prepared using biopolymers of No and Pp. The microstructural analysis revealed the presence of pores and cracks in the biofilms, and the average roughness Ra values are 68.6 and 86.4 nm for No and Pp, respectively, and the root mean square roughness Rq values are 86.2 and 107.2 nm for No and Pp, respectively.
Collapse
|
127
|
Chen X, Zhou L, Xu H, Yamamoto M, Shinoda M, Kishimoto M, Tanaka T, Yamane H. Effect of the Application of a Dehydrothermal Treatment on the Structure and the Mechanical Properties of Collagen Film. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E377. [PMID: 31947582 PMCID: PMC7013574 DOI: 10.3390/ma13020377] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 12/16/2022]
Abstract
Dehydrothermal (DHT) treatment was used to improve the properties of collagen casings because of its non-cytotoxicity. Understanding the effects of DHT treatment on the structure and mechanical properties of collagen films is beneficial to developing satisfying collagen casings. Herein, DHT treatment with various temperatures (85-145 °C) and timescales (1-7 days) were investigated. It was clarified that the chemical crosslinking covalent bond between collagen molecules was formed after the DHT treatment. Crosslinking density increased with increasing DHT treatment temperatures, contributing to the increase of tensile strength up to over three times of that of the untreated collagen film. The increased crosslinking density was also found when increasing the DHT treatment time, and the maximum was obtained in 3 days. Further DHT treatment time did not change the crosslinking density. The damage in the triple helix structure and the self-assembly of collagen molecules were observed from IR and SAXS. The extent of denaturation increased with increasing DHT treatment temperature and time, although the effect of the DHT treatment time on the denaturation was more moderate. When the DHT treatment temperature was as high as 145 °C or the DHT treatment time exceeded 5 days, serious denaturation occurs, leading to the deterioration of mechanical properties.
Collapse
Affiliation(s)
- Xuefei Chen
- Department of Biobased Materials Science, Kyoto Institute of Technology, Kyoto 606-8585, Japan; (X.C.)
| | - Lingling Zhou
- Department of Biobased Materials Science, Kyoto Institute of Technology, Kyoto 606-8585, Japan; (X.C.)
| | - Huaizhong Xu
- Department of Biobased Materials Science, Kyoto Institute of Technology, Kyoto 606-8585, Japan; (X.C.)
| | | | | | | | - Tomonari Tanaka
- Department of Biobased Materials Science, Kyoto Institute of Technology, Kyoto 606-8585, Japan; (X.C.)
| | - Hideki Yamane
- Department of Biobased Materials Science, Kyoto Institute of Technology, Kyoto 606-8585, Japan; (X.C.)
| |
Collapse
|
128
|
|
129
|
Alam J, Alhoshan M, Shukla AK, Aldalbahi A, Ali FAA. k-Carrageenan – A versatile biopolymer for the preparation of a hydrophilic PVDF composite membrane. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109219] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
130
|
Study on catalytic performances and reaction mechanisms of graphene electroactive membrane in wastewater treatment. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.05.069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
131
|
New Trends in Biopolymer-Based Membranes for Pervaporation. Molecules 2019; 24:molecules24193584. [PMID: 31590357 PMCID: PMC6803837 DOI: 10.3390/molecules24193584] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/28/2019] [Accepted: 10/03/2019] [Indexed: 11/25/2022] Open
Abstract
Biopolymers are currently the most convenient alternative for replacing chemically synthetized polymers in membrane preparation. To date, several biopolymers have been proposed for such purpose, including the ones derived from animal (e.g., polybutylene succinate, polylactic acid, polyhydroxyalcanoates), vegetable sources (e.g., starch, cellulose-based polymers, alginate, polyisoprene), bacterial fermentation products (e.g., collagen, chitin, chitosan) and specific production processes (e.g., sericin). Particularly, these biopolymer-based membranes have been implemented into pervaporation (PV) technology, which assists in the selective separation of azeotropic water-organic, organic-water, organic-organic mixtures, and specific separations of chemical reactions. Thereby, the aim of the present review is to present the current state-of-the-art regarding the different concepts on preparing membranes for PV. Particular attention is paid to the most relevant insights in the field, highlighting the followed strategies by authors for such successful approaches. Finally, by reviewing the ongoing development works, the concluding remarks and future trends are addressed.
Collapse
|
132
|
Ma S, Lin L, Wang Q, Zhang Y, Zhang H, Gao Y, Xu L, Pan F, Zhang Y. Bioinspired EVAL membrane modified with cilia-like structures showing simultaneously enhanced permeability and antifouling properties. Colloids Surf B Biointerfaces 2019; 181:134-142. [PMID: 31128513 DOI: 10.1016/j.colsurfb.2019.05.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/10/2019] [Accepted: 05/12/2019] [Indexed: 01/05/2023]
Abstract
A simple and effective strategy to simultaneously enhance the permeability and antifouling properties of ethylene vinyl alcohol (EVAL) membrane was developed based on the bioinspired natural cleaner, cilia. Taking clue from the self-cleaning effect of cilia, supramolecular polyrotaxanes (PRs) with sliding and rotating cyclic molecules along linear chains were synthesized using azide-alkyne click chemistry. Cilia-like PRs were incorporated into EVAL matrix in the fabrication of modified EVAL membranes. Cilia-like structures protruding from the membrane surface have been observed by SEM, TEM and AFM. By imitating natural ciliary movements, these structures provided a proactive self-cleaning system to remove the foulants. The introduction of cilia-like PRs enhanced the surface roughness and hydrophilicity, and significantly enhanced permeability by 55.3% compared to raw EVAL membrane. Moreover, the membrane modified with cilia-like PRs showed an excellent antifouling property with a lower water flux decline (12.6%) and higher water flux recovery (94%) in dynamic fouling tests. Furthermore, this modified membrane develops the scope of bioinspired membranes, inspiring more attractive potential applications in self-cleaning materials, dynamic membranes and supramolecular machines.
Collapse
Affiliation(s)
- Sisi Ma
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin, 300387, PR China
| | - Ligang Lin
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin, 300387, PR China.
| | - Qi Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin, 300387, PR China
| | - Yuhui Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin, 300387, PR China
| | - Honglei Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin, 300387, PR China
| | - Yixin Gao
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin, 300387, PR China
| | - Lin Xu
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin, 300387, PR China
| | - Fusheng Pan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Yuzhong Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin, 300387, PR China
| |
Collapse
|
133
|
|
134
|
Timkin VA, Novopashin LA, Mazina OA, Lazarev VA, Pishchikov GB. Development of Parameters of the Reverse Osmosis Process for Concentrating Fruit and Vegetable Juices. MEMBRANES AND MEMBRANE TECHNOLOGIES 2019. [DOI: 10.1134/s2517751619040097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
135
|
Wu Y, Zhang Y, Ju J, Yan H, Huang X, Tan Y. Advances in Halloysite Nanotubes-Polysaccharide Nanocomposite Preparation and Applications. Polymers (Basel) 2019; 11:E987. [PMID: 31167380 PMCID: PMC6630597 DOI: 10.3390/polym11060987] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/18/2019] [Accepted: 05/22/2019] [Indexed: 01/17/2023] Open
Abstract
Halloysite nanotubes (HNTs), novel 1D natural materials with a unique tubular nanostructure, large aspect ratio, biocompatibility, and high mechanical strength, are promising nanofillers to improve the properties of polymers. In this review, we summarize the recent progress toward the development of polysaccharide-HNTs composites, paying attention to the main existence forms and wastewater treatment application particularly. The purification of HNTs and fabrication of the composites are discussed first. Polysaccharides, such as alginate, chitosan, starch, and cellulose, reinforced with HNTs show improved mechanical, thermal, and swelling properties. Finally, we summarize the unique characteristics of polysaccharide-HNTs composites and review the recent development of the practical applications.
Collapse
Affiliation(s)
- Yang Wu
- State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, School of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Yongzhi Zhang
- State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, School of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Junping Ju
- State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, School of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Hao Yan
- State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, School of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Yeqiang Tan
- State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, School of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
136
|
Marino T, Galiano F, Molino A, Figoli A. New frontiers in sustainable membrane preparation: Cyrene™ as green bioderived solvent. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.03.034] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
137
|
Synthesis, characterization and antimicrobial activity of Schiff bases from chitosan and salicylaldehyde/TiO2 nanocomposite membrane. Int J Biol Macromol 2019; 124:802-809. [DOI: 10.1016/j.ijbiomac.2018.11.229] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/17/2018] [Accepted: 11/25/2018] [Indexed: 01/18/2023]
|
138
|
Konieczny J, Loos K. Polyurethane Coatings Based on Renewable White Dextrins and Isocyanate Trimers. Macromol Rapid Commun 2019; 40:e1800874. [PMID: 30730069 DOI: 10.1002/marc.201800874] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/14/2019] [Indexed: 11/09/2022]
Abstract
The polyurethane industry is strongly dependent on fossil-based polyols and polyisocyanates. Developing novel sustainable polyols from valuable biobased building blocks is a first step toward strong and durable development. The synthesis and properties of PU films based on pristine and acylated white dextrins (AVEDEX W80) as polyol and an aliphatic, low-viscosity, solvent-free triisocyanate based on hexamethylene diisocyanate (trimer-Desmodur N3300) as crosslinker is reported. After optimizing several conditions, such as the reaction time, reaction temperature, amount of solvent, isocyanate index, and amount per surface area, it is possible to obtain smooth PU films with good thermal properties.
Collapse
Affiliation(s)
- Jakob Konieczny
- Macromolecular Chemistry and New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.,Dutch Polymer Institute, P.O. Box 902, 5600 AX, Eindhoven, The Netherlands
| | - Katja Loos
- Macromolecular Chemistry and New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.,Dutch Polymer Institute, P.O. Box 902, 5600 AX, Eindhoven, The Netherlands
| |
Collapse
|
139
|
Morin-Crini N, Lichtfouse E, Torri G, Crini G. Fundamentals and Applications of Chitosan. SUSTAINABLE AGRICULTURE REVIEWS 35 2019. [DOI: 10.1007/978-3-030-16538-3_2] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
140
|
Ahmad NA, Goh PS, Abdul Karim Z, Ismail AF. Thin Film Composite Membrane for Oily Waste Water Treatment: Recent Advances and Challenges. MEMBRANES 2018; 8:E86. [PMID: 30248932 PMCID: PMC6315848 DOI: 10.3390/membranes8040086] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/14/2018] [Accepted: 09/20/2018] [Indexed: 12/18/2022]
Abstract
Oily wastewater discharge from various industry processes and activities have caused dramatic impacts on the human and environment. Treatment of oily wastewater using membrane technology has gained worldwide attention due to its efficiency in removing the amount and concentration of oil and grease as well as other specific pollutants in order to be reused or to fulfill stringent discharge standard. The application of thin film composite (TFC) membrane in reverse osmosis (RO) and forward osmosis (FO) for oily wastewater treatment is an emerging and exciting alternative in this field. This review presents the recent and distinctive development of TFC membranes to address the issues related to oily wastewater treatment. The recent advances in terms of TFC membrane design and separation performance evaluation are reviewed. This article aims to provide useful information and strategies, in both scientific knowledge advancement and practical implementation point of view, for the application TFC membrane for oily wastewater treatment.
Collapse
Affiliation(s)
- Nor Akalili Ahmad
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malayisa, Johor 81310, Malaysia.
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malayisa, Johor 81310, Malaysia.
| | - Zulhairun Abdul Karim
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malayisa, Johor 81310, Malaysia.
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malayisa, Johor 81310, Malaysia.
| |
Collapse
|