101
|
Avvakumov N, Nourani A, Côté J. Histone chaperones: modulators of chromatin marks. Mol Cell 2011; 41:502-14. [PMID: 21362547 DOI: 10.1016/j.molcel.2011.02.013] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 01/26/2011] [Accepted: 02/09/2011] [Indexed: 10/18/2022]
Abstract
The many factors that control chromatin biology play key roles in essential nuclear functions like transcription, DNA damage response and repair, recombination, and replication and are critical for proper cell-cycle progression, stem cell renewal, differentiation, and development. These players belong to four broad classes: histone modifiers, chromatin remodelers, histone variants, and histone chaperones. A large number of studies have established the existence of an intricate functional crosstalk between the different factors, not only within a single class but also between different classes. In light of this, while many recent reviews have focused on structure and functions of histone chaperones, the current text highlights novel and striking links that have been established between these proteins and posttranslational modifications of histones and discusses the functional consequences of this crosstalk. These findings feed a current hot question of how cell memory may be maintained through epigenetic mechanisms involving histone chaperones.
Collapse
Affiliation(s)
- Nikita Avvakumov
- Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), 9 McMahon Street, Quebec City, Quebec G1R 2J6, Canada
| | | | | |
Collapse
|
102
|
Tolkunov D, Zawadzki KA, Singer C, Elfving N, Morozov AV, Broach JR. Chromatin remodelers clear nucleosomes from intrinsically unfavorable sites to establish nucleosome-depleted regions at promoters. Mol Biol Cell 2011; 22:2106-18. [PMID: 21508315 PMCID: PMC3113774 DOI: 10.1091/mbc.e10-10-0826] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Most promoters in yeast contain a nucleosome-depleted region (NDR), but the mechanisms by which NDRs are established and maintained in vivo are currently unclear. We have examined how genome-wide nucleosome placement is altered in the absence of two distinct types of nucleosome remodeling activity. In mutants of both SNF2, which encodes the ATPase component of the Swi/Snf remodeling complex, and ASF1, which encodes a histone chaperone, distinct sets of gene promoters carry excess nucleosomes in their NDRs relative to wild-type. In snf2 mutants, excess promoter nucleosomes correlate with reduced gene expression. In both mutants, the excess nucleosomes occupy DNA sequences that are energetically less favorable for nucleosome formation, indicating that intrinsic histone-DNA interactions are not sufficient for nucleosome positioning in vivo, and that Snf2 and Asf1 promote thermodynamic equilibration of nucleosomal arrays. Cells lacking SNF2 or ASF1 still accomplish the changes in promoter nucleosome structure associated with large-scale transcriptional reprogramming. However, chromatin reorganization in the mutants is reduced in extent compared to wild-type cells, even though transcriptional changes proceed normally. In summary, active remodeling is required for distributing nucleosomes to energetically favorable positions in vivo and for reorganizing chromatin in response to changes in transcriptional activity.
Collapse
Affiliation(s)
- Denis Tolkunov
- Department of Physics and Astronomy and BioMaPS Institute for Quantitative Biology, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | | | |
Collapse
|
103
|
Donham DC, Scorgie JK, Churchill MEA. The activity of the histone chaperone yeast Asf1 in the assembly and disassembly of histone H3/H4-DNA complexes. Nucleic Acids Res 2011; 39:5449-58. [PMID: 21447559 PMCID: PMC3141235 DOI: 10.1093/nar/gkr097] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The deposition of the histones H3/H4 onto DNA to give the tetrasome intermediate and the displacement of H3/H4 from DNA are thought to be the first and the last steps in nucleosome assembly and disassembly, respectively. Anti-silencing function 1 (Asf1) is a chaperone of the H3/H4 dimer that functions in both of these processes. However, little is known about the thermodynamics of chaperone–histone interactions or the direct role of Asf1 in the formation or disassembly of histone–DNA complexes. Here, we show that Saccharomyces cerevisiae Asf1 shields H3/H4 from unfavorable DNA interactions and aids the formation of favorable histone–DNA interactions through the formation of disomes. However, Asf1 was unable to disengage histones from DNA for tetrasomes formed with H3/H4 and strong nucleosome positioning DNA sequences or tetrasomes weakened by mutant (H3K56Q/H4) histones or non-positioning DNA sequences. Furthermore, Asf1 did not associate with preformed tetrasomes. These results are consistent with the measured affinity of Asf1 for H3/H4 dimers of 2.5 nM, which is weaker than the association of H3/H4 for DNA. These studies support a mechanism by which Asf1 aids H3/H4 deposition onto DNA but suggest that additional factors or post-translational modifications are required for Asf1 to remove H3/H4 from tetrasome intermediates in chromatin.
Collapse
Affiliation(s)
- Douglas C Donham
- Department of Pharmacology, University of Colorado, School of Medicine, Aurora, CO 80045, USA
| | | | | |
Collapse
|
104
|
A conserved patch near the C terminus of histone H4 is required for genome stability in budding yeast. Mol Cell Biol 2011; 31:2311-25. [PMID: 21444721 DOI: 10.1128/mcb.01432-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A screen of Saccharomyces cerevisiae histone alanine substitution mutants revealed that mutations in any of three adjacent residues, L97, Y98, or G99, near the C terminus of H4 led to a unique phenotype. The mutants grew slowly, became polyploid or aneuploid rapidly, and also lost chromosomes at a high rate, most likely because their kinetochores were not assembled properly. There was lower histone occupancy, not only in the centromeric region, but also throughout the genome for the H4 mutants. The mutants displayed genetic interactions with the genes encoding two different histone chaperones, Rtt106 and CAF-I. Affinity purification of Rtt106 and CAF-I from yeast showed that much more H4 and H3 were bound to these histone chaperones in the case of the H4 mutants than in the wild type. However, in vitro binding experiments showed that the H4 mutant proteins bound somewhat more weakly to Rtt106 than did wild-type H4. These data suggest that the H4 mutant proteins, along with H3, accumulate on Rtt106 and CAF-I in vivo because they cannot be deposited efficiently on DNA or passed on to the next step in the histone deposition pathway, and this contributes to the observed genome instability and growth defects.
Collapse
|
105
|
Yamane K, Mizuguchi T, Cui B, Zofall M, Noma KI, Grewal SIS. Asf1/HIRA facilitate global histone deacetylation and associate with HP1 to promote nucleosome occupancy at heterochromatic loci. Mol Cell 2011; 41:56-66. [PMID: 21211723 DOI: 10.1016/j.molcel.2010.12.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 11/03/2010] [Accepted: 11/24/2010] [Indexed: 12/21/2022]
Abstract
Heterochromatin impacts various nuclear processes by providing a recruiting platform for diverse chromosomal proteins. In fission yeast, HP1 proteins Chp2 and Swi6, which bind to methylated histone H3 lysine 9, associate with SHREC (Snf2/HDAC repressor complex) and Clr6 histone deacetylases (HDACs) involved in heterochromatic silencing. However, heterochromatic silencing machinery is not fully defined. We describe a histone chaperone complex containing Asf1 and HIRA that spreads across silenced domains via its association with Swi6 to enforce transcriptional silencing. Asf1 functions in concert with a Clr6 HDAC complex to silence heterochromatic repeats, and it suppresses antisense transcription by promoting histone deacetylation. Furthermore, we demonstrate that Asf1 and SHREC facilitate nucleosome occupancy at heterochromatic regions but TFIIIC transcription factor binding sites within boundary elements are refractory to these factors. These analyses uncover a role for Asf1 in global histone deacetylation and suggest that HP1-associated histone chaperone promotes nucleosome occupancy to assemble repressive heterochromatin.
Collapse
Affiliation(s)
- Kenichi Yamane
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
106
|
Splitting of H3-H4 tetramers at transcriptionally active genes undergoing dynamic histone exchange. Proc Natl Acad Sci U S A 2011; 108:1296-301. [PMID: 21220302 DOI: 10.1073/pnas.1018308108] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nucleosome deposition occurs on newly synthesized DNA during DNA replication and on transcriptionally active genes via nucleosome-remodeling complexes recruited by activator proteins and elongating RNA polymerase II. It has been long believed that histone deposition involves stable H3-H4 tetramers, such that newly deposited nucleosomes do not contain H3 and H4 molecules with their associated histone modifications from preexisting nucleosomes. However, biochemical analyses and recent experiments in mammalian cells have raised the idea that preexisting H3-H4 tetramers might split into dimers, resulting in mixed nucleosomes composed of "old" and "new" histones. It is unknown to what extent different genomic loci might utilize such a mechanism and under which circumstances. Here, we address whether tetramer splitting occurs in a locus-specific manner by using sequential chromatin immunoprecipitation of mononucleosomes from yeast cells containing two differentially tagged versions of H3 that are expressed "old" and "new" histones. At many genomic loci, we observe little or no nucleosomal cooccupancy of old and new H3, indicating that tetramer splitting is generally infrequent. However, cooccupancy is detected at highly active genes, which have a high rate of histone exchange. Thus, DNA replication largely results in nucleosomes bearing exclusively old or new H3-H4, thereby precluding the acquisition of new histone modifications based on preexisting modifications within the same nucleosome. In contrast, tetramer splitting, dimer exchange, and nucleosomes with mixed H3-H4 tetramers occur at highly active genes, presumably linked to rapid histone exchange associated with robust transcription.
Collapse
|
107
|
Minard LV, Williams JS, Walker AC, Schultz MC. Transcriptional regulation by Asf1: new mechanistic insights from studies of the DNA damage response to replication stress. J Biol Chem 2010; 286:7082-92. [PMID: 21190944 PMCID: PMC3044965 DOI: 10.1074/jbc.m110.193813] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Asf1 is a conserved histone H3/H4 chaperone. We find that Asf1 in budding yeast promotes an essential cellular response to replication stress caused by the ribonucleotide reductase inhibitor hydroxyurea. That is, Asf1 stimulates derepression of DNA damage response (DDR) genes during the S phase. Derepression of DDR genes strongly correlates with Asf1 binding to their promoters. Having identified the C terminus and histone-binding domains of Asf1 as molecular determinants of its constitutive and inducible association with chromatin, we tested whether Asf1 binding to DDR genes is mechanistically important for their derepression. Our results provide little support for this hypothesis. Rather, the contribution of Asf1 to DDR gene derepression depends on its ability to stimulate H3K56 acetylation by lysine acetyltransferase Rtt109. The precise regulation of H3K56 acetylation in the promoters of DDR genes is unexpected: DDR gene promoters are occupied by H3K56-acetylated nucleosomes under repressing conditions, and the steady state level of H3K56 promoter acetylation does not change upon derepression. We propose that replication-coupled deposition of Lys56-acetylated H3 poises the DDR genes in newly synthesized daughter duplexes for derepression during the S phase. In this model, the presence of a histone mark that destabilizes nucleosomes is compatible with suppression of transcription because in the uninduced state, DDR gene promoters are constitutively occupied by a potent repressor-corepressor complex.
Collapse
Affiliation(s)
- Laura V Minard
- Department of Biochemistry, School of Molecular and Systems Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | |
Collapse
|
108
|
Luse DS, Spangler LC, Újvári A. Efficient and rapid nucleosome traversal by RNA polymerase II depends on a combination of transcript elongation factors. J Biol Chem 2010; 286:6040-8. [PMID: 21177855 DOI: 10.1074/jbc.m110.174722] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The nucleosome is generally found to be a strong barrier to transcript elongation by RNA polymerase II (pol II) in vitro. The elongation factors TFIIF and TFIIS have been shown to cooperate in maintaining pol II in the catalytically competent state on pure DNA templates. We now show that although TFIIF or TFIIS alone is modestly stimulatory for nucleosome traversal, both factors together increase transcription through nucleosomes in a synergistic manner. We also studied the effect of TFIIF and TFIIS on transcription of nucleosomes containing a Sin mutant histone. The Sin point mutations reduce critical histone-DNA contacts near the center of the nucleosome. Significantly, we found that nucleosomes with a Sin mutant histone are traversed to the same extent and at nearly the same rate as equivalent pure DNA templates if both TFIIS and TFIIF are present. Thus, the nucleosome is not necessarily an insurmountable barrier to transcript elongation by pol II. If unfolding of template DNA from the nucleosome surface is facilitated and the tendency of pol II to retreat from barriers is countered, transcription of nucleosomal templates can be rapid and efficient.
Collapse
Affiliation(s)
- Donal S Luse
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA.
| | | | | |
Collapse
|
109
|
Myogenic transcriptional activation of MyoD mediated by replication-independent histone deposition. Proc Natl Acad Sci U S A 2010; 108:85-90. [PMID: 21173268 DOI: 10.1073/pnas.1009830108] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In mammals, the canonical histone H3 and the variant H3.3 are assembled into chromatin through replication-coupled and replication-independent (RI) histone deposition pathways, respectively, to play distinct roles in chromatin function. H3.3 is largely associated with transcriptionally active regions via the activity of RI histone chaperone, HIRA. However, the precise role of the RI pathway and HIRA in active transcription and the mechanisms by which H3.3 affects gene activity are not known. In this study, we show that HIRA is an essential factor for muscle development by establishing MyoD activation in myotubes. HIRA and Asf1a, but not CHD1 or Asf1b, mediate H3.3 incorporation in the promoter and the critical upstream regulatory regions of the MyoD gene. HIRA and H3.3 are required for epigenetic transition into the more permissive chromatin structure for polymerase II recruitment to the promoter, regardless of transcription-associated covalent modification of histones. Our results suggest distinct epigenetic management of the master regulator with RI pathway components for cellular differentiation.
Collapse
|
110
|
Osipov SA, Preobrazhenskaya OV, Karpov VL. Chromatin structure and transcription regulation in Saccharomyces cerevisiae. Mol Biol 2010. [DOI: 10.1134/s0026893310060026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
111
|
Control of chromatin structure by spt6: different consequences in coding and regulatory regions. Mol Cell Biol 2010; 31:531-41. [PMID: 21098123 DOI: 10.1128/mcb.01068-10] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spt6 is a highly conserved factor required for normal transcription and chromatin structure. To gain new insights into the roles of Spt6, we measured nucleosome occupancy along Saccharomyces cerevisiae chromosome III in an spt6 mutant. We found that the level of nucleosomes is greatly reduced across some, but not all, coding regions in an spt6 mutant, with nucleosome loss preferentially occurring over highly transcribed genes. This result provides strong support for recent studies that have suggested that transcription at low levels does not displace nucleosomes, while transcription at high levels does, and adds the idea that Spt6 is required for restoration of nucleosomes at the highly transcribed genes. Unexpectedly, our studies have also suggested that the spt6 effects on nucleosome levels across coding regions do not cause the spt6 effects on mRNA levels, suggesting that the role of Spt6 across coding regions is separate from its role in transcriptional regulation. In the case of the CHA1 gene, regulation by Spt6 likely occurs by controlling the position of the +1 nucleosome. These results, along with previous studies, suggest that Spt6 regulates transcription by controlling chromatin structure over regulatory regions, and its effects on nucleosome levels over coding regions likely serve an independent function.
Collapse
|
112
|
Sakurai H, Enoki Y. Novel aspects of heat shock factors: DNA recognition, chromatin modulation and gene expression. FEBS J 2010; 277:4140-9. [PMID: 20945530 DOI: 10.1111/j.1742-4658.2010.07829.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heat shock factor (HSF) is an evolutionarily conserved stress-response regulator that activates the transcription of heat shock protein genes, whose products maintain protein homeostasis under normal physiological conditions, as well as under conditions of stress. The promoter regions of the target genes contain a heat shock element consisting of multiple inverted repeats of the pentanucleotide sequence nGAAn. A single HSF of yeast can bind to heat shock elements that differ in the configuration of the nGAAn units and can regulate the transcription of various genes that function not only in stress resistance, but also in a broad range of biological processes. Mammalian cells have four HSF family members involved in different, but in some cases similar, biological functions, including stress resistance, cell differentiation and development. Mammalian HSF family members exhibit differential specificity for different types of heat shock elements, which, together with cell type-specific expression of HSFs is important in determining the target genes of each HSF. This minireview focuses on the molecular mechanisms of DNA recognition, chromatin modulation and gene expression by yeast and mammalian HSFs.
Collapse
Affiliation(s)
- Hiroshi Sakurai
- Department of Clinical Laboratory Science, Kanazawa University Graduate School of Medical Science, Ishikawa, Japan.
| | | |
Collapse
|
113
|
Overlapping regulation of CenH3 localization and histone H3 turnover by CAF-1 and HIR proteins in Saccharomyces cerevisiae. Genetics 2010; 187:9-19. [PMID: 20944015 DOI: 10.1534/genetics.110.123117] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Accurate chromosome segregation is dependent on the centromere-specific histone H3 isoform known generally as CenH3, or as Cse4 in budding yeast. Cytological experiments have shown that Cse4 appears at extracentromeric loci in yeast cells deficient for both the CAF-1 and HIR histone H3/H4 deposition complexes, consistent with increased nondisjunction in these double mutant cells. Here, we examined molecular aspects of this Cse4 mislocalization. Genome-scale chromatin immunoprecipitation analyses demonstrated broader distribution of Cse4 outside of centromeres in cac1Δ hir1Δ double mutant cells that lack both CAF-1 and HIR complexes than in either single mutant. However, cytological localization showed that the essential inner kinetochore component Mif2 (CENP-C) was not recruited to extracentromeric Cse4 in cac1Δ hir1Δ double mutant cells. We also observed that rpb1-1 mutants displayed a modestly increased Cse4 half-life at nonpermissive temperatures, suggesting that turnover of Cse4 is partially dependent on Pol II transcription. We used genome-scale assays to demonstrate that the CAF-1 and HIR complexes independently stimulate replication-independent histone H3 turnover rates. We discuss ways in which altered histone exchange kinetics may affect eviction of Cse4 from noncentromeric loci.
Collapse
|
114
|
Belch Y, Yang J, Liu Y, Malkaram SA, Liu R, Riethoven JJM, Ladunga I. Weakly positioned nucleosomes enhance the transcriptional competency of chromatin. PLoS One 2010; 5:e12984. [PMID: 20886052 PMCID: PMC2945322 DOI: 10.1371/journal.pone.0012984] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 09/01/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Transcription is affected by nucleosomal resistance against polymerase passage. In turn, nucleosomal resistance is determined by DNA sequence, histone chaperones and remodeling enzymes. The contributions of these factors are widely debated: one recent title claims "… DNA-encoded nucleosome organization…" while another title states that "histone-DNA interactions are not the major determinant of nucleosome positions." These opposing conclusions were drawn from similar experiments analyzed by idealized methods. We attempt to resolve this controversy to reveal nucleosomal competency for transcription. METHODOLOGY/PRINCIPAL FINDINGS To this end, we analyzed 26 in vivo, nonlinked, and in vitro genome-wide nucleosome maps/replicates by new, rigorous methods. Individual H2A nucleosomes are reconstituted inaccurately by transcription, chaperones and remodeling enzymes. At gene centers, weakly positioned nucleosome arrays facilitate rapid histone eviction and remodeling, easing polymerase passage. Fuzzy positioning is not due to artefacts. At the regional level, transcriptional competency is strongly influenced by intrinsic histone-DNA affinities. This is confirmed by reproducing the high in vivo occupancy of translated regions and the low occupancy of intergenic regions in reconstitutions from purified DNA and histones. Regional level occupancy patterns are protected from invading histones by nucleosome excluding sequences and barrier nucleosomes at gene boundaries and within genes. CONCLUSIONS/SIGNIFICANCE Dense arrays of weakly positioned nucleosomes appear to be necessary for transcription. Weak positioning at exons facilitates temporary remodeling, polymerase passage and hence the competency for transcription. At regional levels, the DNA sequence plays a major role in determining these features but positions of individual nucleosomes are typically modified by transcription, chaperones and enzymes. This competency is reduced at intergenic regions by sequence features, barrier nucleosomes, and proteins, preventing accessibility regulation of untargeted genes. This combination of DNA- and protein-influenced positioning regulates DNA accessibility and competence for regulatory protein binding and transcription. Interactive nucleosome displays are offered at http://chromatin.unl.edu/cgi-bin/skyline.cgi.
Collapse
Affiliation(s)
- Yaakov Belch
- Department of Statistics, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | | | | | | | | | | | | |
Collapse
|
115
|
Abstract
The allelic exclusion of immunoglobulin (Ig) genes is one of the most evolutionarily conserved features of the adaptive immune system and underlies the monospecificity of B cells. While much has been learned about how Ig allelic exclusion is established during B-cell development, the relevance of monospecificity to B-cell function remains enigmatic. Here, we review the theoretical models that have been proposed to explain the establishment of Ig allelic exclusion and focus on the molecular mechanisms utilized by developing B cells to ensure the monoallelic expression of Ig kappa and Ig lambda light chain genes. We also discuss the physiological consequences of Ig allelic exclusion and speculate on the importance of monospecificity of B cells for immune recognition.
Collapse
Affiliation(s)
- Christian Vettermann
- Division of Immunology & Pathogenesis, Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | |
Collapse
|
116
|
Govind CK, Qiu H, Ginsburg DS, Ruan C, Hofmeyer K, Hu C, Swaminathan V, Workman JL, Li B, Hinnebusch AG. Phosphorylated Pol II CTD recruits multiple HDACs, including Rpd3C(S), for methylation-dependent deacetylation of ORF nucleosomes. Mol Cell 2010; 39:234-46. [PMID: 20670892 DOI: 10.1016/j.molcel.2010.07.003] [Citation(s) in RCA: 182] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 03/15/2010] [Accepted: 05/14/2010] [Indexed: 01/08/2023]
Abstract
Methylation of histone H3 by Set1 and Set2 is required for deacetylation of nucleosomes in coding regions by histone deacetylase complexes (HDACs) Set3C and Rpd3C(S), respectively. We report that Set3C and Rpd3C(S) are cotranscriptionally recruited in the absence of Set1 and Set2, but in a manner stimulated by Pol II CTD kinase Cdk7/Kin28. Consistently, Rpd3C(S) and Set3C interact with Ser5-phosphorylated Pol II and histones in extracts, but only the histone interactions require H3 methylation. Moreover, reconstituted Rpd3C(S) binds specifically to Ser5-phosphorylated CTD peptides in vitro. Hence, whereas interaction with methylated H3 residues is required for Rpd3C(S) and Set3C deacetylation activities, their cotranscriptional recruitment is stimulated by the phosphorylated CTD. We further demonstrate that Rpd3, Hos2, and Hda1 have overlapping functions in deacetylating histones and suppressing cotranscriptional histone eviction. A strong correlation between increased acetylation and lower histone occupancy in HDA mutants implies that histone acetylation is important for nucleosome eviction.
Collapse
Affiliation(s)
- Chhabi K Govind
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Regulation of nucleolar chromatin by B23/nucleophosmin jointly depends upon its RNA binding activity and transcription factor UBF. Mol Cell Biol 2010; 30:4952-64. [PMID: 20713446 DOI: 10.1128/mcb.00299-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Histone chaperones regulate the density of incorporated histone proteins around DNA transcription sites and therefore constitute an important site-specific regulatory mechanism for the control of gene expression. At present, the targeting mechanism conferring this site specificity is unknown. We previously reported that the histone chaperone B23/nucleophosmin associates with rRNA chromatin (r-chromatin) to stimulate rRNA transcription. Here, we report on the mechanism for site-specific targeting of B23 to the r-chromatin. We observed that, during mitosis, B23 was released from chromatin upon inactivation of its RNA binding activity by cdc2 kinase-mediated phosphorylation. The phosphorylation status of B23 was also shown to strongly affect its chromatin binding activity. We further found that r-chromatin binding of B23 was a necessary condition for B23 histone chaperone activity in vivo. In addition, we found that depletion of upstream binding factor (UBF; an rRNA transcription factor) decreased the chromatin binding affinity of B23, which in turn led to an increase in histone density at the r-chromatin. These two major strands of evidence suggest a novel cell cycle-dependent mechanism for the site-specific regulation of histone density via joint RNA- and transcription factor-mediated recruitment of histone chaperones to specific chromosome loci.
Collapse
|
118
|
Durairaj G, Chaurasia P, Lahudkar S, Malik S, Shukla A, Bhaumik SR. Regulation of chromatin assembly/disassembly by Rtt109p, a histone H3 Lys56-specific acetyltransferase, in vivo. J Biol Chem 2010; 285:30472-9. [PMID: 20668333 DOI: 10.1074/jbc.m110.113225] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rtt109p, a histone acetyltransferase, associates with active genes and acetylates lysine 56 on histone H3 in Saccharomyces cerevisiae. However, the functional role of Rtt109p or H3 Lys(56) acetylation in chromatin assembly/disassembly (and hence gene expression) immediately switching transcription on or off has not been clearly elucidated in vivo. Here, we show that Rtt109p promotes the eviction of histone H3 from a fast inducible yeast gene, GAL1, following transcriptional initiation via histone H3 Lys(56) acetylation. Conversely, the deposition of histone H3 to GAL1 is significantly decreased in the presence of Rtt109p following transcriptional termination. Intriguingly, we also find that the deposition of histone H2B on preexisting non-acetylated histone H3 Lys(56) at GAL1 in Δrtt109 is significantly increased independently of histone H3 deposition immediately following transcriptional termination subsequent to a short induction. Consistently, histone H2B is not efficiently evicted from GAL1 in the absence of Rtt109p immediately following transcriptional induction. Furthermore, we show that the stimulated eviction or reduced deposition of histones by Rtt109p promotes the association of RNA polymerase II with GAL1 and hence the synthesis of GAL1 mRNA. These results, taken together, support the fact that Rtt109p regulates the deposition/eviction of histone H2B in addition to its role in stimulating histone H3 eviction, thus providing insight into chromatin assembly/disassembly and hence gene expression in vivo.
Collapse
Affiliation(s)
- Geetha Durairaj
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901, USA
| | | | | | | | | | | |
Collapse
|
119
|
Kondilis-Mangum HD, Cobb RM, Osipovich O, Srivatsan S, Oltz EM, Krangel MS. Transcription-dependent mobilization of nucleosomes at accessible TCR gene segments in vivo. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:6970-7. [PMID: 20483751 PMCID: PMC2909652 DOI: 10.4049/jimmunol.0903923] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Accessibility of chromosomal recombination signal sequences to the RAG protein complex is known to be essential for V(D)J recombination at Ag receptor loci in vivo. Previous studies have addressed the roles of cis-acting regulatory elements and germline transcription in the covalent modification of nucleosomes at Ag receptor loci. However, a detailed picture of nucleosome organization at accessible and inaccessible recombination signal sequences has been lacking. In this study, we have analyzed the nucleosome organization of accessible and inaccessible Tcrb and Tcra alleles in primary murine thymocytes in vivo. We identified highly positioned arrays of nucleosomes at Dbeta, Jbeta, and Jalpha segments and obtained evidence indicating that positioning is established at least in part by the regional DNA sequence. However, we found no consistent positioning of nucleosomes with respect to recombination signal sequences, which could be nucleosomal or internucleosomal even in their inaccessible configurations. Enhancer- and promoter-dependent accessibility was characterized by diminished abundance of certain nucleosomes and repositioning of others. Moreover, some changes in nucleosome positioning and abundance at Jalpha61 were shown to be a direct consequence of germline transcription. We suggest that enhancer- and promoter-dependent transcription generates optimal recombinase substrates in which some nucleosomes are missing and others are covalently modified.
Collapse
Affiliation(s)
| | - Robin Milley Cobb
- Department of Microbiology and Immunology, Vanderbilt University Medical School, Nashville, TN 37232
| | - Oleg Osipovich
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Sruti Srivatsan
- Department of Immunology, Duke University Medical Center, Durham NC 27710
| | - Eugene M. Oltz
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Michael S. Krangel
- Department of Immunology, Duke University Medical Center, Durham NC 27710
| |
Collapse
|
120
|
Aslam A, Logie C. Histone H3 serine 57 and lysine 56 interplay in transcription elongation and recovery from S-phase stress. PLoS One 2010; 5:e10851. [PMID: 20520775 PMCID: PMC2877106 DOI: 10.1371/journal.pone.0010851] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 05/05/2010] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Acetylation of lysine 56 of histone H3 plays an important role in the DNA damage response and it has been postulated to play an as yet undefined role in transcription, both in yeast and in higher eukaryotes. Because phosphorylated human histone H3 serine 57 peptides have been detected by mass spectrometry we examined whether H3-S57 phosphorylation interplays with H3-K56 acetylation in vivo. METHODOLOGY/PRINCIPAL FINDINGS To explore the physiological role of H3-S57, H3-K56 was mutated to mimic constitutively (un)acetylated forms of H3-K56 and these were combined with constitutively (un)phosphorylated mimics of H3-S57, in yeast. A phosphorylated serine mimic at position 57 lessened sensitivities to a DNA replication fork inhibitor and to a transcription elongation inhibitor that were caused by an acetylated lysine mimic at position 56, while the same substitution exacerbated sensitivities due to mimicking a constitutive non-acetylated lysine at position 56. Strikingly, opposite results were obtained in the context of a serine to alanine substitution at position 57 of histone H3. CONCLUSIONS/SIGNIFICANCE The phenotypes elicited and the context-dependent interplay of the H3-K56 and -S57 point mutations that mimic their respective modification states suggest that serine 57 phosphorylation promotes a nucleosomal transaction when lysine 56 is acetylated. We speculate that histone H3-S57 couples H3-K56 acetylation to histone quaternary structures involving arginine 40 on histone H4 helix 1.
Collapse
Affiliation(s)
- Aamir Aslam
- Department of Molecular Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, The Netherlands
| | - Colin Logie
- Department of Molecular Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
121
|
Morillo-Huesca M, Maya D, Muñoz-Centeno MC, Singh RK, Oreal V, Reddy GU, Liang D, Géli V, Gunjan A, Chávez S. FACT prevents the accumulation of free histones evicted from transcribed chromatin and a subsequent cell cycle delay in G1. PLoS Genet 2010; 6:e1000964. [PMID: 20502685 PMCID: PMC2873916 DOI: 10.1371/journal.pgen.1000964] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 04/20/2010] [Indexed: 11/18/2022] Open
Abstract
The FACT complex participates in chromatin assembly and disassembly during transcription elongation. The yeast mutants affected in the SPT16 gene, which encodes one of the FACT subunits, alter the expression of G1 cyclins and exhibit defects in the G1/S transition. Here we show that the dysfunction of chromatin reassembly factors, like FACT or Spt6, down-regulates the expression of the gene encoding the cyclin that modulates the G1 length (CLN3) in START by specifically triggering the repression of its promoter. The G1 delay undergone by spt16 mutants is not mediated by the DNA–damage checkpoint, although the mutation of RAD53, which is otherwise involved in histone degradation, enhances the cell-cycle defects of spt16-197. We reveal how FACT dysfunction triggers an accumulation of free histones evicted from transcribed chromatin. This accumulation is enhanced in a rad53 background and leads to a delay in G1. Consistently, we show that the overexpression of histones in wild-type cells down-regulates CLN3 in START and causes a delay in G1. Our work shows that chromatin reassembly factors are essential players in controlling the free histones potentially released from transcribed chromatin and describes a new cell cycle phenomenon that allows cells to respond to excess histones before starting DNA replication. Lengthy genomic DNA is packed in a highly organized nucleoprotein structure called chromatin, whose basic subunit is the nucleosome which is formed by DNA wrapped around an octamer of proteins called histones. Nucleosomes need to be disassembled to allow DNA transcription by RNA polymerases. An essential factor for the disassembly/reassembly process during DNA transcription is the FACT complex. We investigated a phenotype of yeast FACT mutants, a delay in a specific step of the cell cycle division process immediately prior to starting DNA replication. The dysfunction caused by the FACT mutation causes a downregulation of a gene, CLN3, which controls the length of that specific step of the cell cycle. FACT dysfunction also increases the level of the free histones released from chromatin during transcription, and the phenotype of the Spt16 mutant is enhanced by a second mutation affecting a protein that regulates DNA repair and excess histone degradation. Moreover, we show that the overexpression of histones causes a cell cycle delay before DNA replication in wild-type cells. Our results point out a so-far unknown connection between chromatin dynamics and the regulation of the cell cycle.
Collapse
Affiliation(s)
| | - Douglas Maya
- Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | | | - Rakesh Kumar Singh
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States of America
| | - Vincent Oreal
- Laboratoire d'Instabilité Génétique et Cancérogenèse, Institut de Biologie Struturale et Microbiologie, Centre National de la Recherche Scientifique, Marseille, France
| | - Gajjalaiahvari Ugander Reddy
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States of America
| | - Dun Liang
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States of America
| | - Vincent Géli
- Laboratoire d'Instabilité Génétique et Cancérogenèse, Institut de Biologie Struturale et Microbiologie, Centre National de la Recherche Scientifique, Marseille, France
| | - Akash Gunjan
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States of America
| | - Sebastián Chávez
- Departamento de Genética, Universidad de Sevilla, Seville, Spain
- * E-mail: (SC); (MCM-C)
| |
Collapse
|
122
|
Tirosh I, Sigal N, Barkai N. Widespread remodeling of mid-coding sequence nucleosomes by Isw1. Genome Biol 2010; 11:R49. [PMID: 20459718 PMCID: PMC2898075 DOI: 10.1186/gb-2010-11-5-r49] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 03/24/2010] [Accepted: 05/10/2010] [Indexed: 12/02/2022] Open
Abstract
In yeast, the chromatin remodeler Isw1 shifts nucleosomes from mid-coding, to more 5’ regions of genes and may regulate transcriptional elongation. Background The positions of nucleosomes along eukaryotic DNA are defined by the local DNA sequence and are further tuned by the activity of chromatin remodelers. While the genome-wide effect of most remodelers has not been described, recent studies in Saccharomyces cerevisiae have shown that Isw2 prevents ectopic expression of anti-sense and suppressed transcripts at gene ends. Results We examined the genome-wide function of the Isw2 homologue, Isw1, by mapping nucleosome positioning in S. cerevisiae and Saccharomyces paradoxus strains deleted of ISW1. We found that Isw1 functions primarily within coding regions of genes, consistent with its putative role in transcription elongation. Upon deletion of ISW1, mid-coding nucleosomes were shifted upstream (towards the 5' ends) in about half of the genes. Isw1-dependent shifts were correlated with trimethylation of H3K79 and were enriched at genes with internal cryptic initiation sites. Conclusions Our results suggest a division of labor between Isw1 and Isw2, whereby Isw2 maintains repressive chromatin structure at gene ends while Isw1 has a similar function at mid-coding regions. The differential specificity of the two remodelers may be specified through interactions with particular histone marks.
Collapse
Affiliation(s)
- Itay Tirosh
- Department of Molecular genetics, Weizmann Institute of Science, Herzl street, Rehovot 76100, Israel.
| | | | | |
Collapse
|
123
|
Akai Y, Adachi N, Hayashi Y, Eitoku M, Sano N, Natsume R, Kudo N, Tanokura M, Senda T, Horikoshi M. Structure of the histone chaperone CIA/ASF1-double bromodomain complex linking histone modifications and site-specific histone eviction. Proc Natl Acad Sci U S A 2010; 107:8153-8. [PMID: 20393127 PMCID: PMC2889523 DOI: 10.1073/pnas.0912509107] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Nucleosomes around the promoter region are disassembled for transcription in response to various signals, such as acetylation and methylation of histones. Although the interactions between histone-acetylation-recognizing bromodomains and factors involved in nucleosome disassembly have been reported, no structural basis connecting histone modifications and nucleosome disassembly has been obtained. Here, we determined at 3.3 A resolution the crystal structure of histone chaperone cell cycle gene 1 (CCG1) interacting factor A/antisilencing function 1 (CIA/ASF1) in complex with the double bromodomain in the CCG1/TAF1/TAF(II)250 subunit of transcription factor IID. Structural, biochemical, and biological studies suggested that interaction between double bromodomain and CIA/ASF1 is required for their colocalization, histone eviction, and pol II entry at active promoter regions. Furthermore, the present crystal structure has characteristics that can connect histone acetylation and CIA/ASF1-mediated histone eviction. These findings suggest that the molecular complex between CIA/ASF1 and the double bromodomain plays a key role in site-specific histone eviction at active promoter regions. The model we propose here is the initial structure-based model of the biological signaling from histone modifications to structural change of the nucleosome (hi-MOST model).
Collapse
Affiliation(s)
- Yusuke Akai
- Biomedicinal Information Research Center, National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
- Protein Structural Information Analysis Team, Japan Biological Informatics Consortium, 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Naruhiko Adachi
- Protein Structural Information Analysis Team, Japan Biological Informatics Consortium, 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
- Laboratory of Developmental Biology, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan; and
- Horikoshi Gene Selector Project, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, 5-9-6 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Yohei Hayashi
- Laboratory of Developmental Biology, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan; and
| | - Masamitsu Eitoku
- Laboratory of Developmental Biology, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan; and
| | - Norihiko Sano
- Laboratory of Developmental Biology, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan; and
| | - Ryo Natsume
- Protein Structural Information Analysis Team, Japan Biological Informatics Consortium, 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Norio Kudo
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Toshiya Senda
- Biomedicinal Information Research Center, National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Masami Horikoshi
- Laboratory of Developmental Biology, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan; and
- Horikoshi Gene Selector Project, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, 5-9-6 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| |
Collapse
|
124
|
Sakamoto M, Noguchi S, Kawashima S, Okada Y, Enomoto T, Seki M, Horikoshi M. Global analysis of mutual interaction surfaces of nucleosomes with comprehensive point mutants. Genes Cells 2010; 14:1271-330. [PMID: 19903202 DOI: 10.1111/j.1365-2443.2009.01350.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The surfaces of core histones in nucleosome are exposed as required for factor recognition, or buried for histone-DNA and histone-histone interactions. To understand the mechanisms by which nucleosome structure and function are coordinately altered in DNA-mediated reactions, it is essential to define the roles of both exposed and buried residues and their functional relationships. For this purpose, we developed GLASP (GLobal Analysis of Surfaces by Point mutation) and GLAMP (GLobal Analysis of Mutual interaction surfaces of multi-subunit protein complex by Point mutation) strategies, both of which are comprehensive analyses by point mutagenesis of exposed and buried residues in nucleosome, respectively. Four distinct DNA-mediated reactions evaluated by Ty suppression (the Spt(-) phenotype), and sensitivities to 6-azauracil (6AU), hydroxyurea (HU), and methyl methanesulfonate (MMS), require common and different GLAMP residues. Mutated GLAMP residues at the interface between histones H2A and H2B mainly affect the Spt(-) phenotype but not HU and MMS sensitivities. Interestingly, among the mutated GLAMP residues surrounding the histone H3-H3' interface, some equally affect the Spt(-) phenotype, and HU and MMS sensitivities, whereas others differentially affect the Spt(-) phenotype, and HU and MMS sensitivities. Based on these and other results, the functional relationships among chromatin factors and GLASP and GLAMP residues provide insights into nucleosome disassembly/assembly processes in DNA-mediated reactions.
Collapse
Affiliation(s)
- Makoto Sakamoto
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
125
|
Abstract
Genetic interactions represent the degree to which the presence of one mutation modulates the phenotype of a second mutation. In recent years, approaches for measuring genetic interactions systematically and quantitatively have proven to be effective tools for unbiased characterization of gene function and have provided valuable data for analyses of evolution. Here, we present protocols for systematic measurement of genetic interactions with respect to organismal growth rate for two yeast species.
Collapse
Affiliation(s)
- Sean R Collins
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, USA
| | | | | |
Collapse
|
126
|
Lin LJ, Minard LV, Johnston GC, Singer RA, Schultz MC. Asf1 can promote trimethylation of H3 K36 by Set2. Mol Cell Biol 2010; 30:1116-29. [PMID: 20048053 PMCID: PMC2820888 DOI: 10.1128/mcb.01229-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 10/20/2009] [Accepted: 12/22/2009] [Indexed: 12/17/2022] Open
Abstract
Asf1 is a conserved histone H3/H4 chaperone that can assemble and disassemble nucleosomes and promote histone acetylation. Set2 is an H3 K36 methyltransferase. The functions of these proteins intersect in the context of transcription elongation by RNA polymerase II: both contribute to the establishment of repressive chromatin structures that inhibit spurious intragenic transcription. Here we characterize further interactions between budding yeast (Saccharomyces cerevisiae) Asf1 and Set2 using assays of intragenic transcription, H3/H4 posttranslational modification, coding region cross-linking of Asf1 and Set2, and cooccurrence of Asf1 and Set2 in protein complexes. We find that at some genes Asf1 and Set2 control chromatin metabolism as components of separate pathways. However, the existence of a low-abundance complex containing both proteins suggests that Asf1 and Set2 can more directly collaborate in chromatin regulation. Consistent with this possibility, we show that Asf1 stimulates Set2 occupancy of the coding region of a highly transcribed gene by a mechanism that depends on Asf1 binding to H3/H4. This function of Asf1 promotes the switch from di- to trimethylation of H3 K36 at that gene. These results support the view that Set2 function in chromatin metabolism can intimately involve histone chaperone Asf1.
Collapse
Affiliation(s)
- Ling-ju Lin
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7, Department of Microbiology and Immunology, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 1X5
| | - Laura V. Minard
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7, Department of Microbiology and Immunology, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 1X5
| | - Gerald C. Johnston
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7, Department of Microbiology and Immunology, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 1X5
| | - Richard A. Singer
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7, Department of Microbiology and Immunology, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 1X5
| | - Michael C. Schultz
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7, Department of Microbiology and Immunology, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 1X5
| |
Collapse
|
127
|
Abstract
Until recently, it was generally assumed that essentially all regulation of transcription takes place via regions adjacent to the coding region of a gene--namely promoters and enhancers--and that, after recruitment to the promoter, the polymerase simply behaves like a machine, quickly "reading the gene." However, over the past decade a revolution in this thinking has occurred, culminating in the idea that transcript elongation is extremely complex and highly regulated and, moreover, that this process significantly affects both the organization and integrity of the genome. This review addresses basic aspects of transcript elongation by RNA polymerase II (RNAPII) and how it relates to other DNA-related processes.
Collapse
Affiliation(s)
- Luke A Selth
- Mechanisms of Transcription Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | | | | |
Collapse
|
128
|
NuA4 lysine acetyltransferase Esa1 is targeted to coding regions and stimulates transcription elongation with Gcn5. Mol Cell Biol 2009; 29:6473-87. [PMID: 19822662 DOI: 10.1128/mcb.01033-09] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NuA4, the major H4 lysine acetyltransferase (KAT) complex in Saccharomyces cerevisiae, is recruited to promoters and stimulates transcription initiation. NuA4 subunits contain domains that bind methylated histones, suggesting that histone methylation should target NuA4 to coding sequences during transcription elongation. We show that NuA4 is cotranscriptionally recruited, dependent on its physical association with elongating polymerase II (Pol II) phosphorylated on the C-terminal domain by cyclin-dependent kinase 7/Kin28, but independently of subunits (Eaf1 and Tra1) required for NuA4 recruitment to promoters. Whereas histone methylation by Set1 and Set2 is dispensable for NuA4's interaction with Pol II and targeting to some coding regions, it stimulates NuA4-histone interaction and H4 acetylation in vivo. The NuA4 KAT, Esa1, mediates increased H4 acetylation and enhanced RSC occupancy and histone eviction in coding sequences and stimulates the rate of transcription elongation. Esa1 cooperates with the H3 KAT in SAGA, Gcn5, to enhance these functions. Our findings delineate a pathway for acetylation-mediated nucleosome remodeling and eviction in coding sequences that stimulates transcription elongation by Pol II in vivo.
Collapse
|
129
|
Li C, Wu K, Fu G, Li Y, Zhong Y, Lin X, Zhou Y, Tian L, Huang S. Regulation of oleosin expression in developing peanut (Arachis hypogaea L.) embryos through nucleosome loss and histone modifications. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:4371-4382. [PMID: 19737778 DOI: 10.1093/jxb/erp275] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Nucleosome loss and histone modifications are important mechanisms for transcriptional regulation. Concomitant changes in chromatin structures of two peanut (Arachis hypogaea L.) oleosin genes, AhOleo17.8 and AhOleo18.5, were examined in relation to transcriptional activity. Spatial and temporal expression analyses showed that both AhOleo17.8 and AhOleo18.5 promoters can adopt three conformational states, an inactive state (in vegetative tissues), a basal activated state (in early maturation embryos), and a fully activated state (in late maturation embryos). Chromatin immunoprecipitation assays revealed an increase of histone H3 acetylation levels at the proximal promoters and coding regions of AhOleo17.8 and AhOleo18.5 associated with basal transcription in early maturation embryos. Meanwhile, a decrease of histone H3K9 dimethylation levels at coding regions of oleosins was observed in early maturation embryos. However, a dramatic decrease in the histone acetylation signal was observed at the core promoters and the coding regions of the two oleosins in the fully activated condition in late maturation embryos. Although a small decrease of histone H3 levels of oleosins chromatin was detected in early maturation embryos, a significant loss of histone H3 levels occurred in late maturation embryos. These analyses indicate that the histone eviction from the proximal promoters and coding regions is associated with the high expression of oleosin genes during late embryos maturation. Moreover, the basal expression of oleosins in early maturation embryos is accompanied by the increase of histone H3 acetylation and decrease of histone H3K9me2.
Collapse
Affiliation(s)
- Chenlong Li
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Cooperation between the INO80 complex and histone chaperones determines adaptation of stress gene transcription in the yeast Saccharomyces cerevisiae. Mol Cell Biol 2009; 29:4994-5007. [PMID: 19620280 DOI: 10.1128/mcb.01858-08] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In yeast, environmental stresses provoke sudden and dramatic increases in gene expression at stress-inducible loci. Stress gene transcription is accompanied by the transient eviction of histones from the promoter and the transcribed regions of these genes. We found that mutants defective in subunits of the INO80 complex, as well as in several histone chaperone systems, exhibit extended expression windows that can be correlated with a distinct delay in histone redeposition during adaptation. Surprisingly, Ino80 became associated with the ORFs of stress genes in a stress-specific way, suggesting a direct function in the repression during adaptation. This recruitment required elongation by RNA polymerase (Pol) II but none of the histone modifications that are usually associated with active transcription, such as H3 K4/K36 methylation. A mutant lacking the Asf1-associated H3K56 acetyltransferase Rtt109 or Asf1 itself also showed enhanced stress-induced transcript levels. Genetic data, however, suggest that Asf1 and Rtt109 function in parallel with INO80 to restore histone homeostasis, whereas Spt6 seems to have a function that overlaps that of the chromatin remodeler. Thus, chromatin remodeling by INO80 in cooperation with Spt6 determines the shape of the expression profile under acute stress conditions, possibly by an elongation-dependent mechanism.
Collapse
|
131
|
FACT and Asf1 regulate nucleosome dynamics and coactivator binding at the HO promoter. Mol Cell 2009; 34:405-15. [PMID: 19481521 DOI: 10.1016/j.molcel.2009.04.010] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 02/10/2009] [Accepted: 04/09/2009] [Indexed: 11/23/2022]
Abstract
Transcriptional activators and coactivators overcome repression by chromatin, but regulation of chromatin disassembly and coactivator binding to promoters is poorly understood. Activation of the yeast HO gene follows the sequential binding of both sequence-specific DNA-binding proteins and coactivators during the cell cycle. Here, we show that the nucleosome disassembly occurs in waves both along the length of the promoter and during the cell cycle. Different chromatin modifiers are required for chromatin disassembly at different regions of the promoter, with Swi/Snf, the FACT chromatin reorganizer, and the Asf1 histone chaperone each required for nucleosome eviction at distinct promoter regions. FACT and Asf1 both bind to upstream elements of the HO promoter well before the gene is transcribed. The Swi/Snf, SAGA, and Mediator coactivators bind first to the far upstream promoter region and subsequently to a promoter proximal region, and FACT and Asf1 are both required for this coactivator re-recruitment.
Collapse
|
132
|
Manohar M, Mooney AM, North JA, Nakkula RJ, Picking JW, Edon A, Fishel R, Poirier MG, Ottesen JJ. Acetylation of histone H3 at the nucleosome dyad alters DNA-histone binding. J Biol Chem 2009; 284:23312-21. [PMID: 19520870 DOI: 10.1074/jbc.m109.003202] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Histone post-translational modifications are essential for regulating and facilitating biological processes such as RNA transcription and DNA repair. Fifteen modifications are located in the DNA-histone dyad interface and include the acetylation of H3-K115 (H3-K115Ac) and H3-K122 (H3-K122Ac), but the functional consequences of these modifications are unknown. We have prepared semisynthetic histone H3 acetylated at Lys-115 and/or Lys-122 by expressed protein ligation and incorporated them into single nucleosomes. Competitive reconstitution analysis demonstrated that the acetylation of H3-K115 and H3-K122 reduces the free energy of histone octamer binding. Restriction enzyme kinetic analysis suggests that these histone modifications do not alter DNA accessibility near the sites of modification. However, acetylation of H3-K122 increases the rate of thermal repositioning. Remarkably, Lys --> Gln substitution mutations, which are used to mimic Lys acetylation, do not fully duplicate the effects of the H3-K115Ac or H3-K122Ac modifications. Our results are consistent with the conclusion that acetylation in the dyad interface reduces DNA-histone interaction(s), which may facilitate nucleosome repositioning and/or assembly/disassembly.
Collapse
Affiliation(s)
- Mridula Manohar
- Department of Biochemistry, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
133
|
An rtt109-independent role for vps75 in transcription-associated nucleosome dynamics. Mol Cell Biol 2009; 29:4220-34. [PMID: 19470761 DOI: 10.1128/mcb.01882-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The histone chaperone Vps75 forms a complex with, and stimulates the activity of, the histone acetyltransferase Rtt109. However, Vps75 can also be isolated on its own and might therefore possess Rtt109-independent functions. Analysis of epistatic miniarray profiles showed that VPS75 genetically interacts with factors involved in transcription regulation whereas RTT109 clusters with genes linked to DNA replication/repair. Additional genetic and biochemical experiments revealed a close relationship between Vps75 and RNA polymerase II. Furthermore, Vps75 is recruited to activated genes in an Rtt109-independent manner, and its genome-wide association with genes correlates with transcription rate. Expression microarray analysis identified a number of genes whose normal expression depends on VPS75. Interestingly, histone H2B dynamics at some of these genes are consistent with a role for Vps75 in histone H2A/H2B eviction/deposition during transcription. Indeed, reconstitution of nucleosome disassembly using the ATP-dependent chromatin remodeler Rsc and Vps75 revealed that these proteins can cooperate to remove H2A/H2B dimers from nucleosomes. These results indicate a role for Vps75 in nucleosome dynamics during transcription, and importantly, this function appears to be largely independent of Rtt109.
Collapse
|
134
|
Ardehali MB, Yao J, Adelman K, Fuda NJ, Petesch SJ, Webb WW, Lis JT. Spt6 enhances the elongation rate of RNA polymerase II in vivo. EMBO J 2009; 28:1067-77. [PMID: 19279664 PMCID: PMC2683705 DOI: 10.1038/emboj.2009.56] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 02/06/2009] [Indexed: 12/20/2022] Open
Abstract
Several eukaryotic transcription factors have been shown to modulate the elongation rate of RNA polymerase II (Pol II) on naked or chromatin-reconstituted templates in vitro. However, none of the tested factors have been shown to directly affect the elongation rate of Pol II in vivo. We performed a directed RNAi knock-down (KD) screen targeting 141 candidate transcription factors and identified multiple factors, including Spt6, that alter the induced Hsp70 transcript levels in Drosophila S2 cells. Spt6 is known to interact with both nucleosome structure and Pol II, and it has properties consistent with having a role in elongation. Here, ChIP assays of the first wave of Pol II after heat shock in S2 cells show that KD of Spt6 reduces the rate of Pol II elongation. Also, fluorescence recovery after photobleaching assays of GFP-Pol II in salivary gland cells show that this Spt6-dependent effect on elongation rate persists during steady-state-induced transcription, reducing the elongation rate from approximately 1100 to 500 bp/min. Furthermore, RNAi depletion of Spt6 reveals its broad requirement during different stages of development.
Collapse
Affiliation(s)
- M Behfar Ardehali
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Jie Yao
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - Karen Adelman
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Nicholas J Fuda
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Steven J Petesch
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Watt W Webb
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
135
|
Shen HM, Poirier MG, Allen MJ, North J, Lal R, Widom J, Storb U. The activation-induced cytidine deaminase (AID) efficiently targets DNA in nucleosomes but only during transcription. ACTA ACUST UNITED AC 2009; 206:1057-71. [PMID: 19380635 PMCID: PMC2715043 DOI: 10.1084/jem.20082678] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The activation-induced cytidine deaminase (AID) initiates somatic hypermutation, class-switch recombination, and gene conversion of immunoglobulin genes. In vitro, AID has been shown to target single-stranded DNA, relaxed double-stranded DNA, when transcribed, or supercoiled DNA. To simulate the in vivo situation more closely, we have introduced two copies of a nucleosome positioning sequence, MP2, into a supercoiled AID target plasmid to determine where around the positioned nucleosomes (in the vicinity of an ampicillin resistance gene) cytidine deaminations occur in the absence or presence of transcription. We found that without transcription nucleosomes prevented cytidine deamination by AID. However, with transcription AID readily accessed DNA in nucleosomes on both DNA strands. The experiments also showed that AID targeting any DNA molecule was the limiting step, and they support the conclusion that once targeted to DNA, AID acts processively in naked DNA and DNA organized within transcribed nucleosomes.
Collapse
Affiliation(s)
- Hong Ming Shen
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
136
|
Zlatanova J, Bishop TC, Victor JM, Jackson V, van Holde K. The nucleosome family: dynamic and growing. Structure 2009; 17:160-71. [PMID: 19217387 DOI: 10.1016/j.str.2008.12.016] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 12/18/2008] [Accepted: 12/31/2008] [Indexed: 01/27/2023]
Abstract
Ever since the discovery of the nucleosome in 1974, scientists have stumbled upon discrete particles in which DNA is wrapped around histone complexes of different stoichiometries: octasomes, hexasomes, tetrasomes, "split" half-nucleosomes, and, recently, bona fide hemisomes. Do all these particles exist in vivo? Under what conditions? What is their physiological significance in the complex DNA transactions in the eukaryotic nucleus? What are their dynamics? This review summarizes research spanning more than three decades and provides a new meaning to the term "nucleosome." The nucleosome can no longer be viewed as a single static entity: rather, it is a family of particles differing in their structural and dynamic properties, leading to different functionalities.
Collapse
Affiliation(s)
- Jordanka Zlatanova
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA.
| | | | | | | | | |
Collapse
|
137
|
Evidence for gene-specific rather than transcription rate-dependent histone H3 exchange in yeast coding regions. PLoS Comput Biol 2009; 5:e1000282. [PMID: 19197343 PMCID: PMC2625437 DOI: 10.1371/journal.pcbi.1000282] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Accepted: 12/17/2008] [Indexed: 01/14/2023] Open
Abstract
In eukaryotic organisms, histones are dynamically exchanged independently of DNA replication. Recent reports show that different coding regions differ in their amount of replication-independent histone H3 exchange. The current paradigm is that this histone exchange variability among coding regions is a consequence of transcription rate. Here we put forward the idea that this variability might be also modulated in a gene-specific manner independently of transcription rate. To that end, we study transcription rate–independent replication-independent coding region histone H3 exchange. We term such events relative exchange. Our genome-wide analysis shows conclusively that in yeast, relative exchange is a novel consistent feature of coding regions. Outside of replication, each coding region has a characteristic pattern of histone H3 exchange that is either higher or lower than what was expected by its RNAPII transcription rate alone. Histone H3 exchange in coding regions might be a way to add or remove certain histone modifications that are important for transcription elongation. Therefore, our results that gene-specific coding region histone H3 exchange is decoupled from transcription rate might hint at a new epigenetic mechanism of transcription regulation. During nucleosome disassembly and reassembly, evicted histones are exchanged with newly synthesized histones. Histone exchange occurs in several DNA metabolism processes, including replication, transcription, and repair. Recent reports from several labs show that replication-independent histone H3 exchange in yeast coding regions is tightly correlated with transcription rate. We have computationally shown that histone exchange variability among genes is not only a consequence of transcription rate. Instead, each coding region has a characteristic amount of replication-independent histone exchange, even when excluding the confounding effect of transcription rate. We show that this transcription rate–independent exchange, referred to as relative exchange, is a reproducible and consistent feature of the entire coding region and cannot be explained by regional effects. Next, we characterize the relations between relative exchange and a variety of histone H3 modifications, as well as the histone chaperone Asf1. Taken together, our analysis shows that gene-specific replication-independent histone H3 exchange in coding regions is mediated independently of transcription rate, thus constituting a new mechanism in epigenetic transcription regulation.
Collapse
|
138
|
Groth A. Replicating chromatin: a tale of histonesThis paper is one of a selection of papers published in this Special Issue, entitled CSBMCB’s 51st Annual Meeting – Epigenetics and Chromatin Dynamics, and has undergone the Journal’s usual peer review process. Biochem Cell Biol 2009; 87:51-63. [DOI: 10.1139/o08-102] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chromatin serves structural and functional roles crucial for genome stability and correct gene expression. This organization must be reproduced on daughter strands during replication to maintain proper overlay of epigenetic fabric onto genetic sequence. Nucleosomes constitute the structural framework of chromatin and carry information to specify higher-order organization and gene expression. When replication forks traverse the chromosomes, nucleosomes are transiently disrupted, allowing the replication machinery to gain access to DNA. Histone recycling, together with new deposition, ensures reassembly on nascent DNA strands. The aim of this review is to discuss how histones — new and old — are handled at the replication fork, highlighting new mechanistic insights and revisiting old paradigms.
Collapse
Affiliation(s)
- Anja Groth
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark (e-mail: )
| |
Collapse
|
139
|
Chromatin- and transcription-related factors repress transcription from within coding regions throughout the Saccharomyces cerevisiae genome. PLoS Biol 2009; 6:e277. [PMID: 18998772 PMCID: PMC2581627 DOI: 10.1371/journal.pbio.0060277] [Citation(s) in RCA: 243] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 09/30/2008] [Indexed: 01/14/2023] Open
Abstract
Previous studies in Saccharomyces cerevisiae have demonstrated that cryptic promoters within coding regions activate transcription in particular mutants. We have performed a comprehensive analysis of cryptic transcription in order to identify factors that normally repress cryptic promoters, to determine the amount of cryptic transcription genome-wide, and to study the potential for expression of genetic information by cryptic transcription. Our results show that a large number of factors that control chromatin structure and transcription are required to repress cryptic transcription from at least 1,000 locations across the S. cerevisiae genome. Two results suggest that some cryptic transcripts are translated. First, as expected, many cryptic transcripts contain an ATG and an open reading frame of at least 100 codons. Second, several cryptic transcripts are translated into proteins. Furthermore, a subset of cryptic transcripts tested is transiently induced in wild-type cells following a nutritional shift, suggesting a possible physiological role in response to a change in growth conditions. Taken together, our results demonstrate that, during normal growth, the global integrity of gene expression is maintained by a wide range of factors and suggest that, under altered genetic or physiological conditions, the expression of alternative genetic information may occur.
Collapse
|
140
|
Santos-Rosa H, Kirmizis A, Nelson C, Bartke T, Saksouk N, Cote J, Kouzarides T. Histone H3 tail clipping regulates gene expression. Nat Struct Mol Biol 2009; 16:17-22. [PMID: 19079264 PMCID: PMC3350865 DOI: 10.1038/nsmb.1534] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2008] [Accepted: 11/20/2008] [Indexed: 11/19/2022]
Abstract
Induction of gene expression in yeast and human cells involves changes in the histone modifications associated with promoters. Here we identify a histone H3 endopeptidase activity in Saccharomyces cerevisiae that may regulate these events. The endopeptidase cleaves H3 after Ala21, generating a histone that lacks the first 21 residues and shows a preference for H3 tails carrying repressive modifications. In vivo, the H3 N terminus is clipped, specifically within the promoters of genes following the induction of transcription. H3 clipping precedes the process of histone eviction seen when genes become fully active. A truncated H3 product is not generated in yeast carrying a mutation of the endopeptidase recognition site (H3 Q19A L20A) and gene induction is defective in these cells. These findings identify clipping of H3 tails as a previously uncharacterized modification of promoter-bound nucleosomes, which may result in the localized clearing of repressive signals during the induction of gene expression.
Collapse
Affiliation(s)
- Helena Santos-Rosa
- Gurdon Institute and Department of Pathology, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Antonis Kirmizis
- Gurdon Institute and Department of Pathology, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Christopher Nelson
- Gurdon Institute and Department of Pathology, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Till Bartke
- Gurdon Institute and Department of Pathology, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Nehme Saksouk
- Laval University Cancer Research Center, HÙtel-Dieu de QuÈbec (CHUQ), 9 McMahon Street, Quebec City, Qc G1R-2J6, Canada
| | - Jacques Cote
- Laval University Cancer Research Center, HÙtel-Dieu de QuÈbec (CHUQ), 9 McMahon Street, Quebec City, Qc G1R-2J6, Canada
| | - Tony Kouzarides
- Gurdon Institute and Department of Pathology, Tennis Court Road, Cambridge CB2 1QN, UK
| |
Collapse
|
141
|
Abarrategui I, Krangel MS. Germline transcription: a key regulator of accessibility and recombination. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 650:93-102. [PMID: 19731804 DOI: 10.1007/978-1-4419-0296-2_8] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The developmental control of V(D)J recombination is imposed at the level of chromatin accessibility of recombination signal sequences (RSSs) to the recombinase machinery. Cis-acting transcriptional regulatory elements such as promoters and enhancers play a central role in the control of accessibility in vivo. However, the molecular mechanisms by which these elements influence accessibility are still under investigation. Although accessibility for V(D)J recombination is usually accompanied by germline transcription at antigen receptor loci, the functional significance of this transcription in directing RSS accessibility has been elusive. In this chapter, we review past studies outlining the complex relationship between V(D)J recombination and transcription as well as our current understanding on how chromatin structure is regulated during gene expression. We then summarize recent work that directly addresses the functional role of transcription in V(D)J recombination.
Collapse
Affiliation(s)
- Iratxe Abarrategui
- Centre for Epigenetics, Biotech Research and Innovation Centre, Copenhagen, Denmark
| | | |
Collapse
|
142
|
Kaplan T, Liu CL, Erkmann JA, Holik J, Grunstein M, Kaufman PD, Friedman N, Rando OJ. Cell cycle- and chaperone-mediated regulation of H3K56ac incorporation in yeast. PLoS Genet 2008; 4:e1000270. [PMID: 19023413 PMCID: PMC2581598 DOI: 10.1371/journal.pgen.1000270] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 10/17/2008] [Indexed: 11/23/2022] Open
Abstract
Acetylation of histone H3 lysine 56 is a covalent modification best known as a mark of newly replicated chromatin, but it has also been linked to replication-independent histone replacement. Here, we measured H3K56ac levels at single-nucleosome resolution in asynchronously growing yeast cultures, as well as in yeast proceeding synchronously through the cell cycle. We developed a quantitative model of H3K56ac kinetics, which shows that H3K56ac is largely explained by the genomic replication timing and the turnover rate of each nucleosome, suggesting that cell cycle profiles of H3K56ac should reveal most first-time nucleosome incorporation events. However, since the deacetylases Hst3/4 prevent use of H3K56ac as a marker for histone deposition during M phase, we also directly measured M phase histone replacement rates. We report a global decrease in turnover rates during M phase and a further specific decrease in turnover at several early origins of replication, which switch from rapidly replaced in G1 phase to stably bound during M phase. Finally, by measuring H3 replacement in yeast deleted for the H3K56 acetyltransferase Rtt109 and its two co-chaperones Asf1 and Vps75, we find evidence that Rtt109 and Asf1 preferentially enhance histone replacement at rapidly replaced nucleosomes, whereas Vps75 appears to inhibit histone turnover at those loci. These results provide a broad perspective on histone replacement/incorporation throughout the cell cycle and suggest that H3K56 acetylation provides a positive-feedback loop by which replacement of a nucleosome enhances subsequent replacement at the same location.
Collapse
Affiliation(s)
- Tommy Kaplan
- School of Computer Science and Engineering, The Hebrew University, Jerusalem, Israel
- Department of Molecular Genetics and Biotechnology, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Chih Long Liu
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Judith A. Erkmann
- Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - John Holik
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Michael Grunstein
- Department of Biological Chemistry, Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, Los Angeles, California, United States of America
| | - Paul D. Kaufman
- Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Nir Friedman
- School of Computer Science and Engineering, The Hebrew University, Jerusalem, Israel
| | - Oliver J. Rando
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
143
|
Imbeault D, Gamar L, Rufiange A, Paquet E, Nourani A. The Rtt106 histone chaperone is functionally linked to transcription elongation and is involved in the regulation of spurious transcription from cryptic promoters in yeast. J Biol Chem 2008; 283:27350-27354. [PMID: 18708354 DOI: 10.1074/jbc.c800147200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rtt106 is a histone chaperone that has been suggested to play a role in heterochromatin-mediated silencing in Saccharomyces cerevisiae. It interacts physically and functionally with the chromatin assembly factor-1 (CAF-1), which is associated with replication-coupled nucleosomal deposition. In this work, we have taken several approaches to study Rtt106 in greater detail and have identified a previously unknown function of Rtt106. We found genetic interactions between rtt106Delta and mutations in genes encoding transcription elongation factors, including Spt6, TFIIS, and members of the PAF and yeast DSIF complexes. In addition, chromatin immunoprecipitation analysis indicates that Rtt106 is associated with transcribed regions of active genes. Furthermore, our results show that Rtt106 is required for the repression of transcription from a cryptic promoter within a coding region. This observation strongly suggests that Rtt106 is involved in the regulation of chromatin structure of transcribed regions. Finally, we provide evidence that Rtt106 plays a role in regulating the levels of histone H3 transcription-coupled deposition over transcribed regions. Taken together, our results indicate a direct link for Rtt106 with transcription elongation and the chromatin dynamics associated with RNA polymerase II passage.
Collapse
Affiliation(s)
- David Imbeault
- Centre de recherche en cancérologie de l'Université Laval, L'Hôtel-Dieu de Québec (CHUQ), Québec G1R2J6, Québec province, Canada
| | - Lynda Gamar
- Centre de recherche en cancérologie de l'Université Laval, L'Hôtel-Dieu de Québec (CHUQ), Québec G1R2J6, Québec province, Canada
| | - Anne Rufiange
- Centre de recherche en cancérologie de l'Université Laval, L'Hôtel-Dieu de Québec (CHUQ), Québec G1R2J6, Québec province, Canada
| | - Eric Paquet
- Centre de recherche en cancérologie de l'Université Laval, L'Hôtel-Dieu de Québec (CHUQ), Québec G1R2J6, Québec province, Canada
| | - Amine Nourani
- Centre de recherche en cancérologie de l'Université Laval, L'Hôtel-Dieu de Québec (CHUQ), Québec G1R2J6, Québec province, Canada.
| |
Collapse
|
144
|
Fleming AB, Kao CF, Hillyer C, Pikaart M, Osley MA. H2B ubiquitylation plays a role in nucleosome dynamics during transcription elongation. Mol Cell 2008; 31:57-66. [PMID: 18614047 DOI: 10.1016/j.molcel.2008.04.025] [Citation(s) in RCA: 277] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 01/15/2008] [Accepted: 04/25/2008] [Indexed: 10/21/2022]
Abstract
The monoubiquitylation of histone H2B has been associated with transcription initiation and elongation, but its role in these processes is poorly understood. We report that H2B ubiquitylation is required for efficient reassembly of nucleosomes during RNA polymerase II (Pol II)-mediated transcription elongation in yeast. This role is carried out in cooperation with the histone chaperone Spt16, and in the absence of H2B ubiquitylation and functional Spt16, chromatin structure is not properly restored in the wake of elongating Pol II. Moreover, H2B ubiquitylation and Spt16 play a role in each other's regulation. H2B ubiquitylation is required for the stable accumulation of Spt16 at the GAL1 coding region, and Spt16 regulates the formation of ubiquitylated H2B both globally and at the GAL1 gene. These data provide a mechanism linking H2B ubiquitylation to Spt16 in the regulation of nucleosome dynamics during transcription elongation.
Collapse
Affiliation(s)
- Alastair B Fleming
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | | | | | | | |
Collapse
|
145
|
Chen CC, Carson JJ, Feser J, Tamburini B, Zabaronick S, Linger J, Tyler JK. Acetylated lysine 56 on histone H3 drives chromatin assembly after repair and signals for the completion of repair. Cell 2008; 134:231-43. [PMID: 18662539 PMCID: PMC2610811 DOI: 10.1016/j.cell.2008.06.035] [Citation(s) in RCA: 329] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Revised: 05/02/2008] [Accepted: 06/16/2008] [Indexed: 11/28/2022]
Abstract
DNA damage causes checkpoint activation leading to cell cycle arrest and repair, during which the chromatin structure is disrupted. The mechanisms whereby chromatin structure and cell cycle progression are restored after DNA repair are largely unknown. We show that chromatin reassembly following double-strand break (DSB) repair requires the histone chaperone Asf1 and that absence of Asf1 causes cell death, as cells are unable to recover from the DNA damage checkpoint. We find that Asf1 contributes toward chromatin assembly after DSB repair by promoting acetylation of free histone H3 on lysine 56 (K56) via the histone acetyl transferase Rtt109. Mimicking acetylation of K56 bypasses the requirement for Asf1 for chromatin reassembly and checkpoint recovery, whereas mutations that prevent K56 acetylation block chromatin reassembly after repair. These results indicate that restoration of the chromatin following DSB repair is driven by acetylated H3 K56 and that this is a signal for the completion of repair.
Collapse
Affiliation(s)
- Chin-Chuan Chen
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine
| | - Joshua J. Carson
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine
| | - Jason Feser
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine
| | - Beth Tamburini
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine
| | - Susan Zabaronick
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine
| | - Jeffrey Linger
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine
| | - Jessica K. Tyler
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine
| |
Collapse
|
146
|
Seol JH, Kim HJ, Yoo JK, Park HJ, Cho EJ. Analysis of Saccharomyces cerevisiae histone H3 mutants reveals the role of the alphaN helix in nucleosome function. Biochem Biophys Res Commun 2008; 374:543-8. [PMID: 18657516 DOI: 10.1016/j.bbrc.2008.07.084] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 07/16/2008] [Indexed: 10/21/2022]
Abstract
To understand the role of histone H3 sub-domains in chromatin function, 35 histone H3 tandem alanine mutants were generated and tested for their viability and sensitivity to DNA damaging agents. Among 13 non-viable H3 mutants, 6 were mapped around the alphaN helix and preceding tail region. Mutants with individual alanine substitutions in this region were viable but developed multiple sensitivities to DNA damaging agents. The only viable triple mutant, REI49-50A, in the alphaN helix region could not grow when combined with histone chaperone mutations, such as asf1Delta, cac1Delta, or hir1Delta, suggesting that this particular region is important when the histone assembly/disassembly pathway is compromised. In addition, further analysis showed that T45, E50, or F54 of the alphaN helix genetically interacted with a histone chaperone (Asf1) and transcription elongation factors (Paf1 and Hpr1). These results suggest a specific role of the H3 alphaN helix in histone dynamics mediated by histone chaperones, which might be important during transcription elongation.
Collapse
Affiliation(s)
- Ja-Hwan Seol
- College of Pharmacy, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon, Gyeonggi-do 440-746, Republic of Korea
| | | | | | | | | |
Collapse
|
147
|
Petesch SJ, Lis JT. Rapid, transcription-independent loss of nucleosomes over a large chromatin domain at Hsp70 loci. Cell 2008; 134:74-84. [PMID: 18614012 PMCID: PMC2527511 DOI: 10.1016/j.cell.2008.05.029] [Citation(s) in RCA: 260] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 04/13/2008] [Accepted: 05/19/2008] [Indexed: 11/26/2022]
Abstract
To efficiently transcribe genes, RNA Polymerase II (Pol II) must overcome barriers imposed by nucleosomes and higher-order chromatin structure. Many genes, including Drosophila melanogaster Hsp70, undergo changes in chromatin structure upon activation. To characterize these changes, we mapped the nucleosome landscape of Hsp70 after an instantaneous heat shock at high spatial and temporal resolution. Surprisingly, we find an initial disruption of nucleosomes across the entire gene within 30 s after activation, faster than the rate of Pol II transcription, followed by a second further disruption within 2 min. This initial change occurs independently of Pol II transcription. Furthermore, the rapid loss of nucleosomes extends beyond Hsp70 and halts at the scs and scs' insulating elements. An RNAi screen of 28 transcription and chromatin-related factors reveals that depletion of heat shock factor, GAGA Factor, or Poly(ADP)-Ribose Polymerase or its activity abolishes the loss of nucleosomes upon Hsp70 activation.
Collapse
Affiliation(s)
- Steven J. Petesch
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853 USA
| | - John T. Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853 USA
| |
Collapse
|
148
|
Acetylation in the globular core of histone H3 on lysine-56 promotes chromatin disassembly during transcriptional activation. Proc Natl Acad Sci U S A 2008; 105:9000-5. [PMID: 18577595 DOI: 10.1073/pnas.0800057105] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Promoter chromatin disassembly is a widely used mechanism to regulate eukaryotic transcriptional induction. Delaying histone H3/H4 removal from the yeast PHO5 promoter also leads to delayed removal of histones H2A/H2B, suggesting a constant equilibrium of assembly and disassembly of H2A/H2B, whereas H3/H4 disassembly is the highly regulated step. Toward understanding how H3/H4 disassembly is regulated, we observe a drastic increase in the levels of histone H3 acetylated on lysine-56 (K56ac) during promoter chromatin disassembly. Indeed, promoter chromatin disassembly is driven by Rtt109 and Asf1-dependent acetylation of H3 K56. Conversely, promoter chromatin reassembly during transcriptional repression is accompanied by decreased levels of histone H3 acetylated on lysine-56, and a mutation that prevents K56 acetylation increases the rate of transcriptional repression. As such, H3 K56 acetylation drives chromatin toward the disassembled state during transcriptional activation, whereas loss of H3 K56 acetylation drives the chromatin toward the assembled state.
Collapse
|
149
|
Riefler GM, Dent SYR, Schumacher JM. Tousled-mediated activation of Aurora B kinase does not require Tousled kinase activity in vivo. J Biol Chem 2008; 283:12763-8. [PMID: 18334486 PMCID: PMC2442327 DOI: 10.1074/jbc.m709034200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Revised: 03/06/2008] [Indexed: 01/11/2023] Open
Abstract
The Aurora kinases comprise an evolutionarily conserved protein family that is required for a variety of cell division events, including spindle assembly, chromosome segregation, and cytokinesis. Emerging evidence suggests that once phosphorylated, a subset of Aurora substrates can enhance Aurora kinase activity. Our previous work revealed that the Caenorhabditis elegans Tousled-like kinase TLK-1 is a substrate and activator of the AIR-2 Aurora B kinase in vitro and that partial loss of TLK-1 enhances the mitotic defects of an air-2 mutant. However, given that these experiments were performed in vitro and with partial loss of function alleles in vivo, a necessary step forward in our understanding of the relationship between the Aurora B and Tousled kinases is to prove that TLK-1 expression is sufficient for Aurora B activation in vivo. Here, we report that heterologous expression of wild-type and kinase-inactive forms of TLK-1 suppresses the lethality of temperature-sensitive mutants of the yeast Aurora B kinase Ipl1. Moreover, kinase-dead TLK-1 associates with and augments the activity of Ipl1 in vivo. Together, these results provide critical and compelling evidence that Tousled has a bona fide kinase-independent role in the activation of Aurora B kinases in vivo.
Collapse
Affiliation(s)
- Gary M Riefler
- Department of Molecular Genetics, M.D Anderson Cancer Center, University of Texas, Houston, Texas 77030, USA
| | | | | |
Collapse
|
150
|
Jensen MM, Christensen MS, Bonven B, Jensen TH. Requirements for chromatin reassembly during transcriptional downregulation of a heat shock gene in Saccharomyces cerevisiae. FEBS J 2008; 275:2956-64. [DOI: 10.1111/j.1742-4658.2008.06451.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|