101
|
Structural basis of cargo recognition by the myosin-X MyTH4-FERM domain. EMBO J 2011; 30:2734-47. [PMID: 21642953 PMCID: PMC3155308 DOI: 10.1038/emboj.2011.177] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 05/06/2011] [Indexed: 11/26/2022] Open
Abstract
Myosin-X is implicated in spindle assembly and filopodial transport. A detailed structure function analysis of the myosin-X tail domain in association with a cargo involved in axonal pathfinding, the netrin receptor DCC and competitive binding to integrin β5 and microtubules is presented. Myosin-X is an important unconventional myosin that is critical for cargo transportation to filopodia tips and is also utilized in spindle assembly by interacting with microtubules. We present a series of structural and biochemical studies of the myosin-X tail domain cassette, consisting of myosin tail homology 4 (MyTH4) and FERM domains in complex with its specific cargo, a netrin receptor DCC (deleted in colorectal cancer). The MyTH4 domain is folded into a helical VHS-like structure and is associated with the FERM domain. We found an unexpected binding mode of the DCC peptide to the subdomain C groove of the FERM domain, which is distinct from previously reported β–β associations found in radixin–adhesion molecule complexes. We also revealed direct interactions between the MyTH4–FERM cassette and tubulin C-terminal acidic tails, and identified a positively charged patch of the MyTH4 domain, which is involved in tubulin binding. We demonstrated that both DCC and integrin bindings interfere with microtubule binding and that DCC binding interferes with integrin binding. Our results provide the molecular basis by which myosin-X facilitates alternative dual binding to cargos and microtubules.
Collapse
|
102
|
Hanson RM, Kohler D, Braun SG. Quaternion-based definition of protein secondary structure straightness and its relationship to Ramachandran angles. Proteins 2011; 79:2172-80. [DOI: 10.1002/prot.23037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 02/18/2011] [Accepted: 03/13/2011] [Indexed: 11/08/2022]
|
103
|
Schuster M, Kilaru S, Ashwin P, Lin C, Severs NJ, Steinberg G. Controlled and stochastic retention concentrates dynein at microtubule ends to keep endosomes on track. EMBO J 2011; 30:652-64. [PMID: 21278707 PMCID: PMC3041956 DOI: 10.1038/emboj.2010.360] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 12/21/2010] [Indexed: 02/08/2023] Open
Abstract
Bidirectional transport of early endosomes (EEs) involves microtubules (MTs) and associated motors. In fungi, the dynein/dynactin motor complex concentrates in a comet-like accumulation at MT plus-ends to receive kinesin-3-delivered EEs for retrograde transport. Here, we analyse the loading of endosomes onto dynein by combining live imaging of photoactivated endosomes and fluorescent dynein with mathematical modelling. Using nuclear pores as an internal calibration standard, we show that the dynein comet consists of ∼55 dynein motors. About half of the motors are slowly turned over (T(1/2): ∼98 s) and they are kept at the plus-ends by an active retention mechanism involving an interaction between dynactin and EB1. The other half is more dynamic (T(1/2): ∼10 s) and mathematical modelling suggests that they concentrate at MT ends because of stochastic motor behaviour. When the active retention is impaired by inhibitory peptides, dynein numbers in the comet are reduced to half and ∼10% of the EEs fall off the MT plus-ends. Thus, a combination of stochastic accumulation and active retention forms the dynein comet to ensure capturing of arriving organelles by retrograde motors.
Collapse
Affiliation(s)
| | | | - Peter Ashwin
- Mathematics Research Institute, University of Exeter, Exeter, UK
| | - Congping Lin
- School of Biosciences, University of Exeter, Exeter, UK
- Mathematics Research Institute, University of Exeter, Exeter, UK
| | - Nicholas J Severs
- National Heart and Lung Institute, Imperial College London, London, UK
| | | |
Collapse
|
104
|
Affiliation(s)
- Anna Akhmanova
- Department of Cell Biology, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
| | | |
Collapse
|
105
|
Yu KL, Keijzer N, Hoogenraad CC, Akhmanova A. Isolation of novel +TIPs and their binding partners using affinity purification techniques. Methods Mol Biol 2011; 777:293-316. [PMID: 21773937 DOI: 10.1007/978-1-61779-252-6_21] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Microtubule organization and dynamics are controlled by a large set of cellular factors. An important group of microtubule regulators is microtubule plus-end-tracking proteins (+TIPs), which accumulate specifically at the growing microtubule ends, affect different phases of dynamic instability, and link microtubules to various cellular structures. +TIPs include a very diverse set of proteins with widely different structural properties. One of the most conserved and ubiquitous +TIP families are end-binding (EB) proteins, which can track growing microtubule ends autonomously in the absence of any other factors. In contrast, the majority of other known +TIPs cannot recognize the growing microtubule plus ends on their own; instead, they "hitchhike" to the plus ends by interacting with one of the members of the EB family. Therefore, the association with EBs and the ability to track growing microtubule ends are tightly linked, and binding to the EBs can be used to identify new +TIPs. In this chapter, we describe two affinity purification techniques, glutathione S-transferase and biotinylation tag-based pull-down assays that proved to be very useful for the identification of new EB-interacting +TIPs and their binding partners by mass spectrometry. We also discuss cytological techniques that can be applied to confirm plus-end localization of newly identified proteins.
Collapse
Affiliation(s)
- Ka Lou Yu
- Department of Cell Biology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
106
|
Aylett CH, Löwe J, Amos LA. New Insights into the Mechanisms of Cytomotive Actin and Tubulin Filaments. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 292:1-71. [DOI: 10.1016/b978-0-12-386033-0.00001-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
107
|
Galjart N. Plus-end-tracking proteins and their interactions at microtubule ends. Curr Biol 2010; 20:R528-37. [PMID: 20620909 DOI: 10.1016/j.cub.2010.05.022] [Citation(s) in RCA: 173] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Microtubules are cytoskeletal elements that are essential for a large number of intracellular processes, including mitosis, cell differentiation and migration, and vesicle transport. In many cells, the microtubule network is organized in a radial manner, with one end of a microtubule (the minus end) embedded near the nucleus and the other end (the plus end) exploring cytoplasmic space, switching between episodes of growth and shrinkage. Mammalian plus-end-tracking proteins (+TIPs) localize to the ends of growing microtubules and regulate both the dynamic behavior of microtubules as well as the interactions of microtubules with other cellular components. Because of these crucial roles, +TIPs and the mechanisms underlying their association with microtubule ends have been intensively investigated. Results indicate that +TIPs reach microtubule ends by motor-mediated transport or diffusion. Individual +TIP molecules exchange rapidly on microtubule end-binding sites that are formed during microtubule polymerization and that have a slower turnover. Most +TIPs associate with the end-binding (EB) proteins, and appear to require these 'core' +TIPs for localization at microtubule ends. Accumulation of +TIPs may also involve structural features of the microtubule end and interactions with other +TIPs. This complexity makes it difficult to assign discrete roles to specific +TIPs. Given that +TIPs concentrate at microtubule ends and that each +TIP binds in a conformationally distinct manner, I propose that the ends of growing microtubules are 'nano-platforms' for productive interactions between selected proteins and that these interactions might persist and be functional elsewhere in the cytoplasm than at the microtubule end at which they originated.
Collapse
Affiliation(s)
- Niels Galjart
- Department of Cell Biology and Genetics, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands.
| |
Collapse
|
108
|
Ahmed S, Sun S, Siglin AE, Polenova T, Williams JC. Disease-associated mutations in the p150(Glued) subunit destabilize the CAP-gly domain. Biochemistry 2010; 49:5083-5. [PMID: 20518521 PMCID: PMC2938955 DOI: 10.1021/bi100235z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Point mutations within the CAP-gly domain of the p150(Glued) subunit of the dynactin complex have been identified in patients with distal spinal bulbar muscular atrophy (dSBMA) and Perry's syndrome. Herein, we show by CD and NMR experiments that each mutated CAP-gly domain is folded but less stable than the wild-type (WT) domain. We also demonstrate that the domains harboring these mutations bind to microtubules but fail to bind to EB1. These data indicate that these disease-associated, point mutations affect the stability of this domain and inhibit their interaction with EB1 but do not inhibit their interaction with microtubules.
Collapse
Affiliation(s)
- Shubbir Ahmed
- Department of Molecular Medicine, Beckman Research Institute at City of Hope
| | - Shangjin Sun
- Department of Chemistry and Biochemistry, University of Delaware
| | - Amanda E. Siglin
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware
| | - John C. Williams
- Department of Molecular Medicine, Beckman Research Institute at City of Hope
| |
Collapse
|
109
|
Skube SB, Chaverri JM, Goodson HV. Effect of GFP tags on the localization of EB1 and EB1 fragments in vivo. Cytoskeleton (Hoboken) 2010; 67:1-12. [PMID: 19701929 DOI: 10.1002/cm.20409] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
EB1 is a microtubule plus-end tracking protein that plays a central role in the regulation of microtubule (MT) dynamics. GFP-tagged EB1 constructs are commonly used to study EB1 itself and also as markers of dynamic MT plus ends. To properly interpret these studies, it is important to understand the impact of tags on the behavior of EB1 and other proteins in vivo. To address this problem and improve understanding of EB1 function, we surveyed the localization of expressed EB1 fragments and investigated whether GFP tags alter these localizations. We found that neither N-terminal nor C-terminal tags are benign: tagged EB1 and EB1 fragments generally behave differently from their untagged counterparts. N-terminal tags significantly compromise the ability of expressed EB1 proteins to bind MTs and/or track MT plus ends, although they leave some MT-binding ability intact. C-terminally tagged EB1 constructs have localizations similar to the untagged constructs, initially suggesting that they are benign. However, most constructs tagged at either end cause CLIP-170 to disappear from MT plus ends. This effect is opposite to that of untagged full-length EB1, which recruits CLIP-170 to MTs. These observations demonstrate that although EB1-GFP can be a powerful tool for studying microtubule dynamics, it should be used carefully because it may alter the system that it is being used to study. In addition, some untagged fragments had unexpected localizations. In particular, an EB1 construct lacking the coiled-coil tracks MT plus ends, though weakly, providing evidence against the idea that EB1 +TIP behavior requires dimerization.
Collapse
Affiliation(s)
- Susan B Skube
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | |
Collapse
|
110
|
Blake-Hodek KA, Cassimeris L, Huffaker TC. Regulation of microtubule dynamics by Bim1 and Bik1, the budding yeast members of the EB1 and CLIP-170 families of plus-end tracking proteins. Mol Biol Cell 2010; 21:2013-23. [PMID: 20392838 PMCID: PMC2883945 DOI: 10.1091/mbc.e10-02-0083] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Bim1 promotes microtubule assembly in vitro, primarily by decreasing the frequency of catastrophes. In contrast, Bik1 inhibits microtubule assembly by slowing growth and, consequently, promoting catastrophes. These proteins interact to form a complex that affects microtubule dynamics in much the same way as Bim1 alone. Microtubule dynamics are regulated by plus-end tracking proteins (+TIPs), which bind microtubule ends and influence their polymerization properties. In addition to binding microtubules, most +TIPs physically associate with other +TIPs, creating a complex web of interactions. To fully understand how +TIPs regulate microtubule dynamics, it is essential to know the intrinsic biochemical activities of each +TIP and how +TIP interactions affect these activities. Here, we describe the activities of Bim1 and Bik1, two +TIP proteins from budding yeast and members of the EB1 and CLIP-170 families, respectively. We find that purified Bim1 and Bik1 form homodimers that interact with each other to form a tetramer. Bim1 binds along the microtubule lattice but with highest affinity for the microtubule end; however, Bik1 requires Bim1 for localization to the microtubule lattice and end. In vitro microtubule polymerization assays show that Bim1 promotes microtubule assembly, primarily by decreasing the frequency of catastrophes. In contrast, Bik1 inhibits microtubule assembly by slowing growth and, consequently, promoting catastrophes. Interestingly, the Bim1-Bik1 complex affects microtubule dynamics in much the same way as Bim1 alone. These studies reveal new activities for EB1 and CLIP-170 family members and demonstrate how interactions between two +TIP proteins influence their activities.
Collapse
|
111
|
Ikegami K, Setou M. Unique post-translational modifications in specialized microtubule architecture. Cell Struct Funct 2010; 35:15-22. [PMID: 20190462 DOI: 10.1247/csf.09027] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Microtubules (MTs) play specialized roles in a wide variety of cellular events, e.g. molecular transport, cell motility, and cell division. Specialized MT architectures, such as bundles, axonemes, and centrioles, underlie the function. The specialized function and highly organized structure depend on interactions with MT-binding proteins. MT-associated proteins (e.g. MAP1, MAP2, and tau), molecular motors (kinesin and dynein), plus-end tracking proteins (e.g. CLIP-170), and MT-severing proteins (e.g. katanin) interact with MTs. How can the MT-binding proteins know temporospatial information to associate with MTs and to properly play their roles? Post-translational modifications (PTMs) including detyrosination, polyglutamylation, and polyglycylation can provide molecular landmarks for the proteins. Recent efforts to identify modification-regulating enzymes (TTL, carboxypeptidase, polyglutamylase, polyglycylase) and to generate genetically manipulated animals enable us to understand the roles of the modifications. In this review, we present recent advances in understanding regulation of MT function, structure, and stability by PTMs.
Collapse
Affiliation(s)
- Koji Ikegami
- Department of Molecular Anatomy, Molecular Imaging Advanced Research Center, Hamamatsu University School of Medicine, Japan
| | | |
Collapse
|
112
|
Structural and mechanistic insights into microtubule end-binding proteins. Curr Opin Cell Biol 2010; 22:88-95. [DOI: 10.1016/j.ceb.2009.10.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 10/23/2009] [Accepted: 10/31/2009] [Indexed: 12/17/2022]
|
113
|
Gouveia SM, Akhmanova A. Cell and Molecular Biology of Microtubule Plus End Tracking Proteins. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 285:1-74. [DOI: 10.1016/b978-0-12-381047-2.00001-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
114
|
Etienne-Manneville S. From signaling pathways to microtubule dynamics: the key players. Curr Opin Cell Biol 2009; 22:104-11. [PMID: 20031384 DOI: 10.1016/j.ceb.2009.11.008] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 11/13/2009] [Accepted: 11/20/2009] [Indexed: 01/15/2023]
Abstract
Microtubules are highly dynamic structures whose regulation is crucial for cell division, cell polarity, cell migration, or neuronal differentiation. Because they contribute to most cellular functions, they must be regulated in response to extracellular and intracellular signals. The parameters of microtubule dynamics are numerous and complex and the connection between signaling pathways and regulation of microtubule dynamics remain obscure. Recent observations reveal key players that can both integrate the diversity of signaling cascades and directly influence microtubule dynamics. I review here how modifications of the tubulin dimer, tubulin modifying enzymes, and microtubule-associated proteins are directly involved in the regulation of microtubule behavior and functions.
Collapse
Affiliation(s)
- Sandrine Etienne-Manneville
- Institut Pasteur, Cell Polarity and Migration Group and CNRS URA 2582, 25 rue du Dr Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
115
|
Abstract
Eukaryotic cells use cytoskeletal motor proteins to transport many different intracellular cargos. Numerous kinesins and myosins have evolved to cope with the various transport needs that have arisen during eukaryotic evolution. Surprisingly, a single cytoplasmic dynein (a minus end-directed microtubule motor) carries out similarly diverse transport activities as the many different types of kinesin. How is dynein coupled to its wide range of cargos and how is it spatially and temporally regulated? The answer could lie in the several multifunctional adaptors, including dynactin, lissencephaly 1, nuclear distribution protein E (NUDE) and NUDE-like, Bicaudal D, Rod-ZW10-Zwilch and Spindly, that regulate dynein function and localization.
Collapse
|
116
|
De Groot CO, Jelesarov I, Damberger FF, Bjelić S, Schärer MA, Bhavesh NS, Grigoriev I, Buey RM, Wüthrich K, Capitani G, Akhmanova A, Steinmetz MO. Molecular insights into mammalian end-binding protein heterodimerization. J Biol Chem 2009; 285:5802-14. [PMID: 20008324 DOI: 10.1074/jbc.m109.068130] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Microtubule plus-end tracking proteins (+TIPs) are involved in many microtubule-based processes. End binding (EB) proteins constitute a highly conserved family of +TIPs. They play a pivotal role in regulating microtubule dynamics and in the recruitment of diverse +TIPs to growing microtubule plus ends. Here we used a combination of methods to investigate the dimerization properties of the three human EB proteins EB1, EB2, and EB3. Based on Förster resonance energy transfer, we demonstrate that the C-terminal dimerization domains of EBs (EBc) can readily exchange their chains in solution. We further document that EB1c and EB3c preferentially form heterodimers, whereas EB2c does not participate significantly in the formation of heterotypic complexes. Measurements of the reaction thermodynamics and kinetics, homology modeling, and mutagenesis provide details of the molecular determinants of homo- versus heterodimer formation of EBc domains. Fluorescence spectroscopy and nuclear magnetic resonance studies in the presence of the cytoskeleton-associated protein-glycine-rich domains of either CLIP-170 or p150(glued) or of a fragment derived from the adenomatous polyposis coli tumor suppressor protein show that chain exchange of EBc domains can be controlled by binding partners. Extension of these studies of the EBc domains to full-length EBs demonstrate that heterodimer formation between EB1 and EB3, but not between EB2 and the other two EBs, occurs both in vitro and in cells as revealed by live cell imaging. Together, our data provide molecular insights for rationalizing the dominant negative control by C-terminal EB domains and form a basis for understanding the functional role of heterotypic chain exchange by EBs in cells.
Collapse
Affiliation(s)
- Christian O De Groot
- Biomolecular Research, Structural Biology, the Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
van Haren J, Draegestein K, Keijzer N, Abrahams JP, Grosveld F, Peeters PJ, Moechars D, Galjart N. Mammalian Navigators are microtubule plus-end tracking proteins that can reorganize the cytoskeleton to induce neurite-like extensions. ACTA ACUST UNITED AC 2009; 66:824-38. [DOI: 10.1002/cm.20370] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
118
|
Lomakin AJ, Semenova I, Zaliapin I, Kraikivski P, Nadezhdina E, Slepchenko BM, Akhmanova A, Rodionov V. CLIP-170-dependent capture of membrane organelles by microtubules initiates minus-end directed transport. Dev Cell 2009; 17:323-33. [PMID: 19758557 DOI: 10.1016/j.devcel.2009.07.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 05/20/2009] [Accepted: 07/02/2009] [Indexed: 02/06/2023]
Abstract
Cytoplasmic microtubules (MTs) continuously grow and shorten at free plus ends. During mitosis, this dynamic behavior allows MTs to capture chromosomes to initiate their movement to the spindle poles; however, the role of MT dynamics in capturing organelles for transport in interphase cells has not been demonstrated. Here we use Xenopus melanophores to test the hypothesis that MT dynamics significantly contribute to the efficiency of MT minus-end directed transport of membrane organelles. We demonstrate that initiation of transport of membrane-bounded melanosomes (pigment granules) to the cell center involves their capture by MT plus ends, and that inhibition of MT dynamics or loss of the MT plus-end tracking protein CLIP-170 from MT tips dramatically inhibits pigment aggregation. We conclude that MT dynamics are required for the initiation of MT transport of membrane organelles in interphase cells, and that +TIPs such as CLIP-170 play an important role in this process.
Collapse
Affiliation(s)
- Alexis J Lomakin
- Center for Cell Analysis and Modeling and Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06032, USA
| | | | | | | | | | | | | | | |
Collapse
|
119
|
An EB1-binding motif acts as a microtubule tip localization signal. Cell 2009; 138:366-76. [PMID: 19632184 DOI: 10.1016/j.cell.2009.04.065] [Citation(s) in RCA: 515] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 03/09/2009] [Accepted: 04/27/2009] [Indexed: 01/11/2023]
Abstract
Microtubules are filamentous polymers essential for cell viability. Microtubule plus-end tracking proteins (+TIPs) associate with growing microtubule plus ends and control microtubule dynamics and interactions with different cellular structures during cell division, migration, and morphogenesis. EB1 and its homologs are highly conserved proteins that play an important role in the targeting of +TIPs to microtubule ends, but the underlying molecular mechanism remains elusive. By using live cell experiments and in vitro reconstitution assays, we demonstrate that a short polypeptide motif, Ser-x-Ile-Pro (SxIP), is used by numerous +TIPs, including the tumor suppressor APC, the transmembrane protein STIM1, and the kinesin MCAK, for localization to microtubule tips in an EB1-dependent manner. Structural and biochemical data reveal the molecular basis of the EB1-SxIP interaction and explain its negative regulation by phosphorylation. Our findings establish a general "microtubule tip localization signal" (MtLS) and delineate a unifying mechanism for this subcellular protein targeting process.
Collapse
|
120
|
Stein RA. Dynactin mutations and promises for neurodegenerative pathology. Clin Genet 2009; 76:19-20. [PMID: 19659757 DOI: 10.1111/j.1399-0004.2009.01231_1.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- R A Stein
- Princeton University, Department of Molecular Biology, Princeton, NJ 08544, USA.
| |
Collapse
|
121
|
Moore JK, Stuchell-Brereton MD, Cooper JA. Function of dynein in budding yeast: mitotic spindle positioning in a polarized cell. CELL MOTILITY AND THE CYTOSKELETON 2009; 66:546-55. [PMID: 19402153 PMCID: PMC2746759 DOI: 10.1002/cm.20364] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cytoplasmic dynein is a microtubule motor that powers minus-end-directed motility in a variety of biological settings. The budding yeast, Saccharomyces cerevisiae, has been a useful system for the study of dynein, due to its molecular genetics and cell biology capabilities, coupled with the conservation of dynein-pathway proteins. In this review we discuss how budding yeast use dynein to manipulate the position of the mitotic spindle and the nucleus during cell division, using cytoplasmic microtubules, and we describe our current understanding of the genes required for dynein function. Cell Motil. Cytoskeleton 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Jeffrey K Moore
- Department of Cell Biology and Physiology, Washington University, St Louis, Missouri, USA.
| | | | | |
Collapse
|
122
|
Sun S, Siglin A, Williams JC, Polenova T. Solid-State and Solution NMR Studies of the CAP-Gly Domain of Mammalian Dynactin and Its Interaction with Microtubules. J Am Chem Soc 2009; 131:10113-26. [PMID: 19580321 DOI: 10.1021/ja902003u] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Shangjin Sun
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, and Department of Molecular Medicine, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, California 91010
| | - Amanda Siglin
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, and Department of Molecular Medicine, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, California 91010
| | - John C. Williams
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, and Department of Molecular Medicine, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, California 91010
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, and Department of Molecular Medicine, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, California 91010
| |
Collapse
|
123
|
Wade RH. On and Around Microtubules: An Overview. Mol Biotechnol 2009; 43:177-91. [DOI: 10.1007/s12033-009-9193-5] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 06/03/2009] [Indexed: 12/31/2022]
|
124
|
Neurodegeneration mutations in dynactin impair dynein-dependent nuclear migration. Proc Natl Acad Sci U S A 2009; 106:5147-52. [PMID: 19279216 DOI: 10.1073/pnas.0810828106] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neurodegenerative disease in humans and mice can be caused by mutations affecting the microtubule motor dynein or its biochemical regulator, dynactin, a multiprotein complex required for dynein function (1-4). A single amino acid change, G59S, in the conserved cytoskeletal-associated protein glycine-rich (CAP-Gly) domain of the p150(glued) subunit of dynactin can cause motor neuron degeneration in humans and mice, which resembles ALS (2, 5-8). The molecular mechanism by which G59S impairs the function of dynein is not understood. Also, the relevance of the CAP-Gly domain for dynein motility has not been demonstrated in vivo. Here, we generate a mutant that is analogous to G59S in budding yeast, and show that this mutation produces a highly specific phenotype related to dynein function. The effect of the point mutation is identical to that of complete loss of the CAP-Gly domain. Our results demonstrate that the CAP-Gly domain has a critical role in the initiation and persistence of dynein-dependent movement of the mitotic spindle and nucleus, but it is otherwise dispensable for dynein-based movement. The need for this function appears to be context-dependent, and we speculate that CAP-Gly activity may only be necessary when dynein needs to overcome high force thresholds to produce movement.
Collapse
|
125
|
Tisdale EJ, Azizi F, Artalejo CR. Rab2 utilizes glyceraldehyde-3-phosphate dehydrogenase and protein kinase C{iota} to associate with microtubules and to recruit dynein. J Biol Chem 2009; 284:5876-84. [PMID: 19106097 PMCID: PMC2645835 DOI: 10.1074/jbc.m807756200] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 12/01/2008] [Indexed: 01/09/2023] Open
Abstract
Rab2 requires glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and atypical protein kinase Ciota (aPKCiota) for retrograde vesicle formation from vesicular tubular clusters that sort secretory cargo from recycling proteins returned to the endoplasmic reticulum. However, the precise role of GAPDH and aPKCiota in the early secretory pathway is unclear. GAPDH was the first glycolytic enzyme reported to co-purify with microtubules (MTs). Similarly, aPKC associates directly with MTs. To learn whether Rab2 also binds directly to MTs, a MT binding assay was performed. Purified Rab2 was found in a MT-enriched pellet only when both GAPDH and aPKCiota were present, and Rab2-MT binding could be prevented by a recombinant fragment made to the Rab2 amino terminus (residues 2-70), which directly interacts with GAPDH and aPKCiota. Because GAPDH binds to the carboxyl terminus of alpha-tubulin, we characterized the distribution of tyrosinated/detyrosinated alpha-tubulin that is recruited by Rab2 in a quantitative membrane binding assay. Rab2-treated membranes contained predominantly tyrosinated alpha-tubulin; however, aPKCiota was the limiting and essential factor. Tyrosination/detyrosination influences MT motor protein binding; therefore, we determined whether Rab2 stimulated kinesin or dynein membrane binding. Although kinesin was not detected on membranes incubated with Rab2, dynein was recruited in a dose-dependent manner, and binding was aPKCiota-dependent. These combined results suggest a mechanism by which Rab2 controls MT and motor recruitment to vesicular tubular clusters.
Collapse
Affiliation(s)
- Ellen J Tisdale
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | |
Collapse
|
126
|
Abstract
Chromosome segregation in eukaryotes requires a large molecular assembly termed the kinetochore to attach chromosomes to spindle microtubules. Recent work has made substantial progress in defining the composition and activities of the kinetochore, but much remains to be learned about its macromolecular structure. This commentary discusses recent insights into structural features of the kinetochore, how these inform our understanding of its biological function, and the key challenges for the future.
Collapse
Affiliation(s)
- Julie P I Welburn
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Nine Cambridge Center, Cambridge, MA 02142, USA.
| | | |
Collapse
|
127
|
Farrer MJ, Hulihan MM, Kachergus JM, Dächsel JC, Stoessl AJ, Grantier LL, Calne S, Calne DB, Lechevalier B, Chapon F, Tsuboi Y, Yamada T, Gutmann L, Elibol B, Bhatia KP, Wider C, Vilariño-Güell C, Ross OA, Brown LA, Castanedes-Casey M, Dickson DW, Wszolek ZK. DCTN1 mutations in Perry syndrome. Nat Genet 2009; 41:163-5. [PMID: 19136952 PMCID: PMC2813485 DOI: 10.1038/ng.293] [Citation(s) in RCA: 234] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Accepted: 10/28/2008] [Indexed: 11/08/2022]
Abstract
Perry syndrome consists of early-onset parkinsonism, depression, severe weight loss and hypoventilation, with brain pathology characterized by TDP-43 immunostaining. We carried out genome-wide linkage analysis and identified five disease-segregating mutations affecting the CAP-Gly domain of dynactin (encoded by DCTN1) in eight families with Perry syndrome; these mutations diminish microtubule binding and lead to intracytoplasmic inclusions. Our findings show that DCTN1 mutations, previously associated with motor neuron disease, can underlie the selective vulnerability of other neuronal populations in distinct neurodegenerative disorders.
Collapse
Affiliation(s)
- Matthew J Farrer
- Division of Neurogenetics, Department of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida 32224, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Bieling P, Kandels-Lewis S, Telley IA, van Dijk J, Janke C, Surrey T. CLIP-170 tracks growing microtubule ends by dynamically recognizing composite EB1/tubulin-binding sites. ACTA ACUST UNITED AC 2008; 183:1223-33. [PMID: 19103809 PMCID: PMC2606963 DOI: 10.1083/jcb.200809190] [Citation(s) in RCA: 227] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The microtubule cytoskeleton is crucial for the internal organization of eukaryotic cells. Several microtubule-associated proteins link microtubules to subcellular structures. A subclass of these proteins, the plus end–binding proteins (+TIPs), selectively binds to the growing plus ends of microtubules. Here, we reconstitute a vertebrate plus end tracking system composed of the most prominent +TIPs, end-binding protein 1 (EB1) and CLIP-170, in vitro and dissect their end-tracking mechanism. We find that EB1 autonomously recognizes specific binding sites present at growing microtubule ends. In contrast, CLIP-170 does not end-track by itself but requires EB1. CLIP-170 recognizes and turns over rapidly on composite binding sites constituted by end-accumulated EB1 and tyrosinated α-tubulin. In contrast to its fission yeast orthologue Tip1, dynamic end tracking of CLIP-170 does not require the activity of a molecular motor. Our results demonstrate evolutionary diversity of the plus end recognition mechanism of CLIP-170 family members, whereas the autonomous end-tracking mechanism of EB family members is conserved.
Collapse
Affiliation(s)
- Peter Bieling
- European Molecular Biology Laboratory, Cell Biology and Biophysics Unit, 69117 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
129
|
Gupta KK, Paulson BA, Folker ES, Charlebois B, Hunt AJ, Goodson HV. Minimal plus-end tracking unit of the cytoplasmic linker protein CLIP-170. J Biol Chem 2008; 284:6735-42. [PMID: 19074770 DOI: 10.1074/jbc.m807675200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytoplasmic linker protein 170 (CLIP-170) is the prototype microtubule (MT) plus-end tracking protein (+TIP) and is involved in regulating MT dynamics. A comprehensive understanding of the process by which CLIP-170 tracks MT plus ends would provide insight into its function. However, the precise molecular mechanism of CLIP-170 +TIP behavior is unknown, and many potential models have been presented. Here, by separating the two CLIP-170 CAP-Gly domains and their adjacent serine-rich regions into fragments of varied size, we have characterized the minimal plus-end tracking unit of CLIP-170 in vivo. Each CLIP-170 fragment was also characterized for its tubulin polymerization activity in vitro. We found that the two CAP-Gly domains have different activities, whereas CAP-Gly-1 appears incompetent to mediate either +TIP behavior or MT nucleation, a CLIP-170 fragment consisting of the second CAP-Gly domain and its adjacent serine-rich region can both track MT plus ends in vivo and induce tubulin polymerization in vitro. These observations complement recent work on CLIP-170 fragments, demonstrate that CAP-Gly motifs do not require dimerization for +TIP and polymerization-promoting activities, and provide insight into CLIP-170 function and mechanism.
Collapse
Affiliation(s)
- Kamlesh K Gupta
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | | | | | |
Collapse
|
130
|
Plevin MJ, Hayashi I, Ikura M. Characterization of a Conserved “Threonine Clasp” in CAP-Gly Domains: Role of a Functionally Critical OH/π Interaction in Protein Recognition. J Am Chem Soc 2008; 130:14918-9. [DOI: 10.1021/ja805576n] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michael J. Plevin
- Division of Signaling Biology, Ontario Cancer Institute, University of Toronto, 101 College Street, Toronto, Ontario, M5G 1L7, Canada
| | - Ikuko Hayashi
- Division of Signaling Biology, Ontario Cancer Institute, University of Toronto, 101 College Street, Toronto, Ontario, M5G 1L7, Canada
| | - Mitsuhiko Ikura
- Division of Signaling Biology, Ontario Cancer Institute, University of Toronto, 101 College Street, Toronto, Ontario, M5G 1L7, Canada
| |
Collapse
|
131
|
Capturing protein tails by CAP-Gly domains. Trends Biochem Sci 2008; 33:535-45. [PMID: 18835717 DOI: 10.1016/j.tibs.2008.08.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 08/29/2008] [Accepted: 08/29/2008] [Indexed: 12/29/2022]
Abstract
Cytoskeleton-associated protein-glycine-rich (CAP-Gly) domains are protein-interaction modules implicated in important cellular processes and in hereditary human diseases. A prominent function of CAP-Gly domains is to bind to C-terminal EEY/F-COO(-) sequence motifs present in alpha-tubulin and in some microtubule-associated protein tails; however, CAP-Gly domains also interact with other structural elements including end-binding homology domains, zinc-finger motifs and proline-rich sequences. Recent findings unravelled the link between tubulin tyrosination and CAP-Gly-protein recruitment to microtubules. They further provided a molecular basis for understanding the role of CAP-Gly domains in controlling dynamic cellular processes including the tracking and regulation of microtubule ends. It is becoming increasingly clear that CAP-Gly domains are also involved in coordinating complex and diverse aspects of cell architecture and signalling.
Collapse
|
132
|
Geraldo S, Khanzada UK, Parsons M, Chilton JK, Gordon-Weeks PR. Targeting of the F-actin-binding protein drebrin by the microtubule plus-tip protein EB3 is required for neuritogenesis. Nat Cell Biol 2008; 10:1181-9. [PMID: 18806788 DOI: 10.1038/ncb1778] [Citation(s) in RCA: 195] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 08/28/2008] [Indexed: 01/30/2023]
Abstract
Interactions between dynamic microtubules and actin filaments (F-actin) underlie a range of cellular processes including cell polarity and motility. In growth cones, dynamic microtubules are continually extending into selected filopodia, aligning alongside the proximal ends of the F-actin bundles. This interaction is essential for neuritogenesis and growth-cone pathfinding. However, the molecular components mediating the interaction between microtubules and filopodial F-actin have yet to be determined. Here we show that drebrin, an F-actin-associated protein, binds directly to the microtubule-binding protein EB3. In growth cones, this interaction occurs specifically when drebrin is located on F-actin in the proximal region of filopodia and when EB3 is located at the tips of microtubules invading filopodia. When this interaction is disrupted, the formation of growth cones and the extension of neurites are impaired. We conclude that drebrin targets EB3 to coordinate F-actin-microtubule interactions that underlie neuritogenesis.
Collapse
Affiliation(s)
- Sara Geraldo
- The MRC Centre for Developmental Neurobiology, New Hunt's House, Guy's Campus, King's College London, London SE11UL, UK
| | | | | | | | | |
Collapse
|
133
|
Caudron F, Andrieux A, Job D, Boscheron C. A new role for kinesin-directed transport of Bik1p (CLIP-170) in Saccharomyces cerevisiae. J Cell Sci 2008; 121:1506-13. [PMID: 18411245 DOI: 10.1242/jcs.023374] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bik1p is the budding yeast counterpart of the CLIP-170 family of microtubule plus-end tracking proteins, which are required for dynein localization at plus ends and dynein-dependent spindle positioning. CLIP-170 proteins make up a CAP-Gly microtubule-binding domain, which sustains their microtubule plus-end tracking behaviour. However, in yeast, Bik1p travels towards plus ends as a cargo of the plus-end-directed kinesin Kip2p. Additionally, Kip2p behaves as a plus-end-tracking protein; hence, it has been proposed that Bik1p might track plus ends principally as a cargo of Kip2p. Here, we examined Bik1p localization in yeast strains expressing mutant tubulin lacking the C-terminal amino acid (Glu tubulin; lacking Phe), the interaction of which with Bik1p is severely impaired compared with wild type. In Glu-tubulin strains, despite the presence of robust Kip2p comets at microtubule plus ends, Bik1p failed to track plus ends. Despite Bik1p depletion at plus ends, dynein positioning at the same plus ends was unperturbed. Video microscopy and genetic evidence indicated that dynein was transported at plus ends in a Kip2p-Bik1p-dependent manner, and was then capable of tracking Bik1p-depleted plus ends. These results indicate that Bik1p interactions with tubulin are important for Bik1p plus-end tracking, and suggest alternative pathways for Bik1p-Kip2p-dependent dynein localization at plus ends.
Collapse
Affiliation(s)
- Fabrice Caudron
- INSERM, U836, Groupe de Physiopathologie du Cytosquelette, Grenoble, France
| | | | | | | |
Collapse
|
134
|
Abstract
Dynactin is a multisubunit protein complex necessary for dynein function. Here, we investigated the function of dynactin in budding yeast. Loss of dynactin impaired movement and positioning of the mitotic spindle, similar to loss of dynein. Dynactin subunits required for function included p150(Glued), dynamitin, actin-related protein (Arp) 1 and p24. Arp10 and capping protein were dispensable, even in combination. All dynactin subunits tested localized to dynamic plus ends of cytoplasmic microtubules, to stationary foci on the cell cortex and to spindle pole bodies. The number of molecules of dynactin in those locations was small, less than five. In the absence of dynactin, dynein accumulated at plus ends and did not appear at the cell cortex, consistent with a role for dynactin in offloading dynein from the plus end to the cortex. Dynein at the plus end was necessary for dynactin plus-end targeting. p150(Glued) was the only dynactin subunit sufficient for plus-end targeting. Interactions among the subunits support a molecular model that resembles the current model for brain dynactin in many respects; however, three subunits at the pointed end of brain dynactin appear to be absent from yeast.
Collapse
Affiliation(s)
- Jeffrey K Moore
- Department of Cell Biology and Physiology, Washington University, Saint Louis, MO 63110, USA
| | | | | |
Collapse
|
135
|
Moores CA, Milligan RA. Visualisation of a kinesin-13 motor on microtubule end mimics. J Mol Biol 2008; 377:647-54. [PMID: 18294653 PMCID: PMC2396873 DOI: 10.1016/j.jmb.2008.01.079] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Revised: 01/17/2008] [Accepted: 01/23/2008] [Indexed: 11/25/2022]
Abstract
An expanding collection of proteins localises to microtubule ends to regulate cytoskeletal dynamics and architecture by unknown molecular mechanisms. Electron microscopy is invaluable for studying microtubule structure, but because microtubule ends are heterogeneous, their structures are difficult to determine. We therefore investigated whether tubulin oligomers induced by the drug dolastatin could mimic microtubule ends. The microtubule end-dependent ATPase of kinesin-13 motors is coupled to microtubule depolymerisation. Significantly, kinesin-13 motor ATPase activity is stimulated by dolastatin-tubulin oligomers, suggesting, first, that these oligomers share properties with microtubule ends and, second, that the physical presence of an end is less important than terminal tubulin flexibility for microtubule end recognition by the kinesin-13 motor. Using electron microscopy, we visualised the kinesin-13 motor-dolastatin-tubulin oligomer interaction in nucleotide states mimicking steps in the ATPase cycle. This enabled us to detect conformational changes that the motor undergoes during depolymerisation. Our data suggest that such tubulin oligomers can be used to examine other microtubule end-binding proteins.
Collapse
Affiliation(s)
- Carolyn A Moores
- School of Crystallography, Birkbeck College, Malet Street, London WC1E 7HX, UK.
| | | |
Collapse
|
136
|
Akhmanova A, Steinmetz MO. Tracking the ends: a dynamic protein network controls the fate of microtubule tips. Nat Rev Mol Cell Biol 2008; 9:309-22. [PMID: 18322465 DOI: 10.1038/nrm2369] [Citation(s) in RCA: 788] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microtubule plus-end tracking proteins (+TIPs) are a diverse group of evolutionarily conserved cellular factors that accumulate at the ends of growing microtubules. They form dynamic networks through the interaction of a limited set of protein modules, repeat sequences and linear motifs that bind to each other with moderate affinities. +TIPs regulate different aspects of cell architecture by controlling microtubule dynamics, microtubule interactions with cellular structures and signalling factors, and the forces that are exerted on microtubule networks.
Collapse
Affiliation(s)
- Anna Akhmanova
- Department of Cell Biology, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, the Netherlands.
| | | |
Collapse
|
137
|
Dragestein KA, van Cappellen WA, van Haren J, Tsibidis GD, Akhmanova A, Knoch TA, Grosveld F, Galjart N. Dynamic behavior of GFP-CLIP-170 reveals fast protein turnover on microtubule plus ends. ACTA ACUST UNITED AC 2008; 180:729-37. [PMID: 18283108 PMCID: PMC2265578 DOI: 10.1083/jcb.200707203] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Microtubule (MT) plus end–tracking proteins (+TIPs) specifically recognize the ends of growing MTs. +TIPs are involved in diverse cellular processes such as cell division, cell migration, and cell polarity. Although +TIP tracking is important for these processes, the mechanisms underlying plus end specificity of mammalian +TIPs are not completely understood. Cytoplasmic linker protein 170 (CLIP-170), the prototype +TIP, was proposed to bind to MT ends with high affinity, possibly by copolymerization with tubulin, and to dissociate seconds later. However, using fluorescence-based approaches, we show that two +TIPs, CLIP-170 and end-binding protein 3 (EB3), turn over rapidly on MT ends. Diffusion of CLIP-170 and EB3 appears to be rate limiting for their binding to MT plus ends. We also report that the ends of growing MTs contain a surplus of sites to which CLIP-170 binds with relatively low affinity. We propose that the observed loss of fluorescent +TIPs at plus ends does not reflect the behavior of single molecules but is a result of overall structural changes of the MT end.
Collapse
Affiliation(s)
- Katharina A Dragestein
- Department of Cell Biology and Genetics, Erasmus Medical Center, 3000 DR Rotterdam, Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
138
|
Hammond J, Cai D, Verhey KJ. Tubulin modifications and their cellular functions. Curr Opin Cell Biol 2008; 20:71-6. [PMID: 18226514 PMCID: PMC2274889 DOI: 10.1016/j.ceb.2007.11.010] [Citation(s) in RCA: 387] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 11/29/2007] [Accepted: 11/30/2007] [Indexed: 11/25/2022]
Abstract
All microtubules are built from a basic alpha/beta-tubulin building block, yet subpopulations of microtubules can be differentially marked by a number of post-translational modifications. These modifications, conserved throughout evolution, are thought to act individually or in combination to control specific microtubule-based functions, analogous to how histone modifications regulate chromatin functions. Here we review recent studies demonstrating that tubulin modifications influence microtubule-associated proteins such as severing proteins, plus-end tracking proteins, and molecular motors. In this way, tubulin modifications play an important role in regulating microtubule properties, such as stability and structure, as well as microtubule-based functions, such as ciliary beating, cell division, and intracellular trafficking.
Collapse
Affiliation(s)
- Jennetta Hammond
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Dawen Cai
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Kristen J. Verhey
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
139
|
Okhrimenko O, Jelesarov I. A survey of the year 2006 literature on applications of isothermal titration calorimetry. J Mol Recognit 2008; 21:1-19. [DOI: 10.1002/jmr.859] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
140
|
Slep KC, Vale RD. Structural basis of microtubule plus end tracking by XMAP215, CLIP-170, and EB1. Mol Cell 2007; 27:976-91. [PMID: 17889670 PMCID: PMC2052927 DOI: 10.1016/j.molcel.2007.07.023] [Citation(s) in RCA: 207] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Revised: 06/27/2007] [Accepted: 07/17/2007] [Indexed: 02/01/2023]
Abstract
Microtubule plus end binding proteins (+TIPs) localize to the dynamic plus ends of microtubules, where they stimulate microtubule growth and recruit signaling molecules. Three main +TIP classes have been identified (XMAP215, EB1, and CLIP-170), but whether they act upon microtubule plus ends through a similar mechanism has not been resolved. Here, we report crystal structures of the tubulin binding domains of XMAP215 (yeast Stu2p and Drosophila Msps), EB1 (yeast Bim1p and human EB1), and CLIP-170 (human), which reveal diverse tubulin binding interfaces. Functional studies, however, reveal a common property that native or artificial dimerization of tubulin binding domains (including chemically induced heterodimers of EB1 and CLIP-170) induces tubulin nucleation/assembly in vitro and, in most cases, plus end tracking in living cells. We propose that +TIPs, although diverse in structure, share a common property of multimerizing tubulin, thus acting as polymerization chaperones that aid in subunit addition to the microtubule plus end.
Collapse
Affiliation(s)
- Kevin C Slep
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | | |
Collapse
|
141
|
Hayashi I, Plevin MJ, Ikura M. CLIP170 autoinhibition mimics intermolecular interactions with p150Glued or EB1. Nat Struct Mol Biol 2007; 14:980-1. [PMID: 17828275 DOI: 10.1038/nsmb1299] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Accepted: 08/10/2007] [Indexed: 01/30/2023]
Abstract
CLIP170 and p150(Glued) localize to the plus ends of growing microtubules. Using crystallography and NMR, we show that autoinhibitory interactions within CLIP170 use the same binding determinants as CLIP170's intermolecular interactions with p150(Glued). These interactions have both similar and distinct features when compared with the p150(Glued)-EB1 complex. Our data thus demonstrate that regulation of microtubule dynamics by plus end-tracking proteins (+TIPs) occurs through direct competition between homologous binding interfaces.
Collapse
Affiliation(s)
- Ikuko Hayashi
- Division of Signaling Biology, Ontario Cancer Institute, University of Toronto, 101 College Street, Toronto, Ontario, M5G 1L7, Canada.
| | | | | |
Collapse
|
142
|
Weisbrich A, Honnappa S, Jaussi R, Okhrimenko O, Frey D, Jelesarov I, Akhmanova A, Steinmetz MO. Structure-function relationship of CAP-Gly domains. Nat Struct Mol Biol 2007; 14:959-67. [PMID: 17828277 DOI: 10.1038/nsmb1291] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Accepted: 07/12/2007] [Indexed: 11/09/2022]
Abstract
In all eukaryotes, CAP-Gly proteins control important cellular processes. The molecular mechanisms underlying the functions of CAP-Gly domains, however, are still poorly understood. Here we use the complex formed between the CAP-Gly domain of p150(glued) and the C-terminal zinc knuckle of CLIP170 as a model system to explore the structure-function relationship of CAP-Gly-mediated protein interactions. We demonstrate that the conserved GKNDG motif of CAP-Gly domains is responsible for targeting to the C-terminal EEY/F sequence motifs of CLIP170, EB proteins and microtubules. The CAP-Gly-EEY/F interaction is essential for the recruitment of the dynactin complex by CLIP170 and for activation of CLIP170. Our findings define the molecular basis of CAP-Gly domain function, including the tubulin detyrosination-tyrosination cycle. They further establish fundamental roles for the interaction between CAP-Gly proteins and C-terminal EEY/F sequence motifs in regulating complex and dynamic cellular processes.
Collapse
Affiliation(s)
- Anke Weisbrich
- Biomolecular Research, Structural Biology, Paul Scherrer Insititut, CH-5232 Villigen PSI, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
143
|
Mishima M, Maesaki R, Kasa M, Watanabe T, Fukata M, Kaibuchi K, Hakoshima T. Structural basis for tubulin recognition by cytoplasmic linker protein 170 and its autoinhibition. Proc Natl Acad Sci U S A 2007; 104:10346-51. [PMID: 17563362 PMCID: PMC1965516 DOI: 10.1073/pnas.0703876104] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cytoplasmic linker protein 170 (CLIP-170) is a prototype of the plus end-tracking proteins that regulate microtubule dynamics, but it is obscure how CLIP-170 recognizes the microtubule plus end and contributes to polymerization rescue. Crystallographic, NMR, and mutation studies of two tandem cytoskeleton-associated protein glycine-rich (CAP-Gly) domains of CLIP-170, CAP-Gly-1 and CAP-Gly-2, revealed positively charged basic grooves of both CAP-Gly domains for tubulin binding, whereas the CAP-Gly-2 domain possesses a more basic groove and directly binds the EExEEY/F motif of the C-terminal acidic-tail ends of alpha-tubulin. Notably, the p150(Glued) CAP-Gly domain that is furnished with a less positively charged surface only weakly interacts with the alpha-tubulin acidic tail. Mutation studies showed that this acidic sextette motif is the minimum region for CAP-Gly binding. The C-terminal zinc knuckle domains of CLIP-170 bind the basic groove to inhibit the binding to the acidic tails. These results provide a structural basis for the proposed CLIP-170 copolymerization with tubulin on the microtubule plus end. CLIP-170 strongly binds the acidic tails of EB1 as well as those of alpha-tubulins, indicating that EB1 localized at the plus end contributes to CLIP-170 recruitment to the plus end. We suggest that CLIP-170 stimulates microtubule polymerization and/or nucleation by neutralizing the negative charges of tubulins with the highly positive charges of the CLIP-170 CAP-Gly domains. Once CLIP-170 binds microtubule, the released zinc knuckle domain may serve to recruit dynein to the plus end by interacting with p150(Glued) and LIS1. Thus, our structures provide the structural basis for the specific dynein loading on the microtubule plus end.
Collapse
Affiliation(s)
| | - Ryoko Maesaki
- Structural Biology Laboratory, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Miyuki Kasa
- Structural Biology Laboratory, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan; and
| | - Takashi Watanabe
- Department of Cell Pharmacology, Nagoya University, Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya 466-8550, Japan
| | - Masaki Fukata
- Department of Cell Pharmacology, Nagoya University, Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya 466-8550, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Nagoya University, Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya 466-8550, Japan
| | - Toshio Hakoshima
- *Graduate School of Biological Science
- Structural Biology Laboratory, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan; and
- To whom correspondence should be addressed at: Structural Biology Laboratory, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan. E-mail:
| |
Collapse
|