101
|
van Tran N, Muller L, Ross RL, Lestini R, Létoquart J, Ulryck N, Limbach PA, de Crécy-Lagard V, Cianférani S, Graille M. Evolutionary insights into Trm112-methyltransferase holoenzymes involved in translation between archaea and eukaryotes. Nucleic Acids Res 2018; 46:8483-8499. [PMID: 30010922 PMCID: PMC6144793 DOI: 10.1093/nar/gky638] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 06/25/2018] [Accepted: 07/04/2018] [Indexed: 12/22/2022] Open
Abstract
Protein synthesis is a complex and highly coordinated process requiring many different protein factors as well as various types of nucleic acids. All translation machinery components require multiple maturation events to be functional. These include post-transcriptional and post-translational modification steps and methylations are the most frequent among these events. In eukaryotes, Trm112, a small protein (COG2835) conserved in all three domains of life, interacts and activates four methyltransferases (Bud23, Trm9, Trm11 and Mtq2) that target different components of the translation machinery (rRNA, tRNAs, release factors). To clarify the function of Trm112 in archaea, we have characterized functionally and structurally its interaction network using Haloferax volcanii as model system. This led us to unravel that methyltransferases are also privileged Trm112 partners in archaea and that this Trm112 network is much more complex than anticipated from eukaryotic studies. Interestingly, among the identified enzymes, some are functionally orthologous to eukaryotic Trm112 partners, emphasizing again the similarity between eukaryotic and archaeal translation machineries. Other partners display some similarities with bacterial methyltransferases, suggesting that Trm112 is a general partner for methyltransferases in all living organisms.
Collapse
Affiliation(s)
- Nhan van Tran
- Laboratoire de Biochimie, Ecole polytechnique, CNRS, Université Paris-Saclay, F-91128 Palaiseau cedex, France
| | - Leslie Muller
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Robert L Ross
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH 45221-0172, USA
| | - Roxane Lestini
- Laboratoire d’Optique et Biosciences, Ecole Polytechnique, CNRS UMR7645-INSERM U1182 91128, Palaiseau Cedex, France
| | - Juliette Létoquart
- Laboratoire de Biochimie, Ecole polytechnique, CNRS, Université Paris-Saclay, F-91128 Palaiseau cedex, France
| | - Nathalie Ulryck
- Laboratoire de Biochimie, Ecole polytechnique, CNRS, Université Paris-Saclay, F-91128 Palaiseau cedex, France
| | - Patrick A Limbach
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH 45221-0172, USA
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Marc Graille
- Laboratoire de Biochimie, Ecole polytechnique, CNRS, Université Paris-Saclay, F-91128 Palaiseau cedex, France
| |
Collapse
|
102
|
McMahon M, Ruggero D. A wobbly road to drug resistance in melanoma: tRNA-modifying enzymes in translation reprogramming. EMBO J 2018; 37:embj.201899978. [PMID: 29967029 DOI: 10.15252/embj.201899978] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Mary McMahon
- School of Medicine and Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Davide Ruggero
- School of Medicine and Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| |
Collapse
|
103
|
Lentini JM, Ramos J, Fu D. Monitoring the 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U) modification in eukaryotic tRNAs via the γ-toxin endonuclease. RNA (NEW YORK, N.Y.) 2018; 24:749-758. [PMID: 29440318 PMCID: PMC5900570 DOI: 10.1261/rna.065581.118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 02/06/2018] [Indexed: 06/08/2023]
Abstract
The post-transcriptional modification of tRNA at the wobble position is a universal process occurring in all domains of life. In eukaryotes, the wobble uridine of particular tRNAs is transformed to the 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U) modification which is critical for proper mRNA decoding and protein translation. However, current methods to detect mcm5s2U are technically challenging and/or require specialized instrumental expertise. Here, we show that γ-toxin endonuclease from the yeast Kluyveromyces lactis can be used as a probe for assaying mcm5s2U status in the tRNA of diverse eukaryotic organisms ranging from protozoans to mammalian cells. The assay couples the mcm5s2U-dependent cleavage of tRNA by γ-toxin with standard molecular biology techniques such as northern blot analysis or quantitative PCR to monitor mcm5s2U levels in multiple tRNA isoacceptors. The results gained from the γ-toxin assay reveals the evolutionary conservation of the mcm5s2U modification across eukaryotic species. Moreover, we have used the γ-toxin assay to verify uncharacterized eukaryotic Trm9 and Trm112 homologs that catalyze the formation of mcm5s2U. These findings demonstrate the use of γ-toxin as a detection method to monitor mcm5s2U status in diverse eukaryotic cell types for cellular, genetic, and biochemical studies.
Collapse
Affiliation(s)
- Jenna M Lentini
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, New York 14627, USA
| | - Jillian Ramos
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, New York 14627, USA
| | - Dragony Fu
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
104
|
Koh CS, Sarin LP. Transfer RNA modification and infection – Implications for pathogenicity and host responses. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:419-432. [DOI: 10.1016/j.bbagrm.2018.01.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/04/2018] [Accepted: 01/19/2018] [Indexed: 12/19/2022]
|
105
|
Lee CC, Hsieh TS. Wuho/WDR4 deficiency inhibits cell proliferation and induces apoptosis via DNA damage in mouse embryonic fibroblasts. Cell Signal 2018; 47:16-26. [PMID: 29574139 DOI: 10.1016/j.cellsig.2018.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 12/27/2022]
Abstract
Wuho known as WDR4 encodes a highly conserved WD40-repeat protein, which has known homologues of WDR4 in human and mouse. Wuho-FEN1 interaction may have a critical role in the growth and development, and in the maintenance of genome stability. However, how Wuho gene deletion contributes to cell growth inhibition and apoptosis is still unknown. We utilized CAGGCre-ER transgenic mice have a tamoxifen-inducible cre-mediated recombination cassette to prepare primary mouse embryonic fibroblasts (MEFs) with Wuho deficiency. We have demonstrated that Wuho deficiency would induces γH2AX protein level elevation, heterochromatin relaxation and DNA damage down-stream sequences, including p53 activation, caspase-mediated apoptotic pathway, and p21-mediated G2/M cell cycle arrest.
Collapse
Affiliation(s)
- Chi-Chiu Lee
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Sec. 2, Nangang, Taipei 11529, Taiwan.
| | - Tao-Shih Hsieh
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Sec. 2, Nangang, Taipei 11529, Taiwan; Department of Biochemistry, Duke University, Durham, NC, United States
| |
Collapse
|
106
|
Johansson MJO, Xu F, Byström AS. Elongator-a tRNA modifying complex that promotes efficient translational decoding. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1861:401-408. [PMID: 29170010 DOI: 10.1016/j.bbagrm.2017.11.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 11/19/2017] [Indexed: 12/22/2022]
Abstract
Naturally occurring modifications of the nucleosides in the anticodon region of tRNAs influence their translational decoding properties. Uridines present at the wobble position in eukaryotic cytoplasmic tRNAs often contain a 5-carbamoylmethyl (ncm(5)) or 5-methoxycarbonylmethyl (mcm(5)) side-chain and sometimes also a 2-thio or 2'-O-methyl group. The first step in the formation of the ncm(5) and mcm(5) side-chains requires the conserved six-subunit Elongator complex. Although Elongator has been implicated in several different cellular processes, accumulating evidence suggests that its primary, and possibly only, cellular function is to promote modification of tRNAs. In this review, we discuss the biosynthesis and function of modified wobble uridines in eukaryotic cytoplasmic tRNAs, focusing on the in vivo role of Elongator-dependent modifications in Saccharomyces cerevisiae. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena.
Collapse
Affiliation(s)
| | - Fu Xu
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | - Anders S Byström
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden.
| |
Collapse
|
107
|
Dewe JM, Fuller BL, Lentini JM, Kellner SM, Fu D. TRMT1-Catalyzed tRNA Modifications Are Required for Redox Homeostasis To Ensure Proper Cellular Proliferation and Oxidative Stress Survival. Mol Cell Biol 2017; 37:e00214-17. [PMID: 28784718 PMCID: PMC5640816 DOI: 10.1128/mcb.00214-17] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/17/2017] [Accepted: 07/29/2017] [Indexed: 02/07/2023] Open
Abstract
Mutations in the tRNA methyltransferase 1 (TRMT1) gene have been identified as the cause of certain forms of autosomal-recessive intellectual disability (ID). However, the molecular pathology underlying ID-associated TRMT1 mutations is unknown, since the biological role of the encoded TRMT1 protein remains to be determined. Here, we have elucidated the molecular targets and function of TRMT1 to uncover the cellular effects of ID-causing TRMT1 mutations. Using human cells that have been rendered deficient in TRMT1, we show that TRMT1 is responsible for catalyzing the dimethylguanosine (m2,2G) base modification in both nucleus- and mitochondrion-encoded tRNAs. TRMT1-deficient cells exhibit decreased proliferation rates, alterations in global protein synthesis, and perturbations in redox homeostasis, including increased endogenous ROS levels and hypersensitivity to oxidizing agents. Notably, ID-causing TRMT1 variants are unable to catalyze the formation of m2,2G due to defects in RNA binding and cannot rescue oxidative stress sensitivity. Our results uncover a biological role for TRMT1-catalyzed tRNA modification in redox metabolism and show that individuals with TRMT1-associated ID are likely to have major perturbations in cellular homeostasis due to the lack of m2,2G modifications.
Collapse
Affiliation(s)
- Joshua M Dewe
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, New York, USA
| | - Benjamin L Fuller
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, New York, USA
| | - Jenna M Lentini
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, New York, USA
| | | | - Dragony Fu
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, New York, USA
| |
Collapse
|
108
|
Mathew V, Tam AS, Milbury KL, Hofmann AK, Hughes CS, Morin GB, Loewen CJR, Stirling PC. Selective aggregation of the splicing factor Hsh155 suppresses splicing upon genotoxic stress. J Cell Biol 2017; 216:4027-4040. [PMID: 28978642 PMCID: PMC5716266 DOI: 10.1083/jcb.201612018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 07/17/2017] [Accepted: 08/22/2017] [Indexed: 12/15/2022] Open
Abstract
Upon genotoxic stress, dynamic relocalization events control DNA repair as well as alterations of the transcriptome and proteome, enabling stress recovery. How these events may influence one another is only partly known. Beginning with a cytological screen of genome stability proteins, we find that the splicing factor Hsh155 disassembles from its partners and localizes to both intranuclear and cytoplasmic protein quality control (PQC) aggregates under alkylation stress. Aggregate sequestration of Hsh155 occurs at nuclear and then cytoplasmic sites in a manner that is regulated by molecular chaperones and requires TORC1 activity signaling through the Sfp1 transcription factor. This dynamic behavior is associated with intron retention in ribosomal protein gene transcripts, a decrease in splicing efficiency, and more rapid recovery from stress. Collectively, our analyses suggest a model in which some proteins evicted from chromatin and undergoing transcriptional remodeling during stress are targeted to PQC sites to influence gene expression changes and facilitate stress recovery.
Collapse
Affiliation(s)
- Veena Mathew
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada
| | - Annie S Tam
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Karissa L Milbury
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada
| | - Analise K Hofmann
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Christopher S Hughes
- Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, Canada
| | - Gregg B Morin
- Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Christopher J R Loewen
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Peter C Stirling
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada .,Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
109
|
Ovarian cancer proliferation and apoptosis are regulated by human transfer RNA methyltransferase 9-likevia LIN9. Oncol Lett 2017; 14:4461-4466. [PMID: 29085442 PMCID: PMC5649546 DOI: 10.3892/ol.2017.6750] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 01/31/2017] [Indexed: 01/09/2023] Open
Abstract
Current traditional treatment options have little impact on the long-term survival of patients with ovarian cancer due to a lack of understanding of the molecular transformations that occur in ovarian carcinoma. Transfer RNAs (tRNAs) perform a key role in protein translational fidelity. Enzymes involved in tRNA modification may function as regulators of cancer progression. Human tRNA methyltransferase 9-like (hTRM9L) catalyzes tRNA wobble base modifications, which regulate ovarian cancer growth and apoptosis via the retinoblastoma protein (pRB) and p53 signaling pathways. The aim of the present study was to confirm the role of hTRM9L in the proliferation and apoptosis of ovarian cancer. Immunohistochemistry was performed to investigate the expression of hTRM9L and LIN9 in 70 ovarian tissues. hTRM9L was amplified by polymerase chain reaction (PCR) and inserted into the Ubi-multiple cloning site-enhanced green fluorescent protein (EGFP)-internal ribosome entry site-puromycin lentiviral expression vector to create the Ubi-KIAA1456-EGFP-puromycin (LV-KIAA1456) vector. The lentiviruses were subsequently compounded and transduced into HO8910PM cells. hTRM9L, LIN9 and B-cell lymphoma 2 (Bcl-2)/Bcl-2 associated X protein (Bax) expression levels were examined by PCR and western blot analysis. Apoptosis was verified by flow cytometry, and cell proliferation was evaluated using Cell Counting Kit-8. hTRM9L and LIN9 expression were reduced in the ovarian cancer group, and there was a positive correlation between hTRM9L and LIN9 expression according to Pearson's correlation coefficient (r=0.406; P<0.05). hTRM9L was increased by 2–3-foldin HO8910PM cells following LV-hTRM9L transduction. The expression of hTRM9L at the mRNA and protein levels in HO8910PM cells that were transfected with LV-hTRM9L was significantly increased compared with the negative control, as confirmed by reverse transcription-quantitative PCR and western blot analysis, respectively (P<0.05). The same was observed for LIN9 and Bax (P<0.05). By contrast, Bcl-2 was downregulated in LV-hTRM9L (P<0.05). Furthermore, cell growth was inhibited (P<0.05) and apoptosis increased (P<0.05). In the present study, hTRM9L was shown to prevent tumor growth and promote apoptosis by regulating LIN9, which is associated with the pRB and p53 signaling pathways. This maybe a novel breakthrough in the treatment of ovarian cancer.
Collapse
|
110
|
Gu DH, Park MY, Kim JS. An asymmetric dimeric structure of TrmJ tRNA methyltransferase from Zymomonas mobilis with a flexible C-terminal dimer. Biochem Biophys Res Commun 2017; 488:407-412. [PMID: 28506829 DOI: 10.1016/j.bbrc.2017.05.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 05/11/2017] [Indexed: 11/24/2022]
Abstract
The tRNA methyltransferase J (TrmJ) and D (TrmD) catalyze the transferring reaction of a methyl group to the tRNA anticodon loop. They commonly have the N-terminal domain (NTD) and the C-terminal domain (CTD). Whereas two monomeric CTDs symmetrically interact with a dimeric NTD in TrmD, a CTD dimer has exhibited an asymmetric interaction with the NTD dimer in the presence of a product. The elucidated apo-structure of the full-length TrmJ from Zymomonas mobilis ZM4 shows a dimeric CTD that asymmetrically interacts with the NTD dimer, thereby distributing non-symmetrical potential charge on the both side of the protein surface. Comparison with the product-bound structures reveals a local re-orientation of the two arginine-containing loop at the active site, which interacts with the product. Further, the CTD dimers have diverse orientations compared to the NTD dimers, suggesting their flexibility. These data indicate that an asymmetric interaction between the NTD dimer and the CTD dimer is a common structural feature among TrmJ proteins, regardless of the presence of a substrate or a product.
Collapse
Affiliation(s)
- Do-Heon Gu
- Department of Chemistry, Chonnam National University, Gwangju 61186, South Korea
| | - Mi-Young Park
- Department of Chemistry, Chonnam National University, Gwangju 61186, South Korea
| | - Jeong-Sun Kim
- Department of Chemistry, Chonnam National University, Gwangju 61186, South Korea.
| |
Collapse
|
111
|
TrmL and TusA Are Necessary for rpoS and MiaA Is Required for hfq Expression in Escherichia coli. Biomolecules 2017; 7:biom7020039. [PMID: 28471404 PMCID: PMC5485728 DOI: 10.3390/biom7020039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 03/31/2017] [Accepted: 04/12/2017] [Indexed: 12/18/2022] Open
Abstract
Previous work demonstrated that efficient RNA Polymerase sigma S-subunit (RpoS) translation requires the N6-isopentenyladenosine i6A37 transfer RNA (tRNA) modification for UUX-Leu decoding. Here we investigate the effect of two additional tRNA modification systems on RpoS translation; the analysis was also extended to another High UUX-leucine codon (HULC) protein, Host Factor for phage Qβ (Hfq). One tRNA modification, the addition of the 2’-O-methylcytidine/uridine 34 (C/U34m) tRNA modification by tRNA (cytidine/uridine-2’O)-ribose methyltransferase L (TrmL), requires the presence of the N6-isopentenyladenosine 37 (i6A37) and therefore it seemed possible that the defect in RpoS translation in the absence of i6A37 prenyl transferase (MiaA) was in fact due to the inability to add the C/U34m modification to UUX-Leu tRNAs. The second modification, addition of 2-thiouridine (s2U), part of (mnm5s2U34), is dependent on tRNA 2-thiouridine synthesizing protein A (TusA), previously shown to affect RpoS levels. We compared expression of PBAD-rpoS990-lacZ translational fusions carrying wild-type UUX leucine codons with derivatives in which UUX codons were changed to CUX codons, in the presence and absence of TrmL or TusA. The absence of these proteins, and therefore presumably the modifications they catalyze, both abolished PBAD-rpoS990-lacZ translation activity. UUX-Leu to CUX-Leu codon mutations in rpoS suppressed the trmL requirement for PBAD-rpoS990-lacZ expression. Thus, it is likely that the C/U34m and s2U34 tRNA modifications are necessary for full rpoS translation. We also measured PBAD-hfq306-lacZ translational fusion activity in the absence of C/U34m (trmL) or i6A37 (miaA). The absence of i6A37 resulted in decreased PBAD-hfq306-lacZ expression, consistent with a role for i6A37 tRNA modification for hfq translation.
Collapse
|
112
|
Agris PF, Narendran A, Sarachan K, Väre VYP, Eruysal E. The Importance of Being Modified: The Role of RNA Modifications in Translational Fidelity. Enzymes 2017; 41:1-50. [PMID: 28601219 DOI: 10.1016/bs.enz.2017.03.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The posttranscriptional modifications of tRNA's anticodon stem and loop (ASL) domain represent a third level, a third code, to the accuracy and efficiency of translating mRNA codons into the correct amino acid sequence of proteins. Modifications of tRNA's ASL domain are enzymatically synthesized and site specifically located at the anticodon wobble position-34 and 3'-adjacent to the anticodon at position-37. Degeneracy of the 64 Universal Genetic Codes and the limitation in the number of tRNA species require some tRNAs to decode more than one codon. The specific modification chemistries and their impact on the tRNA's ASL structure and dynamics enable one tRNA to decode cognate and "wobble codons" or to expand recognition to synonymous codons, all the while maintaining the translational reading frame. Some modified nucleosides' chemistries prestructure tRNA to read the two codons of a specific amino acid that shares a twofold degenerate codon box, and other chemistries allow a different tRNA to respond to all four codons of a fourfold degenerate codon box. Thus, tRNA ASL modifications are critical and mutations in genes for the modification enzymes and tRNA, the consequences of which is a lack of modification, lead to mistranslation and human disease. By optimizing tRNA anticodon chemistries, structure, and dynamics in all organisms, modifications ensure translational fidelity of mRNA transcripts.
Collapse
Affiliation(s)
- Paul F Agris
- The RNA Institute, State University of New York, Albany, NY, United States.
| | - Amithi Narendran
- The RNA Institute, State University of New York, Albany, NY, United States
| | - Kathryn Sarachan
- The RNA Institute, State University of New York, Albany, NY, United States
| | - Ville Y P Väre
- The RNA Institute, State University of New York, Albany, NY, United States
| | - Emily Eruysal
- The RNA Institute, State University of New York, Albany, NY, United States
| |
Collapse
|
113
|
Maraia RJ, Arimbasseri AG. Factors That Shape Eukaryotic tRNAomes: Processing, Modification and Anticodon-Codon Use. Biomolecules 2017; 7:biom7010026. [PMID: 28282871 PMCID: PMC5372738 DOI: 10.3390/biom7010026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 02/24/2017] [Indexed: 01/24/2023] Open
Abstract
Transfer RNAs (tRNAs) contain sequence diversity beyond their anticodons and the large variety of nucleotide modifications found in all kingdoms of life. Some modifications stabilize structure and fit in the ribosome whereas those to the anticodon loop modulate messenger RNA (mRNA) decoding activity more directly. The identities of tRNAs with some universal anticodon loop modifications vary among distant and parallel species, likely to accommodate fine tuning for their translation systems. This plasticity in positions 34 (wobble) and 37 is reflected in codon use bias. Here, we review convergent evidence that suggest that expansion of the eukaryotic tRNAome was supported by its dedicated RNA polymerase III transcription system and coupling to the precursor-tRNA chaperone, La protein. We also review aspects of eukaryotic tRNAome evolution involving G34/A34 anticodon-sparing, relation to A34 modification to inosine, biased codon use and regulatory information in the redundancy (synonymous) component of the genetic code. We then review interdependent anticodon loop modifications involving position 37 in eukaryotes. This includes the eukaryote-specific tRNA modification, 3-methylcytidine-32 (m3C32) and the responsible gene, TRM140 and homologs which were duplicated and subspecialized for isoacceptor-specific substrates and dependence on i6A37 or t6A37. The genetics of tRNA function is relevant to health directly and as disease modifiers.
Collapse
Affiliation(s)
- Richard J Maraia
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
- Commissioned Corps, U.S. Public Health Service, Rockville, MD, 20016, USA.
| | - Aneeshkumar G Arimbasseri
- Molecular Genetics Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
114
|
Abstract
Wobble uridines (U34) are generally modified in all species. U34 modifications can be essential in metazoans but are not required for viability in fungi. In this review, we provide an overview on the types of modifications and how they affect the physico-chemical properties of wobble uridines. We describe the molecular machinery required to introduce these modifications into tRNA posttranscriptionally and discuss how posttranslational regulation may affect the activity of the modifying enzymes. We highlight the activity of anticodon specific RNases that target U34 containing tRNA. Finally, we discuss how defects in wobble uridine modifications lead to phenotypes in different species. Importantly, this review will mainly focus on the cytoplasmic tRNAs of eukaryotes. A recent review has extensively covered their bacterial and mitochondrial counterparts.1
Collapse
Affiliation(s)
- Raffael Schaffrath
- a Institut für Biologie, FG Mikrobiologie , Universität Kassel , Germany
| | - Sebastian A Leidel
- b Max Planck Institute for Molecular Biomedicine , Germany.,c Cells-in-Motion Cluster of Excellence , University of Münster , Münster , Germany.,d Medical Faculty , University of Münster , Albert-Schweitzer-Campus 1, Münster , Germany
| |
Collapse
|
115
|
Bourgeois G, Létoquart J, van Tran N, Graille M. Trm112, a Protein Activator of Methyltransferases Modifying Actors of the Eukaryotic Translational Apparatus. Biomolecules 2017; 7:biom7010007. [PMID: 28134793 PMCID: PMC5372719 DOI: 10.3390/biom7010007] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/16/2017] [Accepted: 01/18/2017] [Indexed: 12/17/2022] Open
Abstract
Post-transcriptional and post-translational modifications are very important for the control and optimal efficiency of messenger RNA (mRNA) translation. Among these, methylation is the most widespread modification, as it is found in all domains of life. These methyl groups can be grafted either on nucleic acids (transfer RNA (tRNA), ribosomal RNA (rRNA), mRNA, etc.) or on protein translation factors. This review focuses on Trm112, a small protein interacting with and activating at least four different eukaryotic methyltransferase (MTase) enzymes modifying factors involved in translation. The Trm112-Trm9 and Trm112-Trm11 complexes modify tRNAs, while the Trm112-Mtq2 complex targets translation termination factor eRF1, which is a tRNA mimic. The last complex formed between Trm112 and Bud23 proteins modifies 18S rRNA and participates in the 40S biogenesis pathway. In this review, we present the functions of these eukaryotic Trm112-MTase complexes, the molecular bases responsible for complex formation and substrate recognition, as well as their implications in human diseases. Moreover, as Trm112 orthologs are found in bacterial and archaeal genomes, the conservation of this Trm112 network beyond eukaryotic organisms is also discussed.
Collapse
Affiliation(s)
- Gabrielle Bourgeois
- Laboratoire de Biochimie, Ecole polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau CEDEX, France.
| | - Juliette Létoquart
- Laboratoire de Biochimie, Ecole polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau CEDEX, France.
- De Duve Institute, Université Catholique de Louvain, avenue Hippocrate 75, 1200 Brussels, Belgium.
| | - Nhan van Tran
- Laboratoire de Biochimie, Ecole polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau CEDEX, France.
| | - Marc Graille
- Laboratoire de Biochimie, Ecole polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau CEDEX, France.
| |
Collapse
|
116
|
Svenningsen SL, Kongstad M, Stenum TS, Muñoz-Gómez AJ, Sørensen MA. Transfer RNA is highly unstable during early amino acid starvation in Escherichia coli. Nucleic Acids Res 2017; 45:793-804. [PMID: 27903898 PMCID: PMC5314770 DOI: 10.1093/nar/gkw1169] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 11/02/2016] [Accepted: 11/09/2016] [Indexed: 11/17/2022] Open
Abstract
Due to its long half-life compared to messenger RNA, bacterial transfer RNA is known as stable RNA. Here, we show that tRNAs become highly unstable as part of Escherichia coli's response to amino acid starvation. Degradation of the majority of cellular tRNA occurs within twenty minutes of the onset of starvation for each of several amino acids. Both the non-cognate and cognate tRNA for the amino acid that the cell is starving for are degraded, and both charged and uncharged tRNA species are affected. The alarmone ppGpp orchestrates the stringent response to amino acid starvation. However, tRNA degradation occurs in a ppGpp-independent manner, as it occurs with similar kinetics in a relaxed mutant. Further, we also observe rapid tRNA degradation in response to rifampicin treatment, which does not induce the stringent response. We propose a unifying model for these observations, in which the surplus tRNA is degraded whenever the demand for protein synthesis is reduced. Thus, the tRNA pool is a highly regulated, dynamic entity. We propose that degradation of surplus tRNA could function to reduce mistranslation in the stressed cell, because it would reduce competition between cognate and near-cognate charged tRNAs at the ribosomal A-site.
Collapse
Affiliation(s)
| | - Mette Kongstad
- Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark
| | | | - Ana J Muñoz-Gómez
- Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Michael A Sørensen
- Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark
| |
Collapse
|
117
|
Goodarzi H, Nguyen HCB, Zhang S, Dill BD, Molina H, Tavazoie SF. Modulated Expression of Specific tRNAs Drives Gene Expression and Cancer Progression. Cell 2016; 165:1416-1427. [PMID: 27259150 DOI: 10.1016/j.cell.2016.05.046] [Citation(s) in RCA: 330] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/04/2016] [Accepted: 05/13/2016] [Indexed: 01/01/2023]
Abstract
Transfer RNAs (tRNAs) are primarily viewed as static contributors to gene expression. By developing a high-throughput tRNA profiling method, we find that specific tRNAs are upregulated in human breast cancer cells as they gain metastatic activity. Through loss-of-function, gain-of-function, and clinical-association studies, we implicate tRNAGluUUC and tRNAArgCCG as promoters of breast cancer metastasis. Upregulation of these tRNAs enhances stability and ribosome occupancy of transcripts enriched for their cognate codons. Specifically, tRNAGluUUC promotes metastatic progression by directly enhancing EXOSC2 expression and enhancing GRIPAP1-constituting an "inducible" pathway driven by a tRNA. The cellular proteomic shift toward a pro-metastatic state mirrors global tRNA shifts, allowing for cell-state and cell-type transgene expression optimization through codon content quantification. TRNA modulation represents a mechanism by which cells achieve altered expression of specific transcripts and proteins. TRNAs are thus dynamic regulators of gene expression and the tRNA codon landscape can causally and specifically impact disease progression.
Collapse
Affiliation(s)
- Hani Goodarzi
- Laboratory of Systems Cancer Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| | - Hoang C B Nguyen
- Laboratory of Systems Cancer Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Steven Zhang
- Laboratory of Systems Cancer Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Brian D Dill
- Proteome Resource Center, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Henrik Molina
- Proteome Resource Center, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Sohail F Tavazoie
- Laboratory of Systems Cancer Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
118
|
Abstract
RNA modifications have long been known to be central in the proper function of tRNA and rRNA. While chemical modifications in mRNA were discovered decades ago, their function has remained largely mysterious until recently. Using enrichment strategies coupled to next generation sequencing, multiple modifications have now been mapped on a transcriptome-wide scale in a variety of contexts. We now know that RNA modifications influence cell biology by many different mechanisms - by influencing RNA structure, by tuning interactions within the ribosome, and by recruiting specific binding proteins that intersect with other signaling pathways. They are also dynamic, changing in distribution or level in response to stresses such as heat shock and nutrient deprivation. Here, we provide an overview of recent themes that have emerged from the substantial progress that has been made in our understanding of chemical modifications across many major RNA classes in eukaryotes.
Collapse
Affiliation(s)
- Sigrid Nachtergaele
- a Department of Chemistry, Department of Biochemistry and Molecular Biology , and Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago , Chicago , IL , USA
| | - Chuan He
- a Department of Chemistry, Department of Biochemistry and Molecular Biology , and Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago , Chicago , IL , USA
| |
Collapse
|
119
|
tRNA-mediated codon-biased translation in mycobacterial hypoxic persistence. Nat Commun 2016; 7:13302. [PMID: 27834374 PMCID: PMC5114619 DOI: 10.1038/ncomms13302] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 09/21/2016] [Indexed: 02/07/2023] Open
Abstract
Microbial pathogens adapt to the stress of infection by regulating transcription, translation and protein modification. We report that changes in gene expression in hypoxia-induced non-replicating persistence in mycobacteria—which models tuberculous granulomas—are partly determined by a mechanism of tRNA reprogramming and codon-biased translation. Mycobacterium bovis BCG responded to each stage of hypoxia and aerobic resuscitation by uniquely reprogramming 40 modified ribonucleosides in tRNA, which correlate with selective translation of mRNAs from families of codon-biased persistence genes. For example, early hypoxia increases wobble cmo5U in tRNAThr(UGU), which parallels translation of transcripts enriched in its cognate codon, ACG, including the DosR master regulator of hypoxic bacteriostasis. Codon re-engineering of dosR exaggerates hypoxia-induced changes in codon-biased DosR translation, with altered dosR expression revealing unanticipated effects on bacterial survival during hypoxia. These results reveal a coordinated system of tRNA modifications and translation of codon-biased transcripts that enhance expression of stress response proteins in mycobacteria. Mycobacteria can adapt to the stress of human infection by entering a dormant state. Here the authors show that hypoxia-induced dormancy in M. bovis BCG involves the reprogramming of tRNA wobble modifications and copy numbers, coupled with biased use of synonymous codons in survival genes.
Collapse
|
120
|
Clark WC, Evans ME, Dominissini D, Zheng G, Pan T. tRNA base methylation identification and quantification via high-throughput sequencing. RNA (NEW YORK, N.Y.) 2016; 22:1771-1784. [PMID: 27613580 PMCID: PMC5066629 DOI: 10.1261/rna.056531.116] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 08/12/2016] [Indexed: 05/03/2023]
Abstract
Eukaryotic transfer RNAs contain on average 14 modifications. Investigations of their biological functions require the determination of the modification sites and the dynamic variations of the modification fraction. Base methylation represents a major class of tRNA modification. Although many approaches have been used to identify tRNA base methylations, including sequencing, they are generally qualitative and do not report the information on the modification fraction. Dynamic mRNA modifications have been shown to play important biological roles; yet, the extent of tRNA modification fractions has not been reported systemically. Here we take advantage of a recently developed high-throughput sequencing method (DM-tRNA-seq) to identify and quantify tRNA base methylations located at the Watson-Crick face in HEK293T cells at single base resolution. We apply information derived from both base mutations and positional stops from sequencing using a combination of demethylase treatment and cDNA synthesis by a thermophilic reverse transcriptase to compile a quantitative "Modification Index" (MI) for six base methylations in human tRNA and rRNA. MI combines the metrics for mutational and stop components from alignment of sequencing data without demethylase treatment, and the modifications are validated in the sequencing data upon demethylase treatment. We identify many new methylation sites in both human nuclear and mitochondrial-encoded tRNAs not present in the RNA modification databases. The potentially quantitative nature of the MI values obtained from sequencing is validated by primer extension of several tRNAs. Our approach should be widely applicable to identify tRNA methylation sites, analyze comparative fractional modifications, and evaluate the modification dynamics between different samples.
Collapse
Affiliation(s)
| | | | - Dan Dominissini
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, USA
| | | | - Tao Pan
- Department of Biochemistry and Molecular Biology
- Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
121
|
Vivijs B, Aertsen A, Michiels CW. Identification of Genes Required for Growth of Escherichia coli MG1655 at Moderately Low pH. Front Microbiol 2016; 7:1672. [PMID: 27826291 PMCID: PMC5078493 DOI: 10.3389/fmicb.2016.01672] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/06/2016] [Indexed: 01/27/2023] Open
Abstract
The survival of some pathotypes of Escherichia coli in very low pH environments like highly acidic foods and the stomach has been well documented and contributes to their success as foodborne pathogens. In contrast, the ability of E. coli to grow at moderately low pH has received less attention, although this property can be anticipated to be also very important for the safety of mildly acidic foods. Therefore, the objective of this study was to identify cellular functions required for growth of the non-pathogenic strain E. coli MG1655 at low pH. First, the role of the four E. coli amino acid decarboxylase systems, which are the major cellular mechanisms allowing extreme acid survival, was investigated using mutants defective in each of the systems. Only the lysine decarboxylase (CadA) was required for low pH growth. Secondly, a screening of 8544 random transposon insertion mutants resulted in the identification of six genes affecting growth in LB broth acidified to pH 4.50 with HCl. Two of the genes, encoding the transcriptional regulator LeuO and the elongation factor P-β-lysine ligase EpmA, can be linked to CadA production. Two other genes, encoding the diadenosine tetraphosphatase ApaH and the tRNA modification GTPase MnmE, have been previously implicated in the bacterial response to stresses other than low pH. A fifth gene encodes the LPS heptosyltransferase WaaC, and its mutant has a deep rough colony phenotype, which has been linked to reduced acid tolerance in earlier work. Finally, tatC encodes a secA-independent protein translocase that exports a few dozen proteins and thus is likely to have a pleiotropic phenotype. For mnmE, apaH, epmA, and waaC, de novo in frame deletion and genetic complementation confirmed their role in low pH growth, and these deletion mutants were also affected in growth in apple juice and tomato juice. However, the mutants were not affected in survival in gastric simulation medium at pH 2.5, indicating that growth at moderately low pH and survival of extremely low pH depend mostly on different cellular functions.
Collapse
Affiliation(s)
| | | | - Chris W. Michiels
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU LeuvenLeuven, Belgium
| |
Collapse
|
122
|
Liu F, Clark W, Luo G, Wang X, Fu Y, Wei J, Wang X, Hao Z, Dai Q, Zheng G, Ma H, Han D, Evans M, Klungland A, Pan T, He C. ALKBH1-Mediated tRNA Demethylation Regulates Translation. Cell 2016; 167:816-828.e16. [PMID: 27745969 DOI: 10.1016/j.cell.2016.09.038] [Citation(s) in RCA: 346] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 08/14/2016] [Accepted: 09/22/2016] [Indexed: 12/27/2022]
Abstract
tRNA is a central component of protein synthesis and the cell signaling network. One salient feature of tRNA is its heavily modified status, which can critically impact its function. Here, we show that mammalian ALKBH1 is a tRNA demethylase. It mediates the demethylation of N1-methyladenosine (m1A) in tRNAs. The ALKBH1-catalyzed demethylation of the target tRNAs results in attenuated translation initiation and decreased usage of tRNAs in protein synthesis. This process is dynamic and responds to glucose availability to affect translation. Our results uncover reversible methylation of tRNA as a new mechanism of post-transcriptional gene expression regulation.
Collapse
Affiliation(s)
- Fange Liu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Wesley Clark
- Department of Biochemistry and Molecular Biology and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA
| | - Guanzheng Luo
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Xiaoyun Wang
- Department of Biochemistry and Molecular Biology and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA
| | - Ye Fu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Jiangbo Wei
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Xiao Wang
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Ziyang Hao
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Qing Dai
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Guanqun Zheng
- Department of Biochemistry and Molecular Biology and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA
| | - Honghui Ma
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Dali Han
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Molly Evans
- Department of Biochemistry and Molecular Biology and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA
| | - Arne Klungland
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, 0027 Oslo, Norway; Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway
| | - Tao Pan
- Department of Biochemistry and Molecular Biology and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA.
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Department of Biochemistry and Molecular Biology and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA.
| |
Collapse
|
123
|
Jaroensuk J, Atichartpongkul S, Chionh YH, Wong YH, Liew CW, McBee ME, Thongdee N, Prestwich EG, DeMott MS, Mongkolsuk S, Dedon PC, Lescar J, Fuangthong M. Methylation at position 32 of tRNA catalyzed by TrmJ alters oxidative stress response in Pseudomonas aeruginosa. Nucleic Acids Res 2016; 44:10834-10848. [PMID: 27683218 PMCID: PMC5159551 DOI: 10.1093/nar/gkw870] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/17/2016] [Accepted: 09/20/2016] [Indexed: 02/04/2023] Open
Abstract
Bacteria respond to environmental stresses using a variety of signaling and gene expression pathways, with translational mechanisms being the least well understood. Here, we identified a tRNA methyltransferase in Pseudomonas aeruginosa PA14, trmJ, which confers resistance to oxidative stress. Analysis of tRNA from a trmJ mutant revealed that TrmJ catalyzes formation of Cm, Um, and, unexpectedly, Am. Defined in vitro analyses revealed that tRNAMet(CAU) and tRNATrp(CCA) are substrates for Cm formation, tRNAGln(UUG), tRNAPro(UGG), tRNAPro(CGG) and tRNAHis(GUG) for Um, and tRNAPro(GGG) for Am. tRNASer(UGA), previously observed as a TrmJ substrate in Escherichia coli, was not modified by PA14 TrmJ. Position 32 was confirmed as the TrmJ target for Am in tRNAPro(GGG) and Um in tRNAGln(UUG) by mass spectrometric analysis. Crystal structures of the free catalytic N-terminal domain of TrmJ show a 2-fold symmetrical dimer with an active site located at the interface between the monomers and a flexible basic loop positioned to bind tRNA, with conformational changes upon binding of the SAM-analog sinefungin. The loss of TrmJ rendered PA14 sensitive to H2O2 exposure, with reduced expression of oxyR-recG, katB-ankB, and katE. These results reveal that TrmJ is a tRNA:Cm32/Um32/Am32 methyltransferase involved in translational fidelity and the oxidative stress response.
Collapse
Affiliation(s)
- Juthamas Jaroensuk
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Bangkok, Thailand.,Singapore-MIT Alliance for Research and Technology, Singapore
| | | | - Yok Hian Chionh
- Singapore-MIT Alliance for Research and Technology, Singapore
| | - Yee Hwa Wong
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Chong Wai Liew
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore
| | - Megan E McBee
- Singapore-MIT Alliance for Research and Technology, Singapore
| | - Narumon Thongdee
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Bangkok, Thailand
| | - Erin G Prestwich
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael S DeMott
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Skorn Mongkolsuk
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand.,Department of Biotechnology, Faculty of Sciences, Mahidol University, Bangkok, Thailand.,Center of Excellence on Environmental Health and Toxicology (EHT), Bangkok, Thailand
| | - Peter C Dedon
- Singapore-MIT Alliance for Research and Technology, Singapore .,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Julien Lescar
- School of Biological Sciences, Nanyang Technological University, Singapore .,NTU Institute of Structural Biology, Nanyang Technological University, Singapore.,UPMC UMRS CR7 - CNRS ERL 8255-INSERM U1135 Centre d' Immunologie et des Maladies Infectieuses, Paris, France
| | - Mayuree Fuangthong
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Bangkok, Thailand .,Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand.,Center of Excellence on Environmental Health and Toxicology (EHT), Bangkok, Thailand
| |
Collapse
|
124
|
Doyle F, Leonardi A, Endres L, Tenenbaum SA, Dedon PC, Begley TJ. Gene- and genome-based analysis of significant codon patterns in yeast, rat and mice genomes with the CUT Codon UTilization tool. Methods 2016; 107:98-109. [PMID: 27245397 PMCID: PMC5014648 DOI: 10.1016/j.ymeth.2016.05.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/16/2016] [Accepted: 05/17/2016] [Indexed: 01/09/2023] Open
Abstract
The translation of mRNA in all forms of life uses a three-nucleotide codon and aminoacyl-tRNAs to synthesize a protein. There are 64 possible codons in the genetic code, with codons for the ∼20 amino acids and 3 stop codons having 1- to 6-fold degeneracy. Recent studies have shown that families of stress response transcripts, termed modification tunable transcripts (MoTTs), use distinct codon biases that match specifically modified tRNAs to regulate their translation during a stress. Similarly, translational reprogramming of the UGA stop codon to generate selenoproteins or to perform programmed translational read-through (PTR) that results in a longer protein, requires distinct codon bias (i.e., more than one stop codon) and, in the case of selenoproteins, a specifically modified tRNA. In an effort to identify transcripts that have codon usage patterns that could be subject to translational control mechanisms, we have used existing genome and transcript data to develop the gene-specific Codon UTilization (CUT) tool and database, which details all 1-, 2-, 3-, 4- and 5-codon combinations for all genes or transcripts in yeast (Saccharomyces cerevisiae), mice (Mus musculus) and rats (Rattus norvegicus). Here, we describe the use of the CUT tool and database to characterize significant codon usage patterns in specific genes and groups of genes. In yeast, we demonstrate how the CUT database can be used to identify genes that have runs of specific codons (e.g., AGA, GAA, AAG) linked to translational regulation by tRNA methyltransferase 9 (Trm9). We further demonstrate how groups of genes can be analyzed to find significant dicodon patterns, with the 80 Gcn4-regulated transcripts significantly (P<0.00001) over-represented with the AGA-GAA dicodon. We have also used the CUT database to identify mouse and rat transcripts with internal UGA codons, with the surprising finding of 45 and 120 such transcripts, respectively, which is much larger than expected. The UGA data suggest that there could be many more translationally reprogrammed transcripts than currently reported. CUT thus represents a multi-species codon-counting database that can be used with mRNA-, translation- and proteomics-based results to better understand and model translational control mechanisms.
Collapse
Affiliation(s)
- Frank Doyle
- State University of New York – SUNY Polytechnic Institute, College of Nanoscale Science and Engineering, Albany, NY
| | - Andrea Leonardi
- State University of New York – SUNY Polytechnic Institute, College of Nanoscale Science and Engineering, Albany, NY
| | - Lauren Endres
- State University of New York – SUNY Polytechnic Institute, College of Arts and Sciences, Utica, NY
| | - Scott A. Tenenbaum
- State University of New York – SUNY Polytechnic Institute, College of Nanoscale Science and Engineering, Albany, NY
| | - Peter C. Dedon
- Department of Biological Engineering and Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, MA
- Singapore-MIT Alliance for Research and Technology, Singapore
| | - Thomas J. Begley
- State University of New York – SUNY Polytechnic Institute, College of Nanoscale Science and Engineering, Albany, NY
- RNA Institute, University at Albany, State University of New York
| |
Collapse
|
125
|
Arimbasseri AG, Iben J, Wei FY, Rijal K, Tomizawa K, Hafner M, Maraia RJ. Evolving specificity of tRNA 3-methyl-cytidine-32 (m3C32) modification: a subset of tRNAsSer requires N6-isopentenylation of A37. RNA (NEW YORK, N.Y.) 2016; 22:1400-10. [PMID: 27354703 PMCID: PMC4986895 DOI: 10.1261/rna.056259.116] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 05/24/2016] [Indexed: 05/10/2023]
Abstract
Post-transcriptional modifications of anticodon loop (ACL) nucleotides impact tRNA structure, affinity for the ribosome, and decoding activity, and these activities can be fine-tuned by interactions between nucleobases on either side of the anticodon. A recently discovered ACL modification circuit involving positions 32, 34, and 37 is disrupted by a human disease-associated mutation to the gene encoding a tRNA modification enzyme. We used tRNA-HydroSeq (-HySeq) to examine (3)methyl-cytidine-32 (m(3)C32), which is found in yeast only in the ACLs of tRNAs(Ser) and tRNAs(Thr) In contrast to that reported for Saccharomyces cerevisiae in which all m(3)C32 depends on a single gene, TRM140, the m(3)C32 of tRNAs(Ser) and tRNAs(Thr) of the fission yeast S. pombe, are each dependent on one of two related genes, trm140(+) and trm141(+), homologs of which are found in higher eukaryotes. Interestingly, mammals and other vertebrates contain a third homolog and also contain m(3)C at new sites, positions 32 on tRNAs(Arg) and C47:3 in the variable arm of tRNAs(Ser) More significantly, by examining S. pombe mutants deficient for other modifications, we found that m(3)C32 on the three tRNAs(Ser) that contain anticodon base A36, requires N(6)-isopentenyl modification of A37 (i(6)A37). This new C32-A37 ACL circuitry indicates that i(6)A37 is a pre- or corequisite for m(3)C32 on these tRNAs. Examination of the tRNA database suggests that such circuitry may be more expansive than observed here. The results emphasize two contemporary themes, that tRNA modifications are interconnected, and that some specific modifications on tRNAs of the same anticodon identity are species-specific.
Collapse
Affiliation(s)
- Aneeshkumar G Arimbasseri
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - James Iben
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Fan-Yan Wei
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, 860-0862 Kumamoto, Japan
| | - Keshab Rijal
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, 860-0862 Kumamoto, Japan
| | - Markus Hafner
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard J Maraia
- Commissioned Corps, US Public Health Service, Washington, DC 20201, USA
| |
Collapse
|
126
|
Foretek D, Nuc P, Żywicki M, Karlowski WM, Kudla G, Boguta M. Maf1-mediated regulation of yeast RNA polymerase III is correlated with CCA addition at the 3' end of tRNA precursors. Gene 2016; 612:12-18. [PMID: 27575455 PMCID: PMC5390780 DOI: 10.1016/j.gene.2016.08.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 08/18/2016] [Accepted: 08/20/2016] [Indexed: 11/30/2022]
Abstract
In eukaryotic cells tRNA synthesis is negatively regulated by the protein Maf1, conserved from yeast to humans. Maf1 from yeast Saccharomyces cerevisiae mediates repression of trna transcription when cells are transferred from medium with glucose to medium with glycerol, a non-fermentable carbon source. The strain with deleted gene encoding Maf1 (maf1Δ) is viable but accumulates tRNA precursors. In this study tRNA precursors were analysed by RNA-Seq and Northern hybridization in wild type strain and maf1Δ mutant grown in glucose medium or upon shift to repressive conditions. A negative effect of maf1Δ mutant on the addition of the auxiliary CCA nucleotides to the 3′ end of pre-tRNAs was observed in cells shifted to unfavourable growth conditions. This effect was reduced by overexpression of the yeast CCA1 gene encoding ATP(CTP):tRNA nucleotidyltransferase. The CCA sequence at the 3′ end is important for export of tRNA precursors from the nucleus and essential for tRNA charging with amino acids. Data presented here indicate that CCA-addition to intron-containing end-processed tRNA precursors is a limiting step in tRNA maturation when there is no Maf1 mediated RNA polymerase III (Pol III) repression. The correlation between CCA synthesis and Pol III regulation by Maf1 could be important in coordination of tRNA transcription, processing and regulation of translation. Effect of Maf1 on maturation of tRNA precursors was analysed in yeast cells. CCA addition to the 3′ end of pre-tRNA was down-regulated in maf1Δ mutant under stress. Effect of inactivation and overproduction of Cca1 enzyme in maf1Δ cells was examined. Link between CCA synthesis and RNA polymerase III regulation is discussed.
Collapse
Affiliation(s)
- Dominika Foretek
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Przemysław Nuc
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Marek Żywicki
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Wojciech M Karlowski
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Grzegorz Kudla
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, Scotland, UK
| | - Magdalena Boguta
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland.
| |
Collapse
|
127
|
Zhang B, Li B, Chen D, Zong J, Sun F, Qu H, Liang C. Transcriptional Regulation of Aerobic Metabolism in Pichia pastoris Fermentation. PLoS One 2016; 11:e0161502. [PMID: 27537181 PMCID: PMC4990298 DOI: 10.1371/journal.pone.0161502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 08/05/2016] [Indexed: 11/18/2022] Open
Abstract
In this study, we investigated the classical fermentation process in Pichia pastoris based on transcriptomics. We utilized methanol in pichia yeast cell as the focus of our study, based on two key steps: limiting carbon source replacement (from glycerol to methonal) and fermentative production of exogenous proteins. In the former, the core differential genes in co-expression net point to initiation of aerobic metabolism and generation of peroxisome. The transmission electron microscope (TEM) results showed that yeast gradually adapted methanol induction to increased cell volume, and decreased density, via large number of peroxisomes. In the fermentative production of exogenous proteins, the Gene Ontology (GO) mapping results show that PAS_chr2-1_0582 played a vital role in regulating aerobic metabolic drift. In order to confirm the above results, we disrupted PAS_chr2-1_0582 by homologous recombination. Alcohol consumption was equivalent to one fifth of the normal control, and fewer peroxisomes were observed in Δ0582 strain following methanol induction. In this study we determined the important core genes and GO terms regulating aerobic metabolic drift in Pichia, as well as developing new perspectives for the continued development within this field.
Collapse
Affiliation(s)
- Biao Zhang
- Institute of Frontier Medical Science of Jilin University, Changchun 130021, P.R. China
| | - Baizhi Li
- Institute of Frontier Medical Science of Jilin University, Changchun 130021, P.R. China
| | - Dai Chen
- NovelBio Bio-Pharm Technology Co., Ltd, Shanghai 200000, P.R. China
| | - Jie Zong
- NovelBio Bio-Pharm Technology Co., Ltd, Shanghai 200000, P.R. China
| | - Fei Sun
- Institute of Frontier Medical Science of Jilin University, Changchun 130021, P.R. China
| | - Huixin Qu
- Institute of Frontier Medical Science of Jilin University, Changchun 130021, P.R. China
| | - Chongyang Liang
- Institute of Frontier Medical Science of Jilin University, Changchun 130021, P.R. China
- * E-mail:
| |
Collapse
|
128
|
Duechler M, Leszczyńska G, Sochacka E, Nawrot B. Nucleoside modifications in the regulation of gene expression: focus on tRNA. Cell Mol Life Sci 2016; 73:3075-95. [PMID: 27094388 PMCID: PMC4951516 DOI: 10.1007/s00018-016-2217-y] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/25/2016] [Accepted: 04/04/2016] [Indexed: 01/10/2023]
Abstract
Both, DNA and RNA nucleoside modifications contribute to the complex multi-level regulation of gene expression. Modified bases in tRNAs modulate protein translation rates in a highly dynamic manner. Synonymous codons, which differ by the third nucleoside in the triplet but code for the same amino acid, may be utilized at different rates according to codon-anticodon affinity. Nucleoside modifications in the tRNA anticodon loop can favor the interaction with selected codons by stabilizing specific base pairs. Similarly, weakening of base pairing can discriminate against binding to near-cognate codons. mRNAs enriched in favored codons are translated in higher rates constituting a fine-tuning mechanism for protein synthesis. This so-called codon bias establishes a basic protein level, but sometimes it is necessary to further adjust the production rate of a particular protein to actual requirements, brought by, e.g., stages in circadian rhythms, cell cycle progression or exposure to stress. Such an adjustment is realized by the dynamic change of tRNA modifications resulting in the preferential translation of mRNAs coding for example for stress proteins to facilitate cell survival. Furthermore, tRNAs contribute in an entirely different way to another, less specific stress response consisting in modification-dependent tRNA cleavage that contributes to the general down-regulation of protein synthesis. In this review, we summarize control functions of nucleoside modifications in gene regulation with a focus on recent findings on protein synthesis control by tRNA base modifications.
Collapse
Affiliation(s)
- Markus Duechler
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland.
| | - Grażyna Leszczyńska
- Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Elzbieta Sochacka
- Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Barbara Nawrot
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| |
Collapse
|
129
|
Abstract
Noncoding RNAs are an emerging class of nonpeptide regulators of metabolism. Metabolic diseases and the altered metabolic environment induce marked changes in levels of microRNAs and long noncoding RNAs. Furthermore, recent studies indicate that a growing number of microRNAs and long noncoding RNAs serve as critical mediators of adaptive and maladaptive responses through their effects on gene expression. The metabolic environment also has a profound impact on the functions of classes of noncoding RNAs that have been thought primarily to subserve housekeeping functions in cells-ribosomal RNAs, transfer RNAs, and small nucleolar RNAs. Evidence is accumulating that these RNAs are also components of an integrated cellular response to the metabolic milieu. This Perspective discusses the different classes of noncoding RNAs and their contributions to the pathogenesis of metabolic stress.
Collapse
Affiliation(s)
- George Caputa
- Diabetic Cardiovascular Disease Center and Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Jean E Schaffer
- Diabetic Cardiovascular Disease Center and Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO
| |
Collapse
|
130
|
Oxidative Homeostasis Regulates the Response to Reductive Endoplasmic Reticulum Stress through Translation Control. Cell Rep 2016; 16:851-65. [DOI: 10.1016/j.celrep.2016.06.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 04/11/2016] [Accepted: 06/03/2016] [Indexed: 11/20/2022] Open
|
131
|
Zhou M, Long T, Fang ZP, Zhou XL, Liu RJ, Wang ED. Identification of determinants for tRNA substrate recognition by Escherichia coli C/U34 2'-O-methyltransferase. RNA Biol 2016; 12:900-11. [PMID: 26106808 PMCID: PMC4615657 DOI: 10.1080/15476286.2015.1050576] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Post-transcriptional modifications bring chemical diversity to tRNAs, especially at positions 34 and 37 of the anticodon stem-loop (ASL). TrmL is the prokaryotic methyltransferase that catalyzes the transfer of the methyl group from S-adenosyl-L-methionine to the wobble base of tRNALeuCAA and tRNALeuUAA isoacceptors. This Cm34/Um34 modification affects codon-anticodon interactions and is essential for translational fidelity. TrmL-catalyzed 2′-O-methylation requires its homodimerization; however, understanding of the tRNA recognition mechanism by TrmL remains elusive. In the current study, by measuring tRNA methylation by TrmL and performing kinetic analysis of tRNA mutants, we found that TrmL exhibits a fine-tuned tRNA substrate recognition mechanism. Anticodon stem-loop minihelices with an extension of 2 base pairs are the minimal substrate for EcTrmL methylation. A35 is a key residue for TrmL recognition, while A36-A37-A38 are important either via direct interaction with TrmL or due to the necessity for prior isopentenylation (i6) at A37. In addition, TrmL only methylates pyrimidines but not purine residues at the wobble position, and the 2′-O-methylation relies on prior N6-isopentenyladenosine modification at position 37.
Collapse
Affiliation(s)
- Mi Zhou
- a State Key Laboratory of Molecular Biology ; Institute of Biochemistry and Cell Biology; Shanghai Institutes for Biological Sciences ; Chinese Academy of Sciences ; Shanghai , PR China
| | | | | | | | | | | |
Collapse
|
132
|
Aubee JI, Olu M, Thompson KM. The i6A37 tRNA modification is essential for proper decoding of UUX-Leucine codons during rpoS and iraP translation. RNA (NEW YORK, N.Y.) 2016; 22:729-742. [PMID: 26979278 PMCID: PMC4836647 DOI: 10.1261/rna.053165.115] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/05/2016] [Indexed: 06/05/2023]
Abstract
The translation of rpoS(σ(S)), the general stress/stationary phase sigma factor, is tightly regulated at the post-transcriptional level by several factors via mechanisms that are not clearly defined. One of these factors is MiaA, the enzyme necessary for the first step in theN(6)-isopentyl-2-thiomethyl adenosinemethyl adenosine 37 (ms(2)i(6)A37) tRNA modification. We tested the hypothesis that an elevated UUX-Leucine/total leucine codon ratio can be used to identify transcripts whose translation would be sensitive to loss of the MiaA-dependent modification. We identified iraPas another candidate MiaA-sensitive gene, based on the UUX-Leucine/total leucine codon ratio. AniraP-lacZ fusion was significantly decreased in the abse nce of MiaA, consistent with our predictive model. To determine the role of MiaA in UUX-Leucine decoding in rpoS and iraP, we measured β-galactosidase-specific activity of miaA(-)rpo Sandira P translational fusions upon overexpression of leucine tRNAs. We observed suppression of the MiaA effect on rpoS, and notira P, via overexpression of tRNA(LeuX)but not tRNA(LeuZ) We also tested the hypothesis that the MiaA requirement for rpoS and iraP translation is due to decoding of UUX-Leucine codons within the rpoS and iraP transcripts, respectively. We observed a partial suppression of the MiaA requirement for rpoS and iraP translational fusions containing one or both UUX-Leucine codons removed. Taken together, this suggests that MiaA is necessary for rpoS and iraP translation through proper decoding of UUX-Leucine codons and that rpoS and iraP mRNAs are both modification tunable transcripts (MoTTs) via the presence of the modification.
Collapse
Affiliation(s)
- Joseph I Aubee
- Department of Microbiology, College of Medicine, Howard University, Washington, DC 20059, USA
| | - Morenike Olu
- Department of Microbiology, College of Medicine, Howard University, Washington, DC 20059, USA Department of Biology, Howard University, Washington, DC 20059, USA
| | - Karl M Thompson
- Department of Microbiology, College of Medicine, Howard University, Washington, DC 20059, USA
| |
Collapse
|
133
|
Abstract
The past several years have seen dramatic leaps in our understanding of how gene expression is rewired at the translation level during tumorigenesis to support the transformed phenotype. This work has been driven by an explosion in technological advances and is revealing previously unimagined regulatory mechanisms that dictate functional expression of the cancer genome. In this Review we discuss emerging trends and exciting new discoveries that reveal how this translational circuitry contributes to specific aspects of tumorigenesis and cancer cell function, with a particular focus on recent insights into the role of translational control in the adaptive response to oncogenic stress conditions.
Collapse
Affiliation(s)
- Morgan L Truitt
- Department of Urology, University of California, San Francisco
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94158, USA
| | - Davide Ruggero
- Department of Urology, University of California, San Francisco
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94158, USA
| |
Collapse
|
134
|
RNA Polymerase III Advances: Structural and tRNA Functional Views. Trends Biochem Sci 2016; 41:546-559. [PMID: 27068803 DOI: 10.1016/j.tibs.2016.03.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/03/2016] [Accepted: 03/09/2016] [Indexed: 12/25/2022]
Abstract
RNA synthesis in eukaryotes is divided among three RNA polymerases (RNAPs). RNAP III transcribes hundreds of tRNA genes and fewer additional short RNA genes. We survey recent work on transcription by RNAP III including an atomic structure, mechanisms of action, interactions with chromatin and retroposons, and a conserved link between its activity and a tRNA modification that enhances mRNA decoding. Other new work suggests important mechanistic connections to oxidative stress, autoimmunity and cancer, embryonic stem cell pluripotency, and tissue-specific developmental effects. We consider that, for some of its complex functions, variation in RNAP III activity levels lead to nonuniform changes in tRNAs that can shift the translation profiles of key codon-biased mRNAs with resultant phenotypes or disease states.
Collapse
|
135
|
Lamichhane TN, Arimbasseri AG, Rijal K, Iben JR, Wei FY, Tomizawa K, Maraia RJ. Lack of tRNA-i6A modification causes mitochondrial-like metabolic deficiency in S. pombe by limiting activity of cytosolic tRNATyr, not mito-tRNA. RNA (NEW YORK, N.Y.) 2016; 22:583-96. [PMID: 26857223 PMCID: PMC4793213 DOI: 10.1261/rna.054064.115] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 12/28/2015] [Indexed: 05/17/2023]
Abstract
tRNA-isopentenyl transferases (IPTases) are highly conserved enzymes that form isopentenyl-N(6)-A37 (i6A37) on subsets of tRNAs, enhancing their translation activity. Nuclear-encoded IPTases modify select cytosolic (cy-) and mitochondrial (mt-) tRNAs. Mutation in human IPTase, TRIT1, causes disease phenotypes characteristic of mitochondrial translation deficiency due to mt-tRNA dysfunction. Deletion of the Schizosaccharomyces pombe IPTase (tit1-Δ) causes slow growth in glycerol, as well as in rapamycin, an inhibitor of TOR kinase that maintains metabolic homeostasis. Schizosaccharomyces pombe IPTase modifies three different cy-tRNAs(Ser) as well as cy-tRNA(Tyr), cy-tRNA(Trp), and mt-tRNA(Trp). We show that lower ATP levels in tit1-Δ relative to tit1(+) cells are also more decreased by an inhibitor of oxidative phosphorylation, indicative of mitochondrial dysfunction. Here we asked if the tit1-Δ phenotypes are due to hypomodification of cy-tRNA or mt-tRNA. A cytosol-specific IPTase that modifies cy-tRNA, but not mt-tRNA, fully rescues the tit1-Δ phenotypes. Moreover, overexpression of cy-tRNAs also rescues the phenotypes, and cy-tRNA(Tyr) alone substantially does so. Bioinformatics indicate that cy-tRNA(Tyr) is most limiting for codon demand in tit1-Δ cells and that the cytosolic mRNAs most loaded with Tyr codons encode carbon metabolilizing enzymes, many of which are known to localize to mitochondria. Thus, S. pombe i6A37 hypomodification-associated metabolic deficiency results from hypoactivity of cy-tRNA, mostly tRNA(Tyr), and unlike human TRIT1-deficiency does not impair mitochondrial translation due to mt-tRNA hypomodification. We discuss species-specific aspects of i6A37. Specifically relevant to mitochondria, we show that its hypermodified version, ms2i6A37 (2-methylthiolated), which occurs on certain mammalian mt-tRNAs (but not cy-tRNAs), is not found in yeast.
Collapse
Affiliation(s)
- Tek N Lamichhane
- Section on Molecular and Cell Biology, Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Aneeshkumar G Arimbasseri
- Section on Molecular and Cell Biology, Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Keshab Rijal
- Section on Molecular and Cell Biology, Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - James R Iben
- Molecular Genetics Laboratory, Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Fan Yan Wei
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, 860-0862 Kumamoto, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, 860-0862 Kumamoto, Japan
| | - Richard J Maraia
- Section on Molecular and Cell Biology, Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA Commissioned Corps, US Public Health Service, Rockville, Maryland 20016, USA
| |
Collapse
|
136
|
Li Q, Hu B, Hu GW, Chen CY, Niu X, Liu J, Zhou SM, Zhang CQ, Wang Y, Deng ZF. tRNA-Derived Small Non-Coding RNAs in Response to Ischemia Inhibit Angiogenesis. Sci Rep 2016; 6:20850. [PMID: 26865164 PMCID: PMC4749989 DOI: 10.1038/srep20850] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 01/12/2016] [Indexed: 12/31/2022] Open
Abstract
Ischemic injuries will lead to necrotic tissue damage, and post-ischemia angiogenesis plays critical roles in blood flow restoration and tissue recovery. Recently, several types of small RNAs have been reported to be involved in this process. In this study, we first generated a rat brain ischemic model to investigate the involvement of new types of small RNAs in ischemia. We utilized deep sequencing and bioinformatics analyses to demonstrate that the level of small RNA fragments derived from tRNAs strikingly increased in the ischemic rat brain. Among these sequences, tRNAVal- and tRNAGly-derived small RNAs account for the most abundant segments. The up-regulation of tRNAVal- and tRNAGly-derived fragments was verified through northern blot and quantitative PCR analyses. The levels of these two fragments also increased in a mouse hindlimb ischemia model and cellular hypoxia model. Importantly, up-regulation of the tRNAVal- and tRNAGly-derived fragments in endothelial cells inhibited cell proliferation, migration and tube formation. Furthermore, we showed that these small RNAs are generated by angiogenin cleavage. Our results indicate that tRNA-derived fragments are involved in tissue ischemia, and we demonstrate for the first time that tRNAVal- and tRNAGly-derived fragments inhibit angiogenesis by modulating the function of endothelial cells.
Collapse
Affiliation(s)
- Qing Li
- Institute of Microsurgery on Extremities, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Bin Hu
- Institute of Microsurgery on Extremities, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Guo-Wen Hu
- Department of Neurosurgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, China.,Graduate School of Nanchang University, Nanchang 330006, China
| | - Chun-Yuan Chen
- Institute of Microsurgery on Extremities, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, China.,Graduate School of Nanchang University, Nanchang 330006, China
| | - Xin Niu
- Institute of Microsurgery on Extremities, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Juan Liu
- Department of Neurosurgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Shu-Min Zhou
- Institute of Microsurgery on Extremities, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Chang-Qing Zhang
- Institute of Microsurgery on Extremities, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, China.,Department of Orthopedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yang Wang
- Institute of Microsurgery on Extremities, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Zhi-Feng Deng
- Department of Neurosurgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| |
Collapse
|
137
|
Ranjan N, Rodnina MV. tRNA wobble modifications and protein homeostasis. ACTA ACUST UNITED AC 2016; 4:e1143076. [PMID: 27335723 DOI: 10.1080/21690731.2016.1143076] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 12/28/2015] [Accepted: 01/12/2016] [Indexed: 12/20/2022]
Abstract
tRNA is a central component of the protein synthesis machinery in the cell. In living cells, tRNAs undergo numerous post-transcriptional modifications. In particular, modifications at the anticodon loop play an important role in ensuring efficient protein synthesis, maintaining protein homeostasis, and helping cell adaptation and survival. Hypo-modification of the wobble position of the tRNA anticodon loop is of particular relevance for translation regulation and is implicated in various human diseases. In this review we summarize recent evidence of how methyl and thiol modifications in eukaryotic tRNA at position 34 affect cellular fitness and modulate regulatory circuits at normal conditions and under stress.
Collapse
Affiliation(s)
- Namit Ranjan
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry , Göttingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry , Göttingen, Germany
| |
Collapse
|
138
|
García P, Encinar Del Dedo J, Ayté J, Hidalgo E. Genome-wide Screening of Regulators of Catalase Expression: ROLE OF A TRANSCRIPTION COMPLEX AND HISTONE AND tRNA MODIFICATION COMPLEXES ON ADAPTATION TO STRESS. J Biol Chem 2016; 291:790-9. [PMID: 26567340 DOI: 10.1074/jbc.m115.696658] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Indexed: 12/22/2022] Open
Abstract
In response to environmental cues, the mitogen-activated protein kinase Sty1-driven signaling cascade activates hundreds of genes to induce a robust anti-stress cellular response in fission yeast. Thus, upon stress imposition Sty1 transiently accumulates in the nucleus where it up-regulates transcription through the Atf1 transcription factor. Several regulators of transcription and translation have been identified as important to mount an integral response to oxidative stress, such as the Spt-Ada-Gcn5-acetyl transferase or Elongator complexes, respectively. With the aim of identifying new regulators of this massive gene expression program, we have used a GFP-based protein reporter and screened a fission yeast deletion collection using flow cytometry. We find that the levels of catalase fused to GFP, both before and after a threat of peroxides, are altered in hundreds of strains lacking components of chromatin modifiers, transcription complexes, and modulators of translation. Thus, the transcription elongation complex Paf1, the histone methylase Set1-COMPASS, and the translation-related Trm112 dimers are all involved in full expression of Ctt1-GFP and in wild-type tolerance to peroxides.
Collapse
Affiliation(s)
- Patricia García
- From the Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Javier Encinar Del Dedo
- From the Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003 Barcelona, Spain
| | - José Ayté
- From the Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Elena Hidalgo
- From the Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003 Barcelona, Spain
| |
Collapse
|
139
|
Post-Transcriptional Modifications of RNA: Impact on RNA Function and Human Health. MODIFIED NUCLEIC ACIDS IN BIOLOGY AND MEDICINE 2016. [DOI: 10.1007/978-3-319-34175-0_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
140
|
Shigi N. Sulfur Modifications in tRNA: Function and Implications for Human Disease. MODIFIED NUCLEIC ACIDS IN BIOLOGY AND MEDICINE 2016. [DOI: 10.1007/978-3-319-34175-0_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
141
|
RNA Polymerase III Output Is Functionally Linked to tRNA Dimethyl-G26 Modification. PLoS Genet 2015; 11:e1005671. [PMID: 26720005 PMCID: PMC4697793 DOI: 10.1371/journal.pgen.1005671] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/26/2015] [Indexed: 11/19/2022] Open
Abstract
Control of the differential abundance or activity of tRNAs can be important determinants of gene regulation. RNA polymerase (RNAP) III synthesizes all tRNAs in eukaryotes and it derepression is associated with cancer. Maf1 is a conserved general repressor of RNAP III under the control of the target of rapamycin (TOR) that acts to integrate transcriptional output and protein synthetic demand toward metabolic economy. Studies in budding yeast have indicated that the global tRNA gene activation that occurs with derepression of RNAP III via maf1-deletion is accompanied by a paradoxical loss of tRNA-mediated nonsense suppressor activity, manifested as an antisuppression phenotype, by an unknown mechanism. We show that maf1-antisuppression also occurs in the fission yeast S. pombe amidst general activation of RNAP III. We used tRNA-HydroSeq to document that little changes occurred in the relative levels of different tRNAs in maf1Δ cells. By contrast, the efficiency of N2,N2-dimethyl G26 (m(2)2G26) modification on certain tRNAs was decreased in response to maf1-deletion and associated with antisuppression, and was validated by other methods. Over-expression of Trm1, which produces m(2)2G26, reversed maf1-antisuppression. A model that emerges is that competition by increased tRNA levels in maf1Δ cells leads to m(2)2G26 hypomodification due to limiting Trm1, reducing the activity of suppressor-tRNASerUCA and accounting for antisuppression. Consistent with this, we show that RNAP III mutations associated with hypomyelinating leukodystrophy decrease tRNA transcription, increase m(2)2G26 efficiency and reverse antisuppression. Extending this more broadly, we show that a decrease in tRNA synthesis by treatment with rapamycin leads to increased m(2)2G26 modification and that this response is conserved among highly divergent yeasts and human cells.
Collapse
|
142
|
Boguta M. Why Are tRNAs Overproduced in the Absence of Maf1, a Negative Regulator of RNAP III, Not Fully Functional? PLoS Genet 2015; 11:e1005743. [PMID: 26720418 PMCID: PMC4699899 DOI: 10.1371/journal.pgen.1005743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Magdalena Boguta
- Department of Genetics, Institute of Biochemistry and Biophysics, Warsaw, Poland
- * E-mail:
| |
Collapse
|
143
|
Deng W, Babu IR, Su D, Yin S, Begley TJ, Dedon PC. Trm9-Catalyzed tRNA Modifications Regulate Global Protein Expression by Codon-Biased Translation. PLoS Genet 2015; 11:e1005706. [PMID: 26670883 PMCID: PMC4689569 DOI: 10.1371/journal.pgen.1005706] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 11/06/2015] [Indexed: 12/30/2022] Open
Abstract
Post-transcriptional modifications of transfer RNAs (tRNAs) have long been recognized to play crucial roles in regulating the rate and fidelity of translation. However, the extent to which they determine global protein production remains poorly understood. Here we use quantitative proteomics to show a direct link between wobble uridine 5-methoxycarbonylmethyl (mcm5) and 5-methoxy-carbonyl-methyl-2-thio (mcm5s2) modifications catalyzed by tRNA methyltransferase 9 (Trm9) in tRNAArg(UCU) and tRNAGlu(UUC) and selective translation of proteins from genes enriched with their cognate codons. Controlling for bias in protein expression and alternations in mRNA expression, we find that loss of Trm9 selectively impairs expression of proteins from genes enriched with AGA and GAA codons under both normal and stress conditions. Moreover, we show that AGA and GAA codons occur with high frequency in clusters along the transcripts, which may play a role in modulating translation. Consistent with these results, proteins subject to enhanced ribosome pausing in yeast lacking mcm5U and mcm5s2U are more likely to be down-regulated and contain a larger number of AGA/GAA clusters. Together, these results suggest that Trm9-catalyzed tRNA modifications play a significant role in regulating protein expression within the cell. Here we present evidence for a more complicated role for transfer RNAs (tRNAs) than as mere adapters that link the genetic code in messenger RNA (mRNA) to the amino acid sequence of a protein during translation. tRNAs have long been known to be modified with dozens of different chemical structures other than the 4 canonical ribonucleosides, though the role of these modifications in controlling translation is poorly understood. By quantifying the expression of thousands of proteins in the yeast S. cerevisiae, we identified a mechanistic link between modified ribonucleosides located at the wobble position of two tRNAs, tRNAArg(UCU) and tRNAGlu(UUC), and the translation of proteins derived from genes enriched with codons read by these tRNAs: AGA and GAA. In cells lacking the enzyme that inserts these modifications, tRNA methyltransferase 9 (Trm9), we found a significant reduction in proteins from genes enriched with AGA and GAA codons and with runs of these codons. Also, mRNAs enriched with runs of AGA and GAA codons are subject to stalled translation on ribosomes in yeast lacking mcm5U and mcm5s2U. Together, these results reveal a distinct role for Trm9-catalyzed tRNA modifications in selectively regulating the expression of proteins enriched with AGA and GAA codons.
Collapse
Affiliation(s)
- Wenjun Deng
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - I. Ramesh Babu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Dan Su
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Shanye Yin
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Thomas J. Begley
- SUNY College of Nanoscale Science and Engineering, Albany, New York, United States of America
- RNA Institute and Cancer Research Center, University at Albany, State University of New York, Albany, New York, United States of America
| | - Peter C. Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Singapore-MIT Alliance for Research and Technology, Singapore
- * E-mail:
| |
Collapse
|
144
|
Endres L, Dedon PC, Begley TJ. Codon-biased translation can be regulated by wobble-base tRNA modification systems during cellular stress responses. RNA Biol 2015; 12:603-14. [PMID: 25892531 DOI: 10.1080/15476286.2015.1031947] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
tRNA (tRNA) is a key molecule used for protein synthesis, with multiple points of stress-induced regulation that can include transcription, transcript processing, localization and ribonucleoside base modification. Enzyme-catalyzed modification of tRNA occurs at a number of base and sugar positions and has the potential to influence specific anticodon-codon interactions and regulate translation. Notably, altered tRNA modification has been linked to mitochondrial diseases and cancer progression. In this review, specific to Eukaryotic systems, we discuss how recent systems-level analyses using a bioanalytical platform have revealed that there is extensive reprogramming of tRNA modifications in response to cellular stress and during cell cycle progression. Combined with genome-wide codon bias analytics and gene expression studies, a model emerges in which stress-induced reprogramming of tRNA drives the translational regulation of critical response proteins whose transcripts display a distinct codon bias. Termed Modification Tunable Transcripts (MoTTs), (1) we define them as (1) transcripts that use specific degenerate codons and codon biases to encode critical stress response proteins, and (2) transcripts whose translation is influenced by changes in wobble base tRNA modification. In this review we note that the MoTTs translational model is also applicable to the process of stop-codon recoding for selenocysteine incorporation, as stop-codon recoding involves a selective codon bias and modified tRNA to decode selenocysteine during the translation of a key subset of oxidative stress response proteins. Further, we discuss how in addition to RNA modification analytics, the comprehensive characterization of translational regulation of specific transcripts requires a variety of tools, including high coverage codon-reporters, ribosome profiling and linked genomic and proteomic approaches. Together these tools will yield important new insights into the role of translational elongation in cell stress response.
Collapse
Affiliation(s)
- Lauren Endres
- a College of Nanoscale Science and Engineering; State University of New York ; Albany , NY USA
| | | | | |
Collapse
|
145
|
Ramírez V, Gonzalez B, López A, Castelló MJ, Gil MJ, Zheng B, Chen P, Vera P. Loss of a Conserved tRNA Anticodon Modification Perturbs Plant Immunity. PLoS Genet 2015; 11:e1005586. [PMID: 26492405 PMCID: PMC4619653 DOI: 10.1371/journal.pgen.1005586] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 09/16/2015] [Indexed: 12/20/2022] Open
Abstract
tRNA is the most highly modified class of RNA species, and modifications are found in tRNAs from all organisms that have been examined. Despite their vastly different chemical structures and their presence in different tRNAs, occurring in different locations in tRNA, the biosynthetic pathways of the majority of tRNA modifications include a methylation step(s). Recent discoveries have revealed unprecedented complexity in the modification patterns of tRNA, their regulation and function, suggesting that each modified nucleoside in tRNA may have its own specific function. However, in plants, our knowledge on the role of individual tRNA modifications and how they are regulated is very limited. In a genetic screen designed to identify factors regulating disease resistance and activation of defenses in Arabidopsis, we identified SUPPRESSOR OF CSB3 9 (SCS9). Our results reveal SCS9 encodes a tRNA methyltransferase that mediates the 2´-O-ribose methylation of selected tRNA species in the anticodon loop. These SCS9-mediated tRNA modifications enhance during the course of infection with the bacterial pathogen Pseudomonas syringae DC3000, and lack of such tRNA modification, as observed in scs9 mutants, severely compromise plant immunity against the same pathogen without affecting the salicylic acid (SA) signaling pathway which regulates plant immune responses. Our results support a model that gives importance to the control of certain tRNA modifications for mounting an effective immune response in Arabidopsis, and therefore expands the repertoire of molecular components essential for an efficient disease resistance response. Numerous studies revealed the existence of nearly 110 ribonucleoside structures incorporated as post-transcriptional modifications in tRNA, with 25–30 modifications present in any one organism. Emerging evidence points to the critical role of tRNA modifications in various cellular responses to stimuli, including transcription of stress response genes and control of cell viability and growth. The primary function of tRNA modifications, and in particular tRNA methylations, are linked to different steps in protein synthesis including stabilization of tRNA structures, reinforcement of the codon-anticodon interaction, regulation of wobble base pairing, and prevention of frameshift errors. Furthermore, tRNA methylations are involved in the RNA quality control system and regulation of tRNA localization in the cell, all of which affect translation rate, but modifications in the anti-codon, which exhibit important roles in decoding mRNA are particularly important. We identified that the SCS9 gene from Arabidopsis encodes a tRNA 2´-O-ribose methyltransferase homologous to the TRM7 methyltransferase from yeast. We identify that SCS9 is crucial for the 2´-O-ribose methylation of nucleotides 32 and 34 of the tRNAs anticodon loop of certain tRNA molecules. We show that SCS9 is required for effectiveness of plant immunity and suggest the importance of precise tRNA modifications in this process.
Collapse
Affiliation(s)
- Vicente Ramírez
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C, Ciudad Politécnica de la Innovación, Valencia, Spain
| | - Beatriz Gonzalez
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C, Ciudad Politécnica de la Innovación, Valencia, Spain
| | - Ana López
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C, Ciudad Politécnica de la Innovación, Valencia, Spain
| | - María José Castelló
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C, Ciudad Politécnica de la Innovación, Valencia, Spain
| | - María José Gil
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C, Ciudad Politécnica de la Innovación, Valencia, Spain
| | - Bo Zheng
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Peng Chen
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, HuaZhong Agricultural University, Wuhan, China
| | - Pablo Vera
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C, Ciudad Politécnica de la Innovación, Valencia, Spain
- * E-mail:
| |
Collapse
|
146
|
Abstract
tRNA modifications are crucial for efficient and accurate protein translation, with defects often linked to disease. There are 7 cytoplasmic tRNA modifications in the yeast Saccharomyces cerevisiae that are formed by an enzyme consisting of a catalytic subunit and an auxiliary protein, 5 of which require only a single subunit in bacteria, and 2 of which are not found in bacteria. These enzymes include the deaminase Tad2-Tad3, and the methyltransferases Trm6-Trm61, Trm8-Trm82, Trm7-Trm732, and Trm7-Trm734, Trm9-Trm112, and Trm11-Trm112. We describe the occurrence and biological role of each modification, evidence for a required partner protein in S. cerevisiae and other eukaryotes, evidence for a single subunit in bacteria, and evidence for the role of the non-catalytic binding partner. Although it is unclear why these eukaryotic enzymes require partner proteins, studies of some 2-subunit modification enzymes suggest that the partner proteins help expand substrate range or allow integration of cellular activities.
Collapse
Affiliation(s)
- Michael P Guy
- a Department of Biochemistry and Biophysics; Center for RNA Biology ; University of Rochester School of Medicine ; Rochester , NY USA
| | | |
Collapse
|
147
|
Karlsborn T, Tükenmez H, Mahmud AKMF, Xu F, Xu H, Byström AS. Elongator, a conserved complex required for wobble uridine modifications in eukaryotes. RNA Biol 2015; 11:1519-28. [PMID: 25607684 DOI: 10.4161/15476286.2014.992276] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Elongator is a 6 subunit protein complex highly conserved in eukaryotes. The role of this complex has been controversial as the pleiotropic phenotypes of Elongator mutants have implicated the complex in several cellular processes. However, in yeast there is convincing evidence that the primary and probably only role of this complex is in formation of the 5-methoxycarbonylmethyl (mcm(5)) and 5-carbamoylmethyl (ncm(5)) side chains on uridines at wobble position in tRNA. In this review we summarize the cellular processes that have been linked to the Elongator complex and discuss its role in tRNA modification and regulation of translation. We also describe additional gene products essential for formation of ncm(5) and mcm(5) side chains at U34 and their influence on Elongator activity.
Collapse
Affiliation(s)
- Tony Karlsborn
- a Department of Molecular Biology ; Umeå University; Umeå , Sweden
| | | | | | | | | | | |
Collapse
|
148
|
Quax TEF, Claassens NJ, Söll D, van der Oost J. Codon Bias as a Means to Fine-Tune Gene Expression. Mol Cell 2015; 59:149-61. [PMID: 26186290 DOI: 10.1016/j.molcel.2015.05.035] [Citation(s) in RCA: 463] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The redundancy of the genetic code implies that most amino acids are encoded by multiple synonymous codons. In all domains of life, a biased frequency of synonymous codons is observed at the genome level, in functionally related genes (e.g., in operons), and within single genes. Other codon bias variants include biased codon pairs and codon co-occurrence. Although translation initiation is the key step in protein synthesis, it is generally accepted that codon bias contributes to translation efficiency by tuning the elongation rate of the process. Moreover, codon bias plays an important role in controlling a multitude of cellular processes, ranging from differential protein production to protein folding. Here we review currently known types of codon bias and how they may influence translation. We discuss how understanding the principles of codon bias and translation can contribute to improved protein production and developments in synthetic biology.
Collapse
Affiliation(s)
- Tessa E F Quax
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, the Netherlands; Institut für Biologie II, Albert Ludwig Universität Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Nico J Claassens
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, the Netherlands
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520-8114, USA
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, the Netherlands.
| |
Collapse
|
149
|
Thiaville PC, El Yacoubi B, Köhrer C, Thiaville JJ, Deutsch C, Iwata-Reuyl D, Bacusmo JM, Armengaud J, Bessho Y, Wetzel C, Cao X, Limbach PA, RajBhandary UL, de Crécy-Lagard V. Essentiality of threonylcarbamoyladenosine (t(6)A), a universal tRNA modification, in bacteria. Mol Microbiol 2015; 98:1199-221. [PMID: 26337258 DOI: 10.1111/mmi.13209] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2015] [Indexed: 02/06/2023]
Abstract
Threonylcarbamoyladenosine (t(6)A) is a modified nucleoside universally conserved in tRNAs in all three kingdoms of life. The recently discovered genes for t(6)A synthesis, including tsaC and tsaD, are essential in model prokaryotes but not essential in yeast. These genes had been identified as antibacterial targets even before their functions were known. However, the molecular basis for this prokaryotic-specific essentiality has remained a mystery. Here, we show that t(6)A is a strong positive determinant for aminoacylation of tRNA by bacterial-type but not by eukaryotic-type isoleucyl-tRNA synthetases and might also be a determinant for the essential enzyme tRNA(Ile)-lysidine synthetase. We confirm that t(6)A is essential in Escherichia coli and a survey of genome-wide essentiality studies shows that genes for t(6)A synthesis are essential in most prokaryotes. This essentiality phenotype is not universal in Bacteria as t(6)A is dispensable in Deinococcus radiodurans, Thermus thermophilus, Synechocystis PCC6803 and Streptococcus mutans. Proteomic analysis of t(6)A(-) D. radiodurans strains revealed an induction of the proteotoxic stress response and identified genes whose translation is most affected by the absence of t(6)A in tRNAs. Thus, although t(6)A is universally conserved in tRNAs, its role in translation might vary greatly between organisms.
Collapse
Affiliation(s)
- Patrick C Thiaville
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32611, USA.,Genetics and Genomics Graduate Program, University of Florida, Gainesville, FL, 32610, USA.,University of Florida Genetics Institute, University of Florida, Gainesville, FL, 32610, USA.,Institut de Génétique et Microbiologie, Université of Paris-Sud, Orsay, France
| | - Basma El Yacoubi
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32611, USA
| | - Caroline Köhrer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jennifer J Thiaville
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32611, USA
| | - Chris Deutsch
- Department of Chemistry, Portland State University, Portland, OR, 97297, USA
| | - Dirk Iwata-Reuyl
- Department of Chemistry, Portland State University, Portland, OR, 97297, USA
| | - Jo Marie Bacusmo
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32611, USA
| | - Jean Armengaud
- CEA, DSV, IBiTec-S, SPI, Li2D, Laboratory 'Innovative technologies for Detection and Diagnostics', Bagnols-sur-Cèze, F-30200, France
| | - Yoshitaka Bessho
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan.,Institute of Physics, Academia Sinica, 128 Sec. 2, Academia Rd., Nankang, Taipei, 11529, Taiwan
| | - Collin Wetzel
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, 45221, USA
| | - Xiaoyu Cao
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, 45221, USA
| | - Patrick A Limbach
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, 45221, USA
| | - Uttam L RajBhandary
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32611, USA.,University of Florida Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
150
|
Basanta-Sanchez M, Temple S, Ansari SA, D'Amico A, Agris PF. Attomole quantification and global profile of RNA modifications: Epitranscriptome of human neural stem cells. Nucleic Acids Res 2015; 44:e26. [PMID: 26438536 PMCID: PMC4756851 DOI: 10.1093/nar/gkv971] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 09/15/2015] [Indexed: 01/09/2023] Open
Abstract
Exploration of the epitranscriptome requires the development of highly sensitive and accurate technologies in order to elucidate the contributions of the more than 100 RNA modifications to cell processes. A highly sensitive and accurate ultra-high performance liquid chromatography—tandem mass spectrometry method was developed to simultaneously detect and quantify 28 modified and four major nucleosides in less than 20 min. Absolute concentrations were calculated using extinction coefficients of each of the RNA modifications studied. A comprehensive RNA modifications database of UV profiles and extinction coefficient is reported within a 2.3–5.2 % relative standard deviation. Excellent linearity was observed 0.99227–0.99999 and limit of detection values ranged from 63.75 attomoles to 1.21 femtomoles. The analytical performance was evaluated by analyzing RNA modifications from 100 ng of RNA from human pluripotent stem cell-derived neural cells. Modifications were detected at concentrations four orders of magnitude lower than the corresponding parental nucleosides, and as low as 23.01 femtograms, 64.09 attomoles. Direct and global quantitative analysis of RNA modifications are among the advantages of this new approach.
Collapse
Affiliation(s)
| | | | | | - Anna D'Amico
- The RNA Institute, University at Albany, Albany, NY, USA
| | - Paul F Agris
- The RNA Institute, University at Albany, Albany, NY, USA
| |
Collapse
|