101
|
Nikaido H. Structure and mechanism of RND-type multidrug efflux pumps. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2011; 77:1-60. [PMID: 21692366 DOI: 10.1002/9780470920541.ch1] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Affiliation(s)
- Hiroshi Nikaido
- Department of Molecular and Cell Biology, Barker Hall, University of California, Berkeley, California, USA
| |
Collapse
|
102
|
Xu Y, Song S, Moeller A, Kim N, Piao S, Sim SH, Kang M, Yu W, Cho HS, Chang I, Lee K, Ha NC. Functional implications of an intermeshing cogwheel-like interaction between TolC and MacA in the action of macrolide-specific efflux pump MacAB-TolC. J Biol Chem 2011; 286:13541-9. [PMID: 21325274 DOI: 10.1074/jbc.m110.202598] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Macrolide-specific efflux pump MacAB-TolC has been identified in diverse gram-negative bacteria including Escherichia coli. The inner membrane transporter MacB requires the outer membrane factor TolC and the periplasmic adaptor protein MacA to form a functional tripartite complex. In this study, we used a chimeric protein containing the tip region of the TolC α-barrel to investigate the role of the TolC α-barrel tip region with regard to its interaction with MacA. The chimeric protein formed a stable complex with MacA, and the complex formation was abolished by substitution at the functionally essential residues located at the MacA α-helical tip region. Electron microscopic study delineated that this complex was made by tip-to-tip interaction between the tip regions of the α-barrels of TolC and MacA, which correlated well with the TolC and MacA complex calculated by molecular dynamics. Taken together, our results demonstrate that the MacA hexamer interacts with TolC in a tip-to-tip manner, and implies the manner by which MacA induces opening of the TolC channel.
Collapse
Affiliation(s)
- Yongbin Xu
- Department of Manufacturing Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 609-735, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Structures of sequential open states in a symmetrical opening transition of the TolC exit duct. Proc Natl Acad Sci U S A 2011; 108:2112-7. [PMID: 21245342 DOI: 10.1073/pnas.1012588108] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In bacterial drug resistance and virulence pumps, an inner membrane (IM) transporter and periplasmic adaptor recruit an outer membrane (OM) trimeric TolC exit duct that projects an α-helical tunnel across the periplasm. The TolC periplasmic entrance is closed by densely packed α-helical coiled coils, inner H7/H8, and outer H3/H4, constrained by a hydrogen bond network. On recruitment, these coiled coils must undergo transition to the open state. We present 2.9 Å resolution crystal structures of two sequential TolC open states in which the network is incrementally disrupted and channel conductances defined in lipid bilayers. Superimposition of TolC(RS) (370 pS) and TolC(YFRS) (1,000 pS) on the TolC(WT) closed state (80 pS) showed that in the initial open-state TolC(RS), relaxation already causes approximately 14° twisting and expansion of helix H7 at the periplasmic tip, increasing interprotomer distances from 12.2 Å in TolC(WT) to 18.9 Å. However, in the crystal structure, the weakened Asp(374) pore constriction was maintained at the closed state 11.3 Å(2). In the advanced open-state TolC(YFRS), there was little further expansion at the tip, to interprotomer 21.3 Å, but substantial movement of inner and outer coiled coils dilated the pore constriction. In particular, upon abolition of the TolC(YFRS) intraprotomer Tyr(362)-Asp(153) link, a redirection of Tyr(362) and "bulge" in H3 allowed a simple movement outward of H8, establishing a 50.3 Å(2) opening. Root mean square deviations (rmsds) over the coiled coils of the three protomers of TolC(RS) and TolC(YFRS) illustrate that, whereas independent movement at the periplasmic tips may feature in the initial stages of opening, full dilation of the pore constriction is entirely symmetrical.
Collapse
|
104
|
Periplasmic domain of CusA in an Escherichia coli Cu+/Ag+ transporter has metal binding sites. J Microbiol 2011; 48:829-35. [DOI: 10.1007/s12275-010-0339-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 10/11/2010] [Indexed: 10/18/2022]
|
105
|
Crystal structure of Escherichia coli CusC, the outer membrane component of a heavy metal efflux pump. PLoS One 2011; 6:e15610. [PMID: 21249122 PMCID: PMC3017539 DOI: 10.1371/journal.pone.0015610] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 11/17/2010] [Indexed: 12/03/2022] Open
Abstract
Background While copper has essential functions as an enzymatic co-factor, excess copper ions are toxic for cells, necessitating mechanisms for regulating its levels. The cusCBFA operon of E. coli encodes a four-component efflux pump dedicated to the extrusion of Cu(I) and Ag(I) ions. Methodology/Principal Findings We have solved the X-ray crystal structure of CusC, the outer membrane component of the Cus heavy metal efflux pump, to 2.3 Å resolution. The structure has the largest extracellular opening of any outer membrane factor (OMF) protein and suggests, for the first time, the presence of a tri-acylated N-terminal lipid anchor. Conclusions/Significance The CusC protein does not have any obvious features that would make it specific for metal ions, suggesting that the narrow substrate specificity of the pump is provided by other components of the pump, most likely by the inner membrane component CusA.
Collapse
|
106
|
Janganan TK, Zhang L, Bavro VN, Matak-Vinkovic D, Barrera NP, Burton MF, Steel PG, Robinson CV, Borges-Walmsley MI, Walmsley AR. Opening of the outer membrane protein channel in tripartite efflux pumps is induced by interaction with the membrane fusion partner. J Biol Chem 2010; 286:5484-93. [PMID: 21115481 PMCID: PMC3037662 DOI: 10.1074/jbc.m110.187658] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The multiple transferable resistance (MTR) pump, from Neisseria gonorrhoeae, is typical of the specialized machinery used to translocate drugs across the inner and outer membranes of Gram-negative bacteria. It consists of a tripartite complex composed of an inner-membrane transporter, MtrD, a periplasmic membrane fusion protein, MtrC, and an outer-membrane channel, MtrE. We have expressed the components of the pump in Escherichia coli and used the antibiotic vancomycin, which is too large to cross the outer-membrane by passive diffusion, to test for opening of the MtrE channel. Cells expressing MtrCDE are not susceptible to vancomycin, indicating that the channel is closed; but become susceptible to vancomycin in the presence of transported substrates, consistent with drug-induced opening of the MtrE channel. A mutational analysis identified residues Asn-198, Glu-434, and Gln-441, lining an intraprotomer groove on the surface of MtrE, to be important for pump function; mutation of these residues yielded cells that were sensitive to vancomycin. Pull-down assays and micro-calorimetry measurements indicated that this functional impairment is not due to the inability of MtrC to interact with the MtrE mutants; nor was it due to the MtrE mutants adopting an open conformation, because cells expressing these MtrE mutants alone are relatively insensitive to vancomycin. However, cells expressing the MtrE mutants with MtrC are sensitive to vancomycin, indicating that residues lining the intra-protomer groove control opening of the MtrE channel in response to binding of MtrC.
Collapse
Affiliation(s)
- Thamarai K Janganan
- School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Global transcriptome analysis of the Escherichia coli O157 response to Houttuynia Cordata Thunb. BIOCHIP JOURNAL 2010. [DOI: 10.1007/s13206-010-4312-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
108
|
Welch A, Awah CU, Jing S, van Veen HW, Venter H. Promiscuous partnering and independent activity of MexB, the multidrug transporter protein from Pseudomonas aeruginosa. Biochem J 2010; 430:355-64. [PMID: 20583998 DOI: 10.1042/bj20091860] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The MexAB-OprM drug efflux pump is central to multidrug resistance of Pseudomonas aeruginosa. The ability of the tripartite protein to confer drug resistance on the pathogen is crucially dependent on the presence of all three proteins of the complex. However, the role of each protein in the formation of the intact functional complex is not well understood. One of the key questions relates to the (in)ability of MexB to act independently of its cognitive partners, MexA and OprM. In the present study, we have demonstrated that, in the absence of MexA and OprM, MexB can: (i) recruit AcrA and TolC from Escherichia coli to form a functional drug-efflux complex; (ii) transport the toxic compound ethidium bromide in a Gram-positive organism where the periplasmic space and outer membrane are absent; and (iii) catalyse transmembrane chemical proton gradient (DeltapH)-dependent drug transport when purified and reconstituted into proteoliposomes. Our results represent the first evidence of drug transport by an isolated RND (resistance-nodulation-cell division)-type multidrug transporter, and provide a basis for further studies into the energetics of RND-type transporters and their assembly into multiprotein complexes.
Collapse
Affiliation(s)
- Alexander Welch
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, U.K
| | | | | | | | | |
Collapse
|
109
|
Phan G, Benabdelhak H, Lascombe MB, Benas P, Rety S, Picard M, Ducruix A, Etchebest C, Broutin I. Structural and dynamical insights into the opening mechanism of P. aeruginosa OprM channel. Structure 2010; 18:507-17. [PMID: 20399187 DOI: 10.1016/j.str.2010.01.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 01/22/2010] [Accepted: 01/26/2010] [Indexed: 11/18/2022]
Abstract
Originally described in bacteria, drug transporters are now recognized as major determinants in antibiotics resistance. For Gram-negative bacteria, the reversible assembly consisting of an inner membrane protein responsible for the active transport, a periplasmic protein, and an exit outer membrane channel achieves transport. The opening of the outer membrane protein OprM from Pseudomonas aeruginosa was modeled through normal mode analysis starting from a new X-ray structure solved at 2.4 A resolution in P2(1)2(1)2(1) space group. The three monomers are not linked by internal crystallographic symmetries highlighting the possible functional differences. This structure is closed at both ends, but modeling allowed for an opening that is not reduced to the classically proposed "iris-like mechanism."
Collapse
Affiliation(s)
- Gilles Phan
- Laboratoire de Cristallographie et RMN Biologiques, Université Paris Descartes, UMR 8015 CNRS, Faculté des Sciences Pharmaceutiques et Biologiques, 4 Avenue de l'Observatoire, 75270 Paris Cedex 06, France
| | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Affiliation(s)
- Jed F Fisher
- Department of Chemistry and Biochemistry, 423 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, USA
| | | |
Collapse
|
111
|
Functional relationships between the AcrA hairpin tip region and the TolC aperture tip region for the formation of the bacterial tripartite efflux pump AcrAB-TolC. J Bacteriol 2010; 192:4498-503. [PMID: 20581201 DOI: 10.1128/jb.00334-10] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tripartite efflux pumps found in Gram-negative bacteria are involved in antibiotic resistance and toxic-protein secretion. In this study, we show, using site-directed mutational analyses, that the conserved residues located in the tip region of the alpha-hairpin of the membrane fusion protein (MFP) AcrA play an essential role in the action of the tripartite efflux pump AcrAB-TolC. In addition, we provide in vivo functional data showing that both the length and the amino acid sequence of the alpha-hairpin of AcrA can be flexible for the formation of a functional AcrAB-TolC pump. Genetic-complementation experiments further indicated functional interrelationships between the AcrA hairpin tip region and the TolC aperture tip region. Our findings may offer a molecular basis for understanding the multidrug resistance of pathogenic bacteria.
Collapse
|
112
|
Xu Y, Sim SH, Song S, Piao S, Kim HM, Jin XL, Lee K, Ha NC. The tip region of the MacA α-hairpin is important for the binding to TolC to the Escherichia coli MacAB–TolC pump. Biochem Biophys Res Commun 2010; 394:962-5. [DOI: 10.1016/j.bbrc.2010.03.097] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 03/17/2010] [Indexed: 11/16/2022]
|
113
|
Dunlop MJ, Keasling JD, Mukhopadhyay A. A model for improving microbial biofuel production using a synthetic feedback loop. SYSTEMS AND SYNTHETIC BIOLOGY 2010; 4:95-104. [PMID: 20805930 PMCID: PMC2923299 DOI: 10.1007/s11693-010-9052-5] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2009] [Revised: 01/22/2010] [Accepted: 02/02/2010] [Indexed: 11/29/2022]
Abstract
Cells use feedback to implement a diverse range of regulatory functions. Building synthetic feedback control systems may yield insight into the roles that feedback can play in regulation since it can be introduced independently of native regulation, and alternative control architectures can be compared. We propose a model for microbial biofuel production where a synthetic control system is used to increase cell viability and biofuel yields. Although microbes can be engineered to produce biofuels, the fuels are often toxic to cell growth, creating a negative feedback loop that limits biofuel production. These toxic effects may be mitigated by expressing efflux pumps that export biofuel from the cell. We developed a model for cell growth and biofuel production and used it to compare several genetic control strategies for their ability to improve biofuel yields. We show that controlling efflux pump expression directly with a biofuel-responsive promoter is a straightforward way of improving biofuel production. In addition, a feed forward loop controller is shown to be versatile at dealing with uncertainty in biofuel production rates.
Collapse
Affiliation(s)
- Mary J. Dunlop
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Mail Stop 978-4121, Berkeley, CA 94720 USA
| | - Jay D. Keasling
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Mail Stop 978-4121, Berkeley, CA 94720 USA
- Department of Chemical Engineering, University of California, Berkeley, CA 94720 USA
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Mail Stop 978-4121, Berkeley, CA 94720 USA
| |
Collapse
|
114
|
Weeks JW, Celaya-Kolb T, Pecora S, Misra R. AcrA suppressor alterations reverse the drug hypersensitivity phenotype of a TolC mutant by inducing TolC aperture opening. Mol Microbiol 2010; 75:1468-83. [PMID: 20132445 DOI: 10.1111/j.1365-2958.2010.07068.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In Escherichia coli, the TolC-AcrAB complex forms a major antibiotic efflux system with broad substrate specificity. During the complex assembly, the periplasmic helices and bottom turns of TolC are thought to interact with a hairpin helix of AcrA and hairpin loops of AcrB respectively. In the present study we show that a four-residue substitution in TolC's turn 1, which connects outer helices 3 and 4 proximal to TolC's periplasmic aperture, confers antibiotic hypersensitivity, without affecting TolC-mediated phage or colicin infection. However, despite the null-like drug sensitivity phenotype, chemical cross-linking analysis revealed no apparent defects in the ability of the mutant TolC protein to physically interact with AcrA and AcrB. A role for TolC turn 1 residues in the functional assembly of the tripartite efflux pump complex was uncovered through isolating suppressor mutations of the mutant TolC protein that mapped within acrA and by utilizing a labile AcrA protein. The data showed that AcrA-mediated suppression of antibiotic sensitivity was achieved by dilating the TolC aperture/channel in an AcrB-dependent manner. The results underscore the importance of the periplasmic turn 1 of TolC in the functional assembly of the tripartite efflux complex and AcrA in transitioning TolC from its closed to open state.
Collapse
Affiliation(s)
- Jon W Weeks
- Faculty of Cellular and Molecular Biosciences, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | | | | | | |
Collapse
|
115
|
Pietras Z, Lin HT, Surade S, Luisi B, Slattery O, Pos KM, Moreno A. The use of novel organic gels and hydrogels in protein crystallization. J Appl Crystallogr 2010. [DOI: 10.1107/s0021889809051917] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The use of an organic solvent-based gel prepared from polyethylene oxide and a polyvinyl alcohol hydrogel for protein crystallization was investigated. The preparation, properties and application of the gels for protein crystallization are described, and the advantages and limitations of the approach are discussed. The gels are compared with agar, which is a popular aqueous gel used for protein crystallization. The growth behaviour and diffraction quality of crystals prepared in these gel media were evaluated for two model soluble proteins, thaumatin and lysozyme, and for two bacterial membrane proteins, TolC and AcrB.
Collapse
|
116
|
Multidrug efflux pump MdtBC of Escherichia coli is active only as a B2C heterotrimer. J Bacteriol 2009; 192:1377-86. [PMID: 20038594 DOI: 10.1128/jb.01448-09] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RND (resistance-nodulation-division) family transporters in Gram-negative bacteria frequently pump out a wide range of inhibitors and often contribute to multidrug resistance to antibiotics and biocides. An archetypal RND pump of Escherichia coli, AcrB, is known to exist as a homotrimer, and this construction is essential for drug pumping through the functionally rotating mechanism. MdtBC, however, appears different because two pump genes coexist within a single operon, and genetic deletion data suggest that both pumps must be expressed in order for the drug efflux to occur. We have expressed the corresponding genes, with one of them in a His-tagged form. Copurification of MdtB and MdtC under these conditions showed that they form a complex, with an average stoichiometry of 2:1. Unequivocal evidence that only the trimer containing two B protomers and one C protomer is active was obtained by expressing all possible combinations of B and C in covalently linked forms. Finally, conversion into alanine of the residues, known to form a proton translocation pathway in AcrB, inactivated transport only when made in MdtB, not when made in MdtC, a result suggesting that MdtC plays a different role not directly involved in drug binding and extrusion.
Collapse
|
117
|
Zgurskaya HI. Multicomponent drug efflux complexes: architecture and mechanism of assembly. Future Microbiol 2009; 4:919-32. [PMID: 19722844 DOI: 10.2217/fmb.09.62] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Multidrug efflux pumps are major contributors to intrinsic antibiotic resistance in Gram-negative pathogens. The basic structure of these pumps comprises an inner membrane transporter, a periplasmic membrane fusion protein and an outer membrane channel. However, the architecture and composition of multidrug efflux complexes vary significantly because of the topological and functional diversity of the inner membrane transporters. This article presents the current views on architecture and assembly of multicomponent drug efflux transporters from Gram-negative bacteria.
Collapse
Affiliation(s)
- Helen I Zgurskaya
- Department of Chemistry & Biochemistry, University of Oklahoma, 620 Parrington Oval, Room 208, Norman, OK 73019, USA.
| |
Collapse
|
118
|
Blair JMA, La Ragione RM, Woodward MJ, Piddock LJV. Periplasmic adaptor protein AcrA has a distinct role in the antibiotic resistance and virulence of Salmonella enterica serovar Typhimurium. J Antimicrob Chemother 2009; 64:965-72. [PMID: 19744979 DOI: 10.1093/jac/dkp311] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES AcrA can function as the periplasmic adaptor protein (PAP) in several RND tripartite efflux pumps, of which AcrAB-TolC is considered the most important. This system confers innate multiple antibiotic resistance. Disruption of acrB or tolC impairs the ability of Salmonella Typhimurium to colonize and persist in the host. The aim of this study was to investigate the role of AcrA alone in multidrug resistance and pathogenicity. METHODS The acrA gene was inactivated in Salmonella Typhimurium SL1344 by insertion of the aph gene and this mutant complemented with pWKS30acrA. The antimicrobial susceptibility of the mutant to six antibiotics as well as various dyes and detergents was determined. In addition, efflux activity was quantified. The ability of the mutant to adhere to, and invade, tissue culture cells in vitro was measured. RESULTS Following disruption of acrA, RT-PCR and western blotting confirmed that acrB/AcrB was still expressed when acrA was disrupted. The acrA mutant was hypersusceptible to antibiotics, dyes and detergents. In some cases, lower MICs were seen than for the acrB or tolC mutants. Efflux of the fluorescent dye Hoechst H33342 was less than in wild-type following disruption of acrA. acrA was also required for adherence to, and invasion of, tissue culture cells. CONCLUSIONS Inactivation of acrA conferred a phenotype distinct to that of acrB::aph and tolC::aph. These data indicate a role for AcrA distinct to that of other protein partners in both efflux of substrates and virulence.
Collapse
Affiliation(s)
- Jessica M A Blair
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | | | | | | |
Collapse
|
119
|
Abstract
Drug efflux pumps play a key role in drug resistance and also serve other functions in bacteria. There has been a growing list of multidrug and drug-specific efflux pumps characterized from bacteria of human, animal, plant and environmental origins. These pumps are mostly encoded on the chromosome, although they can also be plasmid-encoded. A previous article in this journal provided a comprehensive review regarding efflux-mediated drug resistance in bacteria. In the past 5 years, significant progress has been achieved in further understanding of drug resistance-related efflux transporters and this review focuses on the latest studies in this field since 2003. This has been demonstrated in multiple aspects that include but are not limited to: further molecular and biochemical characterization of the known drug efflux pumps and identification of novel drug efflux pumps; structural elucidation of the transport mechanisms of drug transporters; regulatory mechanisms of drug efflux pumps; determining the role of the drug efflux pumps in other functions such as stress responses, virulence and cell communication; and development of efflux pump inhibitors. Overall, the multifaceted implications of drug efflux transporters warrant novel strategies to combat multidrug resistance in bacteria.
Collapse
Affiliation(s)
- Xian-Zhi Li
- Human Safety Division, Veterinary Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario K1A OK9, Canada
| | - Hiroshi Nikaido
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202, USA
| |
Collapse
|
120
|
Abstract
Abstract
The tripartite efflux system AcrA/AcrB/TolC is the main pump in Escherichia coli for the efflux of multiple antibiotics, dyes, bile salts and detergents. The inner membrane component AcrB is central to substrate recognition and energy transduction and acts as a proton/drug antiporter. Recent structural studies show that homotrimeric AcrB can adopt different monomer conformations representing consecutive states in an allosteric functional rotation transport cycle. The conformational changes create an alternate access drug transport tunnel including a hydrophobic substrate binding pocket in one of the cycle intermediates.
Collapse
|
121
|
Xu Y, Sim SH, Nam KH, Jin XL, Kim HM, Hwang KY, Lee K, Ha NC. Crystal structure of the periplasmic region of MacB, a noncanonic ABC transporter. Biochemistry 2009; 48:5218-25. [PMID: 19432486 DOI: 10.1021/bi900415t] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
MacB is a noncanonic ABC-type transporter within Gram-negative bacteria, which is responsible both for the efflux of macrolide antibiotics and for the secretion of heat-stable enterotoxin II. In Escherichia coli, MacB requires the membrane fusion protein MacA and the multifunctional outer membrane channel TolC to pump substrates to the external medium. Sequence analysis of MacB suggested that MacB has a relatively large periplasmic region. To gain insight into how MacB assembles with MacA and TolC, we determined the crystal structure of the periplasmic region of Actinobacillus actinomycetemcomitans MacB. Fold matching program reveals that parts of the MacB periplasmic region have structural motifs in common with the RND-type transporter AcrB. Since it behaved as a monomer in solution, our finding is consistent with the dimeric nature of full-length MacB, providing an insight into the assembly in the tripartite efflux pump.
Collapse
Affiliation(s)
- Yongbin Xu
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 609-735, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
122
|
Al-Karablieh N, Weingart H, Ullrich MS. The outer membrane protein TolC is required for phytoalexin resistance and virulence of the fire blight pathogen Erwinia amylovora. Microb Biotechnol 2009; 2:465-75. [PMID: 21255278 PMCID: PMC3815907 DOI: 10.1111/j.1751-7915.2009.00095.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 01/15/2009] [Accepted: 01/19/2009] [Indexed: 11/29/2022] Open
Abstract
Erwinia amylovora causes fire blight on several plant species such as apple and pear, which produce diverse phytoalexins as defence mechanisms. An evolutionary successful pathogen thus must develop resistance mechanisms towards these toxic compounds. The E. amylovora outer membrane protein, TolC, might mediate phytoalexin resistance through its interaction with the multidrug efflux pump, AcrAB. To prove this, a tolC mutant and an acrB/tolC double mutant were constructed. The minimal inhibitory concentrations of diverse antimicrobials and phytoalexins were determined for these mutants and compared with that of a previously generated acrB mutant. The tolC and arcB/tolC mutants were considerably more susceptible than the wild type but showed similar levels as the acrB mutant. The results clearly indicated that neither TolC nor AcrAB significantly interacted with other transport systems during the efflux of the tested toxic compounds. Survival and virulence assays on inoculated apple plants showed that pathogenicity and the ability of E. amylovora to colonize plant tissue were equally impaired by mutations of tolC and acrB/tolC. Our results allowed the conclusion that TolC plays an important role as a virulence and fitness factor of E. amylovora by mediating resistance towards phytoalexins through its exclusive interaction with AcrAB.
Collapse
Affiliation(s)
- Nehaya Al-Karablieh
- School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | | | | |
Collapse
|
123
|
Xu Y, Yun BY, Sim SH, Lee K, Ha NC. Crystallization and preliminary X-ray crystallographic analysis of Escherichia coli CusB. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:743-5. [PMID: 19574656 PMCID: PMC2705651 DOI: 10.1107/s1744309109019873] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Accepted: 05/25/2009] [Indexed: 12/13/2022]
Abstract
Periplasmic membrane-fusion proteins (MFPs) are an essential component of multidrug and metal-efflux pumps in Gram-negative bacteria. However, the functional structure of MFPs remains unclear. CusCFBA, the Cu(I) and Ag(I) efflux system in Escherichia coli, consists of the MFP CusB, the OMF CusC and the RND-type transporter CusA. The MFP CusB bridges the inner membrane RND-type efflux transporter CusA and the outer membrane factor CusC and exhibits substrate-linked conformational changes which distinguish it from other MFP-family members. CusB from E. coli was overexpressed and the recombinant protein was purified using Ni-NTA affinity, Q anion-exchange and gel-filtration chromatography. The purified CusB protein was crystallized using the vapour-diffusion method. A diffraction data set was collected to a resolution of 3.1 A at 100 K. The crystal belonged to space group C222.
Collapse
Affiliation(s)
- Yongbin Xu
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 609-735, Republic of Korea
| | - Bo-Young Yun
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 609-735, Republic of Korea
| | - Se-Hoon Sim
- Department of Life Science, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Nam-Chul Ha
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 609-735, Republic of Korea
| |
Collapse
|
124
|
Schulz R, Kleinekathöfer U. Transitions between closed and open conformations of TolC: the effects of ions in simulations. Biophys J 2009; 96:3116-25. [PMID: 19383457 DOI: 10.1016/j.bpj.2009.01.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 01/06/2009] [Accepted: 01/14/2009] [Indexed: 11/19/2022] Open
Abstract
Bacteria, such as Escherichia coli, use multidrug efflux pumps to export toxic substrates through their cell membranes. Upon formation of an efflux pump, the aperture of its outer membrane protein TolC opens and thereby enables the extrusion of substrate molecules. The specialty of TolC is its ability to dock to different transporters, making it a highly versatile export protein. Within this study, the transition between two conformations of TolC that are both available as crystal structures was investigated using all-atom molecular dynamics simulations. To create a partially open conformation from a closed one, the stability of the periplasmic aperture was weakened by a double point mutation at the constricting ring, which removes some salt bridges and hydrogen bonds. These mutants, which showed partial opening in previous experiments, did not spontaneously open during a 20-ns equilibration at physiological values of the KCl solution. Detailed analysis of the constricting ring revealed that the cations of the solvent were able to constitute ionic bonds in place of the removed salt bridges, which inhibited the opening of the aperture in simulations. To remove the ions from these binding positions within the available simulation time, an extra force was applied onto the ions. To keep the effect of this additional force rather flexible, it was applied in form of an artificial external electric field perpendicular to the membrane. Depending on the field direction and the ion concentration, these simulations led to a partial opening. In experiments, this energy barrier for the ions can be overcome by thermal fluctuations on a longer timescale.
Collapse
|
125
|
Villa R, Lotti M, Gatti-Lafranconi P. Components of the E. coli envelope are affected by and can react to protein over-production in the cytoplasm. Microb Cell Fact 2009; 8:32. [PMID: 19500339 PMCID: PMC2701923 DOI: 10.1186/1475-2859-8-32] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 06/05/2009] [Indexed: 11/30/2022] Open
Abstract
Background Protein over-expression in bacteria is still the easiest, cheapest and therefore preferred way to obtain large amounts of proteins for industrial and laboratory scale preparations. Several studies emphasized the importance of understanding cellular and molecular mechanisms triggered by protein over-production in order to obtain higher yield and better quality of the recombinant product. Almost every step leading to a fully functional polypeptide has been investigated, from mRNA stability to the role of molecular chaperones, from aggregation to bottlenecks in the secretory pathway. In this context, we focused on the still poorly addressed relationship between protein production in the cytoplasm and the bacterial envelope, an active and reactive cell compartment that controls interactions with the environment and several major cellular processes. Results available to date show that the accumulation of foreign proteins in the cytoplasm induces changes in the membrane lipids and in the levels of mRNAs for some membrane proteins. However, a direct connection between membrane protein expression levels and soluble/aggregated protein accumulation in the cytoplasm has never been reported. Results By the use of a combined physiological and proteomic approach, we investigated the effects on the cell membrane of E. coli of the overexpression of two recombinant proteins, the B. cepacia lipase (BCL) and the green fluorescent protein (GFP). Both polypeptides are expressed in the cytoplasm at similar levels but GFP is fully soluble whereas inactive BCL accumulates in inclusion bodies. Growth and viability of the transformed cells were tested in the presence of different drugs. We found that chloramphenycol preferentially inhibited the strain over-producing GFP while SDS was more effective when BCL inclusion bodies accumulated in the cytoplasm. In contrast, both proteins induced a similar response in the membrane proteome, i.e. increased levels of LamB, OmpF, OmpA and TolC. Under all tested conditions, the lipopolysaccharide was not affected, suggesting that a specific rather than a generalized rearrangement of the envelope was induced. Conclusion Taking together physiological and biochemical evidence, our work indicates that the E. coli envelope can sense protein over-expression in the cytoplasm and react by modulating the abundance of some membrane proteins, with possible consequences on the membrane traffic of small solutes, i.e. nutrients, drugs and metabolites. Such a response seems to be independent on the nature of the protein being over-expressed. On the other hand both our data reported herein and previous results indicate that membrane lipids may act as a second stress sensor responsive to the aggregation state of the recombinant protein and further contribute to changes in cellular exchanges with the environment.
Collapse
Affiliation(s)
- Riccardo Villa
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Piazza della Scienza 2, Milano, Italy.
| | | | | |
Collapse
|
126
|
Pivotal roles of the outer membrane polysaccharide export and polysaccharide copolymerase protein families in export of extracellular polysaccharides in gram-negative bacteria. Microbiol Mol Biol Rev 2009; 73:155-77. [PMID: 19258536 PMCID: PMC2650888 DOI: 10.1128/mmbr.00024-08] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Many bacteria export extracellular polysaccharides (EPS) and capsular polysaccharides (CPS). These polymers exhibit remarkably diverse structures and play important roles in the biology of free-living, commensal, and pathogenic bacteria. EPS and CPS production represents a major challenge because these high-molecular-weight hydrophilic polymers must be assembled and exported in a process spanning the envelope, without compromising the essential barrier properties of the envelope. Emerging evidence points to the existence of molecular scaffolds that perform these critical polymer-trafficking functions. Two major pathways with different polymer biosynthesis strategies are involved in the assembly of most EPS/CPS: the Wzy-dependent and ATP-binding cassette (ABC) transporter-dependent pathways. They converge in an outer membrane export step mediated by a member of the outer membrane auxiliary (OMA) protein family. OMA proteins form outer membrane efflux channels for the polymers, and here we propose the revised name outer membrane polysaccharide export (OPX) proteins. Proteins in the polysaccharide copolymerase (PCP) family have been implicated in several aspects of polymer biogenesis, but there is unequivocal evidence for some systems that PCP and OPX proteins interact to form a trans-envelope scaffold for polymer export. Understanding of the precise functions of the OPX and PCP proteins has been advanced by recent findings from biochemistry and structural biology approaches and by parallel studies of other macromolecular trafficking events. Phylogenetic analyses reported here also contribute important new insight into the distribution, structural relationships, and function of the OPX and PCP proteins. This review is intended as an update on progress in this important area of microbial cell biology.
Collapse
|
127
|
Drug transport mechanism of the AcrB efflux pump. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:782-93. [DOI: 10.1016/j.bbapap.2008.12.015] [Citation(s) in RCA: 220] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2008] [Revised: 12/18/2008] [Accepted: 12/19/2008] [Indexed: 02/08/2023]
|
128
|
The assembled structure of a complete tripartite bacterial multidrug efflux pump. Proc Natl Acad Sci U S A 2009; 106:7173-8. [PMID: 19342493 DOI: 10.1073/pnas.0900693106] [Citation(s) in RCA: 216] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacteria like Escherichia coli and Pseudomonas aeruginosa expel drugs via tripartite multidrug efflux pumps spanning both inner and outer membranes and the intervening periplasm. In these pumps a periplasmic adaptor protein connects a substrate-binding inner membrane transporter to an outer membrane-anchored TolC-type exit duct. High-resolution structures of all 3 components are available, but a pump model has been precluded by the incomplete adaptor structure, because of the apparent disorder of its N and C termini. We reveal that the adaptor termini assemble a beta-roll structure forming the final domain adjacent to the inner membrane. The completed structure enabled in vivo cross-linking to map intermolecular contacts between the adaptor AcrA and the transporter AcrB, defining a periplasmic interface between several transporter subdomains and the contiguous beta-roll, beta-barrel, and lipoyl domains of the adaptor. With short and long cross-links expressed as distance restraints, the flexible linear topology of the adaptor allowed a multidomain docking approach to model the transporter-adaptor complex, revealing that the adaptor docks to a transporter region of comparative stability distinct from those key to the proposed rotatory pump mechanism, putative drug-binding pockets, and the binding site of inhibitory DARPins. Finally, we combined this docking with our previous resolution of the AcrA hairpin-TolC interaction to develop a model of the assembled tripartite complex, satisfying all of the experimentally-derived distance constraints. This AcrA(3)-AcrB(3)-TolC(3) model presents a 610,000-Da, 270-A-long efflux pump crossing the entire bacterial cell envelope.
Collapse
|
129
|
Misra R, Bavro VN. Assembly and transport mechanism of tripartite drug efflux systems. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:817-25. [PMID: 19289182 DOI: 10.1016/j.bbapap.2009.02.017] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2008] [Revised: 02/21/2009] [Accepted: 02/26/2009] [Indexed: 12/30/2022]
Abstract
Multidrug efflux (MDR) pumps remove a variety of compounds from the cell into the external environment. There are five different classes of MDR pumps in bacteria, and quite often a single bacterial species expresses multiple classes of pumps. Although under normal circumstances MDR pumps confer low-level intrinsic resistance to drugs, the presence of drugs and mutations in regulatory genes lead to high level expression of MDR pumps that can pose problems with therapeutic treatments. This review focuses on the resistance nodulation cell division (RND)-class of MDR pumps that assemble from three proteins. Significant recent advancement in structural aspects of the three pump components has shed new light on the mechanism by which the tripartite efflux pumps extrude drugs. This new information will be critical in developing inhibitors against MDR pumps to improve the potency of prescribed drugs.
Collapse
Affiliation(s)
- Rajeev Misra
- Faculty of Cellular and Molecular Biosciences, School of Life Sciences, Arizona State University, Tempe, AZ 85285-4501, USA.
| | | |
Collapse
|
130
|
Yum S, Xu Y, Piao S, Sim SH, Kim HM, Jo WS, Kim KJ, Kweon HS, Jeong MH, Jeon H, Lee K, Ha NC. Crystal structure of the periplasmic component of a tripartite macrolide-specific efflux pump. J Mol Biol 2009; 387:1286-97. [PMID: 19254725 DOI: 10.1016/j.jmb.2009.02.048] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 02/17/2009] [Accepted: 02/18/2009] [Indexed: 11/24/2022]
Abstract
In Gram-negative bacteria, type I protein secretion systems and tripartite drug efflux pumps have a periplasmic membrane fusion protein (MFP) as an essential component. MFPs bridge the outer membrane factor and an inner membrane transporter, although the oligomeric state of MFPs remains unclear. The most characterized MFP AcrA connects the outer membrane factor TolC and the resistance-nodulation-division-type efflux transporter AcrB, which is a major multidrug efflux pump in Escherichia coli. MacA is the periplasmic MFP in the MacAB-TolC pump, where MacB was characterized as a macrolide-specific ATP-binding-cassette-type efflux transporter. Here, we report the crystal structure of E. coli MacA and the experimentally phased map of Actinobacillus actinomycetemcomitans MacA, which reveal a domain orientation of MacA different from that of AcrA. Notably, a hexameric assembly of MacA was found in both crystals, exhibiting a funnel-like structure with a central channel and a conical mouth. The hexameric MacA assembly was further confirmed by electron microscopy and functional studies in vitro and in vivo. The hexameric structure of MacA provides insight into the oligomeric state in the functional complex of the drug efflux pump and type I secretion system.
Collapse
Affiliation(s)
- Soohwan Yum
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 609-735, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Meng G, Fronzes R, Chandran V, Remaut H, Waksman G. Protein oligomerization in the bacterial outer membrane (Review). Mol Membr Biol 2009; 26:136-45. [PMID: 19225986 DOI: 10.1080/09687680802712422] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The formation of homo-oligomeric assemblies is a well-established characteristic of many soluble proteins and enzymes. Oligomerization has been shown to increase protein stability, allow allosteric cooperativity, shape reaction compartments and provide multivalent interaction sites in soluble proteins. In comparison, our understanding of the prevalence and reasons behind protein oligomerization in membrane proteins is relatively sparse. Recent progress in structural biology of bacterial outer membrane proteins has suggested that oligomerization may be as common and versatile as in soluble proteins. Here we review the current understanding of oligomerization in the bacterial outer membrane from a structural and functional point of view.
Collapse
Affiliation(s)
- Guoyu Meng
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London, UK
| | | | | | | | | |
Collapse
|
132
|
Abstract
About one quarter to one third of all bacterial genes encode proteins of the inner or outer bacterial membrane. These proteins perform essential physiological functions, such as the import or export of metabolites, the homeostasis of metal ions, the extrusion of toxic substances or antibiotics, and the generation or conversion of energy. The last years have witnessed completion of a plethora of whole-genome sequences of bacteria important for biotechnology or medicine, which is the foundation for proteome and other functional genome analyses. In this review, we discuss the challenges in membrane proteome analysis, starting from sample preparation and leading to MS-data analysis and quantification. The current state of available proteomics technologies as well as their advantages and disadvantages will be described with a focus on shotgun proteomics. Then, we will briefly introduce the most abundant proteins and protein families present in bacterial membranes before bacterial membrane proteomics studies of the last years will be presented. It will be shown how these works enlarged our knowledge about the physiological adaptations that take place in bacteria during fine chemical production, bioremediation, protein overexpression, and during infections. Furthermore, several examples from literature demonstrate the suitability of membrane proteomics for the identification of antigens and different pathogenic strains, as well as the elucidation of membrane protein structure and function.
Collapse
Affiliation(s)
- Ansgar Poetsch
- Lehrstuhl für Biochemie der Pflanzen, Ruhr Universität Bochum, Bochum, Germany.
| | | |
Collapse
|
133
|
Zgurskaya HI, Yamada Y, Tikhonova EB, Ge Q, Krishnamoorthy G. Structural and functional diversity of bacterial membrane fusion proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1794:794-807. [PMID: 19041958 DOI: 10.1016/j.bbapap.2008.10.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 10/21/2008] [Accepted: 10/22/2008] [Indexed: 10/21/2022]
Abstract
Membrane Fusion Proteins (MFPs) are functional subunits of multi-component transporters that perform diverse physiological functions in both Gram-positive and Gram-negative bacteria. MFPs associate with transporters belonging to Resistance-Nodulation-cell Division (RND), ATP-Binding Cassette (ABC) and Major Facilitator (MF) superfamilies of proteins. Recent studies suggested that MFPs interact with substrates and play an active role in transport reactions. In addition, the MFP-dependent transporters from Gram-negative bacteria recruit the outer membrane channels to expel various substrates across the outer membrane into external medium. This review is focused on the diversity, structure and molecular mechanism of MFPs that function in multidrug efflux. Using phylogenetic approaches we analyzed diversity and representation of multidrug MFPs in sequenced bacterial genomes. In addition to previously characterized MFPs from Gram-negative bacteria, we identified MFPs that associate with RND-, MF- and ABC-type transporters in Gram-positive bacteria. Sequence analyses showed that MFPs vary significantly in size (200-650 amino acid residues) with some of them lacking the signature alpha-helical domain of multidrug MFPs. Furthermore, many transport operons contain two- or three genes encoding distinct MFPs. We further discuss the diversity of MFPs in the context of current views on the mechanism and structure of MFP-dependent transporters.
Collapse
Affiliation(s)
- Helen I Zgurskaya
- University of Oklahoma Department of Chemistry and Biochemistry 620 Parrington Oval, Room 208 Norman, OK 73019, USA.
| | | | | | | | | |
Collapse
|
134
|
Lin HT, Bavro VN, Barrera NP, Frankish HM, Velamakanni S, van Veen HW, Robinson CV, Borges-Walmsley MI, Walmsley AR. MacB ABC transporter is a dimer whose ATPase activity and macrolide-binding capacity are regulated by the membrane fusion protein MacA. J Biol Chem 2008; 284:1145-54. [PMID: 18955484 PMCID: PMC2613632 DOI: 10.1074/jbc.m806964200] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Gram-negative bacteria utilize specialized machinery to translocate drugs
and protein toxins across the inner and outer membranes, consisting of a
tripartite complex composed of an inner membrane secondary or primary active
transporter (IMP), a periplasmic membrane fusion protein, and an outer
membrane channel. We have investigated the assembly and function of the
MacAB/TolC system that confers resistance to macrolides in Escherichia
coli. The membrane fusion protein MacA not only stabilizes the tripartite
assembly by interacting with both the inner membrane protein MacB and the
outer membrane protein TolC, but also has a role in regulating the function of
MacB, apparently increasing its affinity for both erythromycin and ATP.
Analysis of the kinetic behavior of ATP hydrolysis indicated that MacA
promotes and stabilizes the ATP-binding form of the MacB transporter. For the
first time, we have established unambiguously the dimeric nature of a
noncanonic ABC transporter, MacB that has an N-terminal nucleotide binding
domain, by means of nondissociating mass spectrometry, analytical
ultracentrifugation, and atomic force microscopy. Structural studies of ABC
transporters indicate that ATP is bound between a pair of nucleotide binding
domains to stabilize a conformation in which the substrate-binding site is
outward-facing. Consequently, our data suggest that in the presence of ATP the
same conformation of MacB is promoted and stabilized by MacA. Thus, MacA would
facilitate the delivery of drugs by MacB to TolC by enhancing the binding of
drugs to it and inducing a conformation of MacB that is primed and competent
for binding TolC. Our structural studies are an important first step in
understanding how the tripartite complex is assembled.
Collapse
Affiliation(s)
- Hong Ting Lin
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Abstract
Drug extrusion via efflux through a tripartite complex (an inner membrane pump, an outer membrane protein, and a periplasmic protein) is a widely used mechanism in Gram-negative bacteria. The outer membrane protein (TolC in Escherichia coli; OprM in Pseudomonas aeruginosa) forms a tunnel-like pore through the periplasmic space and the outer membrane. Molecular dynamics simulations of TolC have been performed, and are compared to simulations of Y362F/R367S mutant, and to simulations of its homolog OprM. The results reveal a complex pattern of conformation dynamics in the TolC protein. Two putative gate regions, located at either end of the protein, can be distinguished. These regions are the extracellular loops and the mouth of the periplasmic domain, respectively. The periplasmic gate has been implicated in the conformational changes leading from the closed x-ray structure to a proposed open state of TolC. Between the two gates, a peristaltic motion of the periplasmic domain is observed, which may facilitate transport of the solutes from one end of the tunnel to the other. The motions observed in the atomistic simulations are also seen in coarse-grained simulations in which the protein tertiary structure is represented by an elastic network model.
Collapse
|
136
|
MacAB is involved in the secretion of Escherichia coli heat-stable enterotoxin II. J Bacteriol 2008; 190:7693-8. [PMID: 18805970 DOI: 10.1128/jb.00853-08] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The heat-stable enterotoxin (ST) produced by enterotoxigenic Escherichia coli is an extracellular peptide toxin that evokes watery diarrhea in the host. Two types of STs, STI and STII, have been found. Both STs are synthesized as precursor proteins and are then converted to the active forms with intramolecular disulfide bonds after being released into the periplasm. The active STs are finally translocated across the outer membrane through a tunnel made by TolC. However, it is unclear how the active STs formed in the periplasm are led to the TolC channel. Several transporters in the inner membrane and their periplasmic accessory proteins are known to combine with TolC and form a tripartite transport system. We therefore expect such transporters to also act as a partner with TolC to export STs from the periplasm to the exterior. In this study, we carried out pulse-chase experiments using E. coli BL21(DE3) mutants in which various transporter genes (acrAB, acrEF, emrAB, emrKY, mdtEF, macAB, and yojHI) had been knocked out and analyzed the secretion of STs in those strains. The results revealed that the extracellular secretion of STII was largely decreased in the macAB mutant and the toxin molecules were accumulated in the periplasm, although the secretion of STI was not affected in any mutant used in this study. The periplasmic stagnation of STII in the macAB mutant was restored by the introduction of pACYC184, containing the macAB gene, into the cell. These results indicate that MacAB, an ATP-binding cassette transporter of MacB and its accessory protein, MacA, participates in the translocation of STII from the periplasm to the exterior. Since it has been reported that MacAB cooperates with TolC, we propose that the MacAB-TolC system captures the periplasmic STII molecules and exports the toxin molecules to the exterior.
Collapse
|