101
|
Iyoda T, Takada M, Fukatsu Y, Kumokoshi S, Fujisawa T, Shimada T, Shimokawa N, Matsunaga T, Makino K, Doi N, Terada H, Fukai F. A novel mechanism underlying the basic defensive response of macrophages against Mycobacterium infection. THE JOURNAL OF IMMUNOLOGY 2014; 192:4254-62. [PMID: 24663676 DOI: 10.4049/jimmunol.1301526] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Following inhalation of Mycobacterium tuberculosis, including bacillus Calmette-Guérin (BCG), pathogens enter and grow inside macrophages by taking advantage of their phagocytic mechanisms. Macrophages often fail to eliminate intracellular M. tuberculosis, leading to the induction of host macrophage death. Despite accumulating evidence, the molecular mechanisms underlying M. tuberculosis infection-induced cell death remain controversial. In this study, we show the involvement of two distinct pathways triggered by TLR2 and β2 integrin in BCG infection-induced macrophage apoptosis. First, BCG infection induced activation of ERK1/2, which in turn caused phosphorylation/activation of the proapoptotic protein Bim in mouse macrophage-like Raw 264.7 cells. BCG-infected Raw cells treated with U0126, an MEK/ERK inhibitor, led to the suppression of Bim phosphorylation alongside a remarkable increase in the number of viable macrophages. Small interfering RNA-mediated knockdown of Bim rescued the macrophages from the apoptotic cell death induced by BCG infection. Stimulation with Pam3CSK, a TLR2 agonist, induced macrophage apoptosis with a concomitant increase in the phosphorylation/activation of MEK/ERK and Bim. These observations indicate the important role of the TLR2/MEK/ERK/Bim pathway in BCG infection-induced macrophage apoptosis. Second, we used the β2 integrin agonists C3bi and fibronectin to show that the β2 integrin-derived signal was involved in BCG infection-induced apoptosis, independent of MEK/ERK activation. Interestingly, latex beads coated with Pam3CSK and C3bi were able to induce apoptosis in macrophages to the same extent and specificity as that induced by BCG. Taken together, two distinct pattern-recognition membrane receptors, TLR2 and β2 integrin, acted as triggers in BCG infection-induced macrophage apoptosis, in which MEK/ERK activation played a crucial role following the engagement of TLR2.
Collapse
Affiliation(s)
- Takuya Iyoda
- Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Nikolos F, Thomas C, Rajapaksa G, Bado I, Gustafsson JÅ. ERβ regulates NSCLC phenotypes by controlling oncogenic RAS signaling. Mol Cancer Res 2014; 12:843-54. [PMID: 24618619 DOI: 10.1158/1541-7786.mcr-13-0663] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related deaths worldwide. In addition to the aberrant growth factor signaling, dysregulation of other pathways, such as those mediated by estrogens and their receptors, has been linked to NSCLC initiation and progression. Although the expression of wild-type estrogen receptor β (ERβ1) has been associated with prolonged disease-free survival in patients with NSCLC, the molecular mechanism that accounts for this correlation is unknown. Here, upregulation of ERβ1 reduced proliferation and enhanced apoptosis in the context of mutant RAS. ERβ1 was found to induce apoptosis by stimulating the intrinsic apoptotic pathway that involves BIM, a Bcl-2 proapoptotic family member that is regulated by the extracellular signal-regulated kinase (ERK). Downregulation of EGFR and inactivation of RAS and the downstream components ERK1/2 were found to be involved in the ERβ1-induced apoptosis. Manipulation of EGFR and RAS expression and activity in ERβ1-expressing cells revealed the central role of oncogenic RAS inhibition in the ERβ1-mediated proapoptotic phenotype and EGFR regulation. These results demonstrate that ERβ1 decreases the survival of NSCLC cells by regulating oncogenic RAS signaling. IMPLICATIONS The ability of ERβ1 to regulate the oncogenic functions of RAS suggests its importance in the biology of NSCLC and its clinical management. Mol Cancer Res; 12(6); 843-54. ©2014 AACR.
Collapse
Affiliation(s)
- Fotis Nikolos
- Authors' Affiliation: Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas
| | - Christoforos Thomas
- Authors' Affiliation: Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas
| | - Gayani Rajapaksa
- Authors' Affiliation: Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas
| | - Igor Bado
- Authors' Affiliation: Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas
| | - Jan-Åke Gustafsson
- Authors' Affiliation: Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas
| |
Collapse
|
103
|
Shimamoto N. [A pathophysiological role of cytochrome p450 involved in production of reactive oxygen species]. YAKUGAKU ZASSHI 2014; 133:435-50. [PMID: 23546588 DOI: 10.1248/yakushi.12-00263] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dysregulation of the production of reactive oxygen species (ROS) determines cellular function. Cytochrome P450s (CYPs) regulates ROS production and contributes to the process of cell death. This review summarizes our recent findings, focusing on the involvement of CYPs in pathophysiology induced by ROS. 1. Quinone toxicity in hepatocytes: CYPs require electrons supplied from NADPH-cytochrome P450 reductase (NPR) during the process of metabolism. NPR also provides electrons to quinone compounds, which compete with CYPs over electrons. Inhibition of CYPs shifts NPR's electron flow more to quinones, which accelerates the redox cycle to enhance ROS production and quinone toxicity. 2. Myocardial ischemia-reperfusion injury: Reperfusion of blood flow after coronary artery occlusion induces cell damage, as evident by the extension of myocardial infarct size and caspase-independent cell apoptosis. CYP2C6 appears to be a source for ROS production, since sulfaphenazole, a selective inhibitor of CYP2C6, reduces this damage. ROS produced by CYP2C6 during the reperfusion causes translational activation of Noxa and BimEL, as well as the suppression of caspase activation, resulting in caspase-independent apoptosis. 3. Primary hepatocyte apoptosis: Inhibition of catalase and glutathione peroxidase increases intracellular ROS and elicits caspase-independent hepatocyte apoptosis. SKF-525A, a pan-CYP inhibitor, suppresses these ROS increases and hepatocyte apoptosis. Increased ROS activates ERK and AP-1 by inhibition of tyrosine phosphatase, and inhibits BimEL degradation by proteasome. These results in the accumulation of mitochondrial BimEL, which then induces the release of cytochrome c and endonuclease G (EndoG). Increased ROS also keeps caspases inactivated. As a result, EndoG executes nucleosomal DNA fragmentation.
Collapse
Affiliation(s)
- Norio Shimamoto
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, Kagawa 769-2193, Japan
| |
Collapse
|
104
|
IL-15 maintains T-cell survival via S-nitrosylation-mediated inhibition of caspase-3. Cell Death Differ 2014; 21:904-14. [PMID: 24510126 DOI: 10.1038/cdd.2014.10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 12/27/2013] [Accepted: 01/08/2014] [Indexed: 12/18/2022] Open
Abstract
Caspase activity is critical for both T-cell survival and death. However, little is known regarding what determines caspase activity in cycling T cells. Interleukin (IL)-2 and IL-15 confer very different susceptibilities to T-cell death. We therefore considered that IL-2 and IL-15 differentially regulate caspase activity to influence T-cell survival. We observed that IL-2-cultured primary murine effector T cells manifested elevated levels of caspase-3 activity compared with IL-15-cultured T cells. T cell receptor (TCR) restimulation further increased caspase activity and induced considerable cell death in IL-2-cultured T cells, but provoked only a minimal increase of caspase activity and cell death in IL-15-cultured T cells. IL-2 sensitization to cell death was caspase-3 mediated. Interestingly, increased active caspase-3 levels with IL-2 were independent of active initiator caspase-8 and caspase-9 that were similar with IL-2 and IL-15. Rather, caspase-3 activity was inhibited by posttranslational S-nitrosylation in IL-15-cultured T cells, but not in the presence of IL-2. This paralleled increased reactive nitrogen and oxygen species with IL-15 and reduced glycolysis. Taken together, these data suggest that the metabolic state conferred by IL-15 inhibits T-cell apoptosis in part by maintaining low levels of active caspase-3 via S-nitrosylation.
Collapse
|
105
|
Knockdown of miR-214 promotes apoptosis and inhibits cell proliferation in nasopharyngeal carcinoma. PLoS One 2014; 9:e86149. [PMID: 24465927 PMCID: PMC3897649 DOI: 10.1371/journal.pone.0086149] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 12/06/2013] [Indexed: 11/19/2022] Open
Abstract
MicroRNA-214 (MiR-214) is aberrantly expressed in several human tumors such as ovarian cancer and breast cancer. However, the role of miR-214 in nasopharyngeal carcinoma (NPC) is still unknown. In this study, we report that miR-214 was overexpressed in NPC cell lines and tissues. Silencing of miR-214 by LNA-antimiR-214 in NPC cells resulted in promoting apoptosis and suppressing cell proliferation in vitro, and suppressed tumor growth in nude mice in vivo. Luciferase reporter assay was performed to identify Bim as a direct target of miR-214. Furthermore, this study showed that low Bim expression in NPC tissues correlated with poor survival of NPC patients. Taken together, our findings suggest that miR-214 plays an important role in NPC carcinogenesis.
Collapse
|
106
|
Jia G, Kong R, Ma ZB, Han B, Wang YW, Pan SH, Li YH, Sun B. The activation of c-Jun NH₂-terminal kinase is required for dihydroartemisinin-induced autophagy in pancreatic cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2014; 33:8. [PMID: 24438216 PMCID: PMC3901759 DOI: 10.1186/1756-9966-33-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 01/17/2014] [Indexed: 11/21/2022]
Abstract
Background c-Jun NH2-terminal kinases (JNKs) are strongly activated by a stressful cellular environment, such as chemotherapy and oxidative stress. Autophagy is a protein-degradation system in which double-membrane vacuoles called autophagosomes are formed. The autophagy-related gene Beclin 1 plays a key role in this process. We previously found that autophagy was induced by dihydroartemisinin (DHA) in pancreatic cancer cells. However, little is known about the complex relationship between ROS, JNK activation, autophagy induction, and Beclin 1 expression. Methods Cell viability and CCK-8 assays were carried out to determine the cell proliferation; small interfering RNAs (siRNAs) were used to knockdown c-Jun NH2-terminal kinases (JNK1/2) genes; western blot was performed to detect the protein expression of LC3, JNK, Beclin 1, caspase 3 and β-actin; production of intracellular ROS was analyzed using FACS flow cytometry; autophagy induction was confirmed by electron microscopy. Results In the present study, we explored the role of DHA and Beclin 1 expression in autophagy. DHA-treated cells showed autophagy characteristics, and DHA also activated the JNK pathway and up-regulated the expression of Beclin 1. Conversely, blocking JNK signaling inhibited Beclin 1 up-regulation. JNK activation was found to primarily depend on reactive oxygen species (ROS) resulting from the DHA treatment. Moreover, JNK pathway inhibition and Beclin 1 silencing prevented the induction of DHA-induced autophagy. Conclusions These results suggest that the induction of autophagy by DHA is required for JNK-mediated Beclin 1 expression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bei Sun
- Department of Pancreatic and Biliary Surgery; Key Laboratory of Hepatosplenic Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
107
|
Tanaka Y, Komatsu T, Shigemi H, Yamauchi T, Fujii Y. BIMEL is a key effector molecule in oxidative stress-mediated apoptosis in acute myeloid leukemia cells when combined with arsenic trioxide and buthionine sulfoximine. BMC Cancer 2014; 14:27. [PMID: 24428916 PMCID: PMC4029189 DOI: 10.1186/1471-2407-14-27] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 01/10/2014] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Arsenic trioxide (ATO) is reported to be an effective therapeutic agent in acute promyelocytic leukemia (APL) through inducing apoptotic cell death. Buthionine sulfoximine (BSO), an oxidative stress pathway modulator, is suggested as a potential combination therapy for ATO-insensitive leukemia. However, the precise mechanism of BSO-mediated augmentation of ATO-induced apoptosis is not fully understood. In this study we compared the difference in cell death of HL60 leukemia cells treated with ATO/BSO and ATO alone, and investigated the detailed molecular mechanism of BSO-mediated augmentation of ATO-induced cell death. METHODS HL60 APL cells were used for the study. The activation and expression of a series of signal molecules were analyzed with immunoprecipitation and immunoblotting. Apoptotic cell death was detected with caspases and poly (ADP-ribose) polymerase activation. Generation of intracellular reactive oxygen species (ROS) was determined using a redox-sensitive dye. Mitochondrial outer membrane permeabilization was observed with a confocal microscopy using NIR dye and cytochrome c release was determined with immunoblotting. Small interfering (si) RNA was used for inhibition of gene expression. RESULTS HL60 cells became more susceptible to ATO in the presence of BSO. ATO/BSO-induced mitochondrial injury was accompanied by reduced mitochondrial outer membrane permeabilization, cytochrome c release and caspase activation. ATO/BSO-induced mitochondrial injury was inhibited by antioxidants. Addition of BSO induced phosphorylation of the pro-apoptotic BCL2 protein, BIMEL, and anti-apoptotic BCL2 protein, MCL1, in treated cells. Phosphorylated BIMEL was dissociated from MCL1 and interacted with BAX, followed by conformational change of BAX. Furthermore, the knockdown of BIMEL with small interfering RNA inhibited the augmentation of ATO-induced apoptosis by BSO. CONCLUSIONS The enhancing effect of BSO on ATO-induced cell death was characterized at the molecular level for clinical use. Addition of BSO induced mitochondrial injury-mediated apoptosis via the phosphorylation of BIMEL and MCL1, resulting in their dissociation and increased the interaction between BIMEL and BAX.
Collapse
Affiliation(s)
| | - Takayuki Komatsu
- Department of Microbiology and Immunology, School of Medicine, Aichi Medical University, 1-1 Yazako-Karimata, Nagakute, Aichi, Japan.
| | | | | | | |
Collapse
|
108
|
Park EJ, Woo SM, Min KJ, Kwon TK. Transcriptional and post-translational regulation of Bim controls apoptosis in melatonin-treated human renal cancer Caki cells. J Pineal Res 2014; 56:97-106. [PMID: 24117987 DOI: 10.1111/jpi.12102] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 10/08/2013] [Indexed: 01/26/2023]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) has recently gained attention as an anticancer agent and for combined cancer therapy. In this study, we investigated the underlying molecular mechanisms of the effects of melatonin on cancer cell death. Treatment with melatonin induced apoptosis and upregulated the expression of the pro-apoptotic protein Bcl-2-interacting mediator of cell death (Bim) in renal cancer Caki cells. Furthermore, downregulation of Bim expression by siRNA markedly reduced melatonin-mediated apoptosis. Melatonin increased Bim mRNA expression through the induction of Sp1 and E2F1 expression and transcriptional activity. We found that melatonin also modulated Bim protein stability through the inhibition of proteasome activity. However, melatonin-induced Bim upregulation was independent of melatonin's antioxidant properties and the melatonin receptor. Taken together, our results suggest that melatonin induces apoptosis through the upregulation of Bim expression at the transcriptional level and at the post-translational level.
Collapse
Affiliation(s)
- Eun Jung Park
- Department of Immunology, School of Medicine, Keimyung University, Daegu, Korea
| | | | | | | |
Collapse
|
109
|
Affiliation(s)
- G Häcker
- Department of Medical Microbiology and Hygiene, University Medical Center Freiburg, Freiburg, Germany
| |
Collapse
|
110
|
Fink MY, Chipuk JE. Survival of HER2-Positive Breast Cancer Cells: Receptor Signaling to Apoptotic Control Centers. Genes Cancer 2013; 4:187-95. [PMID: 24069506 DOI: 10.1177/1947601913488598] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 03/31/2013] [Indexed: 02/06/2023] Open
Abstract
HER2 is overexpressed in a subset of breast cancers and controls an oncogenic signaling network that inhibits tumor cell death through the specific biochemical regulation of apoptotic pathways. In particular, the mitochondrial pathway for apoptosis is important for death induced by inhibitors of HER2. This review focuses on the connections between this oncogenic signaling network and individual components of the mitochondrial pathway. A comprehensive view of this signaling network is crucial for developing novel drugs in this area and to gain an understanding of how these regulatory interactions are altered in drug-refractory cancers.
Collapse
Affiliation(s)
- Marc Y Fink
- Department of Biomedical Sciences, Long Island University Post, Brookville, NY, USA
| | | |
Collapse
|
111
|
Menke DB. Engineering subtle targeted mutations into the mouse genome. Genesis 2013; 51:605-18. [PMID: 23913666 DOI: 10.1002/dvg.22422] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 07/25/2013] [Accepted: 07/26/2013] [Indexed: 12/13/2022]
Abstract
Homologous recombination in embryonic stem (ES) cells offers an exquisitely precise mechanism to introduce targeted modifications to the mouse genome. This ability to produce specific alterations to the mouse genome has become an essential tool for the analysis of gene function and the development of mouse models of human disease. Of the many thousands of mouse alleles that have been generated by gene targeting, the majority are designed to completely ablate gene function, to create conditional alleles that are inactivated in the presence of Cre recombinase, or to produce reporter alleles that label-specific tissues or cell populations (Eppig et al., 2012, Nucleic Acids Res 40:D881-D886). However, there is a variety of powerful motivations for the introduction of subtle targeted mutations (STMs) such as point mutations, small deletions, or small insertions into the mouse genome. The introduction of STMs allows the ablation of specific transcript isoforms, permits the functional investigation of particular domains or amino acids within a protein, provides the ability to study the role of specific sites with in cis-regulatory elements, and can result in better mouse models of human genetic disorders. In this review, I examine the current strategies that are commonly used to introduce STMs into the mouse genome and highlight new gene targeting technologies, including TALENs and CRISPR/Cas, which are likely to influence the future of gene targeting in mice.
Collapse
Affiliation(s)
- Douglas B Menke
- Department of Genetics, University of Georgia, Athens, Georgia
| |
Collapse
|
112
|
The conformational control inhibitor of tyrosine kinases DCC-2036 is effective for imatinib-resistant cells expressing T674I FIP1L1-PDGFRα. PLoS One 2013; 8:e73059. [PMID: 24009732 PMCID: PMC3756952 DOI: 10.1371/journal.pone.0073059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 07/16/2013] [Indexed: 11/19/2022] Open
Abstract
The cells expressing the T674I point mutant of FIP1-like-1-platelet-derived growth factor receptor alpha (FIP1L1-PDGFRα) in hypereosinophilics syndrome (HES) are resistant to imatinib and some second-generation tyrosine kinase inhibitors (TKIs). There is a desperate need to develop therapy to combat this acquired drug resistance. DCC-2036 has been synthesized as a third-generation TKI to combat especially the Bcr-Abl T315I mutant in chronic myeloid leukemia. This study evaluated the effect of DCC-2036 on FIP1L1-PDGFRα-positive cells, including the wild type (WT) and the T674I mutant. The in vitro effects of DCC-2036 on the PDGFRα signal pathways, proliferation, cell cycling and apoptosis of FIP1L1-PDGFRα-positive cells were investigated, and a nude mouse xenograft model was employed to assess the in vivo antitumor activity. We found that DCC-2036 decreased the phosphorylated levels of PDGFRα and its downstream targets without apparent effects on total protein levels. DCC-2036 inhibited proliferation, and induced apoptosis with MEK-dependent up-regulation of the pro-apoptotic protein Bim in FIP1L1-PDGFRα-positive cells. DCC-2036 also exhibited in vivo antineoplastic activity against cells with T674I FIP1L1-PDGFRα. In summary, FIP1L1-PDGFRα-positive cells are sensitive to DCC-2036 regardless of their sensitivity to imatinib. DCC-2036 may be a potential compound to treat imatinib-resistant HES.
Collapse
|
113
|
Fernald K, Kurokawa M. Evading apoptosis in cancer. Trends Cell Biol 2013; 23:620-33. [PMID: 23958396 DOI: 10.1016/j.tcb.2013.07.006] [Citation(s) in RCA: 400] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/16/2013] [Accepted: 07/17/2013] [Indexed: 12/12/2022]
Abstract
Carcinogenesis is a mechanistically complex and variable process with a plethora of underlying genetic causes. Cancer development comprises a multitude of steps that occur progressively starting with initial driver mutations leading to tumorigenesis and, ultimately, metastasis. During these transitions, cancer cells accumulate a series of genetic alterations that confer on the cells an unwarranted survival and proliferative advantage. During the course of development, however, cancer cells also encounter a physiologically ubiquitous cellular program that aims to eliminate damaged or abnormal cells: apoptosis. Thus, it is essential that cancer cells acquire instruments to circumvent programmed cell death. Here we discuss emerging evidence indicating how cancer cells adopt various strategies to override apoptosis, including amplifying the antiapoptotic machinery, downregulating the proapoptotic program, or both.
Collapse
Affiliation(s)
- Kaleigh Fernald
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | | |
Collapse
|
114
|
Krysan K, Cui X, Gardner BK, Reckamp KL, Wang X, Hong L, Walser TC, Rodriguez NL, Pagano PC, Garon EB, Brothers JF, Elashoff D, Lee JM, Spira AE, Sharma S, Fishbein MC, Dubinett SM. Elevated neutrophil gelatinase-associated lipocalin contributes to erlotinib resistance in non-small cell lung cancer. Am J Transl Res 2013; 5:481-496. [PMID: 23977408 PMCID: PMC3745436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 06/10/2013] [Indexed: 06/02/2023]
Abstract
PURPOSE The EGFR tyrosine kinase inhibitors (TKIs) demonstrate efficacy in NSCLC patients whose tumors harbor activating EGFR mutations. However, patients who initially respond to EGFR TKI treatment invariably develop resistance to the drugs. Known mechanisms account for approximately 70% of native and acquired EGFR TKI resistance. In the current study we investigated a novel mechanism of NSCLC resistance to erlotinib. EXPERIMENTAL DESIGN The mechanisms of acquired erlotinib resistance were evaluated by microarray analysis in thirteen NSCLC cell lines and in vivo in mice. Correlations between plasma neutrophil gelatinase associated lipocalin (NGAL) levels, erlotinib response and the EGFR mutational status were assessed in advanced stage NSCLC patients treated with erlotinib. RESULTS In 5 of 13 NSCLC cell lines NGAL was significantly upregulated. NGAL knockdown in erlotinib-resistant cells increased erlotinib sensitivity in vitro and in vivo. NGAL overexpression in erlotinib-sensitive cells augmented apoptosis resistance. This was mediated by NGAL-dependent modulation of the pro-apoptotic protein Bim levels. Evaluation of the plasma NGAL levels in NSCLC patients that received erlotinib revealed that patients with lower baseline NGAL demonstrated a better erlotinib response. Compared to patients with wild type EGFR, patients with activating EGFR mutations had lower plasma NGAL at baseline and weeks 4 and 8. CONCLUSIONS Our studies uncover a novel mechanism of NGAL-mediated modulation of Bim levels in NSCLC that might contribute to TKI resistance in lung cancer patients. These findings provide the rationale for the further investigations of the utility of NGAL as a potential therapeutic target or diagnostic biomarker.
Collapse
Affiliation(s)
- Kostyantyn Krysan
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLALos Angeles, CA
| | - Xiaoyan Cui
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLALos Angeles, CA
| | - Brian K Gardner
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLALos Angeles, CA
| | | | - Xiaoyan Wang
- Department of Biostatistics, David Geffen School of Medicine at UCLALos Angeles, CA
| | - Longsheng Hong
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLALos Angeles, CA
| | - Tonya C Walser
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLALos Angeles, CA
| | - Nicole L Rodriguez
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLALos Angeles, CA
| | - Paul C Pagano
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLALos Angeles, CA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLALos Angeles, CA
| | - Edward B Garon
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLALos Angeles, CA
| | | | - David Elashoff
- Department of Biostatistics, David Geffen School of Medicine at UCLALos Angeles, CA
| | - Jay M Lee
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLALos Angeles, CA
| | | | | | - Michael C Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLALos Angeles, CA
| | - Steven M Dubinett
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLALos Angeles, CA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLALos Angeles, CA
- West Los Angeles VA Healthcare SystemLos Angeles, CA
- Boston UniversityBoston, MA
| |
Collapse
|
115
|
Moustafa-Kamal M, Gamache I, Lu Y, Li S, Teodoro JG. BimEL is phosphorylated at mitosis by Aurora A and targeted for degradation by βTrCP1. Cell Death Differ 2013; 20:1393-403. [PMID: 23912711 DOI: 10.1038/cdd.2013.93] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 05/15/2013] [Accepted: 06/17/2013] [Indexed: 01/09/2023] Open
Abstract
Bcl-2-interacting mediator of cell death (Bim) is a pro-apoptotic B-cell lymphoma 2 family member implicated in numerous apoptotic stimuli. In particular, Bim is required for cell death mediated by antimitotic agents, however, mitotic regulation of Bim remains poorly understood. Here, we show that the major splice variant of Bim, BimEL, is regulated during mitosis by the Aurora A kinase and protein phosphatase 2A (PP2A). We observed that BimEL is phosphorylated by Aurora A early in mitosis and reversed by PP2A after mitotic exit. Aurora A phosphorylation stimulated binding of BimEL to the F-box protein beta-transducin repeat containing E3 ubiquitin protein ligase and promoted ubiquitination and degradation of BimEL. These findings describe a novel mechanism by which the oncogenic kinase Aurora A promotes cell survival during mitosis by downregulating proapoptotic signals. Notably, we observed that knockdown of Bim significantly increased resistance of cells to the Aurora A inhibitor MLN8054. Inhibitors of Aurora A are currently under investigation as cancer chemotherapeutics and our findings suggest that efficacy of this class of drugs may function in part by enhancing apoptotic activity of BimEL.
Collapse
Affiliation(s)
- M Moustafa-Kamal
- Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|
116
|
Lai YG, Hou MS, Lo A, Huang ST, Huang YW, Yang-Yen HF, Liao NS. IL-15 modulates the balance between Bcl-2 and Bim via a Jak3/1-PI3K-Akt-ERK pathway to promote CD8αα+intestinal intraepithelial lymphocyte survival. Eur J Immunol 2013; 43:2305-16. [DOI: 10.1002/eji.201243026] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 05/20/2013] [Accepted: 06/06/2013] [Indexed: 12/20/2022]
Affiliation(s)
- Yein-Gei Lai
- Institute of Molecular Biology; Academia Sinica; Taipei Taiwan
- Graduate Institute of Life Sciences; National Defense Medical Center; Taipei Taiwan
| | - Mau-Sheng Hou
- Institute of Molecular Biology; Academia Sinica; Taipei Taiwan
- Molecular Cell Biology; Taiwan International Graduate Program; Graduate Institute of Life Sciences; National Defense Medical Center and Academia Sinica; Taipei Taiwan
| | - Albert Lo
- Institute of Molecular Biology; Academia Sinica; Taipei Taiwan
| | - Shih-Ting Huang
- Institute of Molecular Biology; Academia Sinica; Taipei Taiwan
| | - Yen-Wen Huang
- Institute of Molecular Biology; Academia Sinica; Taipei Taiwan
| | | | - Nan-Shih Liao
- Institute of Molecular Biology; Academia Sinica; Taipei Taiwan
- Graduate Institute of Life Sciences; National Defense Medical Center; Taipei Taiwan
| |
Collapse
|
117
|
Apoptosis induced by the fungal pathogen gliotoxin requires a triple phosphorylation of Bim by JNK. Cell Death Differ 2013; 20:1317-29. [PMID: 23832115 DOI: 10.1038/cdd.2013.78] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 04/30/2013] [Accepted: 05/27/2013] [Indexed: 01/03/2023] Open
Abstract
We previously reported that gliotoxin (GT), the major virulence factor of the mold Aspergillus fumigatus causing invasive aspergillosis (IA) in immunocompromised patients, induces apoptosis in a Bak-dependent manner. The signaling pathway leading to Bak activation and subsequent mitochondrial outer membrane permeabilization (MOMP) is elusive. Here, we show that GT and the supernatant of A. fumigatus (but not its GT-defective mutant) activate the JNK pathway and require a co-operative JNK-mediated BimEL phosphorylation at three sites (S100, T112 and S114) to induce apoptosis in mouse fibroblasts, human bronchial and mouse alveolar epithelial cells. Cells (i) treated with the JNK inhibitor SP600125, (ii) deleted or knocked down for JNK1/2 or Bim or (iii) carrying the BimEL triple phosphomutant S100A/T112A/S114A instead of wild-type BimEL are similarly resistant to GT-induced apoptosis. Triple-phosphorylated BimEL is more stable, redistributes from a cytoskeletal to a membrane fraction, better interacts with Bcl-2 and Bcl-xL and more effectively activates Bak than the unphosphorylated mutant. These data indicate that JNK-mediated BimEL phosphorylation at S100, T112 and S114 constitutes a novel regulatory mechanism to activate Bim in response to apoptotic stimuli.
Collapse
|
118
|
SHEN JIAKUN, DU HUAPING, MA QIULING, YANG MIN, WANG YUNGUI, JIN JIE. 4-Chlorobenzoyl berbamine, a novel berbamine derivative, induces apoptosis in multiple myeloma cells through the IL-6 signal transduction pathway and increases FOXO3a-Bim expression. Oncol Rep 2013; 30:425-32. [DOI: 10.3892/or.2013.2431] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 04/22/2013] [Indexed: 11/06/2022] Open
|
119
|
Kopycinska J, Kempińska-Podhorodecka A, Haas T, Elias E, DePinho RA, Paik J, Milkiewicz P, Milkiewicz M. Activation of FoxO3a/Bim axis in patients with Primary Biliary Cirrhosis. Liver Int 2013; 33:231-8. [PMID: 23295054 DOI: 10.1111/liv.12030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 10/16/2012] [Indexed: 12/30/2022]
Abstract
BACKGROUND/AIMS Impaired regulation of apoptosis has been suggested to play a role in the pathogenesis of Primary Biliary Cirrhosis (PBC). In this study, we analysed a signalling pathway that comprises the transcription factor FoxO3a and its downstream target Bim, a Bcl-2 interacting mediator of apoptosis. MATERIALS & METHODS The tissues examined included livers explanted from patients with cirrhotic PBC, primary sclerosing cholangitis (PSC), alcoholic liver disease (ALD) and liver biopsies from patients with non-cirrhotic PBC. Large margin resections of hepatocellular carcinoma were used as controls. RESULTS Expression of FoxO3a and Bim mRNA was significantly enhanced in both non-cirrhotic and end-stage PBC (2.2-fold and 4.3-fold increases, respectively), but not in the other disorders. Similarly, FOXO3a protein level was increased in end-stage PBC (P < 0.05 vs. control). A significant increase in Bim mRNA in non-cirrhotic and cirrhotic PBC was observed (2.2-fold and 8.2-fold respectively). In addition, the most pro-apoptotic isoform of Bim dominated in livers of PBC patients (2.5- fold increase vs. control; P < 0.05). Enhanced FoxO3a and Bim expression was associated with a substantial activation of caspase-3 in PBC (2-fold increase vs. controls; P < 0.0001), whereas it was decreased in both ALD and PSC (46% and 67% reductions respectively). The relationship between FoxO3a and Bim was further investigated in the livers of FoxO-deficient mice. The somatic deletion of FoxO3a caused a significant decrease in Bim, but not caspase-3 protein expression confirming the crucial role of FoxO3a in induction of Bim gene transcription. CONCLUSIONS Our results imply that the FoxO3/Bim signalling pathway can be of importance in the livers of patients with PBC.
Collapse
Affiliation(s)
- Justyna Kopycinska
- Medical Biology Laboratory, Pomeranian Medical University, Szczecin, Poland
| | | | | | | | | | | | | | | |
Collapse
|
120
|
Abstract
BIM represents a BH3-only proapoptotic member of the BCL-2 family of apoptotic regulatory proteins. Recent evidence suggests that in addition to its involvement in normal homeostasis, BIM plays a critical role in tumor cell biology, including the regulation of tumorigenesis through activities as a tumor suppressor, tumor metastasis, and tumor cell survival. Consequently, BIM has become the focus of intense interest as a potential target for cancer chemotherapy. The control of BIM expression is complex, and involves multiple factors, including epigenetic events (i.e., promoter acetylation or methylation, miRNA), transcription factors, posttranscriptional regulation, and posttranslational modifications, most notably phosphorylation. Significantly, the expression of BIM by tumor cells has been shown to play an important role in determining the response of transformed cells to not only conventional cytotoxic agents, but also to a broad array of targeted agents that interrupt cell signaling and survival pathways. Furthermore, modifications in BIM expression may be exploited to improve the therapeutic activity and potentially the selectivity of such agents. It is likely that evolving insights into the factors that regulate BIM expression will ultimately lead to novel BIM-based therapeutic strategies in the future.
Collapse
Affiliation(s)
- Hisashi Harada
- Department of Oral and Craniofacial Molecular Biology, Massey Cancer Center, Virginia Commonwealth University Health Sciences System, Richmond VA, 23298, USA
| | | |
Collapse
|
121
|
Sermeus A, Genin M, Maincent A, Fransolet M, Notte A, Leclere L, Riquier H, Arnould T, Michiels C. Hypoxia-induced modulation of apoptosis and BCL-2 family proteins in different cancer cell types. PLoS One 2012; 7:e47519. [PMID: 23139748 PMCID: PMC3489905 DOI: 10.1371/journal.pone.0047519] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 09/12/2012] [Indexed: 12/26/2022] Open
Abstract
Hypoxia plays an important role in the resistance of tumour cells to chemotherapy. However, the exact mechanisms underlying this process are not well understood. Moreover, according to the cell lines, hypoxia differently influences cell death. The study of the effects of hypoxia on the apoptosis induced by 5 chemotherapeutic drugs in 7 cancer cell types showed that hypoxia generally inhibited the drug-induced apoptosis. In most cases, the effect of hypoxia was the same for all the drugs in one cell type. The expression profile of 93 genes involved in apoptosis as well as the protein level of BCL-2 family proteins were then investigated. In HepG2 cells that are strongly protected against cell death by hypoxia, hypoxia decreased the abundance of nearly all the pro-apoptotic BCL-2 family proteins while none of them are decreased in A549 cells that are not protected against cell death by hypoxia. In HepG2 cells, hypoxia decreased NOXA and BAD abundance and modified the electrophoretic mobility of BIMEL. BIM and NOXA are important mediators of etoposide-induced cell death in HepG2 cells and the hypoxia-induced modification of these proteins abundance or post-translational modifications partly account for chemoresistance. Finally, the modulation of the abundance and/or of the post-translational modifications of most proteins of the BCL-2 family by hypoxia involves p53-dependent and –independent pathways and is cell type-dependent. A better understanding of these cell-to-cell variations is crucial in order to overcome hypoxia-induced resistance and to ameliorate cancer therapy.
Collapse
Affiliation(s)
- Audrey Sermeus
- Laboratory of Biochemistry and Cellular Biology (URBC), NARILIS, University of Namur – FUNDP, Belgium
| | - Marie Genin
- Laboratory of Biochemistry and Cellular Biology (URBC), NARILIS, University of Namur – FUNDP, Belgium
| | - Amélie Maincent
- Laboratory of Biochemistry and Cellular Biology (URBC), NARILIS, University of Namur – FUNDP, Belgium
| | - Maude Fransolet
- Laboratory of Biochemistry and Cellular Biology (URBC), NARILIS, University of Namur – FUNDP, Belgium
| | - Annick Notte
- Laboratory of Biochemistry and Cellular Biology (URBC), NARILIS, University of Namur – FUNDP, Belgium
| | - Lionel Leclere
- Laboratory of Biochemistry and Cellular Biology (URBC), NARILIS, University of Namur – FUNDP, Belgium
| | - Hélène Riquier
- Laboratory of Biochemistry and Cellular Biology (URBC), NARILIS, University of Namur – FUNDP, Belgium
| | - Thierry Arnould
- Laboratory of Biochemistry and Cellular Biology (URBC), NARILIS, University of Namur – FUNDP, Belgium
| | - Carine Michiels
- Laboratory of Biochemistry and Cellular Biology (URBC), NARILIS, University of Namur – FUNDP, Belgium
- * E-mail:
| |
Collapse
|
122
|
Chen S, Dai Y, Pei XY, Myers J, Wang L, Kramer LB, Garnett M, Schwartz DM, Su F, Simmons GL, Richey JD, Larsen DG, Dent P, Orlowski RZ, Grant S. CDK inhibitors upregulate BH3-only proteins to sensitize human myeloma cells to BH3 mimetic therapies. Cancer Res 2012; 72:4225-4237. [PMID: 22693249 PMCID: PMC3421040 DOI: 10.1158/0008-5472.can-12-1118] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BH3 mimetic drugs induce cell death by antagonizing the activity of antiapoptotic Bcl-2 family proteins. Cyclin-dependent kinase (CDK) inhibitors that function as transcriptional repressors downregulate the Bcl-2 family member Mcl-1 and increase the activity of selective BH3 mimetics that fail to target this protein. In this study, we determined whether CDK inhibitors potentiate the activity of pan-BH3 mimetics directly neutralizing Mcl-1. Specifically, we evaluated interactions between the prototypical pan-CDK inhibitor flavopiridol and the pan-BH3 mimetic obatoclax in multiple myeloma (MM) cells in which Mcl-1 is critical for survival. Coadministration of flavopiridol and obatoclax synergistically triggered apoptosis in both drug-naïve and drug-resistant MM cells. Mechanistic investigations revealed that flavopiridol inhibited Mcl-1 transcription but increased transcription of Bim and its binding to Bcl-2/Bcl-xL. Obatoclax prevented Mcl-1 recovery and caused release of Bim from Bcl-2/Bcl-xL and Mcl-1, accompanied by activation of Bax/Bak. Whether administered singly or in combination with obatoclax, flavopiridol also induced upregulation of multiple BH3-only proteins, including BimEL, BimL, Noxa, and Bik/NBK. Notably, short hairpin RNA knockdown of Bim or Noxa abrogated lethality triggered by the flavopiridol/obatoclax combination in vitro and in vivo. Together, our findings show that CDK inhibition potentiates pan-BH3 mimetic activity through a cooperative mechanism involving upregulation of BH3-only proteins with coordinate downregulation of their antiapoptotic counterparts. These findings have immediate implications for the clinical trial design of BH3 mimetic-based therapies that are presently being studied intensively for the treatment of diverse hematopoietic malignancies, including lethal multiple myeloma.
Collapse
Affiliation(s)
- Shuang Chen
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA
| | - Yun Dai
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA
| | - Xin-Yan Pei
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA
| | - Jennifer Myers
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA
| | - Li Wang
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA
| | - Lora B. Kramer
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA
| | - Mandy Garnett
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA
| | - Daniella M. Schwartz
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA
| | - Florence Su
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA
| | - Gary L. Simmons
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA
| | - Justin D. Richey
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA
| | - Dustin G. Larsen
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA
| | - Paul Dent
- Department of Neurosurgery, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA
| | - Robert Z. Orlowski
- Lymphoma/Myeloma, the University of Texas MD Anderson Cancer Center, Houston, TX
| | - Steven Grant
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University and the Massey Cancer Center, Richmond, VA
- Department of Biochemistry, Virginia Commonwealth University and the Massey Cancer Center and Institute of Molecular Medicine, Richmond, VA
| |
Collapse
|
123
|
Luo S, Garcia-Arencibia M, Zhao R, Puri C, Toh PPC, Sadiq O, Rubinsztein DC. Bim inhibits autophagy by recruiting Beclin 1 to microtubules. Mol Cell 2012; 47:359-70. [PMID: 22742832 PMCID: PMC3419265 DOI: 10.1016/j.molcel.2012.05.040] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 04/19/2012] [Accepted: 05/17/2012] [Indexed: 12/23/2022]
Abstract
Bim is a proapoptotic BH3-only Bcl-2 family member. In response to death stimuli, Bim dissociates from the dynein light chain 1 (DYNLL1/LC8), where it is inactive, and can then initiate Bax/Bak-mediated mitochondria-dependent apoptosis. We found that Bim depletion increases autophagosome synthesis in cells and in vivo, and this effect is inhibited by overexpression of cell death-deficient Bim. Bim inhibits autophagy by interacting with Beclin 1, an autophagy regulator, and this interaction is facilitated by LC8. Bim bridges the Beclin 1-LC8 interaction and thereby inhibits autophagy by mislocalizing Beclin 1 to the dynein motor complex. Starvation, an autophagic stimulus, induces Bim phosphorylation, which abrogates LC8 binding to Bim, leading to dissociation of Bim and Beclin 1. Our data suggest that Bim switches locations between apoptosis-inactive/autophagy-inhibitory and apoptosis-active/autophagy-permissive sites.
Collapse
Affiliation(s)
- Shouqing Luo
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | | | | | | | | | | | | |
Collapse
|
124
|
Ruppert SM, Li W, Zhang G, Carlson AL, Limaye A, Durum SK, Khaled AR. The major isoforms of Bim contribute to distinct biological activities that govern the processes of autophagy and apoptosis in interleukin-7 dependent lymphocytes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1877-93. [PMID: 22728771 DOI: 10.1016/j.bbamcr.2012.06.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 06/01/2012] [Accepted: 06/14/2012] [Indexed: 12/22/2022]
Abstract
Bim is a BH3-only member of the Bcl-2 family that enables the death of T-cells. Partial rescue of cytokine-deprived T-cells occurs when Bim and the receptor for the T-cell growth factor, interleukin-7, are deleted, implicating Bim as a possible target of interleukin-7-mediated signaling. Alternative splicing yields three major isoforms: BimEL, BimL and BimS. To study the effect of Bim deficiency and define the function of the major isoforms, Bim-containing and Bim-deficient T-cells, dependent on interleukin-7 for growth, were used. Loss of total Bim in interleukin-7-deprived T-cells resulted in delayed apoptosis. However, loss of Bim also impeded the later degradative phase of autophagy. p62, an autophagy-adaptor protein which is normally degraded, accumulated in Bim deficient cells. To explain this, BimL was found to support acidification of lysosomes that later may associate with autophagic vesicles. Key findings showed that inhibition of lysosomal acidification accelerated death upon interleukin-7 withdrawal only in Bim-containing T-cells. intereukin-7 dependent T-cells lacking Bim were less sensitive to inhibition of lysosomal acidification. BimL co-immunoprecipitated with dynein and Lamp1-containing vesicles, indicating BimL could be an adaptor for dynein to facilitate loading of lysosomes. In Bim deficient T-cells, lysosome-tracking probes revealed vesicles of less acidic pH. Over-expression of BimL restored acidic vesicles in Bim deficient T-cells, while other isoforms, BimEL and BimS, promoted intrinsic cell death. These results reveal a novel role for BimL in lysosomal positioning that may be required for the formation of degradative autolysosomes.
Collapse
Affiliation(s)
- Shannon M Ruppert
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | | | | | | | | | | | | |
Collapse
|
125
|
Fennell DA, Swanton C. Unlocking Pandora's box: personalising cancer cell death in non-small cell lung cancer. EPMA J 2012; 3:6. [PMID: 22738201 PMCID: PMC3422179 DOI: 10.1186/1878-5085-3-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 05/03/2012] [Indexed: 01/09/2023]
Abstract
Evasion of apoptosis is a hallmark of tumorigenesis and a recognised cause of multidrug resistance. Over the last decade, insights into how apoptosis might be exploited in non-small cell lung cancer (NSCLC) and how cancer therapeutics might be used to engage apoptotic signalling in a personalised manner have changed markedly. We are now in the wake of a paradigm shift in stratified therapeutic approaches related to NSCLC. At the heart of this shift in thinking is the emerging knowledge that even the most drug-resistant cancers exhibit a functional death pathway and, critically, that this pathway can be efficiently engaged, leading to clinical benefit. This review will summarise current knowledge of mitochondrial apoptotic pathway dysfunction in NSCLC and how the next generation of targeted therapeutics might be used to exploit deficiencies in apoptotic signalling in a personalised manner to improve clinical outcome and predict therapeutic benefit.
Collapse
Affiliation(s)
- Dean A Fennell
- University of Leicester & Leicester University Hospitals, Hodgkin Building, Lancaster Road, PO Box 138, Leicester, LE1 9HN, UK.
| | | |
Collapse
|
126
|
Hercus TR, Broughton SE, Ekert PG, Ramshaw HS, Perugini M, Grimbaldeston M, Woodcock JM, Thomas D, Pitson S, Hughes T, D'Andrea RJ, Parker MW, Lopez AF. The GM-CSF receptor family: mechanism of activation and implications for disease. Growth Factors 2012; 30:63-75. [PMID: 22257375 DOI: 10.3109/08977194.2011.649919] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pluripotent cytokine produced by many cells in the body, which regulates normal and malignant hemopoiesis as well as innate and adaptive immunity. GM-CSF assembles and activates its heterodimeric receptor complex on the surface of myeloid cells, initiating multiple signaling pathways that control key functions such as cell survival, cell proliferation, and functional activation. Understanding the molecular composition of these pathways, the interaction of the various components as well as the kinetics and dose-dependent mechanics of receptor activation provides valuable insights into the function of GM-CSF as well as the related cytokines, interleukin-3 and interleukin-5. This knowledge provides opportunities for the development of new therapies to block the action of these cytokines in hematological malignancy and chronic inflammation.
Collapse
Affiliation(s)
- Timothy R Hercus
- Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Horiuchi D, Kusdra L, Huskey NE, Chandriani S, Lenburg ME, Gonzalez-Angulo AM, Creasman KJ, Bazarov AV, Smyth JW, Davis SE, Yaswen P, Mills GB, Esserman LJ, Goga A. MYC pathway activation in triple-negative breast cancer is synthetic lethal with CDK inhibition. ACTA ACUST UNITED AC 2012; 209:679-96. [PMID: 22430491 PMCID: PMC3328367 DOI: 10.1084/jem.20111512] [Citation(s) in RCA: 267] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Triple-negative breast cancers with elevated MYC are sensitized to CDK inhibition. Estrogen, progesterone, and HER2 receptor-negative triple-negative breast cancers encompass the most clinically challenging subtype for which targeted therapeutics are lacking. We find that triple-negative tumors exhibit elevated MYC expression, as well as altered expression of MYC regulatory genes, resulting in increased activity of the MYC pathway. In primary breast tumors, MYC signaling did not predict response to neoadjuvant chemotherapy but was associated with poor prognosis. We exploit the increased MYC expression found in triple-negative breast cancers by using a synthetic-lethal approach dependent on cyclin-dependent kinase (CDK) inhibition. CDK inhibition effectively induced tumor regression in triple-negative tumor xenografts. The proapoptotic BCL-2 family member BIM is up-regulated after CDK inhibition and contributes to this synthetic-lethal mechanism. These results indicate that aggressive breast tumors with elevated MYC are uniquely sensitive to CDK inhibitors.
Collapse
Affiliation(s)
- Dai Horiuchi
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Periyasamy-Thandavan S, Takhar S, Singer A, Dohn MR, Jackson WH, Welborn AE, LeRoith D, Marrero M, Thangaraju M, Huang S, Schoenlein PV. Insulin-like growth factor 1 attenuates antiestrogen- and antiprogestin-induced apoptosis in ER+ breast cancer cells by MEK1 regulation of the BH3-only pro-apoptotic protein Bim. Breast Cancer Res 2012; 14:R52. [PMID: 22429491 PMCID: PMC3446386 DOI: 10.1186/bcr3153] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 02/13/2012] [Accepted: 03/19/2012] [Indexed: 02/07/2023] Open
Abstract
Introduction In this pre-clinical in vitro study conducted in estrogen receptor positive (ER+) breast cancer cells, we have characterized the effects of insulin-like growth factor I (IGF-1) on the cytostatic and cytotoxic action of antiestrogen treatment when used as a single agent or in combination with the antiprogestin mifepristone (MIF). Our goal was to identify new molecular targets to improve the efficacy of hormonal therapy in breast cancer patients that have a poor response to hormonal therapy, in part, due to high circulating levels of unbound insulinIGF-1. Methods IGF-1-mediated effects on cytostasis and apoptotic cell death were determined with cell counts conducted in the presence and absence of trypan blue; enzyme-linked immunosorbent assays to determine the intracellular levels of cleaved cytokeratin 18, a marker of epithelial cancer cell apoptosis; and immunoblot analysis to determine the levels of cleaved poly-ADP ribose polymerase (PARP) and lamin A that result from caspase-dependent apoptosis. Cytotoxicity was further characterized by determination of the levels of reactive oxygen species (ROS) and the percent of mitochondrial membrane depolarization in cell populations treated with the different hormones in the presence and absence of IGF-1. Small molecule inhibitors of the dual-specificity protein kinase MEK1, MEK1 siRNA, Bim siRNA, and vectors overexpressing MEK1 wild type and mutant, dominant negative cDNA were used to identify key IGF-1 downstream prosurvival effectors. Results IGF-1, at physiologically relevant levels, blocked the cytotoxic action(s) of the antiestrogens 4-hydroxytamoxifen (4-OHT) and tamoxifen (TAM) when used as single agents or in combination with the antiprogestin MIF. The antiapoptotic action of IGF-1 was mediated primarily through the action of MEK1. MEK1 expression reduced the levels of ROS and mitochondrial membrane depolarization induced by the hormonal treatments via a mechanism that involved the phosphorylation and proteasomal turnover of the proapoptotic BH3-only Bcl-2 family member Bim. Importantly, small-molecule inhibitors of MEK1 circumvented the prosurvival action of IGF-1 by restoring Bim to levels that more effectively mediated apoptosis in ER+ breast cancer cells. Conclusion his study provides strong support for the use of MEK1 inhibitors in combination with hormonal therapy to effectively affect cytostasis and activate a Bim-dependent apoptotic pathway in ER+ breast cancer cells. We discuss that MEK1 blockade may be a particularly effective treatment for women with high circulating levels of IGF-1, which have been correlated to a poor prognosis.
Collapse
Affiliation(s)
- Sudharsan Periyasamy-Thandavan
- Department of Cellular Biology and Anatomy, Georgia Health Sciences University, 1459 Laney Walker Blvd,, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Alternative splicing of Bim and Erk-mediated Bim(EL) phosphorylation are dispensable for hematopoietic homeostasis in vivo. Cell Death Differ 2012; 19:1060-8. [PMID: 22240894 DOI: 10.1038/cdd.2011.198] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The pro-apoptotic BH3-only protein Bim has a major role in hematopoietic homeostasis, particularly in the lymphocyte compartment, where it strongly affects immune function. The three major Bim isoforms (Bim(EL), Bim(L) and Bim(S)) are generated by alternative splicing. Bim(EL), the most abundant isoform, contains a unique sequence that has been reported to be the target of phosphorylation by several MAP kinases. In particular, Erk1/2 has been shown to interact with Bim(EL) through the DEF2 domain of Bim(EL) and specifically phosphorylate this isoform, thereby targeting it for ubiquitination and proteasomal degradation. To examine the physiological importance of this mechanism of regulation and of the alternative splicing of Bim, we have generated several Bim knock-in mouse strains and analyzed their hematopoietic system. Although mutation in the DEF2 domain reduces Bim(EL) degradation in some circumstances, this mutation did not significantly increase Bim's pro-apoptotic activity in vivo nor impact on the homeostasis of the hematopoietic system. We also show that Bim(EL) and Bim(L) are interchangeable, and that Bim(S) is dispensable for the function of Bim. Hence, we conclude that physiological regulation of Bim relies on mechanisms independent of its alternative splicing or the Erk-dependent phosphorylation of Bim(EL).
Collapse
|
130
|
Gilley R, Lochhead PA, Balmanno K, Oxley D, Clark J, Cook SJ. CDK1, not ERK1/2 or ERK5, is required for mitotic phosphorylation of BIMEL. Cell Signal 2012; 24:170-80. [DOI: 10.1016/j.cellsig.2011.08.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 08/29/2011] [Indexed: 01/05/2023]
|
131
|
Mechanisms and clinical significance of BIM phosphorylation in chronic lymphocytic leukemia. Blood 2011; 119:1726-36. [PMID: 22160382 DOI: 10.1182/blood-2011-07-367417] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
B-cell receptor and microenvironment-derived signals promote accumulation of chronic lymphocytic leukemia (CLL) cells through increased proliferation and/or decreased apoptosis. In this study, we investigated the regulation of BIM, a proapoptotic BCL2-related protein, which is tightly regulated by phosphorylation. Surface IgM stimulation increased phosphorylation of 2 BIM isoforms, BIM(EL) and BIM(L), in a subset of CLL samples. In contrast, in normal B cells, anti-IgM triggered selective phosphorylation of BIM(EL) only. In CLL, anti-IgM-induced BIM phosphorylation correlated with unmutated IGHV gene status and with progressive disease. Strikingly, it was also associated with progressive disease within the mutated IGHV gene subset. BIM phosphorylation was dependent on MEK1/2 kinase activity, and we identified BIM(EL) serine 69, previously linked to pro-survival responses, as the major site of phosphorylation in CLL and in Ramos cells. BIM(EL)/BIM(L) phosphorylation was associated with release of the pro-survival protein MCL1. Coculture of CLL cells with HK cells, a model of the CLL microenvironment, promoted CLL cell survival and was associated with MEK1/2 activation and BIM(EL) phosphorylation. Hence, BIM phosphorylation appears to play a key role in apoptosis regulation in CLL cells, potentially coordinating antigen and microenvironment-derived survival signals. Antigen-mediated effects on BIM may be an important determinant of clinical behavior.
Collapse
|
132
|
Santin I, Moore F, Colli ML, Gurzov EN, Marselli L, Marchetti P, Eizirik DL. PTPN2, a candidate gene for type 1 diabetes, modulates pancreatic β-cell apoptosis via regulation of the BH3-only protein Bim. Diabetes 2011; 60:3279-88. [PMID: 21984578 PMCID: PMC3219938 DOI: 10.2337/db11-0758] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Genome-wide association studies allowed the identification of several associations between specific loci and type 1 diabetes (T1D). However, the mechanisms by which most candidate genes predispose to T1D remain unclear. We presently evaluated the mechanisms by which PTPN2, a candidate gene for T1D, modulates β-cell apoptosis after exposure to type I and II interferons (IFNs), cytokines that contribute to β-cell loss in early T1D. RESEARCH DESIGN AND METHODS Small interfering RNAs were used to inhibit PTPN2, STAT1, Bim, and Jun NH(2)-terminal kinase 1 (JNK1) expression. Cell death was assessed by Hoechst and propidium iodide staining. BAX translocation, Bim phosphorylation, cytochrome c release, and caspases 9 and 3 activation were measured by Western blot or immunofluorescence. RESULTS PTPN2 knockdown exacerbated type I IFN-induced apoptosis in INS-1E, primary rat, and human β-cells. PTPN2 silencing and exposure to type I and II IFNs induced BAX translocation to the mitochondria, cytochrome c release, and caspase 3 activation. There was also an increase in Bim phosphorylation that was at least in part regulated by JNK1. Of note, both Bim and JNK1 knockdown protected β-cells against IFN-induced apoptosis in PTPN2-silenced cells. CONCLUSIONS The present findings suggest that local IFN production may interact with a genetic factor (PTPN2) to induce aberrant proapoptotic activity of the BH3-only protein Bim, resulting in increased β-cell apoptosis via JNK activation and the intrinsic apoptotic pathway. This is the first indication of a direct interaction between a candidate gene for T1D and the activation of a specific downstream proapoptotic pathway in β-cells.
Collapse
Affiliation(s)
- Izortze Santin
- Laboratory of Experimental Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Fabrice Moore
- Laboratory of Experimental Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Maikel L. Colli
- Laboratory of Experimental Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Esteban N. Gurzov
- Laboratory of Experimental Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Lorella Marselli
- Department of Endocrinology and Metabolism, Metabolic Unit, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Endocrinology and Metabolism, Metabolic Unit, University of Pisa, Pisa, Italy
| | - Decio L. Eizirik
- Laboratory of Experimental Medicine, Université Libre de Bruxelles, Brussels, Belgium
- Corresponding author: Decio L. Eizirik,
| |
Collapse
|
133
|
Cellurale C, Girnius N, Jiang F, Cavanagh-Kyros J, Lu S, Garlick DS, Mercurio AM, Davis RJ. Role of JNK in mammary gland development and breast cancer. Cancer Res 2011; 72:472-81. [PMID: 22127926 DOI: 10.1158/0008-5472.can-11-1628] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
cJun NH(2)-terminal kinase (JNK) signaling has been implicated in the developmental morphogenesis of epithelial organs. In this study, we employed a compound deletion of the murine Jnk1 and Jnk2 genes in the mammary gland to evaluate the requirement for these ubiquitously expressed genes in breast development and tumorigenesis. JNK1/2 was not required for breast epithelial cell proliferation or motility. However, JNK1/2 deficiency caused increased branching morphogenesis and defects in the clearance of lumenal epithelial cells. In the setting of breast cancer development, JNK1/2 deficiency significantly increased tumor formation. Together, these findings established that JNK signaling is required for normal mammary gland development and that it has a suppressive role in mammary tumorigenesis.
Collapse
Affiliation(s)
- Cristina Cellurale
- Howard Hughes Medical Institute and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | | | | | | | |
Collapse
|
134
|
Cytokine receptor signaling activates an IKK-dependent phosphorylation of PUMA to prevent cell death. Cell Death Differ 2011; 19:633-41. [PMID: 21997190 DOI: 10.1038/cdd.2011.131] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
P53-upregulated modifier of apoptosis (PUMA), a pro-apoptotic member of the Bcl-2 family, is transcriptionally activated by p53 and is a key effector of p53-dependent apoptosis. We show that PUMA protein is subject to rapid post-translational regulation by phosphorylation at a conserved residue, serine 10, following serum or interleukin-3 (IL-3) stimulation. Serine 10 is not within the Bcl-2 homology (BH3) domain, and PUMA phosphorylated at serine 10 retained the ability to co-immunoprecipitate with antiapoptotic Bcl-2 family members. However, phosphorylated PUMA was targeted for proteasomal degradation indicating that it is less stable than unphosphorylated PUMA. Importantly, we identified IKK1/IKK2/Nemo as the kinase complex that interacts with and phosphorylates PUMA, thereby also demonstrating that IL-3 activates NFκB signaling. The identification and characterization of this novel survival pathway has important implications for IL-3 signaling and hematopoietic cell development.
Collapse
|
135
|
Tsuchida A, Ohno S, Wu W, Borjigin N, Fujita K, Aoki T, Ueda S, Takanashi M, Kuroda M. miR-92 is a key oncogenic component of the miR-17-92 cluster in colon cancer. Cancer Sci 2011; 102:2264-71. [PMID: 21883694 DOI: 10.1111/j.1349-7006.2011.02081.x] [Citation(s) in RCA: 191] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) belong to a class of endogenously expressed non-coding small RNAs that function primarily as gene regulators. Growing evidence suggests that miRNAs play a significant role in tumor development, making them potential biomarkers for cancer diagnosis and prognosis. The miR-17-92 cluster has emerged as an important locus, being highly overexpressed in several cancers in association with cancer development and progression. The miR-17-92 miRNA cluster generates a single polycistronic primary transcript that yields six mature miRNAs: miR-17, miR-18a, miR-19a, miR-20a, miR-19b, and miR-92a. In colon cancer development, the pathophysiologic roles of these transcripts and their targets are largely unknown. In the present study, we performed copy number analyses of the six miRNAs transcribed from the miR-17-92 cluster in colon tumor tissues. We determined that miR-92a was transcribed at higher levels than the other five miRNAs in both adenomas and carcinoma. In addition, miR-92a directly targeted the anti-apoptotic molecule BCL-2-interacting mediator of cell death (BIM) in colon cancer tissues. An anti-miR-92a antagomir induced apoptosis of colon cancer-derived cell lines. These data indicate that miR-92a plays a pivotal role in the development of colorectal carcinoma.
Collapse
Affiliation(s)
- Akihiko Tsuchida
- Third Department of Surgery , Tokyo Medical University, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Xiong QF, Xie YT. RNA interference-mediated silencing of the FoxO3a gene inhibits palmitate-induced apoptosis in human hepatoma cell line HepG2.2.15. Shijie Huaren Xiaohua Zazhi 2011; 19:2623-2628. [DOI: 10.11569/wcjd.v19.i25.2623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the impact of small interfering RNA (siRNA)-mediated silencing of the FoxO3a gene on palmitate-induced apoptosis of HepG2.2.15 cells.
METHODS: Cultured HepG2.2.15 cells were divided into five groups: mock group (cells cultured in DMEM medium containing LipofectamineTM2000), FoxO3a siRNA group, FoxO3a siRNA+palmitate group, negative siRNA group, and negative siRNA+palmitate group. The protein expression of FoxO3a was detected by Western blot. Cell viability was measured by MTT assay. Apoptosis was evaluated by propidium iodide (PI) staining and flow cytometry. Caspase-3 activity was measured by colorimetric assay. The mRNA expression of Bim and p27kip was examined by reverse transcription (RT)-PCR. The location of fluorescent protein was examined by fluorescence microscopy.
RESULTS: After transfection, the levels of total FoxO3a protein decreased in the FoxO3a siRNA+PA group and FoxO3a siRNA group, while the other groups showed no significant difference. The survival rate was higher, and the apoptosis rate, caspase-3 activity, and mRNA levels of Bim and p27kip were lower in the FoxO3a siRNA+PA group than in the negative siRNA+PA group, while the survival rate was lower, and the apoptosis rate, caspase3 activity, and mRNA levels of Bim and p27kip were higher in the FoxO3a siRNA+PA group than in the FoxO3a siRNA group (all P < 0.05). However, these parameters showed no significant changes among the negative siRNA group, FoxO3a siRNA group and mock group (all P > 0.05). Stronger green fluorescence was noted in the cytoplasm than in the nucleus in the FoxO3a siRNA group, whereas the nucleus had stronger green fluorescence in the FoxO3a siRNA+PA group.
CONCLUSION: FoxO3a siRNA itself does not induce apoptosis of HepG2.2.15 cells. FoxO3a siRNA-mediated knockdown of the FoxO3a gene inhibits palmitate-induced apoptosis of HepG2.2.15 cells by decreasing caspase3 activity and down-regulating Bim and p27Kip expression.
Collapse
|
137
|
Cytotoxicity of farnesyltransferase inhibitors in lymphoid cells mediated by MAPK pathway inhibition and Bim up-regulation. Blood 2011; 118:4872-81. [PMID: 21673341 DOI: 10.1182/blood-2011-02-334870] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The mechanism of cytotoxicity of farnesyltransferase inhibitors is incompletely understood and seems to vary depending on the cell type. To identify potential determinants of sensitivity or resistance for study in the accompanying clinical trial (Witzig et al, page 4882), we examined the mechanism of cytotoxicity of tipifarnib in human lymphoid cell lines. Based on initial experiments showing that Jurkat variants lacking Fas-associated death domain or procaspase-8 undergo tipifarnib-induced apoptosis, whereas cells lacking caspase-9 or overexpressing Bcl-2 do not, we examined changes in Bcl-2 family members. Tipifarnib caused dose-dependent up-regulation of Bim in lymphoid cell lines (Jurkat, Molt3, H9, DoHH2, and RL) that undergo tipifarnib-induced apoptosis but not in lines (SKW6.4 and Hs445) that resist tipifarnib-induced apoptosis. Further analysis demonstrated that increased Bim levels reflect inhibition of signaling from c-Raf to MEK1/2 and ERK1/2. Additional experiments showed that down-regulation of the Ras guanine nucleotide exchange factor RasGRP1 diminished tipifarnib sensitivity, suggesting that H-Ras or N-Ras is a critical farnesylation target upstream of c-Raf in lymphoid cells. These results not only trace a pathway through c-Raf to Bim that contributes to tipifarnib cytotoxicity in human lymphoid cells but also identify potential determinants of sensitivity to this agent.
Collapse
|
138
|
Distribution of Bim determines Mcl-1 dependence or codependence with Bcl-xL/Bcl-2 in Mcl-1-expressing myeloma cells. Blood 2011; 118:1329-39. [PMID: 21659544 DOI: 10.1182/blood-2011-01-327197] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dependence on Bcl-2 proteins is a common feature of cancer cells and provides a therapeutic opportunity. ABT-737 is an antagonist of antiapoptotic Bcl-2 proteins and therefore is a good predictor of Bcl-x(L)/Bcl-2 dependence. Surprisingly, analysis of Mcl-1-dependent multiple myeloma cell lines revealed codependence on Bcl-2/Bcl-x(L) in half the cells tested. Codependence is not predicted by the expression level of antiapoptotic proteins, rather through interactions with Bim. Consistent with these findings, acquired resistance to ABT-737 results in loss of codependence through redistribution of Bim to Mcl-1. Overall, these results suggest that complex interactions, and not simply expression patterns of Bcl-2 proteins, need to be investigated to understand Bcl-2 dependence and how to better use agents, such as ABT-737.
Collapse
|
139
|
Akiyama T, Tanaka S. Bim: guardian of tissue homeostasis and critical regulator of the immune system, tumorigenesis and bone biology. Arch Immunol Ther Exp (Warsz) 2011; 59:277-87. [PMID: 21633919 DOI: 10.1007/s00005-011-0126-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 01/11/2011] [Indexed: 12/16/2022]
Abstract
One of the most important roles of apoptosis is the maintenance of tissue homeostasis. Impairment of apoptosis leads to a number of pathological conditions. In response to apoptotic signals, various proteins are activated in a pathway and signal-specific manner. Recently, the pro-apoptotic molecule Bim has attracted increasing attention as a pivotal regulator of tissue homeostasis. The Bim expression level is strictly controlled in both transcriptional and post-transcriptional levels. This control is dependent on cell, tissue and apoptotic stimuli. The phenotype of Bim-deficient mice is a systemic lupus erythematosus-like autoimmune disease with an abnormal accumulation of hematopoietic cells. Bim is thus a critical regulator of hematopoietic cells and immune system. Further studies have revealed the critical roles of Bim in various normal and pathological conditions, including bone homeostasis and tumorigenesis. The current understanding of Bim signaling and roles in the maintenance of tissue homeostasis is reviewed in this paper, focusing on the immune system, bone biology and tumorigenesis to illustrate the diversified role of Bim.
Collapse
Affiliation(s)
- Toru Akiyama
- Department of Orthopaedic Surgery, Saitama Medical Center, Jichi Medical University, Omiya-ku, Saitama, Japan
| | | |
Collapse
|
140
|
Staton TL, Lazarevic V, Jones DC, Lanser AJ, Takagi T, Ishii S, Glimcher LH. Dampening of death pathways by schnurri-2 is essential for T-cell development. Nature 2011; 472:105-9. [PMID: 21475200 PMCID: PMC3077958 DOI: 10.1038/nature09848] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 01/18/2011] [Indexed: 11/09/2022]
Abstract
Generation of a diverse and self-tolerant T cell repertoire requires appropriate interpretation of T cell receptor (TCR) signals by CD4+CD8+ double positive (DP) thymocytes. Thymocyte cell fate is dictated by the nature of TCR:MHC-peptide interactions, with signals of higher strength leading to death (negative selection) and signals of intermediate strength leading to differentiation (positive selection)1. Molecules that regulate T cell development by modulating TCR signal strength have been described but components that specifically define the boundaries between positive and negative selection remain unknown. Here we show that repression of TCR-induced death pathways is critical for proper interpretation of positive selecting signals in vivo, and identify Schnurri2 (Shn2) as a crucial death dampener. Our results indicate that Shn2−/− DP thymocytes inappropriately undergo negative selection in response to positive selecting signals, thus leading to disrupted T cell development. Shn2−/− DP thymocytes are more sensitive to TCR-induced death in vitro and die in response to positive selection interactions in vivo. However, Shn2-deficient thymocytes can be positively selected when TCR-induced death is genetically-ablated. Shn2 levels increase after TCR stimulation suggesting that integration of multiple TCR:MHC-peptide interactions may fine tune the death threshold. Mechanistically, Shn2 functions downstream of TCR proximal signaling compenents to dampen Bax activation and the mitochondrial death pathway. Our findings uncover a critical regulator of T cell development that controls the balance between death and differentiation.
Collapse
Affiliation(s)
- Tracy L Staton
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
141
|
Abstract
The proapoptotic BH3-only protein Bim is a crucial regulator of neuronal apoptosis. Previous studies have indicated the involvement of the c-Jun, FOXO1/3a, and B/C-Myb transcription factors in the regulation of Bim during neuronal apoptosis. However, the mechanism underlying the transcriptional regulation of Bim in activity deprivation-induced neuronal apoptosis has remained unclear. The present study demonstrates that early growth response 1 (Egr-1), rather than c-Jun, FOXO1/3a, or B/C-Myb, directly transactivates Bim gene expression to mediate apoptosis of rat cerebellar granule neurons. We showed that Egr-1 was sufficient and necessary for neuronal apoptosis. Suppression of Egr-1 activity using dominant-negative mutant or knockdown of Egr-1 using small interfering RNAs led to a decrease in Bim expression, whereas overexpression of Egr-1 resulted in induction of Bim. Deletion and site-directed mutagenesis of the Bim promoter revealed that Bim transcriptional activation depends primarily on a putative Egr-binding sequence between nucleotides -56 and -47 upstream of the start site. We also showed that Egr-1 binding to this sequence increased in response to activity deprivation in vitro and in vivo. Moreover, inhibition of Egr-1 binding to the Bim promoter, by mithramycin A and chromomycin A3, reduced the activity deprivation-induced increases in Bim promoter activity and mRNA and protein levels and protected neurons from apoptosis, further supporting the Egr-1-mediated transactivation of Bim. Additionally, Bim overcame the Egr-1 knockdown-mediated inhibition of apoptosis, whereas Bim knockdown impaired the increase in apoptosis induced by Egr-1. These findings establish Bim as an Egr-1 target gene in neurons, uncovering a novel Egr-1/Bim pathway by which activity deprivation induces neuronal apoptosis.
Collapse
|
142
|
Wen HC, Avivar-Valderas A, Sosa MS, Girnius N, Farias EF, Davis RJ, Aguirre-Ghiso JA. p38α Signaling Induces Anoikis and Lumen Formation During Mammary Morphogenesis. Sci Signal 2011; 4:ra34. [PMID: 21610252 DOI: 10.1126/scisignal.2001684] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The stress-activated protein kinase (SAPK) p38 can induce apoptosis, and its inhibition facilitates mammary tumorigenesis. We found that during mammary acinar morphogenesis in MCF-10A cells grown in three-dimensional culture, detachment of luminal cells from the basement membrane stimulated mitogen-activated protein kinase (MAPK) kinases 3 and 6 (MKK3/6) and p38α signaling to promote anoikis. p38α signaling increased transcription of the death-promoting protein BimEL by phosphorylating the activating transcription factor 2 (ATF-2) and increasing c-Jun protein abundance, leading to cell death by anoikis and acinar lumen formation. Inhibition of p38α or ATF-2 caused luminal filling reminiscent of that observed in ductal carcinoma in situ (DCIS). The mammary glands of MKK3/6 knockout mice (MKK3(-/-)/MKK6(+/- )) showed accelerated branching morphogenesis relative to those of wild-type mice, as well as ductal lumen occlusion due to reduced anoikis. This phenotype was recapitulated by systemic pharmacological inhibition of p38α and β (p38α/β) in wild-type mice. Moreover, the development of DCIS-like lesions showing marked ductal occlusion was accelerated in MMTV-Neu transgenic mice treated with inhibitors of p38α and p38β. We conclude that p38α is crucial for the development of hollow ducts during mammary gland development, a function that may be crucial to its ability to suppress breast cancer.
Collapse
Affiliation(s)
- Huei-Chi Wen
- Department of Medicine, Tisch Cancer Institute at Mount Sinai, Mount Sinai School of Medicine, New York, USA
| | | | | | | | | | | | | |
Collapse
|
143
|
Ishihara Y, Ito F, Shimamoto N. Increased expression of c-Fos by extracellular signal-regulated kinase activation under sustained oxidative stress elicits BimEL upregulation and hepatocyte apoptosis. FEBS J 2011; 278:1873-81. [PMID: 21439021 DOI: 10.1111/j.1742-4658.2011.08105.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We previously reported that the inhibition of catalase and glutathione peroxidase activities by treatment with 3-amino-1,2,4-triazole (ATZ) and mercaptosuccinic acid evoked sustained increases in the levels of reactive oxygen species and apoptosis in rat primary hepatocytes. Apoptosis was accompanied by increased expression of BimEL, following activation of extracellular signal-regulated kinase. The aim of this study was to characterize the mechanism underlying hepatocyte apoptosis by identifying the transcription factor that induces BimEL expression. The bim promoter region was cloned into a promoterless-luc vector, and promoter activity was monitored by a luciferase assay. The luciferase activity increased in the presence of ATZ + mercaptosuccinic acid. Pretreatment with a MEK inhibitor, U0126, or an antioxidant, vitamin C, suppressed the promoter activity. Furthermore, ATZ + mercaptosuccinic acid-induced luciferase activity was attenuated by mutation of the activator protein-1 binding site in the bim promoter region. The amounts of total and phosphorylated c-Fos increased over time in the presence of ATZ + mercaptosuccinic acid, whereas the amounts of total and phosphorylated c-Jun remained unchanged. Chromatin immunoprecipitation revealed that both c-Fos and c-Jun localized to the activator protein-1-binding site in the bim promoter region. BimEL expression and hepatocyte apoptosis were suppressed by knockdown of c-Fos and c-Jun, respectively. These results indicate that increases in c-Fos following extracellular signal-regulated kinase activation are critical for BimEL upregulation and apoptosis.
Collapse
Affiliation(s)
- Yasuhiro Ishihara
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, Japan
| | | | | |
Collapse
|
144
|
Xu P, Das M, Reilly J, Davis RJ. JNK regulates FoxO-dependent autophagy in neurons. Genes Dev 2011; 25:310-22. [PMID: 21325132 DOI: 10.1101/gad.1984311] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The cJun N-terminal kinase (JNK) signal transduction pathway is implicated in the regulation of neuronal function. JNK is encoded by three genes that play partially redundant roles. Here we report the creation of mice with targeted ablation of all three Jnk genes in neurons. Compound JNK-deficient neurons are dependent on autophagy for survival. This autophagic response is caused by FoxO-induced expression of Bnip3 that displaces the autophagic effector Beclin-1 from inactive Bcl-XL complexes. These data identify JNK as a potent negative regulator of FoxO-dependent autophagy in neurons.
Collapse
Affiliation(s)
- Ping Xu
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | |
Collapse
|
145
|
Kurtulus S, Tripathi P, Moreno-Fernandez ME, Sholl A, Katz JD, Grimes HL, Hildeman DA. Bcl-2 allows effector and memory CD8+ T cells to tolerate higher expression of Bim. THE JOURNAL OF IMMUNOLOGY 2011; 186:5729-37. [PMID: 21451108 DOI: 10.4049/jimmunol.1100102] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
As acute infections resolve, most effector CD8(+) T cells die, whereas some persist and become memory T cells. Recent work showed that subsets of effector CD8(+) T cells, identified by reciprocal expression of killer cell lectin-like receptor G1 (KLRG1) and CD127, have different lifespans. Similar to previous reports, we found that effector CD8(+) T cells reported to have a longer lifespan (i.e., KLRG1(low)CD127(high)) have increased levels of Bcl-2 compared with their shorter-lived KLRG1(high)CD127(low) counterparts. Surprisingly, we found that these effector KLRG1(low)CD127(high) CD8(+) T cells also had increased levels of Bim compared with KLRG1(high)CD127(low) cells. Similar effects were observed in memory cells, in which CD8(+) central memory T cells expressed higher levels of Bim and Bcl-2 than did CD8(+) effector memory T cells. Using both pharmacologic and genetic approaches, we found that survival of both subsets of effector and memory CD8(+) T cells required Bcl-2 to combat the proapoptotic activity of Bim. Interestingly, inhibition or absence of Bcl-2 led to significantly decreased expression of Bim in surviving effector and memory T cells. In addition, manipulation of Bcl-2 levels by IL-7 or IL-15 also affected expression of Bim in effector CD8(+) T cells. Finally, we found that Bim levels were significantly increased in effector CD8(+) T cells lacking Bax and Bak. Together, these data indicate that cells having the highest levels of Bim are selected against during contraction of the response and that Bcl-2 determines the level of Bim that effector and memory T cells can tolerate.
Collapse
Affiliation(s)
- Sema Kurtulus
- Division of Immunobiology, Department of Pediatrics, University of Cincinnati College of Medicine and Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | |
Collapse
|
146
|
Diep CH, Munoz RM, Choudhary A, Von Hoff DD, Han H. Synergistic effect between erlotinib and MEK inhibitors in KRAS wild-type human pancreatic cancer cells. Clin Cancer Res 2011; 17:2744-56. [PMID: 21385921 DOI: 10.1158/1078-0432.ccr-10-2214] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE The combination of erlotinib and gemcitabine has shown a small but statistically significant survival advantage when compared with gemcitabine alone in patients with advanced pancreatic cancer. However, the overall survival rate with the erlotinib and gemcitabine combination is still low. In this study, we sought to identify gene targets that, when inhibited, would enhance the activity of epidermal growth factor receptor (EGFR)-targeted therapies in pancreatic cancer cells. EXPERIMENTAL DESIGN A high-throughput RNA interference (RNAi) screen was carried out to identify candidate genes. Selected gene hits were further confirmed and mechanisms of action were further investigated using various assays. RESULTS Six gene hits from siRNA screening were confirmed to significantly sensitize BxPC-3 pancreatic cancer cells to erlotinib. One of the hits, mitogen-activated protein kinase (MAPK) 1, was selected for further mechanistic studies. Combination treatments of erlotinib and two MAP kinase kinase (MEK) inhibitors, RDEA119 and AZD6244, showed significant synergistic effect for both combinations (RDEA119-erlotinib and AZD6244-erlotinib) compared with the corresponding single drug treatments in pancreatic cancer cell lines with wild-type KRAS (BxPC-3 and Hs 700T) but not in cell lines with mutant KRAS (MIA PaCa-2 and PANC-1). The enhanced antitumor activity of the combination treatment was further verified in the BxPC-3 and MIA PaCa-2 mouse xenograft model. Examination of the MAPK signaling pathway by Western blotting indicated effective inhibition of the EGFR signaling by the drug combination in KRAS wild-type cells but not in KRAS mutant cells. CONCLUSIONS Overall, our results suggest that combination therapy of an EGFR and MEK inhibitors may have enhanced efficacy in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Caroline H Diep
- Clinical Translational Research Division, Translational Genomics Research Institute, Scottsdale, Arizona 85259, USA
| | | | | | | | | |
Collapse
|
147
|
Requirement of c-Jun NH(2)-terminal kinase for Ras-initiated tumor formation. Mol Cell Biol 2011; 31:1565-76. [PMID: 21282468 DOI: 10.1128/mcb.01122-10] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The c-Jun NH(2)-terminal kinase (JNK) signal transduction pathway causes increased gene expression mediated, in part, by members of the activating transcription factor protein (AP1) group. JNK is therefore implicated in the regulation of cell growth and cancer. To test the role of JNK in Ras-induced tumor formation, we examined the effect of compound ablation of the ubiquitously expressed genes Jnk1 plus Jnk2. We report that JNK is required for Ras-induced transformation of p53-deficient primary cells in vitro. Moreover, JNK is required for lung tumor development caused by mutational activation of the endogenous KRas gene in vivo. Together, these data establish that JNK plays a key role in Ras-induced tumorigenesis.
Collapse
|
148
|
Ishihara Y, Takeuchi K, Ito F, Shimamoto N. Dual regulation of hepatocyte apoptosis by reactive oxygen species: Increases in transcriptional expression and decreases in proteasomal degradation of BimEL. J Cell Physiol 2011; 226:1007-16. [DOI: 10.1002/jcp.22414] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
149
|
Varedi K. SM, Ventura AC, Merajver SD, Lin XN. Multisite phosphorylation provides an effective and flexible mechanism for switch-like protein degradation. PLoS One 2010; 5:e14029. [PMID: 21179196 PMCID: PMC3001445 DOI: 10.1371/journal.pone.0014029] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 10/20/2010] [Indexed: 12/12/2022] Open
Abstract
Phosphorylation-triggered degradation is a common strategy for elimination of regulatory proteins in many important cell signaling processes. Interesting examples include cyclin-dependent kinase inhibitors such as p27 in human and Sic1 in yeast, which play crucial roles during the G1/S transition in the cell cycle. In this work, we have modeled and analyzed the dynamics of multisite-phosphorylation-triggered protein degradation systematically. Inspired by experimental observations on the Sic1 protein and a previous intriguing theoretical conjecture, we develop a model to examine in detail the degradation dynamics of a protein featuring multiple phosphorylation sites and a threshold site number for elimination in response to a kinase signal. Our model explains the role of multiple phosphorylation sites, compared to a single site, in the regulation of protein degradation. A single-site protein cannot convert a graded input of kinase increase to much sharper output, whereas multisite phosphorylation is capable of generating a highly switch-like temporal profile of the substrate protein with two characteristics: a temporal threshold and rapid decrease beyond the threshold. We introduce a measure termed temporal response coefficient to quantify the extent to which a response in the time domain is switch-like and further investigate how this property is determined by various factors including the kinase input, the total number of sites, the threshold site number for elimination, the order of phosphorylation, the kinetic parameters, and site preference. Some interesting and experimentally verifiable predictions include that the non-degradable fraction of the substrate protein exhibits a more switch-like temporal profile; a sequential system is more switch-like, while a random system has the advantage of increased robustness; all the parameters, including the total number of sites, the threshold site number for elimination and the kinetic parameters synergistically determine the exact extent to which the degradation profile is switch-like. Our results suggest design principles for protein degradation switches which might be a widespread mechanism for precise regulation of cellular processes such as cell cycle progression.
Collapse
Affiliation(s)
- S. Marjan Varedi K.
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Alejandra C. Ventura
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sofia D. Merajver
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan, United States of America
- Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Xiaoxia Nina Lin
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
150
|
Li H, Liu L, Xing D, Chen WR. Inhibition of the JNK/Bim pathway by Hsp70 prevents Bax activation in UV-induced apoptosis. FEBS Lett 2010; 584:4672-8. [PMID: 21034742 PMCID: PMC3397246 DOI: 10.1016/j.febslet.2010.10.050] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 09/13/2010] [Accepted: 10/11/2010] [Indexed: 10/18/2022]
Abstract
Here we studied the mechanism by which heat shock protein 70 (Hsp70) prevents Bax activation during ultraviolet (UV)-induced apoptosis. UV treatment led to c-Jun N-terminal kinase (JNK) phosphorylation, Bim redistribution and subsequent Bax activation. Bim depletion caused a smaller reduction in apoptosis than that by JNK inhibition, indicating that Bim activation is not entirely responsible for induction of apoptosis and other mechanisms are involved. Hsp70 knockdown resulted in high levels of activated JNK and Bax, while Hsp70 overexpression inhibited these processes. These findings demonstrate that Hsp70 prevented Bax activation via inhibiting the JNK/Bim pathway. Simultaneously, increased binding of Hsp70 to Bax was observed. Collectively, our results for the first time demonstrate that Hsp70 prevents Bax activation both by inhibiting the JNK/Bim pathway and by interacting with Bax in UV-induced apoptosis.
Collapse
Affiliation(s)
- Hui Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Lei Liu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Wei R. Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|