101
|
Ow MC, Hall SE. piRNAs and endo-siRNAs: Small molecules with large roles in the nervous system. Neurochem Int 2021; 148:105086. [PMID: 34082061 PMCID: PMC8286337 DOI: 10.1016/j.neuint.2021.105086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 04/23/2021] [Accepted: 05/26/2021] [Indexed: 01/02/2023]
Abstract
Since their discovery, small non-coding RNAs have emerged as powerhouses in the regulation of numerous cellular processes. In addition to guarding the integrity of the reproductive system, small non-coding RNAs play critical roles in the maintenance of the soma. Accumulating evidence indicates that small non-coding RNAs perform vital functions in the animal nervous system such as restricting the activity of deleterious transposable elements, regulating nerve regeneration, and mediating learning and memory. In this review, we provide an overview of the current understanding of the contribution of two major classes of small non-coding RNAs, piRNAs and endo-siRNAs, to the nervous system development and function, and present highlights on how the dysregulation of small non-coding RNA pathways can assist in understanding the neuropathology of human neurological disorders.
Collapse
Affiliation(s)
- Maria C Ow
- Biology Department, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA.
| | - Sarah E Hall
- Biology Department, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA.
| |
Collapse
|
102
|
Pastore B, Hertz HL, Price IF, Tang W. pre-piRNA trimming and 2'-O-methylation protect piRNAs from 3' tailing and degradation in C. elegans. Cell Rep 2021; 36:109640. [PMID: 34469728 PMCID: PMC8459939 DOI: 10.1016/j.celrep.2021.109640] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/24/2021] [Accepted: 08/10/2021] [Indexed: 11/30/2022] Open
Abstract
The Piwi-interacting RNA (piRNA) pathway suppresses transposable elements and promotes fertility in diverse organisms. Maturation of piRNAs involves pre-piRNA trimming followed by 2'-O-methylation at their 3' termini. Here, we report that the 3' termini of Caenorhabditis elegans piRNAs are subject to nontemplated nucleotide addition, and piRNAs with 3' addition exhibit extensive base-pairing interaction with their target RNAs. Animals deficient for PARN-1 (pre-piRNA trimmer) and HENN-1 (2'-O-methyltransferase) accumulate piRNAs with 3' nontemplated nucleotides. In henn-1 mutants, piRNAs are shortened prior to 3' addition, whereas long isoforms of untrimmed piRNAs are preferentially modified in parn-1 mutant animals. Loss of either PARN-1 or HENN-1 results in modest reduction in steady-state levels of piRNAs. Deletion of both enzymes leads to depletion of piRNAs, desilenced piRNA targets, and impaired fecundity. Together, our findings suggest that pre-piRNA trimming and 2'-O-methylation act collaboratively to protect piRNAs from tailing and degradation.
Collapse
Affiliation(s)
- Benjamin Pastore
- Department of Biological Chemistry and Pharmacology, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA; Ohio State Biochemistry Program, Columbus, OH 43210, USA
| | - Hannah L Hertz
- Department of Biological Chemistry and Pharmacology, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Ian F Price
- Department of Biological Chemistry and Pharmacology, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA; Ohio State Biochemistry Program, Columbus, OH 43210, USA
| | - Wen Tang
- Department of Biological Chemistry and Pharmacology, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
103
|
The multiscale and multiphase organization of the transcriptome. Emerg Top Life Sci 2021; 4:265-280. [PMID: 32542380 DOI: 10.1042/etls20190187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/08/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023]
Abstract
Gene expression must be co-ordinated to cellular activity. From transcription to decay, the expression of millions of RNA molecules is highly synchronized. RNAs are covered by proteins that regulate every aspect of their cellular life: expression, storage, translational status, localization, and decay. Many RNAs and their associated regulatory proteins can coassemble to condense into liquid droplets, viscoelastic hydrogels, freeze into disorganized glass-like aggregates, or harden into quasi-crystalline solids. Phase separations provide a framework for transcriptome organization where the single functional unit is no longer a transcript but instead an RNA regulon. Here, we will analyze the interaction networks that underlie RNA super-assemblies, assess the complex multiscale, multiphase architecture of the transcriptome, and explore how the biophysical state of an RNA molecule can define its fate. Phase separations are emerging as critical routes for the epitranscriptomic control of gene expression.
Collapse
|
104
|
Wahba L, Hansen L, Fire AZ. An essential role for the piRNA pathway in regulating the ribosomal RNA pool in C. elegans. Dev Cell 2021; 56:2295-2312.e6. [PMID: 34388368 PMCID: PMC8387450 DOI: 10.1016/j.devcel.2021.07.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/11/2021] [Accepted: 07/15/2021] [Indexed: 01/08/2023]
Abstract
Piwi-interacting RNAs (piRNAs) are RNA effectors with key roles in maintaining genome integrity and promoting fertility in metazoans. In Caenorhabditis elegans loss of piRNAs leads to a transgenerational sterility phenotype. The plethora of piRNAs and their ability to silence transcripts with imperfect complementarity have raised several (non-exclusive) models for the underlying drivers of sterility. Here, we report the extranuclear and transferable nature of the sterility driver, its suppression via mutations disrupting the endogenous RNAi and poly-uridylation machinery, and copy-number amplification at the ribosomal DNA locus. In piRNA-deficient animals, several small interfering RNA (siRNA) populations become increasingly overabundant in the generations preceding loss of germline function, including ribosomal siRNAs (risiRNAs). A concomitant increase in uridylated sense rRNA fragments suggests that poly-uridylation may potentiate RNAi-mediated gene silencing of rRNAs. We conclude that loss of the piRNA machinery allows for unchecked amplification of siRNA populations, originating from abundant highly structured RNAs, to deleterious levels.
Collapse
Affiliation(s)
- Lamia Wahba
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Loren Hansen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andrew Z Fire
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
105
|
The role of the Cer1 transposon in horizontal transfer of transgenerational memory. Cell 2021; 184:4697-4712.e18. [PMID: 34363756 DOI: 10.1016/j.cell.2021.07.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/21/2021] [Accepted: 07/19/2021] [Indexed: 01/01/2023]
Abstract
Animals face both external and internal dangers: pathogens threaten from the environment, and unstable genomic elements threaten from within. C. elegans protects itself from pathogens by "reading" bacterial small RNAs, using this information to both induce avoidance and transmit memories for four generations. Here, we found that memories can be transferred from either lysed animals or from conditioned media to naive animals via Cer1 retrotransposon-encoded virus-like particles. Moreover, Cer1 functions internally at the step of transmission of information from the germline to neurons and is required for learned avoidance. The presence of the Cer1 retrotransposon in wild C. elegans strains correlates with the ability to learn and inherit small-RNA-induced pathogen avoidance. Together, these results suggest that C. elegans has co-opted a potentially dangerous retrotransposon to instead protect itself and its progeny from a common pathogen through its inter-tissue signaling ability, hijacking this genomic element for its own adaptive immunity benefit.
Collapse
|
106
|
Huang X, Cheng P, Weng C, Xu Z, Zeng C, Xu Z, Chen X, Zhu C, Guang S, Feng X. A chromodomain protein mediates heterochromatin-directed piRNA expression. Proc Natl Acad Sci U S A 2021; 118:e2103723118. [PMID: 34187893 PMCID: PMC8271797 DOI: 10.1073/pnas.2103723118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) play significant roles in suppressing transposons, maintaining genome integrity, and defending against viral infections. How piRNA source loci are efficiently transcribed is poorly understood. Here, we show that in Caenorhabditis elegans, transcription of piRNA clusters depends on the chromatin microenvironment and a chromodomain-containing protein, UAD-2. piRNA clusters form distinct focus in germline nuclei. We conducted a forward genetic screening and identified UAD-2 that is required for piRNA focus formation. In the absence of histone 3 lysine 27 methylation or proper chromatin-remodeling status, UAD-2 is depleted from the piRNA focus. UAD-2 recruits the upstream sequence transcription complex (USTC), which binds the Ruby motif to piRNA promoters and promotes piRNA generation. Vice versa, the USTC complex is required for UAD-2 to associate with the piRNA focus. Thus, transcription of heterochromatic small RNA source loci relies on coordinated recruitment of both the readers of histone marks and the core transcriptional machinery to DNA.
Collapse
Affiliation(s)
- Xinya Huang
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, People's Republic of China
| | - Peng Cheng
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, People's Republic of China
| | - Chenchun Weng
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, People's Republic of China
| | - Zongxiu Xu
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, People's Republic of China
| | - Chenming Zeng
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, People's Republic of China
| | - Zheng Xu
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, People's Republic of China
| | - Xiangyang Chen
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, People's Republic of China;
| | - Chengming Zhu
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, People's Republic of China;
| | - Shouhong Guang
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, People's Republic of China;
- CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Hefei 230027, People's Republic of China
| | - Xuezhu Feng
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, People's Republic of China;
| |
Collapse
|
107
|
Singh M, Cornes E, Li B, Quarato P, Bourdon L, Dingli F, Loew D, Proccacia S, Cecere G. Translation and codon usage regulate Argonaute slicer activity to trigger small RNA biogenesis. Nat Commun 2021; 12:3492. [PMID: 34108460 PMCID: PMC8190271 DOI: 10.1038/s41467-021-23615-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 05/06/2021] [Indexed: 11/08/2022] Open
Abstract
In the Caenorhabditis elegans germline, thousands of mRNAs are concomitantly expressed with antisense 22G-RNAs, which are loaded into the Argonaute CSR-1. Despite their essential functions for animal fertility and embryonic development, how CSR-1 22G-RNAs are produced remains unknown. Here, we show that CSR-1 slicer activity is primarily involved in triggering the synthesis of small RNAs on the coding sequences of germline mRNAs and post-transcriptionally regulates a fraction of targets. CSR-1-cleaved mRNAs prime the RNA-dependent RNA polymerase, EGO-1, to synthesize 22G-RNAs in phase with translating ribosomes, in contrast to other 22G-RNAs mostly synthesized in germ granules. Moreover, codon optimality and efficient translation antagonize CSR-1 slicing and 22G-RNAs biogenesis. We propose that codon usage differences encoded into mRNA sequences might be a conserved strategy in eukaryotes to regulate small RNA biogenesis and Argonaute targeting.
Collapse
Affiliation(s)
- Meetali Singh
- Mechanisms of Epigenetic Inheritance, Department of Developmental and Stem Cell Biology, Institut Pasteur, UMR3738, CNRS, Paris, France
| | - Eric Cornes
- Mechanisms of Epigenetic Inheritance, Department of Developmental and Stem Cell Biology, Institut Pasteur, UMR3738, CNRS, Paris, France
| | - Blaise Li
- Mechanisms of Epigenetic Inheritance, Department of Developmental and Stem Cell Biology, Institut Pasteur, UMR3738, CNRS, Paris, France
- Hub de Bioinformatique et Biostatistique-Département Biologie Computationnelle, Institut Pasteur, Paris, France
| | - Piergiuseppe Quarato
- Mechanisms of Epigenetic Inheritance, Department of Developmental and Stem Cell Biology, Institut Pasteur, UMR3738, CNRS, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Loan Bourdon
- Mechanisms of Epigenetic Inheritance, Department of Developmental and Stem Cell Biology, Institut Pasteur, UMR3738, CNRS, Paris, France
| | - Florent Dingli
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Paris, France
| | - Damarys Loew
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Paris, France
| | - Simone Proccacia
- Mechanisms of Epigenetic Inheritance, Department of Developmental and Stem Cell Biology, Institut Pasteur, UMR3738, CNRS, Paris, France
- Università di Trento, Trento TN, Italy
| | - Germano Cecere
- Mechanisms of Epigenetic Inheritance, Department of Developmental and Stem Cell Biology, Institut Pasteur, UMR3738, CNRS, Paris, France.
| |
Collapse
|
108
|
Kim H, Ding YH, Lu S, Zuo MQ, Tan W, Conte D, Dong MQ, Mello CC. PIE-1 SUMOylation promotes germline fates and piRNA-dependent silencing in C. elegans. eLife 2021; 10:e63300. [PMID: 34003111 PMCID: PMC8131105 DOI: 10.7554/elife.63300] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 04/23/2021] [Indexed: 02/06/2023] Open
Abstract
Germlines shape and balance heredity, integrating and regulating information from both parental and foreign sources. Insights into how germlines handle information have come from the study of factors that specify or maintain the germline fate. In early Caenorhabditis elegans embryos, the CCCH zinc finger protein PIE-1 localizes to the germline where it prevents somatic differentiation programs. Here, we show that PIE-1 also functions in the meiotic ovary where it becomes SUMOylated and engages the small ubiquitin-like modifier (SUMO)-conjugating machinery. Using whole-SUMO-proteome mass spectrometry, we identify HDAC SUMOylation as a target of PIE-1. Our analyses of genetic interactions between pie-1 and SUMO pathway mutants suggest that PIE-1 engages the SUMO machinery both to preserve the germline fate in the embryo and to promote Argonaute-mediated surveillance in the adult germline.
Collapse
Affiliation(s)
- Heesun Kim
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Yue-He Ding
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Shan Lu
- National Institute of Biological SciencesBeijingChina
| | - Mei-Qing Zuo
- National Institute of Biological SciencesBeijingChina
| | - Wendy Tan
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Darryl Conte
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Meng-Qiu Dong
- National Institute of Biological SciencesBeijingChina
| | - Craig C Mello
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| |
Collapse
|
109
|
Frolows N, Ashe A. Small RNAs and chromatin in the multigenerational epigenetic landscape of Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200112. [PMID: 33866817 DOI: 10.1098/rstb.2020.0112] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
For decades, it was thought that the only heritable information transmitted from one individual to another was that encoded in the DNA sequence. However, it has become increasingly clear that this is not the case and that the transmission of molecules from within the cytoplasm of the gamete also plays a significant role in heritability. The roundworm, Caenorhabditis elegans, has emerged as one of the leading model organisms in which to study the mechanisms of transgenerational epigenetic inheritance (TEI). Collaborative efforts over the past few years have revealed that RNA molecules play a critical role in transmitting transgenerational responses, but precisely how they do so is as yet uncertain. In addition, the role of histone modifications in epigenetic inheritance is increasingly apparent, and RNA and histones interact in a way that we do not yet fully understand. Furthermore, both exogenous and endogenous RNA molecules, as well as other environmental triggers, are able to induce heritable epigenetic changes that affect transcription across the genome. In most cases, these epigenetic changes last only for a handful of generations, but occasionally can be maintained much longer: perhaps indefinitely. In this review, we discuss the current understanding of the role of RNA and histones in TEI, as well as making clear the gaps in our knowledge. We also speculate on the evolutionary implications of epigenetic inheritance, particularly in the context of a short-lived, clonally propagating species. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'
Collapse
Affiliation(s)
- Natalya Frolows
- School of Life and Environmental Sciences, University of Sydney, New South Wales, 2006, Australia.,CSIRO Health and Biosecurity, Sydney, New South Wales, 2113, Australia
| | - Alyson Ashe
- School of Life and Environmental Sciences, University of Sydney, New South Wales, 2006, Australia
| |
Collapse
|
110
|
Gudipati RK, Braun K, Gypas F, Hess D, Schreier J, Carl SH, Ketting RF, Großhans H. Protease-mediated processing of Argonaute proteins controls small RNA association. Mol Cell 2021; 81:2388-2402.e8. [PMID: 33852894 DOI: 10.1016/j.molcel.2021.03.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/13/2022]
Abstract
Small RNA pathways defend the germlines of animals against selfish genetic elements, yet pathway activities need to be contained to prevent silencing of self genes. Here, we reveal a proteolytic mechanism that controls endogenous small interfering (22G) RNA activity in the Caenorhabditis elegans germline to protect genome integrity and maintain fertility. We find that DPF-3, a P-granule-localized N-terminal dipeptidase orthologous to mammalian dipeptidyl peptidase (DPP) 8/9, processes the unusually proline-rich N termini of WAGO-1 and WAGO-3 Argonaute (Ago) proteins. Without DPF-3 activity, these WAGO proteins lose their proper complement of 22G RNAs. Desilencing of repeat-containing and transposon-derived transcripts, DNA damage, and acute sterility ensue. These phenotypes are recapitulated when WAGO-1 and WAGO-3 are rendered resistant to DPF-3-mediated processing, identifying them as critical substrates of DPF-3. We conclude that N-terminal processing of Ago proteins regulates their activity and promotes silencing of selfish genetic elements by ensuring Ago association with appropriate small RNAs.
Collapse
Affiliation(s)
- Rajani Kanth Gudipati
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, Basel 4058, Switzerland.
| | - Kathrin Braun
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, Basel 4058, Switzerland
| | - Foivos Gypas
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, Basel 4058, Switzerland
| | - Daniel Hess
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, Basel 4058, Switzerland
| | - Jan Schreier
- Biology of Non-coding RNA, Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany; International PhD Programme on Gene Regulation, Epigenetics & Genome Stability, Mainz, Germany
| | - Sarah H Carl
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, Basel 4058, Switzerland
| | - René F Ketting
- Biology of Non-coding RNA, Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany; Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University, 55099 Mainz, Germany
| | - Helge Großhans
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, Basel 4058, Switzerland; University of Basel, Petersplatz 1, 4056 Basel, Switzerland.
| |
Collapse
|
111
|
Choi H, Wang Z, Dean J. Sperm acrosome overgrowth and infertility in mice lacking chromosome 18 pachytene piRNA. PLoS Genet 2021; 17:e1009485. [PMID: 33831001 PMCID: PMC8057611 DOI: 10.1371/journal.pgen.1009485] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/20/2021] [Accepted: 03/12/2021] [Indexed: 01/08/2023] Open
Abstract
piRNAs are small non-coding RNAs required to maintain genome integrity and preserve RNA homeostasis during male gametogenesis. In murine adult testes, the highest levels of piRNAs are present in the pachytene stage of meiosis, but their mode of action and function remain incompletely understood. We previously reported that BTBD18 binds to 50 pachytene piRNA-producing loci. Here we show that spermatozoa in gene-edited mice lacking a BTBD18 targeted pachytene piRNA cluster on Chr18 have severe sperm head dysmorphology, poor motility, impaired acrosome exocytosis, zona pellucida penetration and are sterile. The mutant phenotype arises from aberrant formation of proacrosomal vesicles, distortion of the trans-Golgi network, and up-regulation of GOLGA2 transcripts and protein associated with acrosome dysgenesis. Collectively, our findings reveal central role of pachytene piRNAs in controlling spermiogenesis and male fertility.
Collapse
Affiliation(s)
- Heejin Choi
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD, United States of America
| | - Zhengpin Wang
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD, United States of America
| | - Jurrien Dean
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD, United States of America
| |
Collapse
|
112
|
Dansen TB, De Henau S. Modulating organelle distribution using light-inducible heterodimerization in C. elegans. STAR Protoc 2021; 2:100273. [PMID: 33490987 PMCID: PMC7811173 DOI: 10.1016/j.xpro.2020.100273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The relative positioning of organelles underlies fundamental cellular processes, including signaling, polarization, and cellular growth. Here, we describe the usage of a light-dependent heterodimerization system, LOVpep-ePDZ, to alter organelle positioning locally and reversibly in order to study the functional consequences of organelle positioning. The protocol gives details on how to accomplish expression of fusion proteins encoding this system, describes the imaging parameters to achieve subcellular activation in C. elegans, and may be adapted for use in other model systems. For complete details on the use and execution of this protocol, please refer to De Henau et al. (2020).
Collapse
Affiliation(s)
- Tobias B. Dansen
- Center for Molecular Medicine, Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Sasha De Henau
- Center for Molecular Medicine, Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| |
Collapse
|
113
|
Huang X, Wong G. An old weapon with a new function: PIWI-interacting RNAs in neurodegenerative diseases. Transl Neurodegener 2021; 10:9. [PMID: 33685517 PMCID: PMC7938595 DOI: 10.1186/s40035-021-00233-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/16/2021] [Indexed: 12/16/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) are small non-coding transcripts that are highly conserved across species and regulate gene expression through pre- and post-transcriptional processes. piRNAs were originally discovered in germline cells and protect against transposable element expression to promote and maintain genome stability. In the recent decade, emerging roles of piRNAs have been revealed, including the roles in sterility, tumorigenesis, metabolic homeostasis, neurodevelopment, and neurodegenerative diseases. In this review, we summarize piRNA biogenesis in C. elegans, Drosophila, and mice, and further elaborate upon how piRNAs mitigate the harmful effects of transposons. Lastly, the most recent findings on piRNA participation in neurological diseases are highlighted. We speculate on the mechanisms of piRNA action in the development and progression of neurodegenerative diseases. Understanding the roles of piRNAs in neurological diseases may facilitate their applications in diagnostic and therapeutic practice.
Collapse
Affiliation(s)
- Xiaobing Huang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, 999078, S.A.R., China
| | - Garry Wong
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, 999078, S.A.R., China.
| |
Collapse
|
114
|
Dwivedi SKD, Rao G, Dey A, Mukherjee P, Wren JD, Bhattacharya R. Small Non-Coding-RNA in Gynecological Malignancies. Cancers (Basel) 2021; 13:1085. [PMID: 33802524 PMCID: PMC7961667 DOI: 10.3390/cancers13051085] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/18/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
Gynecologic malignancies, which include cancers of the cervix, ovary, uterus, vulva, vagina, and fallopian tube, are among the leading causes of female mortality worldwide, with the most prevalent being endometrial, ovarian, and cervical cancer. Gynecologic malignancies are complex, heterogeneous diseases, and despite extensive research efforts, the molecular mechanisms underlying their development and pathology remain largely unclear. Currently, mechanistic and therapeutic research in cancer is largely focused on protein targets that are encoded by about 1% of the human genome. Our current understanding of 99% of the genome, which includes noncoding RNA, is limited. The discovery of tens of thousands of noncoding RNAs (ncRNAs), possessing either structural or regulatory functions, has fundamentally altered our understanding of genetics, physiology, pathophysiology, and disease treatment as they relate to gynecologic malignancies. In recent years, it has become clear that ncRNAs are relatively stable, and can serve as biomarkers for cancer diagnosis and prognosis, as well as guide therapy choices. Here we discuss the role of small non-coding RNAs, i.e., microRNAs (miRs), P-Element induced wimpy testis interacting (PIWI) RNAs (piRNAs), and tRNA-derived small RNAs in gynecological malignancies, specifically focusing on ovarian, endometrial, and cervical cancer.
Collapse
Affiliation(s)
- Shailendra Kumar Dhar Dwivedi
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.K.D.D.); (A.D.)
| | - Geeta Rao
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (G.R.); (P.M.)
| | - Anindya Dey
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.K.D.D.); (A.D.)
| | - Priyabrata Mukherjee
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (G.R.); (P.M.)
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jonathan D. Wren
- Biochemistry and Molecular Biology Department, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.K.D.D.); (A.D.)
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
115
|
Spichal M, Heestand B, Billmyre KK, Frenk S, Mello CC, Ahmed S. Germ granule dysfunction is a hallmark and mirror of Piwi mutant sterility. Nat Commun 2021; 12:1420. [PMID: 33658512 PMCID: PMC7930041 DOI: 10.1038/s41467-021-21635-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 01/29/2021] [Indexed: 01/31/2023] Open
Abstract
In several species, Piwi/piRNA genome silencing defects cause immediate sterility that correlates with transposon expression and transposon-induced genomic instability. In C. elegans, mutations in the Piwi-related gene (prg-1) and other piRNA deficient mutants cause a transgenerational decline in fertility over a period of several generations. Here we show that the sterility of late generation piRNA mutants correlates poorly with increases in DNA damage signaling. Instead, sterile individuals consistently exhibit altered perinuclear germ granules. We show that disruption of germ granules does not activate transposon expression but induces multiple phenotypes found in sterile prg-1 pathway mutants. Furthermore, loss of the germ granule component pgl-1 enhances prg-1 mutant infertility. Environmental restoration of germ granule function for sterile pgl-1 mutants restores their fertility. We propose that Piwi mutant sterility is a reproductive arrest phenotype that is characterized by perturbed germ granule structure and is phenocopied by germ granule dysfunction, independent of genomic instability.
Collapse
Affiliation(s)
- Maya Spichal
- grid.410711.20000 0001 1034 1720Department of Genetics, University of North Carolina, Chapel Hill, NC USA ,grid.410711.20000 0001 1034 1720Department of Biology, University of North Carolina, Chapel Hill, NC USA ,grid.168645.80000 0001 0742 0364RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA USA
| | - Bree Heestand
- grid.410711.20000 0001 1034 1720Department of Genetics, University of North Carolina, Chapel Hill, NC USA ,grid.410711.20000 0001 1034 1720Department of Biology, University of North Carolina, Chapel Hill, NC USA
| | - Katherine Kretovich Billmyre
- grid.410711.20000 0001 1034 1720Department of Genetics, University of North Carolina, Chapel Hill, NC USA ,grid.410711.20000 0001 1034 1720Department of Biology, University of North Carolina, Chapel Hill, NC USA ,grid.250820.d0000 0000 9420 1591Present Address: Stowers Institute for Medical Research, Kansas City, MO USA
| | - Stephen Frenk
- grid.410711.20000 0001 1034 1720Department of Genetics, University of North Carolina, Chapel Hill, NC USA ,grid.410711.20000 0001 1034 1720Department of Biology, University of North Carolina, Chapel Hill, NC USA ,Present Address: Achilles Therapeutics Limited, London, UK
| | - Craig C. Mello
- grid.168645.80000 0001 0742 0364RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA USA ,grid.413575.10000 0001 2167 1581Howard Hughes Medical Institute, Worcester, MA USA
| | - Shawn Ahmed
- grid.410711.20000 0001 1034 1720Department of Genetics, University of North Carolina, Chapel Hill, NC USA ,grid.410711.20000 0001 1034 1720Department of Biology, University of North Carolina, Chapel Hill, NC USA ,grid.410711.20000 0001 1034 1720Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC USA
| |
Collapse
|
116
|
Beltran T, Pahita E, Ghosh S, Lenhard B, Sarkies P. Integrator is recruited to promoter-proximally paused RNA Pol II to generate Caenorhabditis elegans piRNA precursors. EMBO J 2021; 40:e105564. [PMID: 33340372 PMCID: PMC7917550 DOI: 10.15252/embj.2020105564] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/14/2020] [Accepted: 10/27/2020] [Indexed: 12/29/2022] Open
Abstract
Piwi-interacting RNAs (piRNAs) play key roles in germline development and genome defence in metazoans. In C. elegans, piRNAs are transcribed from > 15,000 discrete genomic loci by RNA polymerase II (Pol II), resulting in 28 nt short-capped piRNA precursors. Here, we investigate transcription termination at piRNA loci. We show that the Integrator complex, which terminates snRNA transcription, is recruited to piRNA loci. Moreover, we demonstrate that the catalytic activity of Integrator cleaves nascent capped piRNA precursors associated with promoter-proximal Pol II, resulting in termination of transcription. Loss of Integrator activity, however, does not result in transcriptional readthrough at the majority of piRNA loci. Taken together, our results draw new parallels between snRNA and piRNA biogenesis in nematodes and provide evidence of a role for the Integrator complex as a terminator of promoter-proximal RNA polymerase II during piRNA biogenesis.
Collapse
Affiliation(s)
- Toni Beltran
- MRC London Institute of Medical SciencesLondonUK
- Institute of Clinical SciencesImperial College LondonLondonUK
- Present address:
Centre for Genomic RegulationBarcelonaSpain
| | - Elena Pahita
- MRC London Institute of Medical SciencesLondonUK
- Institute of Clinical SciencesImperial College LondonLondonUK
| | - Subhanita Ghosh
- MRC London Institute of Medical SciencesLondonUK
- Institute of Clinical SciencesImperial College LondonLondonUK
| | - Boris Lenhard
- MRC London Institute of Medical SciencesLondonUK
- Institute of Clinical SciencesImperial College LondonLondonUK
| | - Peter Sarkies
- MRC London Institute of Medical SciencesLondonUK
- Institute of Clinical SciencesImperial College LondonLondonUK
| |
Collapse
|
117
|
Berkyurek AC, Furlan G, Lampersberger L, Beltran T, Weick E, Nischwitz E, Cunha Navarro I, Braukmann F, Akay A, Price J, Butter F, Sarkies P, Miska EA. The RNA polymerase II subunit RPB-9 recruits the integrator complex to terminate Caenorhabditis elegans piRNA transcription. EMBO J 2021; 40:e105565. [PMID: 33533030 PMCID: PMC7917558 DOI: 10.15252/embj.2020105565] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 12/14/2020] [Accepted: 12/19/2020] [Indexed: 01/03/2023] Open
Abstract
PIWI-interacting RNAs (piRNAs) are genome-encoded small RNAs that regulate germ cell development and maintain germline integrity in many animals. Mature piRNAs engage Piwi Argonaute proteins to silence complementary transcripts, including transposable elements and endogenous genes. piRNA biogenesis mechanisms are diverse and remain poorly understood. Here, we identify the RNA polymerase II (RNA Pol II) core subunit RPB-9 as required for piRNA-mediated silencing in the nematode Caenorhabditis elegans. We show that rpb-9 initiates heritable piRNA-mediated gene silencing at two DNA transposon families and at a subset of somatic genes in the germline. We provide genetic and biochemical evidence that RPB-9 is required for piRNA biogenesis by recruiting the Integrator complex at piRNA genes, hence promoting transcriptional termination. We conclude that, as a part of its rapid evolution, the piRNA pathway has co-opted an ancient machinery for high-fidelity transcription.
Collapse
Affiliation(s)
- Ahmet C Berkyurek
- Wellcome Trust/Cancer Research UK Gurdon InstituteUniversity of CambridgeCambridgeUK
- Department of GeneticsUniversity of CambridgeCambridgeUK
| | - Giulia Furlan
- Wellcome Trust/Cancer Research UK Gurdon InstituteUniversity of CambridgeCambridgeUK
- Department of GeneticsUniversity of CambridgeCambridgeUK
| | - Lisa Lampersberger
- Wellcome Trust/Cancer Research UK Gurdon InstituteUniversity of CambridgeCambridgeUK
- Department of GeneticsUniversity of CambridgeCambridgeUK
| | - Toni Beltran
- MRC London Institute of Medical SciencesLondonUK
- Institute of Clinical SciencesImperial College LondonLondonUK
| | - Eva‐Maria Weick
- Wellcome Trust/Cancer Research UK Gurdon InstituteUniversity of CambridgeCambridgeUK
- Present address:
Structural Biology ProgramSloan Kettering InstituteMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Emily Nischwitz
- Quantitative ProteomicsInstitute of Molecular BiologyMainzGermany
| | - Isabela Cunha Navarro
- Wellcome Trust/Cancer Research UK Gurdon InstituteUniversity of CambridgeCambridgeUK
- Department of GeneticsUniversity of CambridgeCambridgeUK
| | - Fabian Braukmann
- Wellcome Trust/Cancer Research UK Gurdon InstituteUniversity of CambridgeCambridgeUK
- Department of GeneticsUniversity of CambridgeCambridgeUK
| | - Alper Akay
- Wellcome Trust/Cancer Research UK Gurdon InstituteUniversity of CambridgeCambridgeUK
- Department of GeneticsUniversity of CambridgeCambridgeUK
- Present address:
School of Biological SciencesUniversity of East AngliaNorwich, NorfolkUK
| | - Jonathan Price
- Wellcome Trust/Cancer Research UK Gurdon InstituteUniversity of CambridgeCambridgeUK
- Department of GeneticsUniversity of CambridgeCambridgeUK
| | - Falk Butter
- Quantitative ProteomicsInstitute of Molecular BiologyMainzGermany
| | - Peter Sarkies
- MRC London Institute of Medical SciencesLondonUK
- Institute of Clinical SciencesImperial College LondonLondonUK
| | - Eric A Miska
- Wellcome Trust/Cancer Research UK Gurdon InstituteUniversity of CambridgeCambridgeUK
- Department of GeneticsUniversity of CambridgeCambridgeUK
- Wellcome Sanger InstituteWellcome Trust Genome CampusCambridgeUK
| |
Collapse
|
118
|
How do histone modifications contribute to transgenerational epigenetic inheritance in C. elegans? Biochem Soc Trans 2021; 48:1019-1034. [PMID: 32539084 DOI: 10.1042/bst20190944] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 12/20/2022]
Abstract
Gene regulatory information can be inherited between generations in a phenomenon termed transgenerational epigenetic inheritance (TEI). While examples of TEI in many animals accumulate, the nematode Caenorhabditis elegans has proven particularly useful in investigating the underlying molecular mechanisms of this phenomenon. In C. elegans and other animals, the modification of histone proteins has emerged as a potential carrier and effector of transgenerational epigenetic information. In this review, we explore the contribution of histone modifications to TEI in C. elegans. We describe the role of repressive histone marks, histone methyltransferases, and associated chromatin factors in heritable gene silencing, and discuss recent developments and unanswered questions in how these factors integrate with other known TEI mechanisms. We also review the transgenerational effects of the manipulation of histone modifications on germline health and longevity.
Collapse
|
119
|
Choi CP, Tay RJ, Starostik MR, Feng S, Moresco JJ, Montgomery BE, Xu E, Hammonds MA, Schatz MC, Montgomery TA, Yates JR, Jacobsen SE, Kim JK. SNPC-1.3 is a sex-specific transcription factor that drives male piRNA expression in C. elegans. eLife 2021; 10:e60681. [PMID: 33587037 PMCID: PMC7884074 DOI: 10.7554/elife.60681] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 02/02/2021] [Indexed: 12/29/2022] Open
Abstract
Piwi-interacting RNAs (piRNAs) play essential roles in silencing repetitive elements to promote fertility in metazoans. Studies in worms, flies, and mammals reveal that piRNAs are expressed in a sex-specific manner. However, the mechanisms underlying this sex-specific regulation are unknown. Here we identify SNPC-1.3, a male germline-enriched variant of a conserved subunit of the small nuclear RNA-activating protein complex, as a male-specific piRNA transcription factor in Caenorhabditis elegans. SNPC-1.3 colocalizes with the core piRNA transcription factor, SNPC-4, in nuclear foci of the male germline. Binding of SNPC-1.3 at male piRNA loci drives spermatogenic piRNA transcription and requires SNPC-4. Loss of snpc-1.3 leads to depletion of male piRNAs and defects in male-dependent fertility. Furthermore, TRA-1, a master regulator of sex determination, binds to the snpc-1.3 promoter and represses its expression during oogenesis. Loss of TRA-1 targeting causes ectopic expression of snpc-1.3 and male piRNAs during oogenesis. Thus, sexually dimorphic regulation of snpc-1.3 expression coordinates male and female piRNA expression during germline development.
Collapse
Affiliation(s)
- Charlotte P Choi
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Rebecca J Tay
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | | | - Suhua Feng
- Department of Molecular, Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los AngelesLos AngelesUnited States
| | - James J Moresco
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical CenterDallasUnited States
| | | | - Emily Xu
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Maya A Hammonds
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Michael C Schatz
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
- Department of Computer Science, Johns Hopkins UniversityBaltimoreUnited States
| | | | - John R Yates
- Department of Molecular Medicine, The Scripps Research InstituteLa JollaUnited States
| | - Steven E Jacobsen
- Department of Molecular, Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
- Howard Hughes Medical Institute, University of California, Los AngelesLos AngelesUnited States
| | - John K Kim
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| |
Collapse
|
120
|
Aoki ST, Lynch TR, Crittenden SL, Bingman CA, Wickens M, Kimble J. C. elegans germ granules require both assembly and localized regulators for mRNA repression. Nat Commun 2021; 12:996. [PMID: 33579952 PMCID: PMC7881195 DOI: 10.1038/s41467-021-21278-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 01/14/2021] [Indexed: 02/07/2023] Open
Abstract
Cytoplasmic RNA-protein (RNP) granules have diverse biophysical properties, from liquid to solid, and play enigmatic roles in RNA metabolism. Nematode P granules are paradigmatic liquid droplet granules and central to germ cell development. Here we analyze a key P granule scaffolding protein, PGL-1, to investigate the functional relationship between P granule assembly and function. Using a protein-RNA tethering assay, we find that reporter mRNA expression is repressed when recruited to PGL-1. We determine the crystal structure of the PGL-1 N-terminal region to 1.5 Å, discover its dimerization, and identify key residues at the dimer interface. Mutations of those interface residues prevent P granule assembly in vivo, de-repress PGL-1 tethered mRNA, and reduce fertility. Therefore, PGL-1 dimerization lies at the heart of both P granule assembly and function. Finally, we identify the P granule-associated Argonaute WAGO-1 as crucial for repression of PGL-1 tethered mRNA. We conclude that P granule function requires both assembly and localized regulators.
Collapse
Affiliation(s)
- Scott Takeo Aoki
- grid.257413.60000 0001 2287 3919Department of Biochemistry and Molecular Biology, School of Medicine, Indiana University, Indianapolis, IN USA ,grid.14003.360000 0001 2167 3675Department of Biochemistry, University of Wisconsin-Madison, Madison, WI USA
| | - Tina R. Lynch
- grid.14003.360000 0001 2167 3675Department of Biochemistry, University of Wisconsin-Madison, Madison, WI USA
| | - Sarah L. Crittenden
- grid.14003.360000 0001 2167 3675Department of Biochemistry, University of Wisconsin-Madison, Madison, WI USA ,grid.14003.360000 0001 2167 3675Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI USA
| | - Craig A. Bingman
- grid.14003.360000 0001 2167 3675Department of Biochemistry, University of Wisconsin-Madison, Madison, WI USA
| | - Marvin Wickens
- grid.14003.360000 0001 2167 3675Department of Biochemistry, University of Wisconsin-Madison, Madison, WI USA
| | - Judith Kimble
- grid.14003.360000 0001 2167 3675Department of Biochemistry, University of Wisconsin-Madison, Madison, WI USA ,grid.14003.360000 0001 2167 3675Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI USA
| |
Collapse
|
121
|
Mukherjee N, Mukherjee C. Germ cell ribonucleoprotein granules in different clades of life: From insects to mammals. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1642. [PMID: 33555143 DOI: 10.1002/wrna.1642] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/12/2022]
Abstract
Ribonucleoprotein (RNP) granules are no newcomers in biology. Found in all life forms, ranging across taxa, these membrane-less "organelles" have been classified into different categories based on their composition, structure, behavior, function, and localization. Broadly, they can be listed as stress granules (SGs), processing bodies (PBs), neuronal granules (NGs), and germ cell granules (GCGs). Keeping in line with the topic of this review, RNP granules present in the germ cells have been implicated in a wide range of cellular functions including cellular specification, differentiation, proliferation, and so forth. The mechanisms used by them can be diverse and many of them remain partly obscure and active areas of research. GCGs can be of different types in different organisms and at different stages of development, with multiple types coexisting in the same cell. In this review, the different known subcategories of GCGs have been studied with respect to five distinct model organisms, namely, Drosophila, Caenorhabditis elegans, Xenopus, Zebrafish, and mammals. Of them, the cytoplasmic polar granules in Drosophila, P granules in C. elegans, balbiani body in Xenopus and Zebrafish, and chromatoid bodies in mammals have been specifically emphasized upon. A descriptive account of the same has been provided along with insights into our current understanding of their functional significance with respect to cellular events relating to different developmental and reproductive processes. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Export and Localization > RNA Localization RNA in Disease and Development > RNA in Disease.
Collapse
|
122
|
Placentino M, de Jesus Domingues AM, Schreier J, Dietz S, Hellmann S, de Albuquerque BFM, Butter F, Ketting RF. Intrinsically disordered protein PID-2 modulates Z granules and is required for heritable piRNA-induced silencing in the Caenorhabditis elegans embryo. EMBO J 2021; 40:e105280. [PMID: 33231880 PMCID: PMC7849312 DOI: 10.15252/embj.2020105280] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/25/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
In Caenorhabditis elegans, the piRNA (21U RNA) pathway is required to establish proper gene regulation and an immortal germline. To achieve this, PRG-1-bound 21U RNAs trigger silencing mechanisms mediated by RNA-dependent RNA polymerase (RdRP)-synthetized 22G RNAs. This silencing can become PRG-1-independent and heritable over many generations, a state termed RNA-induced epigenetic gene silencing (RNAe). How and when RNAe is established, and how it is maintained, is not known. We show that maternally provided 21U RNAs can be sufficient for triggering RNAe in embryos. Additionally, we identify PID-2, a protein containing intrinsically disordered regions (IDRs), as a factor required for establishing and maintaining RNAe. PID-2 interacts with two newly identified and partially redundant eTudor domain-containing proteins, PID-4 and PID-5. PID-5 has an additional domain related to the X-prolyl aminopeptidase APP-1, and binds APP-1, implicating potential N-terminal proteolysis in RNAe. All three proteins are required for germline immortality, localize to perinuclear foci, affect size and appearance of RNA inheritance-linked Z granules, and are required for balancing of 22G RNA populations. Overall, our study identifies three new proteins with crucial functions in C. elegans small RNA silencing.
Collapse
Affiliation(s)
- Maria Placentino
- Biology of Non‐coding RNA GroupInstitute of Molecular Biology (IMB)MainzGermany
- International PhD Programme on Gene Regulation, Epigenetics & Genome StabilityMainzGermany
| | | | - Jan Schreier
- Biology of Non‐coding RNA GroupInstitute of Molecular Biology (IMB)MainzGermany
- International PhD Programme on Gene Regulation, Epigenetics & Genome StabilityMainzGermany
| | - Sabrina Dietz
- International PhD Programme on Gene Regulation, Epigenetics & Genome StabilityMainzGermany
- Quantitative Proteomics GroupInstitute of Molecular Biology (IMB)MainzGermany
| | - Svenja Hellmann
- Biology of Non‐coding RNA GroupInstitute of Molecular Biology (IMB)MainzGermany
| | - Bruno FM de Albuquerque
- Biology of Non‐coding RNA GroupInstitute of Molecular Biology (IMB)MainzGermany
- Graduate Program in Areas of Basic and Applied BiologyUniversity of PortoPortoPortugal
| | - Falk Butter
- Quantitative Proteomics GroupInstitute of Molecular Biology (IMB)MainzGermany
| | - René F Ketting
- Biology of Non‐coding RNA GroupInstitute of Molecular Biology (IMB)MainzGermany
- Institute of Developmental Biology and NeurobiologyJohannses Gutenberg UniversityMainzGermany
| |
Collapse
|
123
|
Sundby AE, Molnar RI, Claycomb JM. Connecting the Dots: Linking Caenorhabditis elegans Small RNA Pathways and Germ Granules. Trends Cell Biol 2021; 31:387-401. [PMID: 33526340 DOI: 10.1016/j.tcb.2020.12.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 12/15/2022]
Abstract
Germ granules are non-membrane bound, phase-separated organelles, composed of RNAs and proteins. Germ granules are present only within the germ cells of animals, including model systems such as Caenorhabditis elegans, Drosophila, mice, and zebrafish, where they play critical roles in specifying the germ lineage, the inheritance of epigenetic information, and post-transcriptional gene regulation. Across species, conserved germ granule proteins reflect these essential functions. A significant proportion of proteins that localize to germ granules are components of RNA metabolism and small RNA (sRNA) gene regulatory pathways. Here we synthesize our current knowledge of the roles that germ granules and their components play in sRNA pathway functions, transgenerational inheritance, and fertility in the C. elegans germline.
Collapse
Affiliation(s)
- Adam E Sundby
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ruxandra I Molnar
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Julie M Claycomb
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
124
|
Wan G, Bajaj L, Fields B, Dodson AE, Pagano D, Fei Y, Kennedy S. ZSP-1 is a Z granule surface protein required for Z granule fluidity and germline immortality in Caenorhabditis elegans. EMBO J 2021; 40:e105612. [PMID: 33438773 DOI: 10.15252/embj.2020105612] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 12/02/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Germ granules are biomolecular condensates that form in germ cells of all/most animals, where they regulate mRNA expression to promote germ cell function and totipotency. In the adult Caenorhabditis elegans germ cell, these granules are composed of at least four distinct sub-compartments, one of which is the Z granule. To better understand the role of the Z granule in germ cell biology, we conducted a genetic screen for genes specifically required for Z granule assembly or morphology. Here, we show that zsp-1, which encodes a low-complexity/polyampholyte-domain protein, is required for Z granule homeostasis. ZSP-1 localizes to the outer surface of Z granules. In the absence of ZSP-1, Z granules swell to an abnormal size, fail to segregate with germline blastomeres during development, and lose their liquid-like character. Finally, ZSP-1 promotes piRNA- and siRNA-directed gene regulation and germline immortality. Our data suggest that Z granules coordinate small RNA-based gene regulation to promote germ cell function and that ZSP-1 helps/is need to maintain Z granule morphology and liquidity.
Collapse
Affiliation(s)
- Gang Wan
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, GuangZhou, GuangDong, China.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Lakshya Bajaj
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Brandon Fields
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.,Department of Biological Engineering, Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anne E Dodson
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Daniel Pagano
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Yuhan Fei
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.,College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Scott Kennedy
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
125
|
Padeken J, Methot S, Zeller P, Delaney CE, Kalck V, Gasser SM. Argonaute NRDE-3 and MBT domain protein LIN-61 redundantly recruit an H3K9me3 HMT to prevent embryonic lethality and transposon expression. Genes Dev 2021; 35:82-101. [PMID: 33303642 PMCID: PMC7778263 DOI: 10.1101/gad.344234.120] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/05/2020] [Indexed: 12/30/2022]
Abstract
The establishment and maintenance of chromatin domains shape the epigenetic memory of a cell, with the methylation of histone H3 lysine 9 (H3K9me) defining transcriptionally silent heterochromatin. We show here that the C. elegans SET-25 (SUV39/G9a) histone methyltransferase (HMT), which catalyzes H3K9me1, me2 and me3, can establish repressed chromatin domains de novo, unlike the SETDB1 homolog MET-2. Thus, SET-25 is needed to silence novel insertions of RNA or DNA transposons, and repress tissue-specific genes de novo during development. We identify two partially redundant pathways that recruit SET-25 to its targets. One pathway requires LIN-61 (L3MBTL2), which uses its four MBT domains to bind the H3K9me2 deposited by MET-2. The second pathway functions independently of MET-2 and involves the somatic Argonaute NRDE-3 and small RNAs. This pathway targets primarily highly conserved RNA and DNA transposons. These redundant SET-25 targeting pathways (MET-2-LIN-61-SET-25 and NRDE-3-SET-25) ensure repression of intact transposons and de novo insertions, while MET-2 can act alone to repress simple and satellite repeats. Removal of both pathways in the met-2;nrde-3 double mutant leads to the loss of somatic H3K9me2 and me3 and the synergistic derepression of transposons in embryos, strongly elevating embryonic lethality.
Collapse
Affiliation(s)
- Jan Padeken
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Stephen Methot
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Peter Zeller
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
- Faculty of Natural Sciences, University of Basel, CH-4056 Basel, Switzerland
| | - Colin E Delaney
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Veronique Kalck
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
- Faculty of Natural Sciences, University of Basel, CH-4056 Basel, Switzerland
| |
Collapse
|
126
|
Lev I, Rechavi O. Germ Granules Allow Transmission of Small RNA-Based Parental Responses in the "Germ Plasm". iScience 2020; 23:101831. [PMID: 33305186 PMCID: PMC7718480 DOI: 10.1016/j.isci.2020.101831] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In the recent decade small RNA-based inheritance has been implicated in a variety of transmitted physiological responses to the environment. In Caenorhabditis elegans, heritable small RNAs rely on RNA-dependent RNA polymerases, RNA-processing machinery, chromatin modifiers, and argonauts for their biogenesis and gene-regulatory effects. Importantly, many of these factors reside in evolutionary conserved germ granules that are required for maintaining germ cell identity and gene expression. Recent literature demonstrated that transient disturbance to the stability of the germ granules leads to changes in the pools of heritable small RNAs and the physiology of the progeny. In this piece, we discuss the heritable consequences of transient destabilization of germ granules and elaborate on the various small RNA-related processes that act in the germ granules. We further propose that germ granules may serve as environment sensors that translate environmental changes to inheritable small RNA-based responses.
Collapse
Affiliation(s)
- Itamar Lev
- Department of Neurobiology, Wise Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Neurobiology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-BioCenter 1, 1030 Vienna, Austria
| | - Oded Rechavi
- Department of Neurobiology, Wise Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
127
|
Aljohani MD, El Mouridi S, Priyadarshini M, Vargas-Velazquez AM, Frøkjær-Jensen C. Engineering rules that minimize germline silencing of transgenes in simple extrachromosomal arrays in C. elegans. Nat Commun 2020; 11:6300. [PMID: 33298957 PMCID: PMC7725773 DOI: 10.1038/s41467-020-19898-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/05/2020] [Indexed: 12/29/2022] Open
Abstract
Transgenes are prone to progressive silencing due to their structure, copy number, and genomic location. In C. elegans, repressive mechanisms are particularly strong in the germline with almost fully penetrant transgene silencing in simple extrachromosomal arrays and frequent silencing of single-copy transgene insertions. A class of non-coding DNA, Periodic An/Tn Clusters (PATCs) can prevent transgene-silencing in repressive chromatin or from small interfering RNAs (piRNAs). Here, we describe design rules (codon-optimization, intron and PATC inclusion, elevated temperature (25 °C), and vector backbone removal) for efficient germline expression from arrays in wildtype animals. We generate web-based tools to analyze PATCs and reagents for the convenient assembly of PATC-rich transgenes. An extensive collection of silencing resistant fluorescent proteins (e.g., gfp, mCherry, and tagBFP) can be used for dissecting germline regulatory elements and a set of enhanced enzymes (Mos1 transposase, Cas9, Cre, and Flp recombinases) enable efficient genetic engineering in C. elegans.
Collapse
Affiliation(s)
- Mohammed D Aljohani
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), KAUST Environmental Epigenetics Program (KEEP), Thuwal, 23955-6900, Saudi Arabia
| | - Sonia El Mouridi
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), KAUST Environmental Epigenetics Program (KEEP), Thuwal, 23955-6900, Saudi Arabia
| | - Monika Priyadarshini
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), KAUST Environmental Epigenetics Program (KEEP), Thuwal, 23955-6900, Saudi Arabia
| | - Amhed M Vargas-Velazquez
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), KAUST Environmental Epigenetics Program (KEEP), Thuwal, 23955-6900, Saudi Arabia
| | - Christian Frøkjær-Jensen
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), KAUST Environmental Epigenetics Program (KEEP), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
128
|
Kurhanewicz NA, Dinwiddie D, Bush ZD, Libuda DE. Elevated Temperatures Cause Transposon-Associated DNA Damage in C. elegans Spermatocytes. Curr Biol 2020; 30:5007-5017.e4. [DOI: 10.1016/j.cub.2020.09.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 11/28/2022]
|
129
|
Vishnupriya R, Thomas L, Wahba L, Fire A, Subramaniam K. PLP-1 is essential for germ cell development and germline gene silencing in Caenorhabditis elegans. Development 2020; 147:dev.195578. [PMID: 33051256 DOI: 10.1242/dev.195578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022]
Abstract
The germline genome is guarded against invading foreign genetic elements by small RNA-dependent gene-silencing pathways. Components of these pathways localize to, or form distinct aggregates in the vicinity of, germ granules. These components and their dynamics in and out of granules are currently being intensively studied. Here, we report the identification of PLP-1, a Caenorhabditis elegans protein related to the human single-stranded nucleic acid-binding protein Pur-alpha, as a component of germ granules in C. elegans We show that PLP-1 is essential for silencing different types of transgenes in the germ line and for suppressing the expression of several endogenous genes controlled by the germline gene-silencing pathways. Our results reveal that PLP-1 functions downstream of small RNA biogenesis during initiation of gene silencing. Based on these results and the earlier findings that Pur-alpha proteins interact with both RNA and protein, we propose that PLP-1 couples certain RNAs with their protein partners in the silencing complex. PLP-1 orthologs localized on RNA granules may similarly contribute to germline gene silencing in other organisms.
Collapse
Affiliation(s)
- Rajaram Vishnupriya
- Department of Biotechnology, Indian Institute of Technology-Madras, Chennai 600036, India
| | - Linitha Thomas
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Lamia Wahba
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andrew Fire
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kuppuswamy Subramaniam
- Department of Biotechnology, Indian Institute of Technology-Madras, Chennai 600036, India
| |
Collapse
|
130
|
Bergthorsson U, Sheeba CJ, Konrad A, Belicard T, Beltran T, Katju V, Sarkies P. Long-term experimental evolution reveals purifying selection on piRNA-mediated control of transposable element expression. BMC Biol 2020; 18:162. [PMID: 33158445 PMCID: PMC7646084 DOI: 10.1186/s12915-020-00897-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 10/13/2020] [Indexed: 11/29/2022] Open
Abstract
Background Transposable elements (TEs) are an almost universal constituent of eukaryotic genomes. In animals, Piwi-interacting small RNAs (piRNAs) and repressive chromatin often play crucial roles in preventing TE transcription and thus restricting TE activity. Nevertheless, TE content varies widely across eukaryotes and the dynamics of TE activity and TE silencing across evolutionary time is poorly understood. Results Here, we used experimentally evolved populations of C. elegans to study the dynamics of TE expression over 409 generations. The experimental populations were evolved at population sizes of 1, 10 and 100 individuals to manipulate the efficiency of natural selection versus genetic drift. We demonstrate increased TE expression relative to the ancestral population, with the largest increases occurring in the smallest populations. We show that the transcriptional activation of TEs within active regions of the genome is associated with failure of piRNA-mediated silencing, whilst desilenced TEs in repressed chromatin domains retain small RNAs. Additionally, we find that the sequence context of the surrounding region influences the propensity of TEs to lose silencing through failure of small RNA-mediated silencing. Conclusions Our results show that natural selection in C. elegans is responsible for maintaining low levels of TE expression, and provide new insights into the epigenomic features responsible.
Collapse
Affiliation(s)
- Ulfar Bergthorsson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77845, USA
| | - Caroline J Sheeba
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK.,Institute of Clinical Sciences, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Anke Konrad
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77845, USA.,Present Address: Intituto Gulbenkian de Ciencia, Rua da Quinta Grande, 6, 2780-156, Oeiras, Portugal
| | - Tony Belicard
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK.,Institute of Clinical Sciences, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Toni Beltran
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK.,Institute of Clinical Sciences, Imperial College London, Du Cane Road, London, W12 0NN, UK.,Present Address: Centre for Genomic Regulation, PRBB Building, 08003, Barcelona, Spain
| | - Vaishali Katju
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77845, USA.
| | - Peter Sarkies
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK. .,Institute of Clinical Sciences, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
131
|
Abstract
A diversity of gene regulatory mechanisms drives the changes in gene expression required for animal development. Here, we discuss the developmental roles of a class of gene regulatory factors composed of a core protein subunit of the Argonaute family and a 21-26-nucleotide RNA cofactor. These represent ancient regulatory complexes, originally evolved to repress genomic parasites such as transposons, viruses and retroviruses. However, over the course of evolution, small RNA-guided pathways have expanded and diversified, and they play multiple roles across all eukaryotes. Pertinent to this review, Argonaute and small RNA-mediated regulation has acquired numerous functions that affect all aspects of animal life. The regulatory function is provided by the Argonaute protein and its interactors, while the small RNA provides target specificity, guiding the Argonaute to a complementary RNA. C. elegans has 19 different, functional Argonautes, defining distinct yet interconnected pathways. Each Argonaute binds a relatively well-defined class of small RNA with distinct molecular properties. A broad classification of animal small RNA pathways distinguishes between two groups: (i) the microRNA pathway is involved in repressing relatively specific endogenous genes and (ii) the other small RNA pathways, which effectively act as a genomic immune system to primarily repress expression of foreign or "non-self" RNA while maintaining correct endogenous gene expression. microRNAs play prominent direct roles in all developmental stages, adult physiology and lifespan. The other small RNA pathways act primarily in the germline, but their impact extends far beyond, into embryogenesis and adult physiology, and even to subsequent generations. Here, we review the mechanisms and developmental functions of the diverse small RNA pathways of C. elegans.
Collapse
Affiliation(s)
| | - Luisa Cochella
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria.
| |
Collapse
|
132
|
Dodson AE, Kennedy S. Phase Separation in Germ Cells and Development. Dev Cell 2020; 55:4-17. [PMID: 33007213 DOI: 10.1016/j.devcel.2020.09.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/28/2020] [Accepted: 09/05/2020] [Indexed: 12/20/2022]
Abstract
The animal germline is an immortal cell lineage that gives rise to eggs and/or sperm each generation. Fusion of an egg and sperm, or fertilization, sets off a cascade of developmental events capable of producing an array of different cell types and body plans. How germ cells develop, function, and eventually give rise to entirely new organisms is an important question in biology. A growing body of evidence suggests that phase separation events likely play a significant and multifaceted role in germ cells and development. Here, we discuss the organization, dynamics, and potential functions of phase-separated compartments in germ cells and examine the various ways in which phase separation might contribute to the development of multicellular organisms.
Collapse
Affiliation(s)
- Anne E Dodson
- Department of Genetics, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA.
| | - Scott Kennedy
- Department of Genetics, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
133
|
Pippadpally S, Venkatesh T. Deciphering piRNA biogenesis through cytoplasmic granules, mitochondria and exosomes. Arch Biochem Biophys 2020; 695:108597. [PMID: 32976825 DOI: 10.1016/j.abb.2020.108597] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/16/2020] [Accepted: 09/19/2020] [Indexed: 12/31/2022]
Abstract
RNA systems biology is marked by a myriad of cellular processes mediated by small and long non-coding RNAs. Small non-coding RNAs include siRNAs (small interfering RNAs), miRNAs (microRNAs), tRFs(tRNA derived fragments), and piRNAs (PIWI-interacting RNAs). piRNAs are vital for the maintenance of the germ-line integrity and repress the transposons either transcriptionally or post-transcriptionally. Studies based on model organisms have shown that defects in the piRNA pathway exhibit impaired gametogenesis and loss of fertility. piRNA biogenesis is marked by transcription of precursor molecules and their subsequent processing in the cytoplasm to generate mature piRNAs. Their biogenesis is unique and complex, which involves non-canonical transcription and self-amplification mechanisms such as the ping-pong cycle. piRNA biogenesis is different in somatic and germ cells and involves the role of cytoplasmic granules in addition to mitochondria. In this review, we discuss the biogenesis and maturation of piRNAs in various cytoplasmic granules such as Yb and nuage bodies. Also, we review the role of P bodies, stress granules, and P granules, and membrane-bound compartments such as mitochondria and exosomes in piRNA biogenesis.
Collapse
Affiliation(s)
- Srikanth Pippadpally
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Kasargod, 671316, India
| | - Thejaswini Venkatesh
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Kasargod, 671316, India.
| |
Collapse
|
134
|
Pereira AG, Gracida X, Kagias K, Zhang Y. C. elegans aversive olfactory learning generates diverse intergenerational effects. J Neurogenet 2020; 34:378-388. [PMID: 32940103 DOI: 10.1080/01677063.2020.1819265] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Parental experience can modulate the behavior of their progeny. While the molecular mechanisms underlying parental effects or inheritance of behavioral traits have been studied under several environmental conditions, it remains largely unexplored how the nature of parental experience affects the information transferred to the next generation. To address this question, we used C. elegans, a nematode that feeds on bacteria in its habitat. Some of these bacteria are pathogenic and the worm learns to avoid them after a brief exposure. We found, unexpectedly, that a short parental experience increased the preference for the pathogen in the progeny. Furthermore, increasing the duration of parental exposure switched the response of the progeny from attraction to avoidance. To characterize the underlying molecular mechanisms, we found that the RNA-dependent RNA Polymerase (RdRP) RRF-3, required for the biogenesis of 26 G endo-siRNAs, regulated both types of intergenerational effects. Together, we show that different parental experiences with the same environmental stimulus generate different effects on the behavior of the progeny through small RNA-mediated regulation of gene expression.
Collapse
Affiliation(s)
- Ana Goncalves Pereira
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Xicotencatl Gracida
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Konstantinos Kagias
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Yun Zhang
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA
| |
Collapse
|
135
|
The critical impacts of small RNA biogenesis proteins on aging, longevity and age-related diseases. Ageing Res Rev 2020; 62:101087. [PMID: 32497728 DOI: 10.1016/j.arr.2020.101087] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 04/01/2020] [Accepted: 05/11/2020] [Indexed: 12/13/2022]
Abstract
Small RNAs and enzymes that provide their biogenesis and functioning are involved in the organism development and coordination of biological processes, including metabolism, maintaining genome integrity, immune and stress responses. In this review, we focused on the role of small RNA biogenesis proteins in determining the aging and longevity of animals and human. A number of studies have revealed that changes in expression profiles of key enzymes, in particular proteins of the Drosha, Dicer and Argonaute families, are associated with the aging process, as well as with some age-related diseases and progeroid syndromes. Down-regulation of small RNA biogenesis proteins leads to global alterations in the expression of regulatory RNAs, disruption of key molecular, cellular and systemic processes, which leads to a lifespan shortening. In contrast, overexpression of Dicer prolongs lifespan and improves cellular defense. Additionally, the role of small RNA biogenesis proteins in the pathogenesis of age-related diseases, including cancer, inflammaging, neurodegeneration, cardiovascular, metabolic and immune disorders, has been conclusively evidenced. Recent advances in biomedicine allow using these proteins as diagnostic and prognostic biomarkers and therapeutic targets.
Collapse
|
136
|
Suen KM, Braukmann F, Butler R, Bensaddek D, Akay A, Lin CC, Milonaitytė D, Doshi N, Sapetschnig A, Lamond A, Ladbury JE, Miska EA. DEPS-1 is required for piRNA-dependent silencing and PIWI condensate organisation in Caenorhabditis elegans. Nat Commun 2020; 11:4242. [PMID: 32843637 PMCID: PMC7447803 DOI: 10.1038/s41467-020-18089-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/18/2020] [Indexed: 12/13/2022] Open
Abstract
Membraneless organelles are sites for RNA biology including small non-coding RNA (ncRNA) mediated gene silencing. How small ncRNAs utilise phase separated environments for their function is unclear. We investigated how the PIWI-interacting RNA (piRNA) pathway engages with the membraneless organelle P granule in Caenorhabditis elegans. Proteomic analysis of the PIWI protein PRG-1 reveals an interaction with the constitutive P granule protein DEPS-1. DEPS-1 is not required for piRNA biogenesis but piRNA-dependent silencing: deps-1 mutants fail to produce the secondary endo-siRNAs required for the silencing of piRNA targets. We identify a motif on DEPS-1 which mediates a direct interaction with PRG-1. DEPS-1 and PRG-1 form intertwining clusters to build elongated condensates in vivo which are dependent on the Piwi-interacting motif of DEPS-1. Additionally, we identify EDG-1 as an interactor of DEPS-1 and PRG-1. Our study reveals how specific protein-protein interactions drive the spatial organisation and piRNA-dependent silencing within membraneless organelles.
Collapse
Affiliation(s)
- Kin Man Suen
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Fabian Braukmann
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Richard Butler
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Dalila Bensaddek
- Laboratory for Quantitative Proteomics, Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
- Bioscience Core labs, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Alper Akay
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Chi-Chuan Lin
- School of Molecular and Cellular Biology, University of Leeds, LC Miall Building, Leeds, LS2 9JT, UK
| | - Dovilė Milonaitytė
- School of Molecular and Cellular Biology, University of Leeds, LC Miall Building, Leeds, LS2 9JT, UK
| | - Neel Doshi
- University of Cambridge, School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 0SP, UK
| | | | - Angus Lamond
- Laboratory for Quantitative Proteomics, Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - John Edward Ladbury
- School of Molecular and Cellular Biology, University of Leeds, LC Miall Building, Leeds, LS2 9JT, UK
| | - Eric Alexander Miska
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1SA, UK.
| |
Collapse
|
137
|
Zeng C, Weng C, Wang X, Yan YH, Li WJ, Xu D, Hong M, Liao S, Dong MQ, Feng X, Xu C, Guang S. Functional Proteomics Identifies a PICS Complex Required for piRNA Maturation and Chromosome Segregation. Cell Rep 2020; 27:3561-3572.e3. [PMID: 31216475 DOI: 10.1016/j.celrep.2019.05.076] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/08/2019] [Accepted: 05/20/2019] [Indexed: 01/19/2023] Open
Abstract
piRNAs play significant roles in suppressing transposons and nonself nucleic acids, maintaining genome integrity, and defending against viral infections. In C. elegans, piRNA precursors are transcribed in the nucleus and are subjected to a number of processing and maturation steps. The biogenesis of piRNAs is not fully understood. We use functional proteomics in C. elegans and identify a piRNA biogenesis and chromosome segregation (PICS) complex. The PICS complex contains TOFU-6, PID-1, PICS-1, TOST-1, and ERH-2, which exhibit dynamic localization among different subcellular compartments. In the germlines, the PICS complex contains TOFU-6/PICS-1/ERH-2/PID-1, is largely concentrated at the perinuclear granule zone, and engages in piRNA processing. During embryogenesis, the TOFU-6/PICS-1/ERH-2/TOST-1 complex accumulates in the nucleus and plays essential roles in chromosome segregation. The functions of these factors in mediating chromosome segregation are independent of piRNA production. We speculate that differential compositions of PICS factors may help cells coordinate distinct cellular processes.
Collapse
Affiliation(s)
- Chenming Zeng
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| | - Chenchun Weng
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| | - Xiaoyang Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| | - Yong-Hong Yan
- National Institute of Biological Sciences, Beijing 102206, China
| | - Wen-Jun Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - Demin Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| | - Minjie Hong
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| | - Shanhui Liao
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xuezhu Feng
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China.
| | - Chao Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China.
| | - Shouhong Guang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China; CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Hefei, Anhui 230027, P.R. China.
| |
Collapse
|
138
|
Wu PH, Fu Y, Cecchini K, Özata DM, Arif A, Yu T, Colpan C, Gainetdinov I, Weng Z, Zamore PD. The evolutionarily conserved piRNA-producing locus pi6 is required for male mouse fertility. Nat Genet 2020; 52:728-739. [PMID: 32601478 PMCID: PMC7383350 DOI: 10.1038/s41588-020-0657-7] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 05/29/2020] [Indexed: 12/16/2022]
Abstract
Pachytene PIWI-interacting RNAs (piRNAs), which comprise >80% of small RNAs in the adult mouse testis, have been proposed to bind and regulate target RNAs like microRNAs, cleave targets like short interfering RNAs or lack biological function altogether. Although piRNA pathway protein mutants are male sterile, no biological function has been identified for any mammalian piRNA-producing locus. Here, we report that males lacking piRNAs from a conserved mouse pachytene piRNA locus on chromosome 6 (pi6) produce sperm with defects in capacitation and egg fertilization. Moreover, heterozygous embryos sired by pi6-/- fathers show reduced viability in utero. Molecular analyses suggest that pi6 piRNAs repress gene expression by cleaving messenger RNAs encoding proteins required for sperm function. pi6 also participates in a network of piRNA-piRNA precursor interactions that initiate piRNA production from a second piRNA locus on chromosome 10, as well as pi6 itself. Our data establish a direct role for pachytene piRNAs in spermiogenesis and embryo viability.
Collapse
Affiliation(s)
- Pei-Hsuan Wu
- Howard Hughes Medical Institute and RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Yu Fu
- Bioinformatics Program, Boston University, Boston, MA, USA.,Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA.,Oncology Drug Discovery Unit, Takeda Pharmaceuticals, Cambridge, MA, USA
| | - Katharine Cecchini
- Howard Hughes Medical Institute and RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Deniz M Özata
- Howard Hughes Medical Institute and RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Amena Arif
- Howard Hughes Medical Institute and RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Tianxiong Yu
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA.,School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Cansu Colpan
- Howard Hughes Medical Institute and RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ildar Gainetdinov
- Howard Hughes Medical Institute and RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA. .,Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Phillip D Zamore
- Howard Hughes Medical Institute and RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
139
|
Chen W, Hu Y, Lang CF, Brown JS, Schwabach S, Song X, Zhang Y, Munro E, Bennett K, Zhang D, Lee HC. The Dynamics of P Granule Liquid Droplets Are Regulated by the Caenorhabditis elegans Germline RNA Helicase GLH-1 via Its ATP Hydrolysis Cycle. Genetics 2020; 215:421-434. [PMID: 32245789 PMCID: PMC7268986 DOI: 10.1534/genetics.120.303052] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/12/2020] [Indexed: 02/06/2023] Open
Abstract
P granules are phase-separated liquid droplets that play important roles in the maintenance of germ cell fate in Caenorhabditis elegans Both the localization and formation of P granules are highly dynamic, but mechanisms that regulate such processes remain poorly understood. Here, we show evidence that the VASA-like germline RNA helicase GLH-1 couples distinct steps of its ATPase hydrolysis cycle to control the formation and disassembly of P granules. In addition, we found that the phenylalanine-glycine-glycine repeats in GLH-1 promote its localization at the perinucleus. Proteomic analyses of the GLH-1 complex with a GLH-1 mutation that interferes with P granule disassembly revealed transient interactions of GLH-1 with several Argonautes and RNA-binding proteins. Finally, we found that defects in recruiting the P granule component PRG-1 to perinuclear foci in the adult germline correlate with the fertility defects observed in various GLH-1 mutants. Together, our results highlight the versatile roles of an RNA helicase in controlling the formation of liquid droplets in space and time.
Collapse
Affiliation(s)
- Wenjun Chen
- Department of Molecular Genetics and Cell Biology, University of Chicago, Illinois 60637
| | - Yabing Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China 430074
| | - Charles F Lang
- Department of Molecular Genetics and Cell Biology, University of Chicago, Illinois 60637
| | - Jordan S Brown
- Department of Molecular Genetics and Cell Biology, University of Chicago, Illinois 60637
| | - Sierra Schwabach
- Department of Molecular Genetics and Cell Biology, University of Chicago, Illinois 60637
| | - Xiaoyan Song
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, China 450052
| | - Ying Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China 430074
| | - Edwin Munro
- Department of Molecular Genetics and Cell Biology, University of Chicago, Illinois 60637
| | - Karen Bennett
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri 65212
| | - Donglei Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China 430074
| | - Heng-Chi Lee
- Department of Molecular Genetics and Cell Biology, University of Chicago, Illinois 60637
| |
Collapse
|
140
|
Wang J, Zhang P, Lu Y, Li Y, Zheng Y, Kan Y, Chen R, He S. piRBase: a comprehensive database of piRNA sequences. Nucleic Acids Res 2020; 47:D175-D180. [PMID: 30371818 PMCID: PMC6323959 DOI: 10.1093/nar/gky1043] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/22/2018] [Indexed: 12/25/2022] Open
Abstract
PIWI-interacting RNAs are a class of small RNAs that is most abundantly expressed in animal germline. Substantial research is going on to reveal the functions of piRNAs in the epigenetic and post-transcriptional regulation of transposons and genes. To collect and annotate these data, we developed piRBase, a database assisting piRNA functional study. Since its launch in 2014, piRBase has integrated 264 data sets from 21 organisms, and the number of collected piRNAs has reached 173 million. The latest piRBase release (v2.0, 2018) was more focused on the comprehensive annotation of piRNA sequences, as well as the increasing number of piRNAs. In addition, piRBase release v2.0 also contained the potential information of piRNA targets and disease related piRNA. All datasets in piRBase is free to access, and available for browse, search and bulk downloads at http://www.regulatoryrna.org/database/piRNA/.
Collapse
Affiliation(s)
- Jiajia Wang
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Peng Zhang
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yiping Lu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001,China
| | - Yanyan Li
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Science, Beijing 100049, China
| | - Yu Zheng
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Science, Beijing 100049, China
| | - Yunchao Kan
- China-UK-NYNU-RRes Joint Laboratory of insect biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, Nanyang, Henan 473061,China
| | - Runsheng Chen
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Shunmin He
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
141
|
Wu WS, Brown JS, Chen TT, Chu YH, Huang WC, Tu S, Lee HC. piRTarBase: a database of piRNA targeting sites and their roles in gene regulation. Nucleic Acids Res 2020; 47:D181-D187. [PMID: 30357353 PMCID: PMC6323935 DOI: 10.1093/nar/gky956] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/04/2018] [Indexed: 12/12/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) are a class of small noncoding RNAs that guard animal genomes against mutation by silencing transposons. In addition, recent studies have reported that piRNAs silence various endogenous genes. Tens of thousands of distinct piRNAs made in animals do not pair well to transposons and currently the functions and targets of piRNAs are largely unexplored. piRTarBase provides a user-friendly interface to access both predicted and experimentally identified piRNA targeting sites in Caenorhabditis elegans. The user can input genes of interest and retrieve a list of piRNA targeting sites on the input genes. Alternatively, the user can input a piRNA and retrieve a list of its mRNA targets. Additionally, piRTarBase integrates published mRNA and small RNA sequencing data, which will help users identify biologically relevant targeting events. Importantly, our analyses suggest that the piRNA sites found by both predictive and experimental approaches are more likely to exhibit silencing effects on their targets than each method alone. Taken together, piRTarBase offers an integrative platform that will help users to identify functional piRNA target sites by evaluating various information. piRTarBase is freely available for academic use at http://cosbi6.ee.ncku.edu.tw/piRTarBase/.
Collapse
Affiliation(s)
- Wei-Sheng Wu
- Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Jordan S Brown
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Tsung-Te Chen
- Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Han Chu
- Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Che Huang
- Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Shikui Tu
- Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Heng-Chi Lee
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
142
|
Manage KI, Rogers AK, Wallis DC, Uebel CJ, Anderson DC, Nguyen DAH, Arca K, Brown KC, Cordeiro Rodrigues RJ, de Albuquerque BF, Ketting RF, Montgomery TA, Phillips CM. A tudor domain protein, SIMR-1, promotes siRNA production at piRNA-targeted mRNAs in C. elegans. eLife 2020; 9:56731. [PMID: 32338603 PMCID: PMC7255803 DOI: 10.7554/elife.56731] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023] Open
Abstract
piRNAs play a critical role in the regulation of transposons and other germline genes. In Caenorhabditis elegans, regulation of piRNA target genes is mediated by the mutator complex, which synthesizes high levels of siRNAs through the activity of an RNA-dependent RNA polymerase. However, the steps between mRNA recognition by the piRNA pathway and siRNA amplification by the mutator complex are unknown. Here, we identify the Tudor domain protein, SIMR-1, as acting downstream of piRNA production and upstream of mutator complex-dependent siRNA biogenesis. Interestingly, SIMR-1 also localizes to distinct subcellular foci adjacent to P granules and Mutator foci, two phase-separated condensates that are the sites of piRNA-dependent mRNA recognition and mutator complex-dependent siRNA amplification, respectively. Thus, our data suggests a role for multiple perinuclear condensates in organizing the piRNA pathway and promoting mRNA regulation by the mutator complex. In the biological world, a process known as RNA interference helps cells to switch genes on and off and to defend themselves against harmful genetic material. This mechanism works by deactivating RNA sequences, the molecular templates cells can use to create proteins. Overall, RNA interference relies on the cell creating small RNA molecules that can target and inhibit the harmful RNA sequences that need to be silenced. More precisely, in round worms such as Caenorhabditis elegans, RNA interference happens in two steps. First, primary small RNAs identify the target sequences, which are then combatted by newly synthetised, secondary small RNAs. A number of proteins are also involved in both steps of the process. RNA interference is particularly important to preserve fertility, guarding sex cells against ‘rogue’ segments of genetic information that could be passed on to the next generation. In future sex cells, the proteins involved in RNA interference cluster together, forming a structure called a germ granule. Yet, little is known about the roles and identity of these proteins. To fill this knowledge gap, Manage et al. focused on the second stage of the RNA interference pathway in the germ granules of C. elegans, examining the molecules that physically interact with a key protein. This work revealed a new protein called SIMR-1. Looking into the role of SIMR-1 showed that the protein is required to amplify secondary small RNAs, but not to identify target sequences. However, it only promotes the creation of secondary small RNAs if a specific subtype of primary small RNAs have recognized the target RNAs for silencing. Further experiments also showed that within the germ granule, SIMR-1 is present in a separate substructure different from any compartment previously identified. This suggests that each substep of the RNA interference process takes place at a different location in the granule. In both C. elegans and humans, disruptions in the RNA interference pathway can lead to conditions such as cancer or infertility. Dissecting the roles of the proteins involved in this process in roundworms may help to better grasp how this process unfolds in mammals, and how it could be corrected in the case of disease.
Collapse
Affiliation(s)
- Kevin I Manage
- Department of Biological Sciences, University of Southern California, Los Angeles, United States
| | - Alicia K Rogers
- Department of Biological Sciences, University of Southern California, Los Angeles, United States
| | - Dylan C Wallis
- Department of Biological Sciences, University of Southern California, Los Angeles, United States
| | - Celja J Uebel
- Department of Biological Sciences, University of Southern California, Los Angeles, United States
| | - Dorian C Anderson
- Department of Biological Sciences, University of Southern California, Los Angeles, United States
| | - Dieu An H Nguyen
- Department of Biological Sciences, University of Southern California, Los Angeles, United States
| | - Katerina Arca
- Department of Biological Sciences, University of Southern California, Los Angeles, United States
| | - Kristen C Brown
- Department of Biology, Colorado State University, Fort Collins, United States.,Cell and Molecular Biology Program, Colorado State University, Fort Collins, United States
| | - Ricardo J Cordeiro Rodrigues
- Biology of Non-coding RNA Group, Institute of Molecular Biology, Mainz, Germany.,International PhD Programme on Gene Regulation, Epigenetics, and Genome Stability, Mainz, Germany
| | | | - René F Ketting
- Biology of Non-coding RNA Group, Institute of Molecular Biology, Mainz, Germany
| | - Taiowa A Montgomery
- Department of Biology, Colorado State University, Fort Collins, United States
| | - Carolyn Marie Phillips
- Department of Biological Sciences, University of Southern California, Los Angeles, United States
| |
Collapse
|
143
|
Li F, Yuan P, Rao M, Jin CH, Tang W, Rong YF, Hu YP, Zhang F, Wei T, Yin Q, Liang T, Wu L, Li J, Li D, Liu Y, Lou W, Zhao S, Liu MF. piRNA-independent function of PIWIL1 as a co-activator for anaphase promoting complex/cyclosome to drive pancreatic cancer metastasis. Nat Cell Biol 2020; 22:425-438. [PMID: 32203416 DOI: 10.1038/s41556-020-0486-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 02/17/2020] [Indexed: 12/19/2022]
Abstract
Piwi proteins are normally restricted in germ cells to suppress transposons through associations with Piwi-interacting RNAs (piRNAs), but they are also frequently activated in many types of human cancers. A great puzzle is the lack of significant induction of corresponding piRNAs in cancer cells, as we document here in human pancreatic ductal adenocarcinomas (PDACs), which implies that such germline-specific proteins are somehow hijacked to promote tumorigenesis through a different mode of action. Here, we show that in the absence of piRNAs, human PIWIL1 in PDAC functions as an oncoprotein by activating the anaphase promoting complex/cyclosome (APC/C) E3 complex, which then targets a critical cell adhesion-related protein, Pinin, to enhance PDAC metastasis. This is in contrast to piRNA-dependent PIWIL1 ubiquitination and removal by APC/C during late spermiogenesis. These findings unveil a piRNA-dependent mechanism to switch PIWIL1 from a substrate in spermatids to a co-activator of APC/C in human cancer cells.
Collapse
Affiliation(s)
- Feng Li
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences-University of Chinese Academy of Sciences, Shanghai, China
| | - Peng Yuan
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences-University of Chinese Academy of Sciences, Shanghai, China
| | - Ming Rao
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences-University of Chinese Academy of Sciences, Shanghai, China
| | - Chun-Hui Jin
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Wei Tang
- The Animal Core Facility, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Ye-Fei Rong
- Department of Pancreatic Surgery, Zhong Shan Hospital, Shanghai, China
| | - Yun-Ping Hu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fengjuan Zhang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences-University of Chinese Academy of Sciences, Shanghai, China
| | - Tao Wei
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Qi Yin
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences-University of Chinese Academy of Sciences, Shanghai, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Ligang Wu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences-University of Chinese Academy of Sciences, Shanghai, China
| | - Jinsong Li
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences-University of Chinese Academy of Sciences, Shanghai, China
| | - Dangsheng Li
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences-University of Chinese Academy of Sciences, Shanghai, China
| | - Yingbin Liu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenhui Lou
- Department of Pancreatic Surgery, Zhong Shan Hospital, Shanghai, China
| | - Shuang Zhao
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences-University of Chinese Academy of Sciences, Shanghai, China.
| | - Mo-Fang Liu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences-University of Chinese Academy of Sciences, Shanghai, China.
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China.
| |
Collapse
|
144
|
Abstract
Transposons are major genome constituents that can mobilize and trigger mutations, DNA breaks and chromosome rearrangements. Transposon silencing is particularly important in the germline, which is dedicated to transmission of the inherited genome. Piwi-interacting RNAs (piRNAs) guide a host defence system that transcriptionally and post-transcriptionally silences transposons during germline development. While germline control of transposons by the piRNA pathway is conserved, many piRNA pathway genes are evolving rapidly under positive selection, and the piRNA biogenesis machinery shows remarkable phylogenetic diversity. Conservation of core function combined with rapid gene evolution is characteristic of a host–pathogen arms race, suggesting that transposons and the piRNA pathway are engaged in an evolutionary tug of war that is driving divergence of the biogenesis machinery. Recent studies suggest that this process may produce biochemical incompatibilities that contribute to reproductive isolation and species divergence.
Collapse
Affiliation(s)
- Swapnil S Parhad
- Program in Molecular Medicine, University of Massachusetts Medical School , 373 Plantation Street, Worcester, MA 01605 , USA
| | - William E Theurkauf
- Program in Molecular Medicine, University of Massachusetts Medical School , 373 Plantation Street, Worcester, MA 01605 , USA
| |
Collapse
|
145
|
Reed KJ, Svendsen JM, Brown KC, Montgomery BE, Marks TN, Vijayasarathy T, Parker DM, Nishimura EO, Updike DL, Montgomery TA. Widespread roles for piRNAs and WAGO-class siRNAs in shaping the germline transcriptome of Caenorhabditis elegans. Nucleic Acids Res 2020; 48:1811-1827. [PMID: 31872227 PMCID: PMC7038979 DOI: 10.1093/nar/gkz1178] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 12/31/2022] Open
Abstract
Piwi-interacting RNAs (piRNAs) and small interfering RNAs (siRNAs) are distinct classes of small RNAs required for proper germline development. To identify the roles of piRNAs and siRNAs in regulating gene expression in Caenorhabditis elegans, we subjected small RNAs and mRNAs from the gonads of piRNA and siRNA defective mutants to high-throughput sequencing. We show that piRNAs and an abundant class of siRNAs known as WAGO-class 22G-RNAs are required for proper expression of spermatogenic and oogenic genes. WAGO-class 22G-RNAs are also broadly required for transposon silencing, whereas piRNAs are largely dispensable. piRNAs, however, have a critical role in controlling histone gene expression. In the absence of piRNAs, histone mRNAs are misrouted into the nuclear RNAi pathway involving the Argonaute HRDE-1, concurrent with a reduction in the expression of many histone mRNAs. We also show that high-level gene expression in the germline is correlated with high level 22G-RNA production. However, most highly expressed genes produce 22G-RNAs through a distinct pathway that presumably involves the Argonaute CSR-1. In contrast, genes targeted by the WAGO branch of the 22G-RNA pathway are typically poorly expressed and respond unpredictably to loss of 22G-RNAs. Our results point to broad roles for piRNAs and siRNAs in controlling gene expression in the C. elegans germline.
Collapse
Affiliation(s)
- Kailee J Reed
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA.,Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
| | - Joshua M Svendsen
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA.,Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
| | - Kristen C Brown
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA.,Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
| | - Brooke E Montgomery
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Taylor N Marks
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Tarah Vijayasarathy
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Dylan M Parker
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Erin Osborne Nishimura
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Dustin L Updike
- Mount Desert Island Biological Laboratory, Bar Harbor, ME 04672, USA
| | - Taiowa A Montgomery
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
146
|
|
147
|
Venkei ZG, Choi CP, Feng S, Chen C, Jacobsen SE, Kim JK, Yamashita YM. A kinesin Klp10A mediates cell cycle-dependent shuttling of Piwi between nucleus and nuage. PLoS Genet 2020; 16:e1008648. [PMID: 32168327 PMCID: PMC7094869 DOI: 10.1371/journal.pgen.1008648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/25/2020] [Accepted: 02/03/2020] [Indexed: 12/26/2022] Open
Abstract
The piRNA pathway protects germline genomes from selfish genetic elements (e.g. transposons) through their transcript cleavage in the cytoplasm and/or their transcriptional silencing in the nucleus. Here, we describe a mechanism by which the nuclear and cytoplasmic arms of the piRNA pathway are linked. We find that during mitosis of Drosophila spermatogonia, nuclear Piwi interacts with nuage, the compartment that mediates the cytoplasmic arm of the piRNA pathway. At the end of mitosis, Piwi leaves nuage to return to the nucleus. Dissociation of Piwi from nuage occurs at the depolymerizing microtubules of the central spindle, mediated by a microtubule-depolymerizing kinesin, Klp10A. Depletion of klp10A delays the return of Piwi to the nucleus and affects piRNA production, suggesting the role of nuclear-cytoplasmic communication in piRNA biogenesis. We propose that cell cycle-dependent communication between the nuclear and cytoplasmic arms of the piRNA pathway may play a previously unappreciated role in piRNA regulation. The piRNA pathway that defends germline from selfish elements operates in two subpathways, one mediated by Piwi in Drosophila to silence transcription of targets in the nucleus and the other mediated by Aub and Ago3 to cleave transcripts of targets in the cytoplasm. How these two subpathways might coordinate with each other, particularly at the cell biological level, remains elusive. This study shows that Piwi interacts with Aub/Ago3 specifically in mitosis in nuage, the organelle that serves as the platform for piRNA cytoplasmic subpathway. Piwi returns to the nucleus at the end of mitosis, and our study suggests that dissociation of Piwi from nuage is facilitated by microtubule depolymerization by a kinesin Klp10A at the central spindle. We propose that cell-cycle-dependent interaction of two piRNA subpathways may play an important role in piRNA production.
Collapse
Affiliation(s)
- Zsolt G. Venkei
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Charlotte P. Choi
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Suhua Feng
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California, United States of America
- Eli and Edyth Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, California, United States of America
| | - Cuie Chen
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Steven E. Jacobsen
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California, United States of America
- Eli and Edyth Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, California, United States of America
- Howard Hughes Medical Institute, University of California, Los Angeles, California, United States of America
| | - John K. Kim
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Yukiko M. Yamashita
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Howard Hughes Medical Institute, University of Michigan Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
148
|
Abstract
The Mos1-mediated Single-Copy Insertion (MosSCI) method is widely used to establish stable Caenorhabditis elegans transgenic strains. Cloning MosSCI targeting plasmids can be cumbersome because it requires assembling multiple genetic elements including a promoter, a 3'UTR and gene fragments. Recently, Schwartz and Jorgensen developed the SapTrap method for the one-step assembly of plasmids containing components of the CRISPR/Cas9 system for C. elegans Here, we report on the adaptation of the SapTrap method for the efficient and modular assembly of a promoter, 3'UTR and either 2 or 3 gene fragments in a MosSCI targeting vector in a single reaction. We generated a toolkit that includes several fluorescent tags, components of the ePDZ/LOV optogenetic system and regulatory elements that control gene expression in the C. elegans germline. As a proof of principle, we generated a collection of strains that fluorescently label the endoplasmic reticulum and mitochondria in the hermaphrodite germline and that enable the light-stimulated recruitment of mitochondria to centrosomes in the one-cell worm embryo. The method described here offers a flexible and efficient method for assembly of custom MosSCI targeting vectors.
Collapse
|
149
|
Barucci G, Cornes E, Singh M, Li B, Ugolini M, Samolygo A, Didier C, Dingli F, Loew D, Quarato P, Cecere G. Small-RNA-mediated transgenerational silencing of histone genes impairs fertility in piRNA mutants. Nat Cell Biol 2020; 22:235-245. [PMID: 32015436 PMCID: PMC7272227 DOI: 10.1038/s41556-020-0462-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 01/05/2020] [Indexed: 11/09/2022]
Abstract
PIWI-interacting RNAs (piRNAs) promote fertility in many animals. However, whether this is due to their conserved role in repressing repetitive elements (REs) remains unclear. Here, we show that the progressive loss of fertility in Caenorhabditis elegans lacking piRNAs is not caused by derepression of REs or other piRNA targets but, rather, is mediated by epigenetic silencing of all of the replicative histone genes. In the absence of piRNAs, downstream components of the piRNA pathway relocalize from germ granules and piRNA targets to histone mRNAs to synthesize antisense small RNAs (sRNAs) and induce transgenerational silencing. Removal of the downstream components of the piRNA pathway restores histone mRNA expression and fertility in piRNA mutants, and the inheritance of histone sRNAs in wild-type worms adversely affects their fertility for multiple generations. We conclude that sRNA-mediated silencing of histone genes impairs the fertility of piRNA mutants and may serve to maintain piRNAs across evolution.
Collapse
Affiliation(s)
- Giorgia Barucci
- Mechanisms of Epigenetic Inheritance, Department of Developmental and Stem Cell Biology, Institut Pasteur, UMR 3738, CNRS, Paris, France
- Sorbonne Université, Collège doctoral, Paris, France
| | - Eric Cornes
- Mechanisms of Epigenetic Inheritance, Department of Developmental and Stem Cell Biology, Institut Pasteur, UMR 3738, CNRS, Paris, France
| | - Meetali Singh
- Mechanisms of Epigenetic Inheritance, Department of Developmental and Stem Cell Biology, Institut Pasteur, UMR 3738, CNRS, Paris, France
| | - Blaise Li
- Bioinformatics and Biostatistics Hub, C3BI, Institut Pasteur, USR 3756, CNRS, Paris, France
| | - Martino Ugolini
- Mechanisms of Epigenetic Inheritance, Department of Developmental and Stem Cell Biology, Institut Pasteur, UMR 3738, CNRS, Paris, France
- Scuola Normale Superiore, Pisa, Italy
| | - Aleksei Samolygo
- Mechanisms of Epigenetic Inheritance, Department of Developmental and Stem Cell Biology, Institut Pasteur, UMR 3738, CNRS, Paris, France
- Moscow Institute of Physics and Technology, Moscow, Russia
| | - Celine Didier
- Mechanisms of Epigenetic Inheritance, Department of Developmental and Stem Cell Biology, Institut Pasteur, UMR 3738, CNRS, Paris, France
| | - Florent Dingli
- Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie, PSL Research University, Paris, France
| | - Damarys Loew
- Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie, PSL Research University, Paris, France
| | - Piergiuseppe Quarato
- Mechanisms of Epigenetic Inheritance, Department of Developmental and Stem Cell Biology, Institut Pasteur, UMR 3738, CNRS, Paris, France
- Sorbonne Université, Collège doctoral, Paris, France
| | - Germano Cecere
- Mechanisms of Epigenetic Inheritance, Department of Developmental and Stem Cell Biology, Institut Pasteur, UMR 3738, CNRS, Paris, France.
| |
Collapse
|
150
|
Li L, Dai H, Nguyen AP, Gu W. A convenient strategy to clone small RNA and mRNA for high-throughput sequencing. RNA (NEW YORK, N.Y.) 2020; 26:218-227. [PMID: 31754076 PMCID: PMC6961543 DOI: 10.1261/rna.071605.119] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
High-throughput sequencing has become a standard tool for analyzing RNA and DNA. This method usually needs a cDNA/DNA library ligated with specific 5' and 3' linkers. Unlike mRNA, small RNA often contains modifications including 5' cap or triphosphate and 2'-O-methyl, requiring additional processing steps before linker additions during cloning processes; due to low expression levels, it is difficult to clone small RNA with a small amount of total RNA. Here we present a new strategy to clone 5' modified or unmodified small RNA in an all-liquid-based reaction carried out in a single PCR tube with as little as 20 ng total RNA. The 7-h cloning process only needs ∼1 h of labor. Moreover, this method can also clone mRNA, simplifying the need to prepare two cloning systems for small RNA and mRNA; the barcoded PCR primers are also compatible with non-cDNA cloning applications, including the preparation of genomic libraries. Not only is our method more convenient for cloning modified RNA than available methods, but it is also more sensitive, versatile, and cost-effective. Moreover, the all-liquid-based reaction can be performed in an automated manner.
Collapse
Affiliation(s)
- Lichao Li
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, California 92521, USA
| | - Hui Dai
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, California 92521, USA
| | - An-Phong Nguyen
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, California 92521, USA
| | - Weifeng Gu
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, California 92521, USA
| |
Collapse
|