101
|
Yan Z, Delannoy M, Ling C, Daee D, Osman F, Muniandy PA, Shen X, Oostra AB, Du H, Steltenpool J, Lin T, Schuster B, Decaillet C, Stasiak A, Stasiak AZ, Stone S, Hoatlin ME, Schindler D, Woodcock C, Joenje H, Sen R, de Winter JP, Li L, Seidman MM, Whitby MC, Myung K, Constantinou A, Wang W. A histone-fold complex and FANCM form a conserved DNA-remodeling complex to maintain genome stability. Mol Cell 2010; 37:865-78. [PMID: 20347428 PMCID: PMC2847587 DOI: 10.1016/j.molcel.2010.01.039] [Citation(s) in RCA: 182] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 10/22/2009] [Accepted: 01/19/2010] [Indexed: 01/15/2023]
Abstract
FANCM remodels branched DNA structures and plays essential roles in the cellular response to DNA replication stress. Here, we show that FANCM forms a conserved DNA-remodeling complex with a histone-fold heterodimer, MHF. We find that MHF stimulates DNA binding and replication fork remodeling by FANCM. In the cell, FANCM and MHF are rapidly recruited to forks stalled by DNA interstrand crosslinks, and both are required for cellular resistance to such lesions. In vertebrates, FANCM-MHF associates with the Fanconi anemia (FA) core complex, promotes FANCD2 monoubiquitination in response to DNA damage, and suppresses sister-chromatid exchanges. Yeast orthologs of these proteins function together to resist MMS-induced DNA damage and promote gene conversion at blocked replication forks. Thus, FANCM-MHF is an essential DNA-remodeling complex that protects replication forks from yeast to human.
Collapse
Affiliation(s)
- Zhijiang Yan
- Laboratory of Genetics, National Institute of Aging, National Institutes of Health, Baltimore, MD 21224
| | - Mathieu Delannoy
- Department of Biochemistry, University of Lausanne, Lausanne, Switzerland
| | - Chen Ling
- Laboratory of Genetics, National Institute of Aging, National Institutes of Health, Baltimore, MD 21224
| | - Danielle Daee
- Genome Instability Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Fekret Osman
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Parameswary A. Muniandy
- Laboratory of Molecular Gerontology, National Institute of Aging, National Institutes of Health, Baltimore, MD 21224
| | - Xi Shen
- Departments of Experimental Radiation Oncology, the University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | - Anneke B. Oostra
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Hansen Du
- Laboratory of Cellular and Molecular Biology, National Institute of Aging, National Institutes of Health, Baltimore, MD 21224
| | - Jurgen Steltenpool
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Ti Lin
- Laboratory of Genetics, National Institute of Aging, National Institutes of Health, Baltimore, MD 21224
| | - Beatrice Schuster
- Department of Human Genetics, University of Wurzburg, Wurzburg, Germany
| | - Chantal Decaillet
- Department of Biochemistry, University of Lausanne, Lausanne, Switzerland
| | - Andrzej Stasiak
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Alicja Z. Stasiak
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Stacie Stone
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239
| | - Maureen E. Hoatlin
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239
| | - Detlev Schindler
- Department of Human Genetics, University of Wurzburg, Wurzburg, Germany
| | - Chris Woodcock
- Department of Biology, University of Massachusetts, Amherst, MA 01003
| | - Hans Joenje
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Ranjan Sen
- Laboratory of Cellular and Molecular Biology, National Institute of Aging, National Institutes of Health, Baltimore, MD 21224
| | - Johan P. de Winter
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Lei Li
- Departments of Experimental Radiation Oncology, the University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | - Michael M. Seidman
- Laboratory of Molecular Gerontology, National Institute of Aging, National Institutes of Health, Baltimore, MD 21224
| | | | - Kyungjae Myung
- Genome Instability Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | | | - Weidong Wang
- Laboratory of Genetics, National Institute of Aging, National Institutes of Health, Baltimore, MD 21224
| |
Collapse
|
102
|
Singh TR, Saro D, Ali AM, Zheng XF, Du CH, Killen MW, Sachpatzidis A, Wahengbam K, Pierce AJ, Xiong Y, Sung P, Meetei AR. MHF1-MHF2, a histone-fold-containing protein complex, participates in the Fanconi anemia pathway via FANCM. Mol Cell 2010; 37:879-86. [PMID: 20347429 PMCID: PMC2848122 DOI: 10.1016/j.molcel.2010.01.036] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 12/28/2009] [Accepted: 01/29/2010] [Indexed: 12/24/2022]
Abstract
FANCM is a Fanconi anemia nuclear core complex protein required for the functional integrity of the FANC-BRCA pathway of DNA damage response and repair. Here we report the isolation and characterization of two histone-fold-containing FANCM-associated proteins, MHF1 and MHF2. We show that suppression of MHF1 expression results in (1) destabilization of FANCM and MHF2, (2) impairment of DNA damage-induced monoubiquitination and foci formation of FANCD2, (3) defective chromatin localization of FA nuclear core complex proteins, (4) elevated MMC-induced chromosome aberrations, and (5) sensitivity to MMC and camptothecin. We also provide biochemical evidence that MHF1 and MHF2 assemble into a heterodimer that binds DNA and enhances the DNA branch migration activity of FANCM. These findings reveal critical roles of the MHF1-MHF2 dimer in DNA damage repair and genome maintenance through FANCM.
Collapse
Affiliation(s)
- Thiyam Ramsing Singh
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Research Foundation and University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, U.S.A
| | - Dorina Saro
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, U.S.A
| | - Abdullah Mahmood Ali
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Research Foundation and University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, U.S.A
| | - Xiao-feng Zheng
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, U.S.A
| | - Chang-hu Du
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Research Foundation and University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, U.S.A
| | - Michael W. Killen
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, College of Medicine, Lexington, Kentucky 40536, U.S.A
| | - Aristidis Sachpatzidis
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, U.S.A
| | - Kebola Wahengbam
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Research Foundation and University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, U.S.A
| | - Andrew J. Pierce
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, College of Medicine, Lexington, Kentucky 40536, U.S.A
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, U.S.A
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, U.S.A
| | - Amom Ruhikanta Meetei
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Research Foundation and University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, U.S.A
| |
Collapse
|
103
|
Abstract
Aberrant DNA replication is a major source of the mutations and chromosome rearrangements that are associated with pathological disorders. When replication is compromised, DNA becomes more prone to breakage. Secondary structures, highly transcribed DNA sequences and damaged DNA stall replication forks, which then require checkpoint factors and specialized enzymatic activities for their stabilization and subsequent advance. These mechanisms ensure that the local DNA damage response, which enables replication fork progression and DNA repair in S phase, is coupled with cell cycle transitions. The mechanisms that operate in eukaryotic cells to promote replication fork integrity and coordinate replication with other aspects of chromosome maintenance are becoming clear.
Collapse
Affiliation(s)
- Dana Branzei
- Fondazione IFOM, Istituto FIRC di Oncologia Molecolare, IFOM-IEO campus, Via Adamello 16, 20139 Milan, Italy.
| | | |
Collapse
|
104
|
Schwab RA, Blackford AN, Niedzwiedz W. ATR activation and replication fork restart are defective in FANCM-deficient cells. EMBO J 2010; 29:806-18. [PMID: 20057355 PMCID: PMC2829160 DOI: 10.1038/emboj.2009.385] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 11/24/2009] [Indexed: 01/20/2023] Open
Abstract
Fanconi anaemia is a chromosomal instability disorder associated with cancer predisposition and bone marrow failure. Among the 13 identified FA gene products only one, the DNA translocase FANCM, has homologues in lower organisms, suggesting a conserved function in DNA metabolism. However, a precise role for FANCM in DNA repair remains elusive. Here, we show a novel function for FANCM that is distinct from its role in the FA pathway: promoting replication fork restart and simultaneously limiting the accumulation of RPA-ssDNA. We show that in DT40 cells this process is controlled by ATR and PLK1, and that in the absence of FANCM, stalled replication forks are unable to resume DNA synthesis and genome duplication is ensured by excess origin firing. Unexpectedly, we also uncover an early role for FANCM in ATR-mediated checkpoint signalling by promoting chromatin retention of TopBP1. Failure to retain TopBP1 on chromatin impacts on the ability of ATR to phosphorylate downstream molecular targets, including Chk1 and SMC1. Our data therefore indicate a fundamental role for FANCM in the maintenance of genome integrity during S phase.
Collapse
Affiliation(s)
- Rebekka A Schwab
- Department of Molecular Oncology, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK
| | - Andrew N Blackford
- Department of Molecular Oncology, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK
| | - Wojciech Niedzwiedz
- Department of Molecular Oncology, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, Warsaw, Poland
| |
Collapse
|
105
|
Abstract
FANCM and its relatives, Hef, Mph1 and Fml1, are DNA junction-specific helicases/translocases that target and process perturbed replication forks and intermediates of homologous recombination. They have variously been implicated in promoting the activation of the S-phase checkpoint, recruitment of the Fanconi Anemia Core Complex to sites of DNA damage, crossover avoidance during DNA double-strand break repair by homologous recombination, and the replicative bypass of DNA lesions by template switching. This review summarises our current understanding of the biochemical activities and biological functions of the FANCM family.
Collapse
Affiliation(s)
- Matthew C Whitby
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom.
| |
Collapse
|
106
|
Muniandy PA, Liu J, Majumdar A, Liu ST, Seidman MM. DNA interstrand crosslink repair in mammalian cells: step by step. Crit Rev Biochem Mol Biol 2010; 45:23-49. [PMID: 20039786 PMCID: PMC2824768 DOI: 10.3109/10409230903501819] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Interstrand DNA crosslinks (ICLs) are formed by natural products of metabolism and by chemotherapeutic reagents. Work in E. coli identified a two cycle repair scheme involving incisions on one strand on either side of the ICL (unhooking) producing a gapped intermediate with the incised oligonucleotide attached to the intact strand. The gap is filled by recombinational repair or lesion bypass synthesis. The remaining monoadduct is then removed by nucleotide excision repair (NER). Despite considerable effort, our understanding of each step in mammalian cells is still quite limited. In part this reflects the variety of crosslinking compounds, each with distinct structural features, used by different investigators. Also, multiple repair pathways are involved, variably operative during the cell cycle. G(1) phase repair requires functions from NER, although the mechanism of recognition has not been determined. Repair can be initiated by encounters with the transcriptional apparatus, or a replication fork. In the case of the latter, the reconstruction of a replication fork, stalled or broken by collision with an ICL, adds to the complexity of the repair process. The enzymology of unhooking, the identity of the lesion bypass polymerases required to fill the first repair gap, and the functions involved in the second repair cycle are all subjects of active inquiry. Here we will review current understanding of each step in ICL repair in mammalian cells.
Collapse
Affiliation(s)
- Parameswary A Muniandy
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|
107
|
Lee KY, Chung KY, Koo HS. The involvement of FANCM, FANCI, and checkpoint proteins in the interstrand DNA crosslink repair pathway is conserved in C. elegans. DNA Repair (Amst) 2010; 9:374-82. [PMID: 20075016 DOI: 10.1016/j.dnarep.2009.12.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 11/28/2009] [Accepted: 12/17/2009] [Indexed: 10/20/2022]
Abstract
Fanconi anemia (FA) patients are specifically defective in the repair of interstrand DNA crosslinks (ICLs), a complex process involving at least 13 FA proteins and other repair/checkpoint proteins. Of the 13 FA proteins, FANCD1/BRCA2, FANCD2, and FANCJ were previously found to be functionally conserved in C. elegans. We have also identified C. elegans homologs of FANCM and FANCI, and determined their epistatic relationships with homologs of FANCD2, checkpoint proteins, and RAD51 upon DNA crosslinking. The counterparts of FANCM, FANCI, and three checkpoint proteins (RPA, ATR and CHK1) are required for focus formation and ubiquitination associated with FANCD2 in C. elegans. However, C. elegans FANCM affects neither RPA focus formation nor CHK1 phosphorylation induced by ICLs, unlike the reported role of human FANCM, which influences ATR-CHK1 signaling at stalled replication forks. Although focus formation by both FANCD2 and RAD51 requires ATR-CHK1 signaling, FANCD2 and RAD51 acted independently in the formation of their respective foci. Thus, the FANCD2 activation pathway involving FANCM, FANCI, and the checkpoint proteins is conserved in C. elegans but with distinct differences.
Collapse
Affiliation(s)
- Kyong Yun Lee
- Department of Biochemistry, Yonsei University, Seodaemun-ku, Seoul, Republic of Korea
| | | | | |
Collapse
|
108
|
Tay YD, Sidebotham JM, Wu L. Mph1 requires mismatch repair-independent and -dependent functions of MutSalpha to regulate crossover formation during homologous recombination repair. Nucleic Acids Res 2010; 38:1889-901. [PMID: 20047969 PMCID: PMC2847250 DOI: 10.1093/nar/gkp1199] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In budding yeast the DNA helicase Mph1 prevents genome rearrangements during ectopic homologous recombination (HR) by suppressing the formation of crossovers (COs). Here we show that during ectopic HR repair, the anti-CO function of Mph1 is intricately associated with the mismatch repair (MMR) factor, MutSα. In particular, during HR repair using a completely homologous substrate, we reveal an MMR-independent function of MutSα in generating COs that is specifically antagonized by Mph1, but not Sgs1. In contrast, both Mph1 and MutSα are required to efficiently suppress COs in the presence of a homeologous substrate. Mph1 acts redundantly with Sgs1 in this respect since mph1Δ sgs1Δ double mutant cells pheno-copy MutSα mutants and completely fail to discriminate homologous and homeologous sequences during HR repair. However, this defect of mph1Δ sgs1Δ cells is not due to an inability to carry out MMR but rather is accompanied by elevated levels of gene conversion (GC) and bi-directional GC tracts specifically in non-crossover products. Models describing how Mph1, MutSα and Sgs1 act in concert to suppress genome rearrangements during ectopic HR repair are discussed.
Collapse
Affiliation(s)
- Ye Dee Tay
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington Oxford, OX3 9DS, UK
| | | | | |
Collapse
|
109
|
Abstract
Homologous recombination (HR) is required for accurate chromosome segregation during the first meiotic division and constitutes a key repair and tolerance pathway for complex DNA damage, including DNA double-strand breaks, interstrand crosslinks, and DNA gaps. In addition, recombination and replication are inextricably linked, as recombination recovers stalled and broken replication forks, enabling the evolution of larger genomes/replicons. Defects in recombination lead to genomic instability and elevated cancer predisposition, demonstrating a clear cellular need for recombination. However, recombination can also lead to genome rearrangements. Unrestrained recombination causes undesired endpoints (translocation, deletion, inversion) and the accumulation of toxic recombination intermediates. Evidently, HR must be carefully regulated to match specific cellular needs. Here, we review the factors and mechanistic stages of recombination that are subject to regulation and suggest that recombination achieves flexibility and robustness by proceeding through metastable, reversible intermediates.
Collapse
Affiliation(s)
- Wolf-Dietrich Heyer
- Department of Microbiology, University of California, Davis, Davis, California 95616-8665, USA.
| | | | | |
Collapse
|
110
|
Mazloum N, Holloman WK. Brh2 promotes a template-switching reaction enabling recombinational bypass of lesions during DNA synthesis. Mol Cell 2009; 36:620-30. [PMID: 19941822 DOI: 10.1016/j.molcel.2009.09.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 07/27/2009] [Accepted: 09/02/2009] [Indexed: 12/26/2022]
Abstract
Accumulating evidence for Rad51-catalyzed DNA strand invasion during double-strand break repair features a 3' single-stranded tail as the preferred substrate for reaction, but paradoxically, the preferred substrate in model reactions in vitro is the 5' end. Here, we examined the Rad51-promoted 5' end invasion reaction in the presence of Brh2, the BRCA2 family protein in Ustilago maydis. Using plasmid DNA and a homologous duplex oligonucleotide with 5' protruding single-stranded tail as substrates, we found that Brh2 can stimulate Rad51 to promote the formation of a four-stranded complement-stabilized D loop. In this structure, the incoming recessed complementary strand of the oligonucleotide has switched partners and can now prime DNA synthesis using the recipient plasmid DNA as template, circumventing a lesion that blocks elongation when the 5' protruding tail serves as template for fill-in synthesis. We propose that template switching promoted by Brh2 provides a mechanism for recombination-mediated bypass of lesions blocking synthesis during DNA replication.
Collapse
Affiliation(s)
- Nayef Mazloum
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA
| | | |
Collapse
|
111
|
FANCM regulates DNA chain elongation and is stabilized by S-phase checkpoint signalling. EMBO J 2009; 29:795-805. [PMID: 20010692 DOI: 10.1038/emboj.2009.371] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 11/04/2009] [Indexed: 12/24/2022] Open
Abstract
FANCM binds and remodels replication fork structures in vitro. We report that in vivo, FANCM controls DNA chain elongation in an ATPase-dependent manner. In the presence of replication inhibitors that do not damage DNA, FANCM counteracts fork movement, possibly by remodelling fork structures. Conversely, through damaged DNA, FANCM promotes replication and recovers stalled forks. Hence, the impact of FANCM on fork progression depends on the underlying hindrance. We further report that signalling through the checkpoint effector kinase Chk1 prevents FANCM from degradation by the proteasome after exposure to DNA damage. FANCM also acts in a feedback loop to stabilize Chk1. We propose that FANCM is a ringmaster in the response to replication stress by physically altering replication fork structures and by providing a tight link to S-phase checkpoint signalling.
Collapse
|
112
|
Interplay between the Smc5/6 complex and the Mph1 helicase in recombinational repair. Proc Natl Acad Sci U S A 2009; 106:21252-7. [PMID: 19995966 DOI: 10.1073/pnas.0908258106] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The evolutionarily conserved Smc5/6 complex is implicated in recombinational repair, but its function in this process has been elusive. Here we report that the budding yeast Smc5/6 complex directly binds to the DNA helicase Mph1. Mph1 and its helicase activity define a replication-associated recombination subpathway. We show that this pathway is toxic when the Smc5/6 complex is defective, because mph1Delta and its helicase mutations suppress multiple defects in mutants of the Smc5/6 complex, including their sensitivity to replication-blocking agents, growth defects, and inefficient chromatid separation, whereas MPH1 overexpression exacerbates some of these defects. We further demonstrate that Mph1 and its helicase activity are largely responsible for the accumulation of potentially deleterious recombination intermediates in mutants of the Smc5/6 complex. We also present evidence that mph1Delta does not alleviate sensitivity to DNA damage or the accumulation of recombination intermediates in cells lacking Sgs1, which is thought to function together with the Smc5/6 complex. Thus, our results reveal a function of the Smc5/6 complex in the Mph1-dependent recombinational subpathway that is distinct from Sgs1. We suggest that the Smc5/6 complex can counteract/modulate a pro-recombinogenic function of Mph1 or facilitate the resolution of recombination structures generated by Mph1.
Collapse
|
113
|
Role of double-stranded DNA translocase activity of human HLTF in replication of damaged DNA. Mol Cell Biol 2009; 30:684-93. [PMID: 19948885 DOI: 10.1128/mcb.00863-09] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Unrepaired DNA lesions can block the progression of the replication fork, leading to genomic instability and cancer in higher-order eukaryotes. In Saccharomyces cerevisiae, replication through DNA lesions can be mediated by translesion synthesis DNA polymerases, leading to error-free or error-prone damage bypass, or by Rad5-mediated template switching to the sister chromatid that is inherently error free. While translesion synthesis pathways are highly conserved from yeast to humans, very little is known of a Rad5-like pathway in human cells. Here we show that a human homologue of Rad5, HLTF, can facilitate fork regression and has a role in replication of damaged DNA. We found that HLTF is able to reverse model replication forks, a process which depends on its double-stranded DNA translocase activity. Furthermore, from analysis of isolated dually labeled chromosomal fibers, we demonstrate that in vivo, HLTF promotes the restart of replication forks blocked at DNA lesions. These findings suggest that HLTF can promote error-free replication of damaged DNA and support a role for HLTF in preventing mutagenesis and carcinogenesis, providing thereby for its potential tumor suppressor role.
Collapse
|
114
|
Gari K, Constantinou A. The role of the Fanconi anemia network in the response to DNA replication stress. Crit Rev Biochem Mol Biol 2009; 44:292-325. [PMID: 19728769 DOI: 10.1080/10409230903154150] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Fanconi anemia is a genetically heterogeneous disorder associated with chromosome instability and a highly elevated risk for developing cancer. The mutated genes encode proteins involved in the cellular response to DNA replication stress. Fanconi anemia proteins are extensively connected with DNA caretaker proteins, and appear to function as a hub for the coordination of DNA repair with DNA replication and cell cycle progression. At a molecular level, however, the raison d'être of Fanconi anemia proteins still remains largely elusive. The thirteen Fanconi anemia proteins identified to date have not been embraced into a single and defined biological process. To help put the Fanconi anemia puzzle into perspective, we begin this review with a summary of the strategies employed by prokaryotes and eukaryotes to tolerate obstacles to the progression of replication forks. We then summarize what we know about Fanconi anemia with an emphasis on biochemical aspects, and discuss how the Fanconi anemia network, a late acquisition in evolution, may function to permit the faithful and complete duplication of our very large vertebrate chromosomes.
Collapse
Affiliation(s)
- Kerstin Gari
- DNA Damage Response Laboratory, Cancer Research UK, London Research Institute, Clare Hall Laboratories, South Mimms, UK
| | | |
Collapse
|
115
|
Lee SE, Myung K. Faithful after break-up: suppression of chromosomal translocations. Cell Mol Life Sci 2009; 66:3149-60. [PMID: 19547915 PMCID: PMC3501963 DOI: 10.1007/s00018-009-0068-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 05/31/2009] [Accepted: 06/08/2009] [Indexed: 10/20/2022]
Abstract
Chromosome integrity in response to chemically or radiation-induced chromosome breaks and the perturbation of ongoing replication forks relies on multiple DNA repair mechanisms. However, repair of these lesions may lead to unwanted chromosome rearrangement if not properly executed or regulated. As these types of chromosomal alterations threaten the cell's and the organism's very own survival, multiple systems are developed to avoid or at least limit break-induced chromosomal rearrangements. In this review, we highlight cellular strategies for repressing DNA break-induced chromosomal translocations in multiple model systems including yeast, mouse, and human. These pathways select proper homologous templates or broken DNA ends for the faithful repair of DNA breaks to avoid undesirable chromosomal translocations.
Collapse
Affiliation(s)
- Sang Eun Lee
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245 USA
| | - Kyungjae Myung
- Genome Instability Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
116
|
Colavito S, Macris-Kiss M, Seong C, Gleeson O, Greene EC, Klein HL, Krejci L, Sung P. Functional significance of the Rad51-Srs2 complex in Rad51 presynaptic filament disruption. Nucleic Acids Res 2009; 37:6754-64. [PMID: 19745052 PMCID: PMC2777448 DOI: 10.1093/nar/gkp748] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The SRS2 (Suppressor of RAD Six screen mutant 2) gene encodes an ATP-dependent DNA helicase that regulates homologous recombination in Saccharomyces cerevisiae. Mutations in SRS2 result in a hyper-recombination phenotype, sensitivity to DNA damaging agents and synthetic lethality with mutations that affect DNA metabolism. Several of these phenotypes can be suppressed by inactivating genes of the RAD52 epistasis group that promote homologous recombination, implicating inappropriate recombination as the underlying cause of the mutant phenotype. Consistent with the genetic data, purified Srs2 strongly inhibits Rad51-mediated recombination reactions by disrupting the Rad51-ssDNA presynaptic filament. Srs2 interacts with Rad51 in the yeast two-hybrid assay and also in vitro. To investigate the functional relevance of the Srs2-Rad51 complex, we have generated srs2 truncation mutants that retain full ATPase and helicase activities, but differ in their ability to interact with Rad51. Importantly, the srs2 mutant proteins attenuated for Rad51 interaction are much less capable of Rad51 presynaptic filament disruption. An internal deletion in Srs2 likewise diminishes Rad51 interaction and anti-recombinase activity. We also present evidence that deleting the Srs2 C-terminus engenders a hyper-recombination phenotype. These results highlight the importance of Rad51 interaction in the anti-recombinase function of Srs2, and provide evidence that this Srs2 function can be uncoupled from its helicase activity.
Collapse
Affiliation(s)
- Sierra Colavito
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | |
Collapse
|
117
|
García MJ, Fernández V, Osorio A, Barroso A, Fernández F, Urioste M, Benítez J. Mutational analysis of FANCL, FANCM and the recently identified FANCI suggests that among the 13 known Fanconi Anemia genes, only FANCD1/BRCA2 plays a major role in high-risk breast cancer predisposition. Carcinogenesis 2009; 30:1898-902. [PMID: 19737859 DOI: 10.1093/carcin/bgp218] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Fanconi Anemia (FA) is a rare recessive syndrome characterized by cellular hypersensitivity to DNA-cross-linking agents. To date, 13 FA complementation groups have been described and all 13 genes associated to each of these groups have been currently identified. Three of the known FA genes are also high-risk (FANCD1/BRCA2) or moderate-risk (FANCN/PALB2 and FANCJ/BRIP1) breast cancer susceptibility genes, which makes all members of the FA pathway particularly attractive breast cancer candidate genes. Most FA genes have been screened for mutations in breast cancer families negative for BRCA1/2 mutations but the role of FANCL, FANCM and the recently identified FANCI has not been evaluated to date. This fact and novel data sustaining greater functional relevance of the three genes within the FA pathway prompted us to scrutinize all coding sequences and splicing sites of FANCI, FANCL and FANCM in 95 BRCA1/2-negative index cases from Spanish high-risk breast cancer families. We identified 68 sequence variants of which 24 were coding and 44 non-coding. Six exonic and 26 non-coding variants had not been described previously. None of the coding changes caused clearly pathogenic changes and computational analysis of all non-described intronic variants did not revealed major impact in splicing. With the present study, all known FA genes have been evaluated within the context of breast cancer high-risk predisposition. Our results rule out a major role of FANCI, FANCL and FANCM in familial breast cancer susceptibility, suggesting that among the 13 known FA genes, only FANCD1/BRCA2 plays a major role in high-risk breast cancer predisposition.
Collapse
Affiliation(s)
- María J García
- Group of Human Genetics, Human Cancer Genetics Program, Spanish National Cancer Centre (CNIO), C/ Melchor Fernández Almagro 3, 28029 Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
118
|
Lorenz A, Osman F, Folkyte V, Sofueva S, Whitby MC. Fbh1 limits Rad51-dependent recombination at blocked replication forks. Mol Cell Biol 2009; 29:4742-56. [PMID: 19546232 PMCID: PMC2725720 DOI: 10.1128/mcb.00471-09] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2009] [Revised: 05/15/2009] [Accepted: 06/16/2009] [Indexed: 11/20/2022] Open
Abstract
Controlling the loading of Rad51 onto DNA is important for governing when and how homologous recombination is used. Here we use a combination of genetic assays and indirect immunofluorescence to show that the F-box DNA helicase (Fbh1) functions in direct opposition to the Rad52 orthologue Rad22 to curb Rad51 loading onto DNA in fission yeast. Surprisingly, this activity is unnecessary for limiting spontaneous direct-repeat recombination. Instead it appears to play an important role in preventing recombination when replication forks are blocked and/or broken. When overexpressed, Fbh1 specifically reduces replication fork block-induced recombination, as well as the number of Rad51 nuclear foci that are induced by replicative stress. These abilities are dependent on its DNA helicase/translocase activity, suggesting that Fbh1 exerts its control on recombination by acting as a Rad51 disruptase. In accord with this, overexpression of Fbh1 also suppresses the high levels of recombinant formation and Rad51 accumulation at a site-specific replication fork barrier in a strain lacking the Rad51 disruptase Srs2. Similarly overexpression of Srs2 suppresses replication fork block-induced gene conversion events in an fbh1Delta mutant, although an inability to suppress deletion events suggests that Fbh1 has a distinct functionality, which is not readily substituted by Srs2.
Collapse
Affiliation(s)
- Alexander Lorenz
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | | | | | | |
Collapse
|
119
|
Abstract
Deletions and duplications of chromosomal segments (copy number variants, CNVs) are a major source of variation between individual humans and are an underlying factor in human evolution and in many diseases, including mental illness, developmental disorders and cancer. CNVs form at a faster rate than other types of mutation, and seem to do so by similar mechanisms in bacteria, yeast and humans. Here we review current models of the mechanisms that cause copy number variation. Non-homologous end-joining mechanisms are well known, but recent models focus on perturbation of DNA replication and replication of non-contiguous DNA segments. For example, cellular stress might induce repair of broken replication forks to switch from high-fidelity homologous recombination to non-homologous repair, thus promoting copy number change.
Collapse
Affiliation(s)
- P J Hastings
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.
| | | | | | | |
Collapse
|
120
|
Hastings PJ, Lupski JR, Rosenberg SM, Ira G. Mechanisms of change in gene copy number. Nat Rev Genet 2009. [PMID: 19597530 DOI: 10.1038/nrg2593.mechanisms] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Deletions and duplications of chromosomal segments (copy number variants, CNVs) are a major source of variation between individual humans and are an underlying factor in human evolution and in many diseases, including mental illness, developmental disorders and cancer. CNVs form at a faster rate than other types of mutation, and seem to do so by similar mechanisms in bacteria, yeast and humans. Here we review current models of the mechanisms that cause copy number variation. Non-homologous end-joining mechanisms are well known, but recent models focus on perturbation of DNA replication and replication of non-contiguous DNA segments. For example, cellular stress might induce repair of broken replication forks to switch from high-fidelity homologous recombination to non-homologous repair, thus promoting copy number change.
Collapse
Affiliation(s)
- P J Hastings
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.
| | | | | | | |
Collapse
|
121
|
Rosado IV, Niedzwiedz W, Alpi AF, Patel KJ. The Walker B motif in avian FANCM is required to limit sister chromatid exchanges but is dispensable for DNA crosslink repair. Nucleic Acids Res 2009; 37:4360-70. [PMID: 19465393 PMCID: PMC2715236 DOI: 10.1093/nar/gkp365] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 04/22/2009] [Accepted: 04/23/2009] [Indexed: 01/07/2023] Open
Abstract
FANCM, the most highly conserved component of the Fanconi Anaemia (FA) pathway can resolve recombination intermediates and remodel synthetic replication forks. However, it is not known if these activities are relevant to how this conserved protein activates the FA pathway and promotes DNA crosslink repair. Here we use chicken DT40 cells to systematically dissect the function of the helicase and nuclease domains of FANCM. Our studies reveal that these domains contribute distinct roles in the tolerance of crosslinker, UV light and camptothecin-induced DNA damage. Although the complete helicase domain is critical for crosslink repair, a predicted inactivating mutation of the Walker B box domain has no impact on FA pathway associated functions. However, this mutation does result in elevated sister chromatid exchanges (SCE). Furthermore, our genetic dissection indicates that FANCM functions with the Blm helicase to suppress spontaneous SCE events. Overall our results lead us to reappraise the role of helicase domain associated activities of FANCM with respect to the activation of the FA pathway, crosslink repair and in the resolution of recombination intermediates.
Collapse
Affiliation(s)
- Ivan V. Rosado
- MRC Laboratory of Molecular Biology, Hills Rd, Cambridge CB20QH and Department of Medical Oncology, Oxford University, Oxford OX3 9DS, UK
| | - Wojciech Niedzwiedz
- MRC Laboratory of Molecular Biology, Hills Rd, Cambridge CB20QH and Department of Medical Oncology, Oxford University, Oxford OX3 9DS, UK
| | - Arno F. Alpi
- MRC Laboratory of Molecular Biology, Hills Rd, Cambridge CB20QH and Department of Medical Oncology, Oxford University, Oxford OX3 9DS, UK
| | - Ketan J. Patel
- MRC Laboratory of Molecular Biology, Hills Rd, Cambridge CB20QH and Department of Medical Oncology, Oxford University, Oxford OX3 9DS, UK
| |
Collapse
|
122
|
Bakker ST, van de Vrugt HJ, Rooimans MA, Oostra AB, Steltenpool J, Delzenne-Goette E, van der Wal A, van der Valk M, Joenje H, te Riele H, de Winter JP. Fancm-deficient mice reveal unique features of Fanconi anemia complementation group M. Hum Mol Genet 2009; 18:3484-95. [PMID: 19561169 DOI: 10.1093/hmg/ddp297] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The Fanconi anemia (FA) core complex member FANCM remodels synthetic replication forks and recombination intermediates. Thus far, only one FA patient with FANCM mutations has been described, but the relevance of these mutations for the FA phenotype is uncertain. To provide further experimental access to the FA-M complementation group we have generated Fancm-deficient mice by deleting exon 2. FANCM deficiency caused hypogonadism in mice and hypersensitivity to cross-linking agents in mouse embryonic fibroblasts (MEFs), thus phenocopying other FA mouse models. However, Fancm(Delta2/Delta2) mice also showed unique features atypical for FA mice, including underrepresentation of female Fancm(Delta2/Delta2) mice and decreased overall and tumor-free survival. This increased cancer incidence may be correlated to the role of FANCM in the suppression of spontaneous sister chromatid exchanges as observed in MEFs. In addition, FANCM appeared to have a stimulatory rather than essential role in FANCD2 monoubiquitination. The FA-M mouse model presented here suggests that FANCM functions both inside and outside the FA core complex to maintain genome stability and to prevent tumorigenesis.
Collapse
Affiliation(s)
- Sietske T Bakker
- Division of Molecular Biology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Impaired FANCD2 monoubiquitination and hypersensitivity to camptothecin uniquely characterize Fanconi anemia complementation group M. Blood 2009; 114:174-80. [PMID: 19423727 DOI: 10.1182/blood-2009-02-207811] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
FANCM is a component of the Fanconi anemia (FA) core complex and one FA patient (EUFA867) with biallelic mutations in FANCM has been described. Strikingly, we found that EUFA867 also carries biallelic mutations in FANCA. After correcting the FANCA defect in EUFA867 lymphoblasts, a "clean" FA-M cell line was generated. These cells were hypersensitive to mitomycin C, but unlike cells defective in other core complex members, FANCM(-/-) cells were proficient in monoubiquitinating FANCD2 and were sensitive to the topoisomerase inhibitor camptothecin, a feature shared only with the FA subtype D1 and N. In addition, FANCM(-/-) cells were sensitive to UV light. FANCM and a C-terminal deletion mutant rescued the cross-linker sensitivity of FANCM(-/-) cells, whereas a FANCM ATPase mutant did not. Because both mutants restored the formation of FANCD2 foci, we conclude that FANCM functions in an FA core complex-dependent and -independent manner.
Collapse
|
124
|
Mimitou EP, Symington LS. Nucleases and helicases take center stage in homologous recombination. Trends Biochem Sci 2009; 34:264-72. [PMID: 19375328 DOI: 10.1016/j.tibs.2009.01.010] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 01/12/2009] [Accepted: 01/16/2009] [Indexed: 10/20/2022]
Abstract
Homologous recombination (HR)-mediated DNA double-strand break repair maintains genome integrity. Although long-studied, an understanding of two essential steps in this process -- the resection of DNA ends to produce recombinogenic 3' single-stranded DNA tails and the resolution of recombination intermediates -- has remained elusive. Recent findings show an unexpected role for the Sgs1 (BLM) helicase and Dna2 nuclease in end resection, and provide mechanistic insight into the initiation of 5'-3' resection as well as its regulation by the cell cycle and the DNA damage response. Moreover, the identification of a novel Holliday junction resolvase, Yen1 (GEN1), and several helicases that dismantle strand invasion intermediates has increased the repertoire of nucleases and helicases capable of resolving recombination intermediates.
Collapse
Affiliation(s)
- Eleni P Mimitou
- Department of Microbiology, Columbia University Medical Center, New York, NY 10032, USA
| | | |
Collapse
|
125
|
Atkinson J, McGlynn P. Replication fork reversal and the maintenance of genome stability. Nucleic Acids Res 2009; 37:3475-92. [PMID: 19406929 PMCID: PMC2699526 DOI: 10.1093/nar/gkp244] [Citation(s) in RCA: 183] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The progress of replication forks is often threatened in vivo, both by DNA damage and by proteins bound to the template. Blocked forks must somehow be restarted, and the original blockage cleared, in order to complete genome duplication, implying that blocked fork processing may be critical for genome stability. One possible pathway that might allow processing and restart of blocked forks, replication fork reversal, involves the unwinding of blocked forks to form four-stranded structures resembling Holliday junctions. This concept has gained increasing popularity recently based on the ability of such processing to explain many genetic observations, the detection of unwound fork structures in vivo and the identification of enzymes that have the capacity to catalyse fork regression in vitro. Here, we discuss the contexts in which fork regression might occur, the factors that may promote such a reaction and the possible roles of replication fork unwinding in normal DNA metabolism.
Collapse
Affiliation(s)
- John Atkinson
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | | |
Collapse
|
126
|
Ishikawa K, Handa N, Kobayashi I. Cleavage of a model DNA replication fork by a Type I restriction endonuclease. Nucleic Acids Res 2009; 37:3531-44. [PMID: 19357093 PMCID: PMC2699502 DOI: 10.1093/nar/gkp214] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cleavage of a DNA replication fork leads to fork restoration by recombination repair. In prokaryote cells carrying restriction-modification systems, fork passage reduces genome methylation by the modification enzyme and exposes the chromosome to attack by the restriction enzyme. Various observations have suggested a relationship between the fork and Type I restriction enzymes, which cleave DNA at a distance from a recognition sequence. Here, we demonstrate that a Type I restriction enzyme preparation cleaves a model replication fork at its branch. The enzyme probably tracks along the DNA from an unmethylated recognition site on the daughter DNA and cuts the fork upon encountering the branch point. Our finding suggests that these restriction-modification systems contribute to genome maintenance through cell death and indicates that DNA replication fork cleavage represents a critical point in genome maintenance to choose between the restoration pathway and the destruction pathway.
Collapse
Affiliation(s)
- Ken Ishikawa
- Graduate Program in Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo 108-8639, Japan
| | | | | |
Collapse
|
127
|
Abstract
Mutations can be beneficial under conditions in which genetic diversity is advantageous, such as somatic hypermutation and antibody generation, but they can also be lethal when they disrupt basic cellular processes or cause uncontrolled proliferation and cancer. Mutations arise from inaccurate processing of lesions generated by endogenous and exogenous DNA damaging agents, and the genome is particularly vulnerable to such damage during S phase. In this phase of the cell cycle, many lesions in the DNA template block replication. Such lesions must be bypassed in order to preserve fork stability and to ensure completion of DNA replication. Lesion bypass is carried out by a set of error-prone and error-free processes collectively referred to as DNA damage tolerance mechanisms. Here, we discuss how two types of DNA damage tolerance, translesion synthesis and template switching, are regulated at stalled replication forks by ubiquitination of PCNA, and the conditions under which they occur.
Collapse
Affiliation(s)
- Debbie J. Chang
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Clark Center, 318 Campus Drive, W350B, Stanford, California 94305-5441, USA. ; phone: 650-450-1080; fax: 650-725-4665
| | - Karlene A. Cimprich
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Clark Center, 318 Campus Drive, W350B, Stanford, California 94305-5441, USA. ; phone: 650-450-1080; fax: 650-725-4665
| |
Collapse
|
128
|
Abstract
Fanconi Anemia (FA) is an inherited genomic instability disorder, caused by mutations in genes regulating replication-dependent removal of interstrand DNA crosslinks. The Fanconi Anemia pathway is thought to coordinate a complex mechanism that enlists elements of three classic DNA repair pathways, namely homologous recombination, nucleotide excision repair, and mutagenic translesion synthesis, in response to genotoxic insults. To this end, the Fanconi Anemia pathway employs a unique nuclear protein complex that ubiquitinates FANCD2 and FANCI, leading to formation of DNA repair structures. Lack of obvious enzymatic activities among most FA members has made it challenging to unravel its precise modus operandi. Here we review the current understanding of how the Fanconi Anemia pathway components participate in DNA repair and discuss the mechanisms that regulate this pathway to ensure timely, efficient, and correct restoration of chromosomal integrity.
Collapse
Affiliation(s)
- George-Lucian Moldovan
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | | |
Collapse
|
129
|
|