101
|
Josenhans C, Jung K, Rao CV, Wolfe AJ. A tale of two machines: a review of the BLAST meeting, Tucson, AZ, 20-24 January 2013. Mol Microbiol 2013; 91:6-25. [PMID: 24125587 DOI: 10.1111/mmi.12427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2013] [Indexed: 01/06/2023]
Abstract
Since its inception, Bacterial Locomotion and Signal Transduction (BLAST) meetings have been the place to exchange and share the latest developments in the field of bacterial signal transduction and motility. At the 12th BLAST meeting, held last January in Tucson, AZ, researchers from all over the world met to report and discuss progress in diverse aspects of the field. The majority of these advances, however, came at the level of atomic level structures and their associated mechanisms. This was especially true of the biological machines that sense and respond to environmental changes.
Collapse
Affiliation(s)
- Christine Josenhans
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Carl-Neuberg Strasse 1, 30625, Hannover, Germany
| | | | | | | |
Collapse
|
102
|
O'Connell A, An SQ, McCarthy Y, Schulte F, Niehaus K, He YQ, Tang JL, Ryan RP, Dow JM. Proteomics analysis of the regulatory role of Rpf/DSF cell-to-cell signaling system in the virulence of Xanthomonas campestris. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:1131-1137. [PMID: 23819805 DOI: 10.1094/mpmi-05-13-0155-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The black rot pathogen Xanthomonas campestris utilizes molecules of the diffusible signal factor (DSF) family as signals to regulate diverse processes contributing to virulence. DSF signal synthesis and transduction requires proteins encoded by the rpf gene cluster. RpfF catalyzes DSF synthesis, whereas the RpfCG two-component system links the perception of DSF to alteration in the level of the second messenger cyclic di-GMP. As this nucleotide can exert a regulatory influence at the post-transcriptional and post-translational levels, we have used comparative proteomics to identify Rpf-regulated processes in X. campestris that may not be revealed by transcriptomics. The abundance of a number of proteins was altered in rpfF, rpfC, or rpfG mutants compared with the wild type. These proteins belonged to several functional categories, including biosynthesis and intermediary metabolism, regulation, oxidative stress or antibiotic resistance, and DNA replication. For many of these proteins, the alteration in abundance was not associated with alteration in transcript level. A directed mutational analysis allowed us to describe a number of new virulence factors among these proteins, including elongation factor P and a putative outer membrane protein, which are both widely conserved in bacteria.
Collapse
|
103
|
Hammarlöf DL, Canals R, Hinton JCD. The FUN of identifying gene function in bacterial pathogens; insights from Salmonella functional genomics. Curr Opin Microbiol 2013; 16:643-51. [PMID: 24021902 DOI: 10.1016/j.mib.2013.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 07/12/2013] [Indexed: 02/01/2023]
Abstract
The availability of thousands of genome sequences of bacterial pathogens poses a particular challenge because each genome contains hundreds of genes of unknown function (FUN). How can we easily discover which FUN genes encode important virulence factors? One solution is to combine two different functional genomic approaches. First, transcriptomics identifies bacterial FUN genes that show differential expression during the process of mammalian infection. Second, global mutagenesis identifies individual FUN genes that the pathogen requires to cause disease. The intersection of these datasets can reveal a small set of candidate genes most likely to encode novel virulence attributes. We demonstrate this approach with the Salmonella infection model, and propose that a similar strategy could be used for other bacterial pathogens.
Collapse
Affiliation(s)
- Disa L Hammarlöf
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | | | | |
Collapse
|
104
|
Distinct XPPX sequence motifs induce ribosome stalling, which is rescued by the translation elongation factor EF-P. Proc Natl Acad Sci U S A 2013; 110:15265-70. [PMID: 24003132 DOI: 10.1073/pnas.1310642110] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ribosomes are the protein synthesizing factories of the cell, polymerizing polypeptide chains from their constituent amino acids. However, distinct combinations of amino acids, such as polyproline stretches, cannot be efficiently polymerized by ribosomes, leading to translational stalling. The stalled ribosomes are rescued by the translational elongation factor P (EF-P), which by stimulating peptide-bond formation allows translation to resume. Using metabolic stable isotope labeling and mass spectrometry, we demonstrate in vivo that EF-P is important for expression of not only polyproline-containing proteins, but also for specific subsets of proteins containing diprolyl motifs (XPP/PPX). Together with a systematic in vitro and in vivo analysis, we provide a distinct hierarchy of stalling triplets, ranging from strong stallers, such as PPP, DPP, and PPN to weak stallers, such as CPP, PPR, and PPH, all of which are substrates for EF-P. These findings provide mechanistic insight into how the characteristics of the specific amino acid substrates influence the fundamentals of peptide bond formation.
Collapse
|
105
|
Genome-wide fitness profiling reveals adaptations required by Haemophilus in coinfection with influenza A virus in the murine lung. Proc Natl Acad Sci U S A 2013; 110:15413-8. [PMID: 24003154 DOI: 10.1073/pnas.1311217110] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial coinfection represents a major cause of morbidity and mortality in epidemics of influenza A virus (IAV). The bacterium Haemophilus influenzae typically colonizes the human upper respiratory tract without causing disease, and yet in individuals infected with IAV, it can cause debilitating or lethal secondary pneumonia. Studies in murine models have detected immune components involved in susceptibility and pathology, and yet few studies have examined bacterial factors contributing to coinfection. We conducted genome-wide profiling of the H. influenzae genes that promote its fitness in a murine model of coinfection with IAV. Application of direct, high-throughput sequencing of transposon insertion sites revealed fitness phenotypes of a bank of H. influenzae mutants in viral coinfection in comparison with bacterial infection alone. One set of virulence genes was required in nonvirally infected mice but not in coinfection, consistent with a defect in anti-bacterial defenses during coinfection. Nevertheless, a core set of genes required in both in vivo conditions indicated that many bacterial countermeasures against host defenses remain critical for coinfection. The results also revealed a subset of genes required in coinfection but not in bacterial infection alone, including the iron-sulfur cluster regulator gene, iscR, which was required for oxidative stress resistance. Overexpression of the antioxidant protein Dps in the iscR mutant restored oxidative stress resistance and ability to colonize in coinfection. The results identify bacterial stress and metabolic adaptations required in an IAV coinfection model, revealing potential targets for treatment or prevention of secondary bacterial pneumonia after viral infection.
Collapse
|
106
|
Silva WM, Seyffert N, Santos AV, Castro TL, Pacheco LG, Santos AR, Ciprandi A, Dorella FA, Andrade HM, Barh D, Pimenta AM, Silva A, Miyoshi A, Azevedo V. Identification of 11 new exoproteins in Corynebacterium pseudotuberculosis by comparative analysis of the exoproteome. Microb Pathog 2013; 61-62:37-42. [DOI: 10.1016/j.micpath.2013.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 04/23/2013] [Accepted: 05/06/2013] [Indexed: 11/26/2022]
|
107
|
Gutierrez E, Shin BS, Woolstenhulme CJ, Kim JR, Saini P, Buskirk AR, Dever TE. eIF5A promotes translation of polyproline motifs. Mol Cell 2013; 51:35-45. [PMID: 23727016 PMCID: PMC3744875 DOI: 10.1016/j.molcel.2013.04.021] [Citation(s) in RCA: 371] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 04/10/2013] [Accepted: 04/25/2013] [Indexed: 11/17/2022]
Abstract
Translation factor eIF5A, containing the unique amino acid hypusine, was originally shown to stimulate Met-puromycin synthesis, a model assay for peptide bond formation. More recently, eIF5A was shown to promote translation elongation; however, its precise requirement in protein synthesis remains elusive. We use in vivo assays in yeast and in vitro reconstituted translation assays to reveal a specific requirement for eIF5A to promote peptide bond formation between consecutive Pro residues. Addition of eIF5A relieves ribosomal stalling during translation of three consecutive Pro residues in vitro, and loss of eIF5A function impairs translation of polyproline-containing proteins in vivo. Hydroxyl radical probing experiments localized eIF5A near the E site of the ribosome with its hypusine residue adjacent to the acceptor stem of the P site tRNA. Thus, eIF5A, like its bacterial ortholog EFP, is proposed to stimulate the peptidyl transferase activity of the ribosome and facilitate the reactivity of poor substrates like Pro.
Collapse
Affiliation(s)
- Erik Gutierrez
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Byung-Sik Shin
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | - Joo-Ran Kim
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Preeti Saini
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Allen R. Buskirk
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Thomas E. Dever
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
108
|
Rodnina MV. The ribosome as a versatile catalyst: reactions at the peptidyl transferase center. Curr Opin Struct Biol 2013; 23:595-602. [PMID: 23711800 DOI: 10.1016/j.sbi.2013.04.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 04/10/2013] [Indexed: 11/29/2022]
Abstract
In all contemporary organisms, the active site of the ribosome--the peptidyl transferase center--catalyzes two distinct reactions, peptide bond formation between peptidyl-tRNA and aminoacyl-tRNA as well as the hydrolysis of peptidyl-tRNA with the help of a release factor. However, when provided with appropriate substrates, ribosomes can also catalyze a broad range of other chemical reaction, which provides the basis for orthogonal translation and synthesis of alloproteins from unnatural building blocks. Advances in understanding the mechanisms of the two ubiquitous reactions, the peptide bond formation and peptide release, provide insights into the versatility of the active site of the ribosome. Release factors 1 and 2 and elongation factor P are auxiliary factors that augment the intrinsic catalytic activity of the ribosome in special cases.
Collapse
Affiliation(s)
- Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany.
| |
Collapse
|
109
|
Divergent protein motifs direct elongation factor P-mediated translational regulation in Salmonella enterica and Escherichia coli. mBio 2013; 4:e00180-13. [PMID: 23611909 PMCID: PMC3638311 DOI: 10.1128/mbio.00180-13] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Elongation factor P (EF-P) is a universally conserved bacterial translation factor homologous to eukaryotic/archaeal initiation factor 5A. In Salmonella, deletion of the efp gene results in pleiotropic phenotypes, including increased susceptibility to numerous cellular stressors. Only a limited number of proteins are affected by the loss of EF-P, and it has recently been determined that EF-P plays a critical role in rescuing ribosomes stalled at PPP and PPG peptide sequences. Here we present an unbiased in vivo investigation of the specific targets of EF-P by employing stable isotope labeling of amino acids in cell culture (SILAC) to compare the proteomes of wild-type and efp mutant Salmonella. We found that metabolic and motility genes are prominent among the subset of proteins with decreased production in the Δefp mutant. Furthermore, particular tripeptide motifs are statistically overrepresented among the proteins downregulated in efp mutant strains. These include both PPP and PPG but also additional motifs, such as APP and YIRYIR, which were confirmed to induce EF-P dependence by a translational fusion assay. Notably, we found that many proteins containing polyproline motifs are not misregulated in an EF-P-deficient background, suggesting that the factors that govern EF-P-mediated regulation are complex. Finally, we analyzed the specific region of the PoxB protein that is modulated by EF-P and found that mutation of any residue within a specific GSCGPG sequence eliminates the requirement for EF-P. This work expands the known repertoire of EF-P target motifs and implicates factors beyond polyproline motifs that are required for EF-P-mediated regulation. Bacterial cells regulate gene expression at several points during and after transcription. During protein synthesis, for example, factors can interact with the ribosome to influence the production of specific proteins. Bacterial elongation factor P (EF-P) is a protein that facilitates the synthesis of proteins that contain polyproline motifs by preventing the ribosome from stalling. Bacterial cells that lack EF-P are viable but are sensitive to a large number of stress conditions. In this study, a global analysis of protein synthesis revealed that EF-P regulates many more proteins in the cell than predicted based solely on the prevalence of polyproline motifs. Several new EF-P-regulated motifs were uncovered, thereby providing a more complete picture of how this critical factor influences the cell’s response to stress at the level of protein synthesis.
Collapse
|
110
|
Balibar CJ, Iwanowicz D, Dean CR. Elongation factor P is dispensable in Escherichia coli and Pseudomonas aeruginosa. Curr Microbiol 2013; 67:293-9. [PMID: 23591475 DOI: 10.1007/s00284-013-0363-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 03/05/2013] [Indexed: 10/26/2022]
Abstract
Elongation factor P (EF-P) is a highly conserved ribosomal initiation factor responsible for stimulating formation of the first peptide bond. Its essentiality has been debated and may differ depending on the organism. Here, we demonstrate that EF-P is dispensable in Escherichia coli and Pseudomonas aeruginosa under laboratory growth conditions. Although knockouts are viable, growth rates are diminished compared with wild-type strains. Despite this cost in fitness, these mutants are not more susceptible to a wide range of antibiotics; including ribosome targeting antibiotics, such as lincomycin, chloramphenicol, and streptomycin, which have been shown previously to disrupt EF-P function in vitro. In Pseudomonas, knockout of efp leads to an upregulation of mexX, a phenotype previously observed with other genetic lesions affecting ribosome function and that can be induced by the treatment with antibiotics affecting protein synthesis.
Collapse
Affiliation(s)
- Carl J Balibar
- Infectious Diseases Area, Novartis Institutes for BioMedical Research, 4560 Horton St., Emeryville, CA 94608, USA.
| | | | | |
Collapse
|
111
|
Mocibob M, Ivic N, Luic M, Weygand-Durasevic I. Adaptation of Aminoacyl-tRNA Synthetase Catalytic Core to Carrier Protein Aminoacylation. Structure 2013; 21:614-26. [DOI: 10.1016/j.str.2013.02.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 02/01/2013] [Accepted: 02/11/2013] [Indexed: 10/27/2022]
|
112
|
Galvão FC, Rossi D, Silveira WDS, Valentini SR, Zanelli CF. The deoxyhypusine synthase mutant dys1-1 reveals the association of eIF5A and Asc1 with cell wall integrity. PLoS One 2013; 8:e60140. [PMID: 23573236 PMCID: PMC3613415 DOI: 10.1371/journal.pone.0060140] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 02/21/2013] [Indexed: 11/19/2022] Open
Abstract
The putative eukaryotic translation initiation factor 5A (eIF5A) is a highly conserved protein among archaea and eukaryotes that has recently been implicated in the elongation step of translation. eIF5A undergoes an essential and conserved posttranslational modification at a specific lysine to generate the residue hypusine. The enzymes deoxyhypusine synthase (Dys1) and deoxyhypusine hydroxylase (Lia1) catalyze this two-step modification process. Although several Saccharomyces cerevisiae eIF5A mutants have importantly contributed to the study of eIF5A function, no conditional mutant of Dys1 has been described so far. In this study, we generated and characterized the dys1-1 mutant, which showed a strong depletion of mutated Dys1 protein, resulting in more than 2-fold decrease in hypusine levels relative to the wild type. The dys1-1 mutant demonstrated a defect in total protein synthesis, a defect in polysome profile indicative of a translation elongation defect and a reduced association of eIF5A with polysomes. The growth phenotype of dys1-1 mutant is severe, growing only in the presence of 1 M sorbitol, an osmotic stabilizer. Although this phenotype is characteristic of Pkc1 cell wall integrity mutants, the sorbitol requirement from dys1-1 is not associated with cell lysis. We observed that the dys1-1 genetically interacts with the sole yeast protein kinase C (Pkc1) and Asc1, a component of the 40S ribosomal subunit. The dys1-1 mutant was synthetically lethal in combination with asc1Δ and overexpression of TIF51A (eIF5A) or DYS1 is toxic for an asc1Δ strain. Moreover, eIF5A is more associated with translating ribosomes in the absence of Asc1 in the cell. Finally, analysis of the sensitivity to cell wall-perturbing compounds revealed a more similar behavior of the dys1-1 and asc1Δ mutants in comparison with the pkc1Δ mutant. These data suggest a correlated role for eIF5A and Asc1 in coordinating the translational control of a subset of mRNAs associated with cell integrity.
Collapse
Affiliation(s)
- Fabio Carrilho Galvão
- Department of Biological Sciences, Univ Estadual Paulista – UNESP, Araraquara-Saõ Paulo, Brazil
| | - Danuza Rossi
- Department of Biological Sciences, Univ Estadual Paulista – UNESP, Araraquara-Saõ Paulo, Brazil
| | | | | | | |
Collapse
|
113
|
Abstract
Although the ribosome is a very general catalyst, it cannot synthesize all protein sequences equally well. For example, ribosomes stall on the secretion monitor (SecM) leader peptide to regulate expression of a downstream gene. Using a genetic selection in Escherichia coli, we identified additional nascent peptide motifs that stall ribosomes. Kinetic studies show that some nascent peptides dramatically inhibit rates of peptide release by release factors. We find that residues upstream of the minimal stalling motif can either enhance or suppress this effect. In other stalling motifs, peptidyl transfer to certain aminoacyl-tRNAs is inhibited. In particular, three consecutive Pro codons pose a challenge for elongating ribosomes. The translation factor elongation factor P, which alleviates pausing at polyproline sequences, has little or no effect on other stalling peptides. The motifs that we identified are underrepresented in bacterial proteomes and show evidence of stalling on endogenous E. coli proteins.
Collapse
|
114
|
Dias CAO, Garcia W, Zanelli CF, Valentini SR. eIF5A dimerizes not only in vitro but also in vivo and its molecular envelope is similar to the EF-P monomer. Amino Acids 2013; 44:631-44. [PMID: 22945904 DOI: 10.1007/s00726-012-1387-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 08/01/2012] [Indexed: 11/28/2022]
Abstract
The protein eukaryotic initiation factor 5A (eIF5A) is highly conserved among archaea and eukaryotes, but not in bacteria. Bacteria have the elongation factor P (EF-P), which is structurally and functionally related to eIF5A. eIF5A is essential for cell viability and the only protein known to contain the amino acid residue hypusine, formed by post-translational modification of a specific lysine residue. Although eIF5A was initially identified as a translation initiation factor, recent studies strongly support a function for eIF5A in the elongation step of translation. However, the mode of action of eIF5A is still unknown. Here, we analyzed the oligomeric state of yeast eIF5A. First, by using size-exclusion chromatography, we showed that this protein exists as a dimer in vitro, independent of the hypusine residue or electrostatic interactions. Protein-protein interaction assays demonstrated that eIF5A can form oligomers in vitro and in vivo, in an RNA-dependent manner, but independent of the hypusine residue or the ribosome. Finally, small-angle X-ray scattering (SAXS) experiments confirmed that eIF5A behaves as a stable dimer in solution. Moreover, the molecular envelope determined from the SAXS data shows that the eIF5A dimer is L-shaped and superimposable on the tRNA(Phe) tertiary structure, analogously to the EF-P monomer.
Collapse
Affiliation(s)
- Camila Arnaldo Olhê Dias
- Department of Biological Sciences, School of Pharmaceutical Sciences, UNESP-Univ Estadual Paulista, Rodovia Araraquara-Jaú, km 01, Araraquara, SP 14801-902, Brazil
| | | | | | | |
Collapse
|
115
|
Abstract
A protein that associates with the ribosome alleviates stalling and stimulates translation of proline-rich motifs.
[Also see Reports by
Ude
et al.
and
Doerfel
et al.
]
Collapse
Affiliation(s)
- Allen R Buskirk
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | | |
Collapse
|
116
|
Bullwinkle TJ, Zou SB, Rajkovic A, Hersch SJ, Elgamal S, Robinson N, Smil D, Bolshan Y, Navarre WW, Ibba M. (R)-β-lysine-modified elongation factor P functions in translation elongation. J Biol Chem 2012; 288:4416-23. [PMID: 23277358 DOI: 10.1074/jbc.m112.438879] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Post-translational modification of bacterial elongation factor P (EF-P) with (R)-β-lysine at a conserved lysine residue activates the protein in vivo and increases puromycin reactivity of the ribosome in vitro. The additional hydroxylation of EF-P at the same lysine residue by the YfcM protein has also recently been described. The roles of modified and unmodified EF-P during different steps in translation, and how this correlates to its physiological role in the cell, have recently been linked to the synthesis of polyproline stretches in proteins. Polysome analysis indicated that EF-P functions in translation elongation, rather than initiation as proposed previously. This was further supported by the inability of EF-P to enhance the rate of formation of fMet-Lys or fMet-Phe, indicating that the role of EF-P is not to specifically stimulate formation of the first peptide bond. Investigation of hydroxyl-(β)-lysyl-EF-P showed 30% increased puromycin reactivity but no differences in dipeptide synthesis rates when compared with the β-lysylated form. Unlike disruption of the other genes required for EF-P modification, deletion of yfcM had no phenotypic consequences in Salmonella. Taken together, our findings indicate that EF-P functions in translation elongation, a role critically dependent on post-translational β-lysylation but not hydroxylation.
Collapse
Affiliation(s)
- Tammy J Bullwinkle
- Department of Microbiology, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Ude S, Lassak J, Starosta AL, Kraxenberger T, Wilson DN, Jung K. Translation elongation factor EF-P alleviates ribosome stalling at polyproline stretches. Science 2012; 339:82-5. [PMID: 23239623 DOI: 10.1126/science.1228985] [Citation(s) in RCA: 352] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Translation elongation factor P (EF-P) is critical for virulence in bacteria. EF-P is present in all bacteria and orthologous to archaeal and eukaryotic initiation factor 5A, yet the biological function has so far remained enigmatic. Here, we demonstrate that EF-P is an elongation factor that enhances translation of polyproline-containing proteins: In the absence of EF-P, ribosomes stall at polyproline stretches, whereas the presence of EF-P alleviates the translational stalling. Moreover, we demonstrate the physiological relevance of EF-P to fine-tune the expression of the polyproline-containing pH receptor CadC to levels necessary for an appropriate stress response. Bacterial, archaeal, and eukaryotic cells have hundreds to thousands of polyproline-containing proteins of diverse function, suggesting that EF-P and a/eIF-5A are critical for copy-number adjustment of multiple pathways across all kingdoms of life.
Collapse
Affiliation(s)
- Susanne Ude
- Center for Integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | | | | | | | |
Collapse
|
118
|
Doerfel LK, Wohlgemuth I, Kothe C, Peske F, Urlaub H, Rodnina MV. EF-P is essential for rapid synthesis of proteins containing consecutive proline residues. Science 2012; 339:85-8. [PMID: 23239624 DOI: 10.1126/science.1229017] [Citation(s) in RCA: 367] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Elongation factor P (EF-P) is a translation factor of unknown function that has been implicated in a great variety of cellular processes. Here, we show that EF-P prevents ribosome from stalling during synthesis of proteins containing consecutive prolines, such as PPG, PPP, or longer proline strings, in natural and engineered model proteins. EF-P promotes peptide-bond formation and stabilizes the peptidyl-transfer RNA in the catalytic center of the ribosome. EF-P is posttranslationally modified by a hydroxylated β-lysine attached to a lysine residue. The modification enhances the catalytic proficiency of the factor mainly by increasing its affinity to the ribosome. We propose that EF-P and its eukaryotic homolog, eIF5A, are essential for the synthesis of a subset of proteins containing proline stretches in all cells.
Collapse
Affiliation(s)
- Lili K Doerfel
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | | | | | | | | | | |
Collapse
|
119
|
Abstract
Aminoacyl-tRNAsynthetases (aaRSs) are modular enzymesglobally conserved in the three kingdoms of life. All catalyze the same two-step reaction, i.e., the attachment of a proteinogenic amino acid on their cognate tRNAs, thereby mediating the correct expression of the genetic code. In addition, some aaRSs acquired other functions beyond this key role in translation.Genomics and X-ray crystallography have revealed great structural diversity in aaRSs (e.g.,in oligomery and modularity, in ranking into two distinct groups each subdivided in 3 subgroups, by additional domains appended on the catalytic modules). AaRSs show hugestructural plasticity related to function andlimited idiosyncrasies that are kingdom or even speciesspecific (e.g.,the presence in many Bacteria of non discriminating aaRSs compensating for the absence of one or two specific aaRSs, notably AsnRS and/or GlnRS).Diversity, as well, occurs in the mechanisms of aaRS gene regulation that are not conserved in evolution, notably betweendistant groups such as Gram-positive and Gram-negative Bacteria.Thereview focuses on bacterial aaRSs (and their paralogs) and covers their structure, function, regulation,and evolution. Structure/function relationships are emphasized, notably the enzymology of tRNA aminoacylation and the editing mechanisms for correction of activation and charging errors. The huge amount of genomic and structural data that accumulatedin last two decades is reviewed,showing how thefield moved from essentially reductionist biologytowards more global and integrated approaches. Likewise, the alternative functions of aaRSs and those of aaRSparalogs (e.g., during cellwall biogenesis and other metabolic processes in or outside protein synthesis) are reviewed. Since aaRS phylogenies present promiscuous bacterial, archaeal, and eukaryal features, similarities and differences in the properties of aaRSs from the three kingdoms of life are pinpointedthroughout the reviewand distinctive characteristics of bacterium-like synthetases from organelles are outlined.
Collapse
|
120
|
Caballero VC, Toledo VP, Maturana C, Fisher CR, Payne SM, Salazar JC. Expression of Shigella flexneri gluQ-rs gene is linked to dksA and controlled by a transcriptional terminator. BMC Microbiol 2012; 12:226. [PMID: 23035718 PMCID: PMC3542578 DOI: 10.1186/1471-2180-12-226] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 09/11/2012] [Indexed: 12/01/2022] Open
Abstract
Background Glutamyl queuosine-tRNAAsp synthetase (GluQ-RS) is a paralog of the catalytic domain of glutamyl-tRNA synthetase and catalyzes the formation of glutamyl-queuosine on the wobble position of tRNAAsp. Here we analyze the transcription of its gene in Shigella flexneri, where it is found downstream of dksA, which encodes a transcriptional regulator involved in stress responses. Results The genomic organization, dksA-gluQ-rs, is conserved in more than 40 bacterial species. RT-PCR assays show co-transcription of both genes without a significant change in transcript levels during growth of S. flexneri. However, mRNA levels of the intergenic region changed during growth, increasing at stationary phase, indicating an additional level of control over the expression of gluQ-rs gene. Transcriptional fusions with lacZ as a reporter gene only produced β-galactosidase activity when the constructs included the dksA promoter, indicating that gluQ-rs do not have a separate promoter. Using bioinformatics, we identified a putative transcriptional terminator between dksA and gluQ-rs. Deletion or alteration of the predicted terminator resulted in increased expression of the lacZ reporter compared with cells containing the wild type terminator sequence. Analysis of the phenotype of a gluQ-rs mutant suggested that it may play a role in some stress responses, since growth of the mutant was impaired in the presence of osmolytes. Conclusions The results presented here, show that the expression of gluQ-rs depends on the dksA promoter, and strongly suggest the presence and the functionality of a transcriptional terminator regulating its expression. Also, the results indicate a link between glutamyl-queuosine synthesis and stress response in Shigella flexneri.
Collapse
Affiliation(s)
- Valeria C Caballero
- Program of Microbiology and Mycology, Institute of Biomedical Science-ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
121
|
Fröhlich A, Gaupels F, Sarioglu H, Holzmeister C, Spannagl M, Durner J, Lindermayr C. Looking deep inside: detection of low-abundance proteins in leaf extracts of Arabidopsis and phloem exudates of pumpkin. PLANT PHYSIOLOGY 2012; 159:902-14. [PMID: 22555880 PMCID: PMC3387715 DOI: 10.1104/pp.112.198077] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 04/24/2012] [Indexed: 05/20/2023]
Abstract
The field of proteomics suffers from the immense complexity of even small proteomes and the enormous dynamic range of protein concentrations within a given sample. Most protein samples contain a few major proteins, which hamper in-depth proteomic analysis. In the human field, combinatorial hexapeptide ligand libraries (CPLL; such as ProteoMiner) have been used for reduction of the dynamic range of protein concentrations; however, this technique is not established in plant research. In this work, we present the application of CPLL to Arabidopsis (Arabidopsis thaliana) leaf proteins. One- and two-dimensional gel electrophoresis showed a decrease in high-abundance proteins and an enrichment of less abundant proteins in CPLL-treated samples. After optimization of the CPLL protocol, mass spectrometric analyses of leaf extracts led to the identification of 1,192 proteins in control samples and an additional 512 proteins after the application of CPLL. Upon leaf infection with virulent Pseudomonas syringae DC3000, CPLL beads were also used for investigating the bacterial infectome. In total, 312 bacterial proteins could be identified in infected Arabidopsis leaves. Furthermore, phloem exudates of pumpkin (Cucurbita maxima) were analyzed. CPLL prefractionation caused depletion of the major phloem proteins 1 and 2 and improved phloem proteomics, because 67 of 320 identified proteins were detectable only after CPLL treatment. In sum, our results demonstrate that CPLL beads are a time- and cost-effective tool for reducing major proteins, which often interfere with downstream analyses. The concomitant enrichment of less abundant proteins may facilitate a deeper insight into the plant proteome.
Collapse
Affiliation(s)
| | | | - Hakan Sarioglu
- Institute of Biochemical Plant Pathology (A.F., F.G., C.H., J.D., C.L.), Department of Protein Science (H.S.), and Institute of Bioinformatics and Systems Biology (M.S.), Helmholtz Zentrum München, German Research Center for Environmental Health, D–85764 Neuherberg, Germany
| | - Christian Holzmeister
- Institute of Biochemical Plant Pathology (A.F., F.G., C.H., J.D., C.L.), Department of Protein Science (H.S.), and Institute of Bioinformatics and Systems Biology (M.S.), Helmholtz Zentrum München, German Research Center for Environmental Health, D–85764 Neuherberg, Germany
| | - Manuel Spannagl
- Institute of Biochemical Plant Pathology (A.F., F.G., C.H., J.D., C.L.), Department of Protein Science (H.S.), and Institute of Bioinformatics and Systems Biology (M.S.), Helmholtz Zentrum München, German Research Center for Environmental Health, D–85764 Neuherberg, Germany
| | - Jörg Durner
- Institute of Biochemical Plant Pathology (A.F., F.G., C.H., J.D., C.L.), Department of Protein Science (H.S.), and Institute of Bioinformatics and Systems Biology (M.S.), Helmholtz Zentrum München, German Research Center for Environmental Health, D–85764 Neuherberg, Germany
| | - Christian Lindermayr
- Institute of Biochemical Plant Pathology (A.F., F.G., C.H., J.D., C.L.), Department of Protein Science (H.S.), and Institute of Bioinformatics and Systems Biology (M.S.), Helmholtz Zentrum München, German Research Center for Environmental Health, D–85764 Neuherberg, Germany
| |
Collapse
|
122
|
Dever TE, Green R. The elongation, termination, and recycling phases of translation in eukaryotes. Cold Spring Harb Perspect Biol 2012; 4:a013706. [PMID: 22751155 DOI: 10.1101/cshperspect.a013706] [Citation(s) in RCA: 300] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This work summarizes our current understanding of the elongation and termination/recycling phases of eukaryotic protein synthesis. We focus here on recent advances in the field. In addition to an overview of translation elongation, we discuss unique aspects of eukaryotic translation elongation including eEF1 recycling, eEF2 modification, and eEF3 and eIF5A function. Likewise, we highlight the function of the eukaryotic release factors eRF1 and eRF3 in translation termination, and the functions of ABCE1/Rli1, the Dom34:Hbs1 complex, and Ligatin (eIF2D) in ribosome recycling. Finally, we present some of the key questions in translation elongation, termination, and recycling that remain to be answered.
Collapse
Affiliation(s)
- Thomas E Dever
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
123
|
Peil L, Starosta AL, Virumäe K, Atkinson GC, Tenson T, Remme J, Wilson DN. Lys34 of translation elongation factor EF-P is hydroxylated by YfcM. Nat Chem Biol 2012; 8:695-7. [PMID: 22706199 DOI: 10.1038/nchembio.1001] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 04/11/2012] [Indexed: 11/09/2022]
Abstract
Lys34 of the conserved translation elongation factor P (EF-P) is post-translationally lysinylated by YjeK and YjeA--a modification that is critical for bacterial virulence. Here we show that the currently accepted Escherichia coli EF-P modification pathway is incomplete and lacks a final hydroxylation step mediated by YfcM, an enzyme distinct from deoxyhypusine hydroxylase that catalyzes the final maturation step of eukaryotic initiation factor 5A, the eukaryotic EF-P homolog.
Collapse
Affiliation(s)
- Lauri Peil
- Institute of Technology, University of Tartu, Tartu, Estonia
| | | | | | | | | | | | | |
Collapse
|
124
|
Park JH, Johansson HE, Aoki H, Huang BX, Kim HY, Ganoza MC, Park MH. Post-translational modification by β-lysylation is required for activity of Escherichia coli elongation factor P (EF-P). J Biol Chem 2011; 287:2579-90. [PMID: 22128152 DOI: 10.1074/jbc.m111.309633] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacterial elongation factor P (EF-P) is the ortholog of archaeal and eukaryotic initiation factor 5A (eIF5A). EF-P shares sequence homology and crystal structure with eIF5A, but unlike eIF5A, EF-P does not undergo hypusine modification. Recently, two bacterial genes, yjeA and yjeK, encoding truncated homologs of class II lysyl-tRNA synthetase and of lysine-2,3-aminomutase, respectively, have been implicated in the modification of EF-P to convert a specific lysine to a hypothetical β-lysyl-lysine. Here we present biochemical evidence for β-lysyl-lysine modification in Escherichia coli EF-P and for its role in EF-P activity by characterizing native and recombinant EF-P proteins for their modification status and activity in vitro. Mass spectrometric analyses confirmed the lysyl modification at lysine 34 in native and recombinant EF-P proteins. The β-lysyl-lysine isopeptide was identified in the exhaustive Pronase digests of native EF-P and recombinant EF-P isolated from E. coli coexpressing EF-P, YjeA, and YjeK but not in the digests of proteins derived from the vectors encoding EF-P alone or EF-P together with YjeA, indicating that both enzymes, YjeA and YjeK, are required for β-lysylation of EF-P. Endogenous EF-P as well as the recombinant EF-P preparation containing β-lysyl-EF-P stimulated N-formyl-methionyl-puromycin synthesis ∼4-fold over the preparations containing unmodified EF-P and/or α-lysyl-EF-P. The mutant lacking the modification site lysine (K34A) was inactive. This is the first report of biochemical evidence for the β-lysylation of EF-P in vivo and the requirement for this modification for the activity of EF-P.
Collapse
Affiliation(s)
- Jong-Hwan Park
- Oral and Pharyngeal Cancer Branch, NIDCR, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
125
|
Abstract
Elongation factor P (EF-P) is posttranslationally modified at a conserved lysyl residue by the coordinated action of two enzymes, PoxA and YjeK. We have previously established the importance of this modification in Salmonella stress resistance. Here we report that, like poxA and yjeK mutants, Salmonella strains lacking EF-P display increased susceptibility to hypoosmotic conditions, antibiotics, and detergents and enhanced resistance to the compound S-nitrosoglutathione. The susceptibility phenotypes are largely explained by the enhanced membrane permeability of the efp mutant, which exhibits increased uptake of the hydrophobic dye 1-N-phenylnaphthylamine (NPN). Analysis of the membrane proteomes of wild-type and efp mutant Salmonella strains reveals few changes, including the prominent overexpression of a single porin, KdgM, in the efp mutant outer membrane. Removal of KdgM in the efp mutant background ameliorates the detergent, antibiotic, and osmosensitivity phenotypes and restores wild-type permeability to NPN. Our data support a role for EF-P in the translational regulation of a limited number of proteins that, when perturbed, renders the cell susceptible to stress by the adventitious overexpression of an outer membrane porin.
Collapse
|
126
|
Gilreath MS, Roy H, Bullwinkle TJ, Katz A, Navarre WW, Ibba M. β-Lysine discrimination by lysyl-tRNA synthetase. FEBS Lett 2011; 585:3284-8. [PMID: 21925499 DOI: 10.1016/j.febslet.2011.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 09/04/2011] [Accepted: 09/05/2011] [Indexed: 10/17/2022]
Abstract
Elongation factor P is modified with (R)-β-lysine by the lysyl-tRNA synthetase (LysRS) paralog PoxA. PoxA specificity is orthogonal to LysRS, despite their high similarity. To investigate α- and β-lysine recognition by LysRS and PoxA, amino acid replacements were made in the LysRS active site guided by the PoxA structure. A233S LysRS behaved as wild type with α-lysine, while the G469A and A233S/G469A variants decreased stable α-lysyl-adenylate formation. A233S LysRS recognized β-lysine better than wildtype, suggesting a role for this residue in discriminating α- and β-amino acids. Both enantiomers of β-lysine were substrates for tRNA aminoacylation by LysRS, which, together with the relaxed specificity of the A233S variant, suggest a possible means to develop systems for in vivo co-translational insertion of β-amino acids.
Collapse
Affiliation(s)
- Marla S Gilreath
- Ohio State Biochemistry Program, Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
127
|
Roy H, Zou SB, Bullwinkle TJ, Wolfe BS, Gilreath MS, Forsyth CJ, Navarre WW, Ibba M. The tRNA synthetase paralog PoxA modifies elongation factor-P with (R)-β-lysine. Nat Chem Biol 2011; 7:667-9. [PMID: 21841797 PMCID: PMC3177975 DOI: 10.1038/nchembio.632] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 06/17/2011] [Indexed: 11/09/2022]
Abstract
The lysyl-tRNA synthetase paralog PoxA modifies elongation factor P (EF-P) with α-lysine at low efficiency. Cell-free extracts contained non-α-lysine substrates of PoxA that modified EF-P by a change in mass consistent with β–lysine, a substrate also predicted by genomic analyses. EF-P was efficiently, functionally, modified with (R)-β-lysine but not (S)-β-lysine or genetically encoded α-amino acids, indicating that PoxA has evolved an activity orthogonal to that of the canonical aminoacyl-tRNA synthetases.
Collapse
Affiliation(s)
- Hervé Roy
- Department of Microbiology, Center for RNA Biology, Ohio State University, Columbus, Ohio, USA
| | | | | | | | | | | | | | | |
Collapse
|
128
|
Zou SB, Roy H, Ibba M, Navarre WW. Elongation factor P mediates a novel post-transcriptional regulatory pathway critical for bacterial virulence. Virulence 2011; 2:147-51. [PMID: 21317554 DOI: 10.4161/viru.2.2.15039] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Bacterial pathogens detect and integrate multiple environmental signals to coordinate appropriate changes in gene expression including the selective expression of virulence factors, changes to metabolism and the activation of stress response systems. Mutations that abolish the ability of the pathogen to respond to external cues are typically attenuating. Here we discuss our recent discovery of a novel post-transcriptional regulatory pathway critical for Salmonella virulence and stress resistance. The enzymes PoxA and YjeK coordinately attach a unique beta-amino acid onto a highly conserved lysine residue in the translation factor elongation factor P (EF-P). Strains in which EF-P is unmodified due to the absence of PoxA or YjeK are attenuated for virulence and display highly pleiotropic phenotypes, including hypersusceptibility to a wide range of unrelated antimicrobial compounds. Work from our laboratory and others now suggests that EF-P, previously thought to be essential, instead plays an ancillary role in translation by regulating the synthesis of a relatively limited subset of proteins. Other observations suggest that the eukaryotic homolog of EF-P, eIF5A, may illicit similar changes in the translation machinery during stress adaptation, indicating that the role of these factors in physiology may be broadly conserved.
Collapse
Affiliation(s)
- S Betty Zou
- Department of Molecular Genetics, University of Toronto, ON, Canada
| | | | | | | |
Collapse
|
129
|
Park JH, Dias CAO, Lee SB, Valentini SR, Sokabe M, Fraser CS, Park MH. Production of active recombinant eIF5A: reconstitution in E.coli of eukaryotic hypusine modification of eIF5A by its coexpression with modifying enzymes. Protein Eng Des Sel 2011; 24:301-9. [PMID: 21131325 PMCID: PMC3038461 DOI: 10.1093/protein/gzq110] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 11/03/2010] [Accepted: 11/03/2010] [Indexed: 11/12/2022] Open
Abstract
Eukaryotic translation initiation factor 5A (eIF5A) is the only cellular protein that contains the polyamine-modified lysine, hypusine [N(ε)-(4-amino-2-hydroxybutyl)lysine]. Hypusine occurs only in eukaryotes and certain archaea, but not in eubacteria. It is formed post-translationally by two consecutive enzymatic reactions catalyzed by deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase (DOHH). Hypusine modification is essential for the activity of eIF5A and for eukaryotic cell proliferation. eIF5A binds to the ribosome and stimulates translation in a hypusine-dependent manner, but its mode of action in translation is not well understood. Since quantities of highly pure hypusine-modified eIF5A is desired for structural studies as well as for determination of its binding sites on the ribosome, we have used a polycistronic vector, pST39, to express eIF5A alone, or to co-express human eIF5A-1 with DHS or with both DHS and DOHH in Escherichia coli cells, to engineer recombinant proteins, unmodified eIF5A, deoxyhypusine- or hypusine-modified eIF5A. We have accomplished production of three different forms of recombinant eIF5A in high quantity and purity. The recombinant hypusine-modified eIF5A was as active in methionyl-puromycin synthesis as the native, eIF5A (hypusine form) purified from mammalian tissue. The recombinant eIF5A proteins will be useful tools in future structure/function and the mechanism studies in translation.
Collapse
Affiliation(s)
- Jong Hwan Park
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892-4340, USA
| | - Camila A. O. Dias
- Department of Biological Sciences, School of Pharmaceutical Sciences, University of Estadual Paulista – UNESP, Bldg 30 Rm 211, Araraquara, SP, Brazil
| | - Seung Bum Lee
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892-4340, USA
| | - Sandro R. Valentini
- Department of Biological Sciences, School of Pharmaceutical Sciences, University of Estadual Paulista – UNESP, Bldg 30 Rm 211, Araraquara, SP, Brazil
| | | | - Christopher S. Fraser
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Myung Hee Park
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892-4340, USA
| |
Collapse
|
130
|
Bearson SMD, Bearson BL, Brunelle BW, Sharma VK, Lee IS. A mutation in the poxA gene of Salmonella enterica serovar Typhimurium alters protein production, elevates susceptibility to environmental challenges, and decreases swine colonization. Foodborne Pathog Dis 2011; 8:725-32. [PMID: 21348575 DOI: 10.1089/fpd.2010.0796] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Control of foodborne Salmonella within the farm-retail continuum is a complex issue since over 2500 serovars of Salmonella exist, the host range of Salmonella spp. varies greatly, and Salmonella is environmentally ubiquitous. To identify Salmonella enterica serovar Typhimurium (Salmonella Typhimurium) genes important for pathogen survival, our research group previously screened a signature-tagged mutagenesis bank in an ex vivo swine stomach content assay. A mutation in the poxA gene, a member of the gene family encoding class-II aminoacyl-tRNA synthetases, decreased survival of Salmonella Typhimurium in the ex vivo swine stomach content assay. In the current study, complementation with a plasmid-encoded poxA gene restored survival of the poxA mutant to the level of the parental, wild-type strain. In vivo analysis of the poxA mutant in the natural porcine host revealed significantly reduced fecal shedding of Salmonella, decreased colonization of the tonsils, and decreased detection of the mutant strain in the cecal contents of the pigs at 7 days postinoculation (p < 0.05). Body temperature (fever) of the pigs inoculated with wild-type Salmonella Typhimurium was significantly higher than that of pigs inoculated with the poxA mutant (p < 0.05). Two-dimensional gel electrophoresis revealed characteristic differences in the protein profile of the poxA mutant relative to the wild-type strain, indicating that deletion of poxA in Salmonella Typhimurium exerts selective effects on translation and/or posttranslational modifications of mRNA species that are necessary for stress survival and colonization of the natural swine host.
Collapse
Affiliation(s)
- Shawn M D Bearson
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, 1920 Dayton Ave., Room 1403, Ames, IA 50010, USA.
| | | | | | | | | |
Collapse
|
131
|
In Brief. Nat Rev Microbiol 2010. [DOI: 10.1038/nrmicro2431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
132
|
Bridging the gap between ribosomal and nonribosomal protein synthesis. Proc Natl Acad Sci U S A 2010; 107:14517-8. [PMID: 20696925 DOI: 10.1073/pnas.1009939107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|