101
|
Discovery of novel leucyladenylate sulfamate surrogates as leucyl-tRNA synthetase (LRS)-targeted mammalian target of rapamycin complex 1 (mTORC1) inhibitors. Bioorg Med Chem 2018; 26:4073-4079. [PMID: 30041947 DOI: 10.1016/j.bmc.2018.06.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/25/2018] [Accepted: 06/25/2018] [Indexed: 12/25/2022]
Abstract
According to recent studies, leucyl-tRNA synthetase (LRS) acts as a leucine sensor and modulates the activation of the mammalian target of rapamycin complex 1 (mTORC1) activation. Because overactive mTORC1 is associated with several diseases, including colon cancer, LRS-targeted mTORC1 inhibitors represent a potential option for anti-cancer therapy. In this work, we developed a series of simplified leucyladenylate sulfamate analogues that contain the N-(3-chloro-4-fluorophenyl)quinazolin-4-amine moiety to replace the adenine group. We identified several compounds with comparable activity to previously reported inhibitors and exhibited selective mTORC1 inhibition and anti-cancer activity. This study further supports the hypothesis that LRS is a promising target to modulate the mTORC1 pathway.
Collapse
|
102
|
Sato Y, Sato Y, Obeng KA, Yoshizawa F. Acute oral administration of L-leucine upregulates slow-fiber- and mitochondria-related genes in skeletal muscle of rats. Nutr Res 2018; 57:36-44. [PMID: 30122194 DOI: 10.1016/j.nutres.2018.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/08/2018] [Accepted: 05/31/2018] [Indexed: 11/17/2022]
Abstract
Branched-chain amino acids promote both protein and mRNA synthesis through mechanistic target of rapamycin (mTOR) signaling. A previous report demonstrated that chronic branched-chain amino acid supplementation increased mitochondrial biogenesis in the skeletal muscle of middle-aged mice through activation of mTOR signaling. In this study, we hypothesized that the acute oral administration of L-leucine alone has the ability to alter the gene expression related to fiber type and metabolism in skeletal muscle of young rats through the activation of mTOR signaling. Although the gene expression of representative glycolytic enzymes (Hk2 and Eno3) was not altered, L-leucine administration (135 mg/100 g body weight) upregulated the expression of slow-fiber-related genes (Myh7, Myl3, and Tnni1) and a mitochondrial biogenesis-related gene (Ppargc1a) in the soleus and extensor digitorum longus muscles compared with the control. In addition, L-leucine treatment also upregulated the slow-fiber genes and mitochondrial gene expression in cultured C2C12 myotubes, whereas rapamycin inhibited the effects of L-leucine. However, L-alanine, L-phenylalanine, and L-valine treatment did not alter the expression of the fiber type- and metabolism-related genes as observed in L-leucine. Our results suggest that L-leucine may have the ability to alter skeletal muscle fiber type toward slow fiber and oxidative metabolism by upregulation of gene expression through mTOR signaling.
Collapse
Affiliation(s)
- Yoriko Sato
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Yusuke Sato
- Department of Agrobiology and Bioresources, Utsunomiya University, 350 Minemachi, Tochigi, Japan.
| | - Kodwo Amuzuah Obeng
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Fumiaki Yoshizawa
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan; Department of Agrobiology and Bioresources, Utsunomiya University, 350 Minemachi, Tochigi, Japan
| |
Collapse
|
103
|
Coordination of the leucine-sensing Rag GTPase cycle by leucyl-tRNA synthetase in the mTORC1 signaling pathway. Proc Natl Acad Sci U S A 2018; 115:E5279-E5288. [PMID: 29784813 DOI: 10.1073/pnas.1801287115] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
A protein synthesis enzyme, leucyl-tRNA synthetase (LRS), serves as a leucine sensor for the mechanistic target of rapamycin complex 1 (mTORC1), which is a central effector for protein synthesis, metabolism, autophagy, and cell growth. However, its significance in mTORC1 signaling and cancer growth and its functional relationship with other suggested leucine signal mediators are not well-understood. Here we show the kinetics of the Rag GTPase cycle during leucine signaling and that LRS serves as an initiating "ON" switch via GTP hydrolysis of RagD that drives the entire Rag GTPase cycle, whereas Sestrin2 functions as an "OFF" switch by controlling GTP hydrolysis of RagB in the Rag GTPase-mTORC1 axis. The LRS-RagD axis showed a positive correlation with mTORC1 activity in cancer tissues and cells. The GTP-GDP cycle of the RagD-RagB pair, rather than the RagC-RagA pair, is critical for leucine-induced mTORC1 activation. The active RagD-RagB pair can overcome the absence of the RagC-RagA pair, but the opposite is not the case. This work suggests that the GTPase cycle of RagD-RagB coordinated by LRS and Sestrin2 is critical for controlling mTORC1 activation, and thus will extend the current understanding of the amino acid-sensing mechanism.
Collapse
|
104
|
A comparative analysis of single cell and droplet-based FACS for improving production phenotypes: Riboflavin overproduction in Yarrowia lipolytica. Metab Eng 2018; 47:346-356. [DOI: 10.1016/j.ymben.2018.04.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/02/2018] [Accepted: 04/20/2018] [Indexed: 12/15/2022]
|
105
|
Conrad M, Kankipati HN, Kimpe M, Van Zeebroeck G, Zhang Z, Thevelein JM. The nutrient transceptor/PKA pathway functions independently of TOR and responds to leucine and Gcn2 in a TOR-independent manner. FEMS Yeast Res 2018; 17:3950251. [PMID: 28810702 PMCID: PMC5812495 DOI: 10.1093/femsyr/fox048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/06/2017] [Indexed: 12/25/2022] Open
Abstract
Two nutrient-controlled signalling pathways, the PKA and TOR pathway, play a major role in nutrient regulation of growth as well as growth-correlated properties in yeast. The relationship between the two pathways is not well understood. We have used Gap1 and Pho84 transceptor-mediated activation of trehalase and phosphorylation of fragmented Sch9 as a read-out for rapid nutrient activation of PKA or TORC1, respectively. We have identified conditions in which L-citrulline-induced activation of Sch9 phosphorylation is compromised, but not activation of trehalase: addition of the TORC1 inhibitor, rapamycin and low levels of L-citrulline. The same disconnection was observed for phosphate activation in phosphate-starved cells. The leu2 auxotrophic mutation reduces amino acid activation of trehalase, which is counteracted by deletion of GCN2. Both effects were also independent of TORC1. Our results show that rapid activation of the TOR pathway by amino acids is not involved in rapid activation of the PKA pathway and that effects of Gcn2 inactivation as well as leu2 auxotrophy all act independently of the TOR pathway. Hence, rapid nutrient signalling to PKA and TOR in cells arrested by nutrient starvation acts through parallel pathways.
Collapse
Affiliation(s)
- Michaela Conrad
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, B-3001 KU Leuven, Belgium.,Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Harish Nag Kankipati
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, B-3001 KU Leuven, Belgium.,Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Marlies Kimpe
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, B-3001 KU Leuven, Belgium.,Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Griet Van Zeebroeck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, B-3001 KU Leuven, Belgium.,Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Zhiqiang Zhang
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, B-3001 KU Leuven, Belgium.,Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, B-3001 KU Leuven, Belgium.,Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| |
Collapse
|
106
|
Halawani D, Gogonea V, DiDonato JA, Pipich V, Yao P, China A, Topbas C, Vasu K, Arif A, Hazen SL, Fox PL. Structural control of caspase-generated glutamyl-tRNA synthetase by appended noncatalytic WHEP domains. J Biol Chem 2018; 293:8843-8860. [PMID: 29643180 DOI: 10.1074/jbc.m117.807503] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 03/26/2018] [Indexed: 02/02/2023] Open
Abstract
Aminoacyl-tRNA synthetases are ubiquitous, evolutionarily conserved enzymes catalyzing the conjugation of amino acids onto cognate tRNAs. During eukaryotic evolution, tRNA synthetases have been the targets of persistent structural modifications. These modifications can be additive, as in the evolutionary acquisition of noncatalytic domains, or subtractive, as in the generation of truncated variants through regulated mechanisms such as proteolytic processing, alternative splicing, or coding region polyadenylation. A unique variant is the human glutamyl-prolyl-tRNA synthetase (EPRS) consisting of two fused synthetases joined by a linker containing three copies of the WHEP domain (termed by its presence in tryptophanyl-, histidyl-, and glutamyl-prolyl-tRNA synthetases). Here, we identify site-selective proteolysis as a mechanism that severs the linkage between the EPRS synthetases in vitro and in vivo Caspase action targeted Asp-929 in the third WHEP domain, thereby separating the two synthetases. Using a neoepitope antibody directed against the newly exposed C terminus, we demonstrate EPRS cleavage at Asp-929 in vitro and in vivo Biochemical and biophysical characterizations of the N-terminally generated EPRS proteoform containing the glutamyl-tRNA synthetase and most of the linker, including two WHEP domains, combined with structural analysis by small-angle neutron scattering, revealed a role for the WHEP domains in modulating conformations of the catalytic core and GSH-S-transferase-C-terminal-like (GST-C) domain. WHEP-driven conformational rearrangement altered GST-C domain interactions and conferred distinct oligomeric states in solution. Collectively, our results reveal long-range conformational changes imposed by the WHEP domains and illustrate how noncatalytic domains can modulate the global structure of tRNA synthetases in complex eukaryotic systems.
Collapse
Affiliation(s)
- Dalia Halawani
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute and
| | - Valentin Gogonea
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute and .,the Department of Chemistry, Cleveland State University, Cleveland, Ohio 44115
| | - Joseph A DiDonato
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute and
| | - Vitaliy Pipich
- the Jülich Center for Neutron Science, Outstation at Maier-Leibnitz Zentrum, Forschungszentrum Jülich, GmbH, Lichtenbergstrasse 1, 85747 Garching, Germany, and
| | - Peng Yao
- the Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester, Rochester, New York 14642
| | - Arnab China
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute and
| | - Celalettin Topbas
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute and.,the Department of Chemistry, Cleveland State University, Cleveland, Ohio 44115
| | - Kommireddy Vasu
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute and
| | - Abul Arif
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute and
| | - Stanley L Hazen
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute and.,Center for Cardiovascular Diagnostics and Prevention, and Department of Cardiovascular Medicine, Cleveland Clinic Foundation, Cleveland, Ohio 44195
| | - Paul L Fox
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute and
| |
Collapse
|
107
|
Saliba E, Evangelinos M, Gournas C, Corrillon F, Georis I, André B. The yeast H +-ATPase Pma1 promotes Rag/Gtr-dependent TORC1 activation in response to H +-coupled nutrient uptake. eLife 2018; 7:31981. [PMID: 29570051 PMCID: PMC5915174 DOI: 10.7554/elife.31981] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 03/22/2018] [Indexed: 11/25/2022] Open
Abstract
The yeast Target of Rapamycin Complex 1 (TORC1) plays a central role in controlling growth. How amino acids and other nutrients stimulate its activity via the Rag/Gtr GTPases remains poorly understood. We here report that the signal triggering Rag/Gtr-dependent TORC1 activation upon amino-acid uptake is the coupled H+ influx catalyzed by amino-acid/H+ symporters. H+-dependent uptake of other nutrients, ionophore-mediated H+ diffusion, and inhibition of the vacuolar V-ATPase also activate TORC1. As the increase in cytosolic H+ elicited by these processes stimulates the compensating H+-export activity of the plasma membrane H+-ATPase (Pma1), we have examined whether this major ATP-consuming enzyme might be involved in TORC1 control. We find that when the endogenous Pma1 is replaced with a plant H+-ATPase, H+ influx or increase fails to activate TORC1. Our results show that H+ influx coupled to nutrient uptake stimulates TORC1 activity and that Pma1 is a key actor in this mechanism. Cells adapt their growth rate depending on the amount of nutrients available. The protein complex called TORC1 plays a central role in this. When nutrients are abundant, TORC1 is very active and stimulates the production of proteins and other molecules needed for the cell to grow. However, when nutrients such as amino acids become scarce, TORC1 reduces its activity and allows the cells to adapt to starvation. This TORC1-mediated control of the metabolism is crucial for the cell to survive, and faulty TORC1 proteins have been associated with several diseases including cancers. TORC1 was originally discovered in yeast, which provides a powerful model to study this control system. However, until now, it was not known how TORC1 is reactivated when amino acids are added to cells that have been starved of these molecules. Knowing the answer to this question would allow us to better understand how the availability of nutrients controls the activity of TORC1. Now, Saliba et al. have discovered that TORC1 is not reactivated by the amino acids themselves, but by protons, which are positively charged hydrogen ions that travel into the cell together with the amino acids. This influx of protons is the driving force behind the active transport of amino acids and other nutrients into the cell, and potentially serves as a general signal to activate TORC1 in response to the uptake of nutrients, especially when cells have been starved. Furthermore, the results showed that a specific enzyme in the cell membrane plays an essential role in activating TORC1. This enzyme pumps the protons out of the cell to compensate for their influx and to maintain the proton gradient in the membrane that drives the absorption of nutrients. When this enzyme was replaced with an equivalent plant enzyme, the proton-coupled nutrient uptake did not activate TORC1 in the yeast cells. These findings may help scientists who are interested in how TORC1 is regulated in organisms other than mammals, such as plants or fungi. A next step will be to find out how exactly the proton pump in the cell membrane helps to activate TORC1.
Collapse
Affiliation(s)
- Elie Saliba
- Molecular Physiology of the Cell, Université Libre de Bruxelles, Biopark, Gosselies, Belgium
| | - Minoas Evangelinos
- Molecular Physiology of the Cell, Université Libre de Bruxelles, Biopark, Gosselies, Belgium
| | - Christos Gournas
- Molecular Physiology of the Cell, Université Libre de Bruxelles, Biopark, Gosselies, Belgium
| | - Florent Corrillon
- Molecular Physiology of the Cell, Université Libre de Bruxelles, Biopark, Gosselies, Belgium
| | - Isabelle Georis
- Institut de Recherches Microbiologiques J.-M. Wiame, Brussels, Belgium
| | - Bruno André
- Molecular Physiology of the Cell, Université Libre de Bruxelles, Biopark, Gosselies, Belgium
| |
Collapse
|
108
|
El Ansari R, Craze ML, Miligy I, Diez-Rodriguez M, Nolan CC, Ellis IO, Rakha EA, Green AR. The amino acid transporter SLC7A5 confers a poor prognosis in the highly proliferative breast cancer subtypes and is a key therapeutic target in luminal B tumours. Breast Cancer Res 2018; 20:21. [PMID: 29566741 PMCID: PMC5863851 DOI: 10.1186/s13058-018-0946-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/26/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Breast cancer (BC) is a heterogeneous disease characterised by variant biology and patient outcome. The amino acid transporter, SLC7A5, plays a role in BC although its impact on patient outcome in different BC subtypes remains to be validated. This study aimed to determine whether the clinicopathological and prognostic value of SLC7A5 is different within the molecular classes of BC. METHODS SLC7A5 was assessed at the genomic level, using Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) data (n = 1980), and proteomic level, using immunohistochemical analysis and tissue microarray (TMA) (n = 2664; 1110 training and 1554 validation sets) in well-characterised primary BC cohorts. SLC7A5 expression correlated with clinicopathological and biological parameters, molecular subtypes and patient outcome. RESULTS SLC7A5 mRNA and protein expression were strongly correlated with larger tumour size and higher grade. High expression was observed in triple negative (TN), human epidermal growth factor receptor 2 (HER2)+, and luminal B subtypes. SLC7A5 mRNA and protein expression was significantly associated with the expression of the key regulator of tumour cell metabolism, c-MYC, specifically in luminal B tumours only (p = 0.001). High expression of SLC7A5 mRNA and protein was associated with poor patient outcome (p < 0.001) but only in the highly proliferative oestrogen receptor (ER)+/ luminal B (p = 0.007) and HER2+ classes of BC (p = 0.03). In multivariate analysis, SLC7A5 protein was an independent risk factor for shorter breast-cancer-specific survival only in ER+ high-proliferation tumours (p = 0.02). CONCLUSIONS SLC7A5 appears to play a role in the aggressive highly proliferative ER+ subtype driven by MYC and could act as a potential therapeutic target. Functional assessment is necessary to reveal the specific role played by this transporter in the ER+ highly proliferative subclass and HER2+ subclass of BC.
Collapse
Affiliation(s)
- Rokaya El Ansari
- Academic Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham City Hospital, Hucknall Road, Nottingham, NG5 1PB UK
| | - Madeleine L. Craze
- Academic Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham City Hospital, Hucknall Road, Nottingham, NG5 1PB UK
| | - Islam Miligy
- Academic Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham City Hospital, Hucknall Road, Nottingham, NG5 1PB UK
| | - Maria Diez-Rodriguez
- Academic Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham City Hospital, Hucknall Road, Nottingham, NG5 1PB UK
| | - Christopher C. Nolan
- Academic Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham City Hospital, Hucknall Road, Nottingham, NG5 1PB UK
| | - Ian O. Ellis
- Academic Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham City Hospital, Hucknall Road, Nottingham, NG5 1PB UK
- Breast Institute, Nottingham University Hospitals NHS Trust, Hucknall Road, Nottingham, NG5 1PB UK
| | - Emad A. Rakha
- Academic Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham City Hospital, Hucknall Road, Nottingham, NG5 1PB UK
- Breast Institute, Nottingham University Hospitals NHS Trust, Hucknall Road, Nottingham, NG5 1PB UK
| | - Andrew R. Green
- Academic Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham City Hospital, Hucknall Road, Nottingham, NG5 1PB UK
| |
Collapse
|
109
|
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) coordinates cellular growth and metabolism with environmental inputs to ensure that cells grow only under favourable conditions. When active, mTORC1 stimulates biosynthetic pathways including protein, lipid and nucleotide synthesis and inhibits cellular catabolism through repression of the autophagic pathway, thereby promoting cell growth and proliferation. The recruitment of mTORC1 to the lysosomal surface has been shown to be essential for its activation. This finding has significantly enhanced our knowledge of mTORC1 regulation and has focused the attention of the field on the lysosome as a signalling hub which coordinates several homeostatic pathways. The intriguing localisation of mTORC1 to the cellular organelle that plays a crucial role in catabolism enables mTORC1 to feedback to autophagy and lysosomal biogenesis, thus leading mTORC1 to enact precise spatial and temporal control of cell growth. This review will cover the signalling interactions which take place on the surface of lysosomes and the cross-talk which exists between mTORC1 activity and lysosomal function.
Collapse
Affiliation(s)
- Yoana Rabanal-Ruiz
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK.
| | - Viktor I Korolchuk
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK.
| |
Collapse
|
110
|
Regulation of Sensing, Transportation, and Catabolism of Nitrogen Sources in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 2018; 82:82/1/e00040-17. [PMID: 29436478 DOI: 10.1128/mmbr.00040-17] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Nitrogen is one of the most important essential nutrient sources for biogenic activities. Regulation of nitrogen metabolism in microorganisms is complicated and elaborate. For this review, the yeast Saccharomyces cerevisiae was chosen to demonstrate the regulatory mechanism of nitrogen metabolism because of its relative clear genetic background. Current opinions on the regulation processes of nitrogen metabolism in S. cerevisiae, including nitrogen sensing, transport, and catabolism, are systematically reviewed. Two major upstream signaling pathways, the Ssy1-Ptr3-Ssy5 sensor system and the target of rapamycin pathway, which are responsible for sensing extracellular and intracellular nitrogen, respectively, are discussed. The ubiquitination of nitrogen transporters, which is the most general and efficient means for controlling nitrogen transport, is also summarized. The following metabolic step, nitrogen catabolism, is demonstrated at two levels: the transcriptional regulation process related to GATA transcriptional factors and the translational regulation process related to the general amino acid control pathway. The interplay between nitrogen regulation and carbon regulation is also discussed. As a model system, understanding the meticulous process by which nitrogen metabolism is regulated in S. cerevisiae not only could facilitate research on global regulation mechanisms and yeast metabolic engineering but also could provide important insights and inspiration for future studies of other common microorganisms and higher eukaryotic cells.
Collapse
|
111
|
Sato Y, Sato Y, Suzuki R, Obeng K, Yoshizawa F. Leucyl-tRNA synthetase is required for the myogenic differentiation of C2C12 myoblasts, but not for hypertrophy or metabolic alteration of myotubes. Exp Cell Res 2018; 364:184-190. [PMID: 29425714 DOI: 10.1016/j.yexcr.2018.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/01/2018] [Accepted: 02/03/2018] [Indexed: 11/24/2022]
Abstract
Mammalian target of rapamycin (mTOR) signaling controls skeletal muscle cell differentiation, growth, and metabolism by sensing the intracellular energy status and nutrients. Recently, leucyl-tRNA synthetase (Lars) was identified as an intracellular sensor of leucine involved in the activation of mTOR signaling. However, there is still no evidence for the activation of mTOR signaling by Lars and its physiological roles in skeletal muscle cells. In this study, we determined the potential roles of Lars for the activation of mTOR signaling, skeletal muscle cell differentiation, hypertrophy, and metabolism using small interfering (si)-RNA knockdown. siRNA-mediated knockdown of Lars decreased phosphorylated p70 S6 kinase and inhibited the differentiation of C2C12 mouse myoblasts into myotubes, as evidenced by a decreased fusion index and decreased mRNA and protein expression levels of myogenic markers. Importantly, si-Lars decreased the level of Insulin-like growth factor 2 (Igf2) mRNA expression from the early stages of differentiation, indicating the possibility of an association between the mTOR-IGF2 axis and Lars. However, Lars knockdown did not decrease phosphorylated mTOR in differentiated myotubes, nor did it affect the hypertrophy of myotubes as evidenced by measuring their diameters and detecting the mRNA and protein expression of hypertrophy markers. Similarly, an extracellular flux analyzer showed that Lars knockdown did not affect the metabolism (glycolysis and mitochondrial respiration) of myotubes. These results demonstrate that Lars is required for skeletal muscle differentiation through the activation of mTOR signaling, but not for hypertrophy or metabolic alteration of myotubes.
Collapse
Affiliation(s)
- Yoriko Sato
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Yusuke Sato
- Department of Agrobiology and Bioresources, Utsunomiya University, 350 Minemachi, Tochigi, Japan.
| | - Reiko Suzuki
- Department of Agrobiology and Bioresources, Utsunomiya University, 350 Minemachi, Tochigi, Japan
| | - Kodwo Obeng
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Fumiaki Yoshizawa
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan; Department of Agrobiology and Bioresources, Utsunomiya University, 350 Minemachi, Tochigi, Japan
| |
Collapse
|
112
|
Zhao L, Deng L, Zhang Q, Jing X, Ma M, Yi B, Wen J, Ma C, Tu J, Fu T, Shen J. Autophagy contributes to sulfonylurea herbicide tolerance via GCN2-independent regulation of amino acid homeostasis. Autophagy 2018; 14:702-714. [PMID: 29377765 DOI: 10.1080/15548627.2017.1407888] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Sulfonylurea (SU) herbicides inhibit branched-chain amino acid (BCAA) biosynthesis by targeting acetolactate synthase. Plants have evolved target-site resistance and metabolic tolerance to SU herbicides; the GCN2 (general control non-repressible 2) pathway is also involved in SU tolerance. Here, we report a novel SU tolerance mechanism, autophagy, which we call 'homeostatic tolerance,' is involved in amino acid signaling in Arabidopsis. The activation and reversion of autophagy and GCN2 by the SU herbicide tribenuron-methyl (TM) and exogenous BCAA, respectively, confirmed that TM-induced BCAA starvation is responsible for the activation of autophagy and GCN2. Genetic and biochemical analyses revealed a lower proportion of free BCAA and more sensitive phenotypes in atg5, atg7, and gcn2 single mutants than in wild-type seedlings after TM treatment; the lowest proportion of free BCAA and the most sensitive phenotypes were found in atg5 gcn2 and atg7 gcn2 double mutants. Immunoblotting and microscopy revealed that TM-induced activation of autophagy and GCN2 signaling do not depend on the presence of each other, and these 2 pathways may serve as mutually compensatory mechanisms against TM. TM inhibited the TOR (target of rapamycin), and activated autophagy in an estradiol-induced TOR RNAi line, suggesting that TM-induced BCAA starvation activates autophagy, probably via TOR inactivation. Autophagy and GCN2 were also activated, and independently contributed to TM tolerance in plants conferring metabolic tolerance. Together, these data suggest that autophagy is a proteolytic process for amino acid recycling and contributes to GCN2-independent SU tolerance, probably by its ability to replenish fresh BCAA.
Collapse
Affiliation(s)
- Lun Zhao
- a National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed , Huazhong Agricultural University , Wuhan , China
| | - Li Deng
- a National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed , Huazhong Agricultural University , Wuhan , China
| | - Qing Zhang
- a National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed , Huazhong Agricultural University , Wuhan , China
| | - Xue Jing
- a National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed , Huazhong Agricultural University , Wuhan , China
| | - Meng Ma
- a National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed , Huazhong Agricultural University , Wuhan , China
| | - Bin Yi
- a National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed , Huazhong Agricultural University , Wuhan , China
| | - Jing Wen
- a National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed , Huazhong Agricultural University , Wuhan , China
| | - Chaozhi Ma
- a National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed , Huazhong Agricultural University , Wuhan , China
| | - Jinxing Tu
- a National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed , Huazhong Agricultural University , Wuhan , China
| | - Tingdong Fu
- a National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed , Huazhong Agricultural University , Wuhan , China
| | - Jinxiong Shen
- a National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed , Huazhong Agricultural University , Wuhan , China
| |
Collapse
|
113
|
Matos-Perdomo E, Machín F. The ribosomal DNA metaphase loop of Saccharomyces cerevisiae gets condensed upon heat stress in a Cdc14-independent TORC1-dependent manner. Cell Cycle 2018; 17:200-215. [PMID: 29166821 PMCID: PMC5884360 DOI: 10.1080/15384101.2017.1407890] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Chromosome morphology in Saccharomyces cerevisiae is only visible at the microscopic level in the ribosomal DNA array (rDNA). The rDNA has been thus used as a model to characterize condensation and segregation of sister chromatids in mitosis. It has been established that the metaphase structure ("loop") depends, among others, on the condensin complex; whereas its segregation also depends on that complex, the Polo-like kinase Cdc5 and the cell cycle master phosphatase Cdc14. In addition, Cdc14 also drives rDNA hypercondensation in telophase. Remarkably, since all these components are essential for cell survival, their role on rDNA condensation and segregation was established by temperature-sensitive (ts) alleles. Here, we show that the heat stress (HS) used to inactivate ts alleles (25 ºC to 37 ºC shift) causes rDNA loop condensation in metaphase-arrested wild type cells, a result that can also be mimicked by other stresses that inhibit the TORC1 pathway. Because this condensation might challenge previous findings with ts alleles, we have repeated classical experiments of rDNA condensation and segregation, yet using instead auxin-driven degradation alleles (aid alleles). We have undertaken the protein degradation at lower temperatures (25 ºC) and concluded that the classical roles for condensin, Cdc5, Cdc14 and Cdc15 still prevailed. Thus, condensin degradation disrupts rDNA higher organization, Cdc14 and Cdc5 degradation precludes rDNA segregation and Cdc15 degradation still allows rDNA hypercompaction in telophase. Finally, we provide direct genetic evidence that this HS-mediated rDNA condensation is dependent on TORC1 but, unlike the one observed in anaphase, is independent of Cdc14.
Collapse
Affiliation(s)
- Emiliano Matos-Perdomo
- a Unidad de Investigación , Hospital Universitario Ntra Sra de Candelaria , Ctra del Rosario 145, 38010 , Santa Cruz de Tenerife , Spain.,b Universidad de La Laguna , Tenerife , Spain
| | - Félix Machín
- a Unidad de Investigación , Hospital Universitario Ntra Sra de Candelaria , Ctra del Rosario 145, 38010 , Santa Cruz de Tenerife , Spain
| |
Collapse
|
114
|
Otsubo Y, Matsuo T, Nishimura A, Yamamoto M, Yamashita A. tRNA production links nutrient conditions to the onset of sexual differentiation through the TORC1 pathway. EMBO Rep 2018; 19:embr.201744867. [PMID: 29330317 DOI: 10.15252/embr.201744867] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/30/2017] [Accepted: 12/14/2017] [Indexed: 12/14/2022] Open
Abstract
Target of rapamycin (TOR) kinase controls cell growth and metabolism in response to nutrient availability. In the fission yeast Schizosaccharomyces pombe, TOR complex 1 (TORC1) promotes vegetative growth and inhibits sexual differentiation in the presence of ample nutrients. Here, we report the isolation and characterization of mutants with similar phenotypes as TORC1 mutants, in that they initiate sexual differentiation even in nutrient-rich conditions. In most mutants identified, TORC1 activity is downregulated and the mutated genes are involved in tRNA expression or modification. Expression of tRNA precursors decreases when cells undergo sexual differentiation. Furthermore, overexpression of tRNA precursors prevents TORC1 downregulation upon nitrogen starvation and represses the initiation of sexual differentiation. Based on these observations, we propose that tRNA precursors operate in the S. pombe TORC1 pathway to switch growth mode from vegetative to reproductive.
Collapse
Affiliation(s)
- Yoko Otsubo
- Laboratory of Cell Responses, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Tomohiko Matsuo
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Akiko Nishimura
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Masayuki Yamamoto
- Laboratory of Cell Responses, National Institute for Basic Biology, Okazaki, Aichi, Japan.,Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Akira Yamashita
- Laboratory of Cell Responses, National Institute for Basic Biology, Okazaki, Aichi, Japan .,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| |
Collapse
|
115
|
Paquette M, El-Houjeiri L, Pause A. mTOR Pathways in Cancer and Autophagy. Cancers (Basel) 2018; 10:cancers10010018. [PMID: 29329237 PMCID: PMC5789368 DOI: 10.3390/cancers10010018] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 12/22/2017] [Accepted: 01/09/2018] [Indexed: 12/11/2022] Open
Abstract
TOR (target of rapamycin), an evolutionarily-conserved serine/threonine kinase, acts as a central regulator of cell growth, proliferation and survival in response to nutritional status, growth factor, and stress signals. It plays a crucial role in coordinating the balance between cell growth and cell death, depending on cellular conditions and needs. As such, TOR has been identified as a key modulator of autophagy for more than a decade, and several deregulations of this pathway have been implicated in a variety of pathological disorders, including cancer. At the molecular level, autophagy regulates several survival or death signaling pathways that may decide the fate of cancer cells; however, the relationship between autophagy pathways and cancer are still nascent. In this review, we discuss the recent cellular signaling pathways regulated by TOR, their interconnections to autophagy, and the clinical implications of TOR inhibitors in cancer.
Collapse
Affiliation(s)
- Mathieu Paquette
- Goodman Cancer Research Center, McGill University, Montréal, QC H3A 1A3, Canada.
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada.
| | - Leeanna El-Houjeiri
- Goodman Cancer Research Center, McGill University, Montréal, QC H3A 1A3, Canada.
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada.
| | - Arnim Pause
- Goodman Cancer Research Center, McGill University, Montréal, QC H3A 1A3, Canada.
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada.
| |
Collapse
|
116
|
Abstract
Besides charging tRNAs with their cognate amino acids, aminoacyl-tRNA synthetases (ARSs) are involved in a plethora of non-canonical functions, including development, immune response, and angiogenesis. In this issue of Cell Metabolism, He et al. (2018) report a novel biochemical function of ARSs: posttranslational addition of amino acids to lysine residues in proteins.
Collapse
Affiliation(s)
- Seyed Mehdi Jafarnejad
- Goodman Cancer Research Center, McGill University, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Sung-Hoon Kim
- Goodman Cancer Research Center, McGill University, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Nahum Sonenberg
- Goodman Cancer Research Center, McGill University, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada.
| |
Collapse
|
117
|
Zhao L, Deng L, Zhang Q, Jing X, Ma M, Yi B, Wen J, Ma C, Tu J, Fu T, Shen J. Autophagy contributes to sulfonylurea herbicide tolerance via GCN2-independent regulation of amino acid homeostasis. Autophagy 2018. [PMID: 29377765 DOI: 10.1080/15548627] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Sulfonylurea (SU) herbicides inhibit branched-chain amino acid (BCAA) biosynthesis by targeting acetolactate synthase. Plants have evolved target-site resistance and metabolic tolerance to SU herbicides; the GCN2 (general control non-repressible 2) pathway is also involved in SU tolerance. Here, we report a novel SU tolerance mechanism, autophagy, which we call 'homeostatic tolerance,' is involved in amino acid signaling in Arabidopsis. The activation and reversion of autophagy and GCN2 by the SU herbicide tribenuron-methyl (TM) and exogenous BCAA, respectively, confirmed that TM-induced BCAA starvation is responsible for the activation of autophagy and GCN2. Genetic and biochemical analyses revealed a lower proportion of free BCAA and more sensitive phenotypes in atg5, atg7, and gcn2 single mutants than in wild-type seedlings after TM treatment; the lowest proportion of free BCAA and the most sensitive phenotypes were found in atg5 gcn2 and atg7 gcn2 double mutants. Immunoblotting and microscopy revealed that TM-induced activation of autophagy and GCN2 signaling do not depend on the presence of each other, and these 2 pathways may serve as mutually compensatory mechanisms against TM. TM inhibited the TOR (target of rapamycin), and activated autophagy in an estradiol-induced TOR RNAi line, suggesting that TM-induced BCAA starvation activates autophagy, probably via TOR inactivation. Autophagy and GCN2 were also activated, and independently contributed to TM tolerance in plants conferring metabolic tolerance. Together, these data suggest that autophagy is a proteolytic process for amino acid recycling and contributes to GCN2-independent SU tolerance, probably by its ability to replenish fresh BCAA.
Collapse
Affiliation(s)
- Lun Zhao
- a National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed , Huazhong Agricultural University , Wuhan , China
| | - Li Deng
- a National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed , Huazhong Agricultural University , Wuhan , China
| | - Qing Zhang
- a National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed , Huazhong Agricultural University , Wuhan , China
| | - Xue Jing
- a National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed , Huazhong Agricultural University , Wuhan , China
| | - Meng Ma
- a National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed , Huazhong Agricultural University , Wuhan , China
| | - Bin Yi
- a National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed , Huazhong Agricultural University , Wuhan , China
| | - Jing Wen
- a National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed , Huazhong Agricultural University , Wuhan , China
| | - Chaozhi Ma
- a National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed , Huazhong Agricultural University , Wuhan , China
| | - Jinxing Tu
- a National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed , Huazhong Agricultural University , Wuhan , China
| | - Tingdong Fu
- a National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed , Huazhong Agricultural University , Wuhan , China
| | - Jinxiong Shen
- a National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed , Huazhong Agricultural University , Wuhan , China
| |
Collapse
|
118
|
Takeda E, Jin N, Itakura E, Kira S, Kamada Y, Weisman LS, Noda T, Matsuura A. Vacuole-mediated selective regulation of TORC1-Sch9 signaling following oxidative stress. Mol Biol Cell 2017; 29:510-522. [PMID: 29237820 PMCID: PMC6014174 DOI: 10.1091/mbc.e17-09-0553] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 12/22/2022] Open
Abstract
TORC1 modulates proteosynthesis, nitrogen metabolism, stress responses, and autophagy. Here it is shown that the Sch9 branch of TORC1 signaling depends specifically on vacuolar membranes and that this specificity allows the cells to regulate selectively the outputs of divergent downstream pathways in response to oxidative stress. Target of rapamycin complex 1 (TORC1) is a central cellular signaling coordinator that allows eukaryotic cells to adapt to the environment. In the budding yeast, Saccharomyces cerevisiae, TORC1 senses nitrogen and various stressors and modulates proteosynthesis, nitrogen uptake and metabolism, stress responses, and autophagy. There is some indication that TORC1 may regulate these downstream pathways individually. However, the potential mechanisms for such differential regulation are unknown. Here we show that the serine/threonine protein kinase Sch9 branch of TORC1 signaling depends specifically on the integrity of the vacuolar membrane, and this dependency originates in changes in Sch9 localization reflected by phosphatidylinositol 3,5-bisphosphate. Moreover, oxidative stress induces the delocalization of Sch9 from vacuoles, contributing to the persistent inhibition of the Sch9 branch after stress. Thus, our results establish that regulation of the vacuolar localization of Sch9 serves as a selective switch for the Sch9 branch in divergent TORC1 signaling. We propose that the Sch9 branch integrates the intrinsic activity of TORC1 kinase and vacuolar status, which is monitored by the phospholipids of the vacuolar membrane, into the regulation of macromolecular synthesis.
Collapse
Affiliation(s)
- Eigo Takeda
- Department of Nanobiology, Graduate School of Advanced Integration Science
| | | | - Eisuke Itakura
- Department of Nanobiology, Graduate School of Advanced Integration Science.,Molecular Chirality Research Center, Chiba University, Inage-ku, Chiba, 263-8522, Japan
| | - Shintaro Kira
- Department of Biology, Graduate School of Science, Chiba University, Inage-ku, Chiba, 263-8522, Japan
| | - Yoshiaki Kamada
- Laboratory of Biological Diversity, National Institute for Basic Biology, Okazaki 444-8585, Japan.,Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
| | - Lois S Weisman
- Life Sciences Institute and.,Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Takeshi Noda
- Center for Frontier Oral Science, Graduate School of Dentistry, and.,Graduate School of Frontier BioSciences, Osaka University, Osaka 565-0871, Japan
| | - Akira Matsuura
- Department of Nanobiology, Graduate School of Advanced Integration Science .,Life Sciences Institute and.,Molecular Chirality Research Center, Chiba University, Inage-ku, Chiba, 263-8522, Japan
| |
Collapse
|
119
|
mTORC1 as the main gateway to autophagy. Essays Biochem 2017; 61:565-584. [PMID: 29233869 PMCID: PMC5869864 DOI: 10.1042/ebc20170027] [Citation(s) in RCA: 400] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/19/2017] [Accepted: 10/20/2017] [Indexed: 12/16/2022]
Abstract
Cells and organisms must coordinate their metabolic activity with changes in their environment to ensure their growth only when conditions are favourable. In order to maintain cellular homoeostasis, a tight regulation between the synthesis and degradation of cellular components is essential. At the epicentre of the cellular nutrient sensing is the mechanistic target of rapamycin complex 1 (mTORC1) which connects environmental cues, including nutrient and growth factor availability as well as stress, to metabolic processes in order to preserve cellular homoeostasis. Under nutrient-rich conditions mTORC1 promotes cell growth by stimulating biosynthetic pathways, including synthesis of proteins, lipids and nucleotides, and by inhibiting cellular catabolism through repression of the autophagic pathway. Its close signalling interplay with the energy sensor AMP-activated protein kinase (AMPK) dictates whether the cell actively favours anabolic or catabolic processes. Underlining the role of mTORC1 in the coordination of cellular metabolism, its deregulation is linked to numerous human diseases ranging from metabolic disorders to many cancers. Although mTORC1 can be modulated by a number of different inputs, amino acids represent primordial cues that cannot be compensated for by any other stimuli. The understanding of how amino acids signal to mTORC1 has increased considerably in the last years; however this area of research remains a hot topic in biomedical sciences. The current ideas and models proposed to explain the interrelationship between amino acid sensing, mTORC1 signalling and autophagy is the subject of the present review.
Collapse
|
120
|
Yakobov N, Debard S, Fischer F, Senger B, Becker HD. Cytosolic aminoacyl-tRNA synthetases: Unanticipated relocations for unexpected functions. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1861:387-400. [PMID: 29155070 DOI: 10.1016/j.bbagrm.2017.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 12/13/2022]
Abstract
Prokaryotic and eukaryotic cytosolic aminoacyl-tRNA synthetases (aaRSs) are essentially known for their conventional function of generating the full set of aminoacyl-tRNA species that are needed to incorporate each organism's repertoire of genetically-encoded amino acids during ribosomal translation of messenger RNAs. However, bacterial and eukaryotic cytosolic aaRSs have been shown to exhibit other essential nonconventional functions. Here we review all the subcellular compartments that prokaryotic and eukaryotic cytosolic aaRSs can reach to exert either a conventional or nontranslational role. We describe the physiological and stress conditions, the mechanisms and the signaling pathways that trigger their relocation and the new functions associated with these relocating cytosolic aaRS. Finally, given that these relocating pools of cytosolic aaRSs participate to a wide range of cellular pathways beyond translation, but equally important for cellular homeostasis, we mention some of the pathologies and diseases associated with the dis-regulation or malfunctioning of these nontranslational functions.
Collapse
Affiliation(s)
- Nathaniel Yakobov
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, 28 rue Goethe, 67083 Strasbourg Cedex, France
| | - Sylvain Debard
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, 28 rue Goethe, 67083 Strasbourg Cedex, France
| | - Frédéric Fischer
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, 28 rue Goethe, 67083 Strasbourg Cedex, France
| | - Bruno Senger
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, 28 rue Goethe, 67083 Strasbourg Cedex, France
| | - Hubert Dominique Becker
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, 28 rue Goethe, 67083 Strasbourg Cedex, France.
| |
Collapse
|
121
|
More than One Way in: Three Gln3 Sequences Required To Relieve Negative Ure2 Regulation and Support Nuclear Gln3 Import in Saccharomyces cerevisiae. Genetics 2017; 208:207-227. [PMID: 29113979 DOI: 10.1534/genetics.117.300457] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/02/2017] [Indexed: 01/20/2023] Open
Abstract
Gln3 is responsible for Nitrogen Catabolite Repression-sensitive transcriptional activation in the yeast Saccharomyces cerevisiae In nitrogen-replete medium, Gln3 is cytoplasmic and NCR-sensitive transcription is repressed. In nitrogen-limiting medium, in cells treated with TorC1 inhibitor, rapamycin, or the glutamine synthetase inhibitor, methionine sulfoximine (Msx), Gln3 becomes highly nuclear and NCR-sensitive transcription derepressed. Previously, nuclear Gln3 localization was concluded to be mediated by a single nuclear localization sequence, NLS1. Here, we show that nuclear Gln3-Myc13 localization is significantly more complex than previously appreciated. We identify three Gln3 sequences, other than NLS1, that are highly required for nuclear Gln3-Myc13 localization. Two of these sequences exhibit characteristics of monopartite (K/R-Rich NLS) and bipartite (S/R NLS) NLSs, respectively. Mutations altering these sequences are partially epistatic to a ure2Δ. The third sequence, the Ure2 relief sequence, exhibits no predicted NLS homology and is only necessary when Ure2 is present. Substitution of the basic amino acid repeats in the Ure2 relief sequence or phosphomimetic aspartate substitutions for the serine residues between them abolishes nuclear Gln3-Myc13 localization in response to both limiting nitrogen and rapamycin treatment. In contrast, Gln3-Myc13 responses are normal in parallel serine-to-alanine substitution mutants. These observations suggest that Gln3 responses to specific nitrogen environments likely occur in multiple steps that can be genetically separated. At least one general step that is associated with the Ure2 relief sequence may be prerequisite for responses to the specific stimuli of growth in poor nitrogen sources and rapamycin inhibition of TorC1.
Collapse
|
122
|
Varlakhanova NV, Mihalevic MJ, Bernstein KA, Ford MGJ. Pib2 and the EGO complex are both required for activation of TORC1. J Cell Sci 2017; 130:3878-3890. [PMID: 28993463 DOI: 10.1242/jcs.207910] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/03/2017] [Indexed: 01/12/2023] Open
Abstract
The TORC1 complex is a key regulator of cell growth and metabolism in Saccharomyces cerevisiae The vacuole-associated EGO complex couples activation of TORC1 to the availability of amino acids, specifically glutamine and leucine. The EGO complex is also essential for reactivation of TORC1 following rapamycin-induced growth arrest and for its distribution on the vacuolar membrane. Pib2, a FYVE-containing phosphatidylinositol 3-phosphate (PI3P)-binding protein, is a newly discovered and poorly characterized activator of TORC1. Here, we show that Pib2 is required for reactivation of TORC1 following rapamycin-induced growth arrest. Pib2 is required for EGO complex-mediated activation of TORC1 by glutamine and leucine as well as for redistribution of Tor1 on the vacuolar membrane. Therefore, Pib2 and the EGO complex cooperate to activate TORC1 and connect phosphoinositide 3-kinase (PI3K) signaling and TORC1 activity.
Collapse
Affiliation(s)
- Natalia V Varlakhanova
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, 3500 Terrace Street, Pittsburgh, PA 15261, USA
| | - Michael J Mihalevic
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213, USA
| | - Kara A Bernstein
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213, USA
| | - Marijn G J Ford
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, 3500 Terrace Street, Pittsburgh, PA 15261, USA
| |
Collapse
|
123
|
Nguyen TP, Frank AR, Jewell JL. Amino acid and small GTPase regulation of mTORC1. CELLULAR LOGISTICS 2017; 7:e1378794. [PMID: 29296509 PMCID: PMC5739091 DOI: 10.1080/21592799.2017.1378794] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/06/2017] [Accepted: 09/08/2017] [Indexed: 11/03/2022]
Abstract
The mammalian target of rapamycin (mTOR) is an evolutionarily conserved serine/threonine kinase that belongs to the phosphatidylinositol 3-kinase-related kinase (PIKK) family. mTOR is the catalytic subunit of mTOR complex 1 (mTORC1), which integrates multiple environmental signals to control cell growth and metabolism. Nutrients, specifically amino acids, are the most potent stimuli for mTORC1 activation. Multiple studies have focused on how leucine and arginine activate mTORC1 through the Rag GTPases, with mechanistic details slowly emerging. Recently, a Rag GTPase-independent glutamine signaling pathway to mTORC1 has been identified, suggesting that mTORC1 is differentially regulated through distinct pathways by specific amino acids. In this review, we summarize our current understanding of how amino acids modulate mTORC1, and the role of other small GTPases in the regulation of mTORC1 activity.
Collapse
Affiliation(s)
- Thu P Nguyen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Anderson R Frank
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Jenna L Jewell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX USA
| |
Collapse
|
124
|
Control of leucine-dependent mTORC1 pathway through chemical intervention of leucyl-tRNA synthetase and RagD interaction. Nat Commun 2017; 8:732. [PMID: 28963468 PMCID: PMC5622079 DOI: 10.1038/s41467-017-00785-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 07/27/2017] [Indexed: 01/19/2023] Open
Abstract
Leucyl-tRNA synthetase (LRS) is known to function as leucine sensor in the mammalian target of rapamycin complex 1 (mTORC1) pathway. However, the pathophysiological significance of its activity is not well understood. Here, we demonstrate that the leucine sensor function for mTORC1 activation of LRS can be decoupled from its catalytic activity. We identified compounds that inhibit the leucine-dependent mTORC1 pathway by specifically inhibiting the GTPase activating function of LRS, while not affecting the catalytic activity. For further analysis, we selected one compound, BC-LI-0186, which binds to the RagD interacting site of LRS, thereby inhibiting lysosomal localization of LRS and mTORC1 activity. It also effectively suppressed the activity of cancer-associated MTOR mutants and the growth of rapamycin-resistant cancer cells. These findings suggest new strategies for controlling tumor growth that avoid the resistance to existing mTOR inhibitors resulting from cancer-associated MTOR mutations.Leucyl-tRNA synthetase (LRS) is a leucine sensor of the mTORC1 pathway. Here, the authors identify inhibitors of the GTPase activating function of LRS, not affecting its catalytic activity, and demonstrate that the leucine sensor function of LRS can be a new target for mTORC1 inhibition.
Collapse
|
125
|
Abstract
All organisms can respond to the availability of nutrients by regulating their metabolism, growth, and cell division. Central to the regulation of growth in response to nutrient availability is the target of rapamycin (TOR) signaling that is composed of two structurally distinct complexes: TOR complex 1 (TORC1) and TOR complex 2 (TORC2). The TOR genes were first identified in yeast as target of rapamycin, a natural product of a soil bacterium, which proved beneficial as an immunosuppressive and anticancer drug and is currently being tested for a handful of other pathological conditions including diabetes, neurodegeneration, and age-related diseases. Studies of the TOR pathway unraveled a complex growth-regulating network. TOR regulates nutrient uptake, transcription, protein synthesis and degradation, as well as metabolic pathways, in a coordinated manner that ensures that cells grow or cease growth in response to nutrient availability. The identification of specific signals and mechanisms that stimulate TOR signaling is an active and exciting field of research that has already identified nitrogen and amino acids as key regulators of TORC1 activity. The signals, as well as the cellular functions of TORC2, are far less well understood. Additional open questions in the field concern the relationships between TORC1 and TORC2, as well as the links with other nutrient-responsive pathways. Here I review the main features of TORC1 and TORC2, with a particular focus on yeasts as model organisms.
Collapse
|
126
|
MacDonald C, Piper RC. Genetic dissection of early endosomal recycling highlights a TORC1-independent role for Rag GTPases. J Cell Biol 2017; 216:3275-3290. [PMID: 28768685 PMCID: PMC5626546 DOI: 10.1083/jcb.201702177] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/07/2017] [Accepted: 07/17/2017] [Indexed: 12/11/2022] Open
Abstract
Recycling of internalized membrane proteins back to the cell surface controls diverse cellular processes. MacDonald and Piper genetically dissect a recycling pathway in yeast to reveal a cohort of novel and conserved factors, including the Rag GTPases, which contribute to metabolic control by regulating surface recycling independently of TORC1 signaling. Endocytosed cell surface membrane proteins rely on recycling pathways for their return to the plasma membrane. Although endosome-to-plasma membrane recycling is critical for many cellular processes, much of the required machinery is unknown. We discovered that yeast has a recycling route from endosomes to the cell surface that functions efficiently after inactivation of the sec7-1 allele of Sec7, which controls transit through the Golgi. A genetic screen based on an engineered synthetic reporter that exclusively follows this pathway revealed that recycling was subject to metabolic control through the Rag GTPases Gtr1 and Gtr2, which work downstream of the exchange factor Vam6. Gtr1 and Gtr2 control the recycling pathway independently of TORC1 regulation through the Gtr1 interactor Ltv1. We further show that the early-endosome recycling route and its control though the Vam6>Gtr1/Gtr2>Ltv1 pathway plays a physiological role in regulating the abundance of amino acid transporters at the cell surface.
Collapse
Affiliation(s)
- Chris MacDonald
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA
| | - Robert C Piper
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA
| |
Collapse
|
127
|
Figueiredo VC, Markworth JF, Cameron-Smith D. Considerations on mTOR regulation at serine 2448: implications for muscle metabolism studies. Cell Mol Life Sci 2017; 74:2537-2545. [PMID: 28220207 PMCID: PMC11107628 DOI: 10.1007/s00018-017-2481-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 01/27/2017] [Accepted: 01/30/2017] [Indexed: 02/03/2023]
Abstract
The mammalian target of rapamycin (mTOR) complex exerts a pivotal role in protein anabolism and cell growth. Despite its importance, few studies adequately address the complexity of phosphorylation of the mTOR protein itself to enable conclusions to be drawn on the extent of kinase activation following this event. In particular, a large number of studies in the skeletal muscle biology field have measured Serine 2448 (Ser2448) phosphorylation as a proxy of mTOR kinase activity. However, the evidence to be described is that Ser2448 is not a measure of mTOR kinase activity nor is a target of AKT activity and instead has inhibitory effects on the kinase that is targeted by the downstream effector p70S6K in a negative feedback loop mechanism, which is evident when revisiting muscle research studies. It is proposed that this residue modification acts as a fine-tuning mechanism that has been gained during vertebrate evolution. In conclusion, it is recommended that Ser2448 is an inadequate measure and that preferential analysis of mTORC1 activation should focus on the downstream and effector proteins, including p70S6K and 4E-BP1, along mTOR protein partners that bind to mTOR protein to form the active complexes 1 and 2.
Collapse
Affiliation(s)
- Vandré Casagrande Figueiredo
- The Liggins Institute, University of Auckland, 85 Park Road, Grafton, Private Bag 92019, Auckland, 1023, New Zealand
| | - James F Markworth
- The Liggins Institute, University of Auckland, 85 Park Road, Grafton, Private Bag 92019, Auckland, 1023, New Zealand
| | - David Cameron-Smith
- The Liggins Institute, University of Auckland, 85 Park Road, Grafton, Private Bag 92019, Auckland, 1023, New Zealand.
| |
Collapse
|
128
|
The Architecture of the Rag GTPase Signaling Network. Biomolecules 2017; 7:biom7030048. [PMID: 28788436 PMCID: PMC5618229 DOI: 10.3390/biom7030048] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/22/2017] [Accepted: 06/27/2017] [Indexed: 12/11/2022] Open
Abstract
The evolutionarily conserved target of rapamycin complex 1 (TORC1) couples an array of intra- and extracellular stimuli to cell growth, proliferation and metabolism, and its deregulation is associated with various human pathologies such as immunodeficiency, epilepsy, and cancer. Among the diverse stimuli impinging on TORC1, amino acids represent essential input signals, but how they control TORC1 has long remained a mystery. The recent discovery of the Rag GTPases, which assemble as heterodimeric complexes on vacuolar/lysosomal membranes, as central elements of an amino acid signaling network upstream of TORC1 in yeast, flies, and mammalian cells represented a breakthrough in this field. Here, we review the architecture of the Rag GTPase signaling network with a special focus on structural aspects of the Rag GTPases and their regulators in yeast and highlight both the evolutionary conservation and divergence of the mechanisms that control Rag GTPases.
Collapse
|
129
|
Abstract
The yeast Yarrowia lipolytica is a potent accumulator of lipids, and lipogenesis in this organism can be influenced by a variety of factors, such as genetics and environmental conditions. Using a multifactorial study, we elucidated the effects of both genetic and environmental factors on regulation of lipogenesis in Y. lipolytica and identified how two opposite regulatory states both result in lipid accumulation. This study involved comparison of a strain overexpressing diacylglycerol acyltransferase (DGA1) with a control strain grown under either nitrogen or carbon limitation conditions. A strong correlation was observed between the responses on the transcript and protein levels. Combination of DGA1 overexpression with nitrogen limitation resulted in a high level of lipid accumulation accompanied by downregulation of several amino acid biosynthetic pathways, including that of leucine in particular, and these changes were further correlated with a decrease in metabolic fluxes. This downregulation was supported by the measured decrease in the level of 2-isopropylmalate, an intermediate of leucine biosynthesis. Combining the multi-omics data with putative transcription factor binding motifs uncovered a contradictory role for TORC1 in controlling lipid accumulation, likely mediated through 2-isopropylmalate and a Leu3-like transcription factor.IMPORTANCE The ubiquitous metabolism of lipids involves refined regulation, and an enriched understanding of this regulation would have wide implications. Various factors can influence lipid metabolism, including the environment and genetics. We demonstrated, using a multi-omics and multifactorial experimental setup, that multiple factors affect lipid accumulation in the yeast Yarrowia lipolytica Using integrative analysis, we identified novel interactions between nutrient restriction and genetic factors involving regulators that are highly conserved among eukaryotes. Given that lipid metabolism is involved in many diseases but is also vital to the development of microbial cell factories that can provide us with sustainable fuels and oleochemicals, we envision that our report introduces foundational work to further unravel the regulation of lipid accumulation in eukaryal cells.
Collapse
|
130
|
The yeast protein kinase Sch9 adjusts V-ATPase assembly/disassembly to control pH homeostasis and longevity in response to glucose availability. PLoS Genet 2017; 13:e1006835. [PMID: 28604780 PMCID: PMC5484544 DOI: 10.1371/journal.pgen.1006835] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 06/26/2017] [Accepted: 05/23/2017] [Indexed: 11/19/2022] Open
Abstract
The conserved protein kinase Sch9 is a central player in the nutrient-induced signaling network in yeast, although only few of its direct substrates are known. We now provide evidence that Sch9 controls the vacuolar proton pump (V-ATPase) to maintain cellular pH homeostasis and ageing. A synthetic sick phenotype arises when deletion of SCH9 is combined with a dysfunctional V-ATPase, and the lack of Sch9 has a significant impact on cytosolic pH (pHc) homeostasis. Sch9 physically interacts with, and influences glucose-dependent assembly/disassembly of the V-ATPase, thereby integrating input from TORC1. Moreover, we show that the role of Sch9 in regulating ageing is tightly connected with V-ATPase activity and vacuolar acidity. As both Sch9 and the V-ATPase are highly conserved in higher eukaryotes, it will be interesting to further clarify their cooperative action on the cellular processes that influence growth and ageing. The evolutionary conserved TOR complex 1 controls growth in response to the quality and quantity of nutrients such as carbon and amino acids. The protein kinase Sch9 is the main TORC1 effector in yeast. However, only few of its direct targets are known. In this study, we performed a genome-wide screening looking for mutants which require Sch9 function for their survival and growth. In this way, we identified multiple components of the highly conserved vacuolar proton pump (V-ATPase) which mediates the luminal acidification of multiple biosynthetic and endocytic organelles. Besides a genetic interaction, we found Sch9 also physically interacts with the V-ATPase to regulate its assembly state in response to glucose availability and TORC1 activity. Moreover, the interaction with the V-ATPase has consequences for ageing as it allowed Sch9 to control vacuolar pH and thereby trigger either lifespan extension or lifespan shortening. Hence, our results provide insights into the signaling mechanism coupling glucose availability, TORC1 signaling, pH homeostasis and longevity. As both Sch9 and the V-ATPase are highly conserved and implicated in various pathologies, these results offer fertile ground for further research in higher eukaryotes.
Collapse
|
131
|
Yoon S, Kim JH, Koh Y, Tran PT, Ann J, Yoon I, Jang J, Kim WK, Lee S, Lee J, Kim S, Lee J. Discovery of simplified leucyladenylate sulfamates as novel leucyl-tRNA synthetase (LRS)-targeted mammalian target of rapamycin complex 1 (mTORC1) inhibitors. Bioorg Med Chem 2017. [PMID: 28625715 DOI: 10.1016/j.bmc.2017.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Leucyl-tRNA synthetase (LRS) has been reported to be a possible mediator of intracellular amino acids signaling to mTORC1. Given that mTORC1 is associated with cell proliferation and tumorigenesis, the LRS-mediated mTORC1 pathway may offer an alternative strategy in anticancer therapy. In this study, we developed a series of simplified analogues of leucyladenylate sulfamate (1) as LRS-targeted mTORC1 inhibitors. We replaced the adenylate group with a N-(3,4-dimethoxybenzyl)benzenesulfonamide (2a) or a N-(2-phenoxyethyl)benzenesulfonamide groups (2b) that can maintain specific binding, but has more favorable physicochemical properties such as reduced polarity and asymmetric centers. Among these simplified analogues, compound 16 and its constrained analogue 22 effectively inhibited S6K phosphorylation in a dose-dependent manner and exhibited cancer cell specific cytotoxicity against six different types of cancer cells. This result supports that LRS is a viable target for novel anticancer therapy.
Collapse
Affiliation(s)
- Suyoung Yoon
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jong Hyun Kim
- Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Yura Koh
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Phuong-Thao Tran
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, Hanoi, Viet Nam
| | - Jihyae Ann
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Ina Yoon
- Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jayun Jang
- Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Won Kyung Kim
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sangkook Lee
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jiyoun Lee
- Department of Global Medical Science, Sungshin University, Seoul 01133, Republic of Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeewoo Lee
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
132
|
Lopatina NG, Zachepilo TH, Kamyshev NG, Chalisova NI. The influence of combinations of encoded amino acids on associative learning in the honeybee Apis mellifera L. J EVOL BIOCHEM PHYS+ 2017. [DOI: 10.1134/s1234567817020045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
133
|
Phosphate is the third nutrient monitored by TOR in Candida albicans and provides a target for fungal-specific indirect TOR inhibition. Proc Natl Acad Sci U S A 2017; 114:6346-6351. [PMID: 28566496 DOI: 10.1073/pnas.1617799114] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The Target of Rapamycin (TOR) pathway regulates morphogenesis and responses to host cells in the fungal pathogen Candida albicans Eukaryotic Target of Rapamycin complex 1 (TORC1) induces growth and proliferation in response to nitrogen and carbon source availability. Our unbiased genetic approach seeking unknown components of TORC1 signaling in C. albicans revealed that the phosphate transporter Pho84 is required for normal TORC1 activity. We found that mutants in PHO84 are hypersensitive to rapamycin and in response to phosphate feeding, generate less phosphorylated ribosomal protein S6 (P-S6) than the WT. The small GTPase Gtr1, a component of the TORC1-activating EGO complex, links Pho84 to TORC1. Mutants in Gtr1 but not in another TORC1-activating GTPase, Rhb1, are defective in the P-S6 response to phosphate. Overexpression of Gtr1 and a constitutively active Gtr1Q67L mutant suppresses TORC1-related defects. In Saccharomyces cerevisiae pho84 mutants, constitutively active Gtr1 suppresses a TORC1 signaling defect but does not rescue rapamycin hypersensitivity. Hence, connections from phosphate homeostasis (PHO) to TORC1 may differ between C. albicans and S. cerevisiae The converse direction of signaling from TORC1 to the PHO regulon previously observed in S. cerevisiae was genetically shown in C. albicans using conditional TOR1 alleles. A small molecule inhibitor of Pho84, a Food and Drug Administration-approved drug, inhibits TORC1 signaling and potentiates the activity of the antifungals amphotericin B and micafungin. Anabolic TORC1-dependent processes require significant amounts of phosphate. Our study shows that phosphate availability is monitored and also controlled by TORC1 and that TORC1 can be indirectly targeted by inhibiting Pho84.
Collapse
|
134
|
Kim LC, Cook RS, Chen J. mTORC1 and mTORC2 in cancer and the tumor microenvironment. Oncogene 2017; 36:2191-2201. [PMID: 27748764 PMCID: PMC5393956 DOI: 10.1038/onc.2016.363] [Citation(s) in RCA: 322] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/04/2016] [Accepted: 08/15/2016] [Indexed: 02/06/2023]
Abstract
The mammalian target of rapamycin (mTOR) is a crucial signaling node that integrates environmental cues to regulate cell survival, proliferation and metabolism, and is often deregulated in human cancer. mTOR kinase acts in two functionally distinct complexes, mTOR complex 1 (mTORC1) and 2 (mTORC2), whose activities and substrate specificities are regulated by complex co-factors. Deregulation of this centralized signaling pathway has been associated with a variety of human diseases including diabetes, neurodegeneration and cancer. Although mTORC1 signaling has been extensively studied in cancer, recent discoveries indicate a subset of human cancers harboring amplifications in mTORC2-specific genes as the only actionable genomic alterations, suggesting a distinct role for mTORC2 in cancer as well. This review will summarize recent advances in dissecting the relative contributions of mTORC1 versus mTORC2 in cancer, their role in tumor-associated blood vessels and tumor immunity, and provide an update on mTOR inhibitors.
Collapse
Affiliation(s)
- Laura C. Kim
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232
| | - Rebecca S. Cook
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232
- Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232
| | - Jin Chen
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University, Nashville, TN 37232
- Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN 37232
- Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, TN 37212
| |
Collapse
|
135
|
The lysosome: a crucial hub for AMPK and mTORC1 signalling. Biochem J 2017; 474:1453-1466. [PMID: 28408430 DOI: 10.1042/bcj20160780] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/21/2017] [Accepted: 02/27/2017] [Indexed: 12/18/2022]
Abstract
Much attention has recently been focussed on the lysosome as a signalling hub. Following the initial discovery that localisation of the nutrient-sensitive kinase, mammalian target of rapamycin complex 1 (mTORC1), to the lysosome was essential for mTORC1 activation, the field has rapidly expanded to reveal the role of the lysosome as a platform permitting the co-ordination of several homeostatic signalling pathways. Much is now understood about how the lysosome contributes to amino acid sensing by mTORC1, the involvement of the energy-sensing kinase, AMP-activated protein kinase (AMPK), at the lysosome and how both AMPK and mTORC1 signalling pathways feedback to lysosomal biogenesis and regeneration following autophagy. This review will cover the classical role of the lysosome in autophagy, the dynamic signalling interactions which take place on the lysosomal surface and the multiple levels of cross-talk which exist between lysosomes, AMPK and mTORC1.
Collapse
|
136
|
Abstract
For almost all cells, nutrient availability, from glucose to amino acids, dictates their growth or developmental programs. This nutrient availability is closely coupled to the overall intracellular metabolic state of the cell. Therefore, cells have evolved diverse, robust and versatile modules to sense intracellular metabolic states, activate signaling outputs and regulate outcomes to these states. Yet, signaling and metabolism have been viewed as important but separate. This short review attempts to position aspects of intracellular signaling from a metabolic perspective, highlighting how conserved, core principles of metabolic sensing and signaling can emerge from an understanding of metabolic regulation. I briefly explain the nature of metabolic sensors, using the example of the AMP activated protein kinase (AMPK) as an "energy sensing" hub. Subsequently, I explore how specific central metabolites, particularly acetyl-CoA, but also S -adenosyl methionine and SAICAR, can act as signaling molecules. I extensively illustrate the nature of a metabolic signaling hub using the specific example of the Target of Rapamycin Complex 1 (TORC1), and amino acid sensing. A highlight is the emergence of the lysosome/vacuole as a metabolic and signaling hub. Finally, the need to expand our understanding of the intracellular dynamics (in concentration and localization) of several metabolites, and their signaling hubs is emphasized.
Collapse
Affiliation(s)
- Sunil Laxman
- Institute for Stem Cell Biology and Regenerative Medicine (inStem), NCBS Campus, GKVK, Bellary Road, Bangalore 560065, India
| |
Collapse
|
137
|
González A, Hall MN. Nutrient sensing and TOR signaling in yeast and mammals. EMBO J 2017; 36:397-408. [PMID: 28096180 DOI: 10.15252/embj.201696010] [Citation(s) in RCA: 541] [Impact Index Per Article: 67.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/12/2016] [Accepted: 12/15/2016] [Indexed: 01/13/2023] Open
Abstract
Coordinating cell growth with nutrient availability is critical for cell survival. The evolutionarily conserved TOR (target of rapamycin) controls cell growth in response to nutrients, in particular amino acids. As a central controller of cell growth, mTOR (mammalian TOR) is implicated in several disorders, including cancer, obesity, and diabetes. Here, we review how nutrient availability is sensed and transduced to TOR in budding yeast and mammals. A better understanding of how nutrient availability is transduced to TOR may allow novel strategies in the treatment for mTOR-related diseases.
Collapse
|
138
|
Kamada Y. Novel tRNA function in amino acid sensing of yeast Tor complex1. Genes Cells 2017; 22:135-147. [DOI: 10.1111/gtc.12462] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 11/24/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Yoshiaki Kamada
- Laboratory of Biological Diversity; National Institute for Basic Biology; Okazaki 444-8585 Japan
- Department of Basic Biology; School of Life Science; The Graduate University for Advanced Studies (SOKENDAI); Okazaki 444-8585 Japan
| |
Collapse
|
139
|
Yuan W, Guo S, Gao J, Zhong M, Yan G, Wu W, Chao Y, Jiang Y. General Control Nonderepressible 2 (GCN2) Kinase Inhibits Target of Rapamycin Complex 1 in Response to Amino Acid Starvation in Saccharomyces cerevisiae. J Biol Chem 2017; 292:2660-2669. [PMID: 28057755 DOI: 10.1074/jbc.m116.772194] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/04/2017] [Indexed: 11/06/2022] Open
Abstract
In eukaryotic cells, two conserved protein kinases, Gcn2 and TOR complex 1 (TORC1), couple amino acid conditions to protein translation. Gcn2 functions as an amino acid sensor and is activated by uncharged tRNAs that accumulate when intracellular amino acids are limited. Activated Gcn2 phosphorylates and inhibits eukaryotic initiation factor-2α (eIF2α), resulting in repression of general protein synthesis. Like Gcn2, TORC1 is also involved in sensing amino acid conditions. However, the underlying mechanism remains unclear. In the present study, we show that TORC1 is a direct target of Gcn2 kinase in the yeast Saccharomyces cerevisiae In response to amino acid starvation, Gcn2 binds to TORC1 and phosphorylates Kog1, the unique regulatory subunit of TORC1, resulting in down-regulation of TORC1 kinase activity. In the absence of Gcn2, TORC1 signaling activity increases and becomes unresponsive to amino acid starvation. Our findings demonstrate that TORC1 is an effector of Gcn2 in amino acid signaling, hence defining a novel mechanism by which TORC1 senses amino acid starvation.
Collapse
Affiliation(s)
- Wenjie Yuan
- From the School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China.,the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, and
| | - Shuguang Guo
- the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, and
| | - Jiaoqi Gao
- From the School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China.,the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, and
| | - Mingming Zhong
- the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, and
| | - Gonghong Yan
- the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, and
| | - Wangmeng Wu
- the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, and
| | - Yapeng Chao
- the State Key Laboratories of Transducer Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu Jiang
- the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, and
| |
Collapse
|
140
|
General Amino Acid Control and 14-3-3 Proteins Bmh1/2 Are Required for Nitrogen Catabolite Repression-Sensitive Regulation of Gln3 and Gat1 Localization. Genetics 2016; 205:633-655. [PMID: 28007891 DOI: 10.1534/genetics.116.195800] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 12/21/2016] [Indexed: 01/08/2023] Open
Abstract
Nitrogen catabolite repression (NCR), the ability of Saccharomyces cerevisiae to use good nitrogen sources in preference to poor ones, derives from nitrogen-responsive regulation of the GATA family transcription activators Gln3 and Gat1 In nitrogen-replete conditions, the GATA factors are cytoplasmic and NCR-sensitive transcription minimal. When only poor nitrogen sources are available, Gln3 is nuclear, dramatically increasing GATA factor-mediated transcription. This regulation was originally attributed to mechanistic Tor protein kinase complex 1 (mTorC1)-mediated control of Gln3 However, we recently showed that two regulatory systems act cumulatively to maintain cytoplasmic Gln3 sequestration, only one of which is mTorC1. Present experiments demonstrate that the other previously elusive component is uncharged transfer RNA-activated, Gcn2 protein kinase-mediated general amino acid control (GAAC). Gcn2 and Gcn4 are required for NCR-sensitive nuclear Gln3-Myc13 localization, and from epistasis experiments Gcn2 appears to function upstream of Ure2 Bmh1/2 are also required for nuclear Gln3-Myc13 localization and appear to function downstream of Ure2 Overall, Gln3 phosphorylation levels decrease upon loss of Gcn2, Gcn4, or Bmh1/2 Our results add a new dimension to nitrogen-responsive GATA-factor regulation and demonstrate the cumulative participation of the mTorC1 and GAAC pathways, which respond oppositely to nitrogen availability, in the nitrogen-responsive control of catabolic gene expression in yeast.
Collapse
|
141
|
Two crystal structures reveal design for repurposing the C-Ala domain of human AlaRS. Proc Natl Acad Sci U S A 2016; 113:14300-14305. [PMID: 27911835 DOI: 10.1073/pnas.1617316113] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The 20 aminoacyl tRNA synthetases (aaRSs) couple each amino acid to their cognate tRNAs. During evolution, 19 aaRSs expanded by acquiring novel noncatalytic appended domains, which are absent from bacteria and many lower eukaryotes but confer extracellular and nuclear functions in higher organisms. AlaRS is the single exception, with an appended C-terminal domain (C-Ala) that is conserved from prokaryotes to humans but with a wide sequence divergence. In human cells, C-Ala is also a splice variant of AlaRS. Crystal structures of two forms of human C-Ala, and small-angle X-ray scattering of AlaRS, showed that the large sequence divergence of human C-Ala reshaped C-Ala in a way that changed the global architecture of AlaRS. This reshaping removes the role of C-Ala in prokaryotes for docking tRNA and instead repurposes it to form a dimer interface presenting a DNA-binding groove. This groove cannot form with the bacterial ortholog. Direct DNA binding by human C-Ala, but not by bacterial C-Ala, was demonstrated. Thus, instead of acquiring a novel appended domain like other human aaRSs, which engendered novel functions, a new AlaRS architecture was created by diversifying a preexisting appended domain.
Collapse
|
142
|
Yoon S, Kim JH, Kim SE, Kim C, Tran PT, Ann J, Koh Y, Jang J, Kim S, Moon HS, Kim WK, Lee S, Lee J, Kim S, Lee J. Discovery of Leucyladenylate Sulfamates as Novel Leucyl-tRNA Synthetase (LRS)-Targeted Mammalian Target of Rapamycin Complex 1 (mTORC1) Inhibitors. J Med Chem 2016; 59:10322-10328. [PMID: 27933890 DOI: 10.1021/acs.jmedchem.6b01190] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recent studies indicate that LRS may act as a leucine sensor for the mTORC1 pathway, potentially providing an alternative strategy to overcome rapamycin resistance in cancer treatments. In this study, we developed leucyladenylate sulfamate derivatives as LRS-targeted mTORC1 inhibitors. Compound 18 selectively inhibited LRS-mediated mTORC1 activation and exerted specific cytotoxicity against colon cancer cells with a hyperactive mTORC1, suggesting that 18 may offer a novel treatment option for human colorectal cancer.
Collapse
Affiliation(s)
- Suyoung Yoon
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul 151-742, Korea
| | - Jong Hyun Kim
- Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University , Seoul 151-742, Korea
| | - Sung-Eun Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul 151-742, Korea
| | - Changhoon Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul 151-742, Korea
| | - Phuong-Thao Tran
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul 151-742, Korea
| | - Jihyae Ann
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul 151-742, Korea
| | - Yura Koh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul 151-742, Korea
| | - Jayun Jang
- Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University , Seoul 151-742, Korea
| | - Sungmin Kim
- Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University , Seoul 151-742, Korea
| | - Hee-Sun Moon
- Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University , Seoul 151-742, Korea
| | - Won Kyung Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul 151-742, Korea
| | - Sangkook Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul 151-742, Korea
| | - Jiyoun Lee
- Department of Global Medical Science, Sungshin University , Seoul 142-732, Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University , Seoul 151-742, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University , Seoul 151-742, Korea
| | - Jeewoo Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul 151-742, Korea
| |
Collapse
|
143
|
Van de Velde LA, Murray PJ. Proliferating Helper T Cells Require Rictor/mTORC2 Complex to Integrate Signals from Limiting Environmental Amino Acids. J Biol Chem 2016; 291:25815-25822. [PMID: 27799302 DOI: 10.1074/jbc.c116.763623] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Indexed: 11/06/2022] Open
Abstract
Antigen-stimulated T cells require elevated importation of essential and non-essential amino acids to generate large numbers of daughter cells necessary for effective immunity to pathogens. When amino acids are limiting, T cells arrest in the G1 phase of the cell cycle, suggesting that they have specific sensing mechanisms to ensure sufficient amino acids are available for multiple rounds of daughter generation. We found that activation of mTORC1, which is regulated by amino acid amounts, was uncoupled from limiting amino acids in the G1 phase of the cell cycle. Instead, we found that Rictor/mTORC2 has an essential role in T cell amino acid sensing. In the absence of Rictor, CD4+ T cells proliferate normally in limiting arginine or leucine. Our data suggest that Rictor/mTORC2 controls an amino acid-sensitive checkpoint that allows T cells to determine whether the microenvironment contains sufficient resources for daughter cell generation.
Collapse
Affiliation(s)
- Lee-Ann Van de Velde
- From the Departments of Infectious Diseases and.,Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Peter J Murray
- From the Departments of Infectious Diseases and .,Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| |
Collapse
|
144
|
Manifava M, Smith M, Rotondo S, Walker S, Niewczas I, Zoncu R, Clark J, Ktistakis NT. Dynamics of mTORC1 activation in response to amino acids. eLife 2016; 5. [PMID: 27725083 PMCID: PMC5059141 DOI: 10.7554/elife.19960] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 09/07/2016] [Indexed: 12/12/2022] Open
Abstract
Amino acids are essential activators of mTORC1 via a complex containing RAG GTPases, RAGULATOR and the vacuolar ATPase. Sensing of amino acids causes translocation of mTORC1 to lysosomes, an obligate step for activation. To examine the spatial and temporal dynamics of this translocation, we used live imaging of the mTORC1 component RAPTOR and a cell permeant fluorescent analogue of di-leucine methyl ester. Translocation to lysosomes is a transient event, occurring within 2 min of aa addition and peaking within 5 min. It is temporally coupled with fluorescent leucine appearance in lysosomes and is sustained in comparison to aa stimulation. Sestrin2 and the vacuolar ATPase are negative and positive regulators of mTORC1 activity in our experimental system. Of note, phosphorylation of canonical mTORC1 targets is delayed compared to lysosomal translocation suggesting a dynamic and transient passage of mTORC1 from the lysosomal surface before targetting its substrates elsewhere. DOI:http://dx.doi.org/10.7554/eLife.19960.001 Cells in all organisms must constantly measure the amount of nutrients available to them in order to be healthy and grow properly. For example, cells use a complex sensing system to measure how many amino acids – the building blocks of proteins – are available to them. One enzyme called mTOR alerts the cell to amino acid levels. When amino acids are available, mTOR springs into action and turns on the production of proteins in the cell. However, when amino acids are scarce, mTOR turns off, which slows down protein production and causes the cell to begin scavenging amino acids by digesting parts of itself. Studies of mTOR have shown that the protein cannot turn on until it visits the surface of small sacks in the cell called lysosomes. These are the major sites within cell where proteins and other molecules are broken down. Scientists know how mTOR gets to the lysosomes, but not how quickly the process occurs. Now, Manifava, Smith et al. have used microscopes to record live video of the mTOR enzyme as it interacts with amino acids revealing the whole process takes place in just a few minutes. In the experiments, a fluorescent tag was added to part of mTOR to make the protein visible under a microscope. The video showed that, in human cells supplied with amino acids, mTOR reaches the lysosomes within 2 minutes of the amino acids becoming available. Then, within 3-4 minutes the mTOR turns on and leaves the lysosome. Even though the mTOR has left the lysosome, it somehow remembers that amino acids are available and stays active. The experiments show that mTOR’s brief interaction with the lysosome switches it on and keeps it on even after mTOR leaves. Future studies will be needed to determine exactly how mTOR remembers its interaction with the lysosome and stays active afterwards. DOI:http://dx.doi.org/10.7554/eLife.19960.002
Collapse
Affiliation(s)
- Maria Manifava
- Signalling Programme, Babraham Institute, Cambridge, United Kingdom
| | - Matthew Smith
- Signalling Programme, Babraham Institute, Cambridge, United Kingdom
| | - Sergio Rotondo
- Signalling Programme, Babraham Institute, Cambridge, United Kingdom
| | - Simon Walker
- Signalling Programme, Babraham Institute, Cambridge, United Kingdom
| | | | - Roberto Zoncu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Jonathan Clark
- Signalling Programme, Babraham Institute, Cambridge, United Kingdom
| | | |
Collapse
|
145
|
Arif A, Jia J, Halawani D, Fox PL. Experimental approaches for investigation of aminoacyl tRNA synthetase phosphorylation. Methods 2016; 113:72-82. [PMID: 27729295 DOI: 10.1016/j.ymeth.2016.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/04/2016] [Accepted: 10/06/2016] [Indexed: 02/04/2023] Open
Abstract
Phosphorylation of many aminoacyl tRNA synthetases (AARSs) has been recognized for decades, but the contribution of post-translational modification to their primary role in tRNA charging and decryption of genetic code remains unclear. In contrast, phosphorylation is essential for performance of diverse noncanonical functions of AARSs unrelated to protein synthesis. Phosphorylation of glutamyl-prolyl tRNA synthetase (EPRS) has been investigated extensively in our laboratory for more than a decade, and has served as an archetype for studies of other AARSs. EPRS is a constituent of the IFN-γ-activated inhibitor of translation (GAIT) complex that directs transcript-selective translational control in myeloid cells. Stimulus-dependent phosphorylation of EPRS is essential for its release from the parental multi-aminoacyl tRNA synthetase complex (MSC), for binding to other GAIT complex proteins, and for regulating the binding to target mRNAs. Importantly, phosphorylation is the common driving force for the context- and stimulus-dependent release, and non-canonical activity, of other AARSs residing in the MSC, for example, lysyl tRNA synthetase (KARS). Here, we describe the concepts and experimental methodologies we have used to investigate the influence of phosphorylation on the structure and function of EPRS. We suggest that application of these approaches will help to identify new functional phosphorylation event(s) in other AARSs and elucidate their possible roles in noncanonical activities.
Collapse
Affiliation(s)
- Abul Arif
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jie Jia
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Dalia Halawani
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Paul L Fox
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
146
|
Brady OA, Diab HI, Puertollano R. Rags to riches: Amino acid sensing by the Rag GTPases in health and disease. Small GTPases 2016; 7:197-206. [PMID: 27580159 PMCID: PMC5129890 DOI: 10.1080/21541248.2016.1218990] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 07/26/2016] [Accepted: 07/27/2016] [Indexed: 02/06/2023] Open
Abstract
The Rags represent a unique family of evolutionarily conserved, heterodimeric, lysosome-localized small GTPases that play an indispensible role in regulating cellular metabolism in response to various amino acid signaling mechanisms. Rapid progress in the field has begun to unveil a picture in which Rags act as central players in translating information regarding cellular amino acid levels by modulating their nucleotide binding status through an ensemble of support proteins localized in and around the lysosomes. By cooperating with other signaling pathways that converge on the lysosomes, Rags promote anabolic processes through positively affecting mTORC1 signaling in the presence of abundant amino acids. Conversely, Rag inactivation plays an indispensible role in switching cellular metabolism into a catabolic paradigm by promoting the activity of the master lysosomal/autophagic transcription factors TFEB and TFE3. Precise control of Rag signaling is necessary for cells to adapt to constantly changing cellular demands and emerging evidence has highlighted their importance in a wide variety of developmental and pathological conditions.
Collapse
Affiliation(s)
- Owen A. Brady
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Heba I. Diab
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rosa Puertollano
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
147
|
Recent Advances in Understanding Amino Acid Sensing Mechanisms that Regulate mTORC1. Int J Mol Sci 2016; 17:ijms17101636. [PMID: 27690010 PMCID: PMC5085669 DOI: 10.3390/ijms17101636] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/19/2016] [Accepted: 09/21/2016] [Indexed: 11/25/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) is the central regulator of mammalian cell growth, and is essential for the formation of two structurally and functionally distinct complexes: mTORC1 and mTORC2. mTORC1 can sense multiple cues such as nutrients, energy status, growth factors and hormones to control cell growth and proliferation, angiogenesis, autophagy, and metabolism. As one of the key environmental stimuli, amino acids (AAs), especially leucine, glutamine and arginine, play a crucial role in mTORC1 activation, but where and how AAs are sensed and signal to mTORC1 are not fully understood. Classically, AAs activate mTORC1 by Rag GTPases which recruit mTORC1 to lysosomes, where AA signaling initiates. Plasma membrane transceptor L amino acid transporter 1 (LAT1)-4F2hc has dual transporter-receptor function that can sense extracellular AA availability upstream of mTORC1. The lysosomal AA sensors (PAT1 and SLC38A9) and cytoplasmic AA sensors (LRS, Sestrin2 and CASTOR1) also participate in regulating mTORC1 activation. Importantly, AAs can be sensed by plasma membrane receptors, like G protein-coupled receptor (GPCR) T1R1/T1R3, and regulate mTORC1 without being transported into the cells. Furthermore, AA-dependent mTORC1 activation also initiates within Golgi, which is regulated by Golgi-localized AA transporter PAT4. This review provides an overview of the research progress of the AA sensing mechanisms that regulate mTORC1 activity.
Collapse
|
148
|
Lim CY, Zoncu R. The lysosome as a command-and-control center for cellular metabolism. J Cell Biol 2016; 214:653-64. [PMID: 27621362 PMCID: PMC5021098 DOI: 10.1083/jcb.201607005] [Citation(s) in RCA: 220] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/22/2016] [Indexed: 12/25/2022] Open
Abstract
Lysosomes are membrane-bound organelles found in every eukaryotic cell. They are widely known as terminal catabolic stations that rid cells of waste products and scavenge metabolic building blocks that sustain essential biosynthetic reactions during starvation. In recent years, this classical view has been dramatically expanded by the discovery of new roles of the lysosome in nutrient sensing, transcriptional regulation, and metabolic homeostasis. These discoveries have elevated the lysosome to a decision-making center involved in the control of cellular growth and survival. Here we review these recently discovered properties of the lysosome, with a focus on how lysosomal signaling pathways respond to external and internal cues and how they ultimately enable metabolic homeostasis and cellular adaptation.
Collapse
Affiliation(s)
- Chun-Yan Lim
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720 The Paul F. Glenn Center for Aging Research at the University of California, Berkeley, Berkeley, CA 94720
| | - Roberto Zoncu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720 The Paul F. Glenn Center for Aging Research at the University of California, Berkeley, Berkeley, CA 94720
| |
Collapse
|
149
|
Semba RD, Trehan I, Gonzalez-Freire M, Kraemer K, Moaddel R, Ordiz MI, Ferrucci L, Manary MJ. Perspective: The Potential Role of Essential Amino Acids and the Mechanistic Target of Rapamycin Complex 1 (mTORC1) Pathway in the Pathogenesis of Child Stunting. Adv Nutr 2016; 7:853-65. [PMID: 27633102 PMCID: PMC5015042 DOI: 10.3945/an.116.013276] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Stunting is the best summary measure of chronic malnutrition in children. Approximately one-quarter of children under age 5 worldwide are stunted. Lipid-based or micronutrient supplementation has little to no impact in reducing stunting, which suggests that other critical dietary nutrients are missing. A dietary pattern of poor-quality protein is associated with stunting. Stunted children have significantly lower circulating essential amino acids than do nonstunted children. Inadequate dietary intakes of essential amino acids could adversely affect growth, because amino acids are required for synthesis of proteins. The master growth regulation pathway, the mechanistic target of rapamycin complex 1 (mTORC1) pathway, is exquisitely sensitive to amino acid availability. mTORC1 integrates cues such as nutrients, growth factors, oxygen, and energy to regulate growth of bone, skeletal muscle, nervous system, gastrointestinal tract, hematopoietic cells, immune effector cells, organ size, and whole-body energy balance. mTORC1 represses protein and lipid synthesis and cell and organismal growth when amino acids are deficient. Over the past 4 decades, the main paradigm for child nutrition in developing countries has been micronutrient malnutrition, with relatively less attention paid to protein. In this Perspective, we present the view that essential amino acids and the mTORC1 pathway play a key role in child growth. The current assumption that total dietary protein intake is adequate for growth among most children in developing countries needs re-evaluation.
Collapse
Affiliation(s)
- Richard D Semba
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD;
| | - Indi Trehan
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO
| | | | - Klaus Kraemer
- Sight and Life, Basel, Switzerland; and Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | | | - M Isabel Ordiz
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO
| | | | - Mark J Manary
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO
| |
Collapse
|
150
|
Yoon MS, Son K, Arauz E, Han JM, Kim S, Chen J. Leucyl-tRNA Synthetase Activates Vps34 in Amino Acid-Sensing mTORC1 Signaling. Cell Rep 2016; 16:1510-1517. [PMID: 27477288 DOI: 10.1016/j.celrep.2016.07.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 06/08/2016] [Accepted: 07/01/2016] [Indexed: 11/16/2022] Open
Abstract
Amino acid availability activates signaling by the mammalian target of rapamycin (mTOR) complex 1, mTORC1, a master regulator of cell growth. The class III PI-3-kinase Vps34 mediates amino acid signaling to mTORC1 by regulating lysosomal translocation and activation of the phospholipase PLD1. Here, we identify leucyl-tRNA synthetase (LRS) as a leucine sensor for the activation of Vps34-PLD1 upstream of mTORC1. LRS is necessary for amino acid-induced Vps34 activation, cellular PI(3)P level increase, PLD1 activation, and PLD1 lysosomal translocation. Leucine binding, but not tRNA charging activity of LRS, is required for this regulation. Moreover, LRS physically interacts with Vps34 in amino acid-stimulatable non-autophagic complexes. Finally, purified LRS protein activates Vps34 kinase in vitro in a leucine-dependent manner. Collectively, our findings provide compelling evidence for a direct role of LRS in amino acid activation of Vps34 via a non-canonical mechanism and fill a gap in the amino acid-sensing mTORC1 signaling network.
Collapse
Affiliation(s)
- Mee-Sup Yoon
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 South Goodwin Avenue B107, Urbana, IL 61801, USA; Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 406-840, Republic of Korea.
| | - Kook Son
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 South Goodwin Avenue B107, Urbana, IL 61801, USA
| | - Edwin Arauz
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 South Goodwin Avenue B107, Urbana, IL 61801, USA
| | - Jung Min Han
- Department of Integrated OMICS for Biomedical Science, Yonsei University, Seoul 120-749, Republic of Korea; College of Pharmacy, Yonsei University, Incheon 406-840, Republic of Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Seoul National University, Seoul 151-742, Republic of Korea
| | - Jie Chen
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 South Goodwin Avenue B107, Urbana, IL 61801, USA.
| |
Collapse
|