101
|
Asim MN, Ibrahim MA, Imran Malik M, Dengel A, Ahmed S. Circ-LocNet: A Computational Framework for Circular RNA Sub-Cellular Localization Prediction. Int J Mol Sci 2022; 23:ijms23158221. [PMID: 35897818 PMCID: PMC9329987 DOI: 10.3390/ijms23158221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023] Open
Abstract
Circular ribonucleic acids (circRNAs) are novel non-coding RNAs that emanate from alternative splicing of precursor mRNA in reversed order across exons. Despite the abundant presence of circRNAs in human genes and their involvement in diverse physiological processes, the functionality of most circRNAs remains a mystery. Like other non-coding RNAs, sub-cellular localization knowledge of circRNAs has the aptitude to demystify the influence of circRNAs on protein synthesis, degradation, destination, their association with different diseases, and potential for drug development. To date, wet experimental approaches are being used to detect sub-cellular locations of circular RNAs. These approaches help to elucidate the role of circRNAs as protein scaffolds, RNA-binding protein (RBP) sponges, micro-RNA (miRNA) sponges, parental gene expression modifiers, alternative splicing regulators, and transcription regulators. To complement wet-lab experiments, considering the progress made by machine learning approaches for the determination of sub-cellular localization of other non-coding RNAs, the paper in hand develops a computational framework, Circ-LocNet, to precisely detect circRNA sub-cellular localization. Circ-LocNet performs comprehensive extrinsic evaluation of 7 residue frequency-based, residue order and frequency-based, and physio-chemical property-based sequence descriptors using the five most widely used machine learning classifiers. Further, it explores the performance impact of K-order sequence descriptor fusion where it ensembles similar as well dissimilar genres of statistical representation learning approaches to reap the combined benefits. Considering the diversity of statistical representation learning schemes, it assesses the performance of second-order, third-order, and going all the way up to seventh-order sequence descriptor fusion. A comprehensive empirical evaluation of Circ-LocNet over a newly developed benchmark dataset using different settings reveals that standalone residue frequency-based sequence descriptors and tree-based classifiers are more suitable to predict sub-cellular localization of circular RNAs. Further, K-order heterogeneous sequence descriptors fusion in combination with tree-based classifiers most accurately predict sub-cellular localization of circular RNAs. We anticipate this study will act as a rich baseline and push the development of robust computational methodologies for the accurate sub-cellular localization determination of novel circRNAs.
Collapse
Affiliation(s)
- Muhammad Nabeel Asim
- German Research Center for Artificial Intelligence (DFKI), 67663 Kaiserslautern, Germany; (M.A.I.); (A.D.); (S.A.)
- Department of Computer Science, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
- Correspondence:
| | - Muhammad Ali Ibrahim
- German Research Center for Artificial Intelligence (DFKI), 67663 Kaiserslautern, Germany; (M.A.I.); (A.D.); (S.A.)
- Department of Computer Science, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Muhammad Imran Malik
- School of Computer Science & Electrical Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan;
| | - Andreas Dengel
- German Research Center for Artificial Intelligence (DFKI), 67663 Kaiserslautern, Germany; (M.A.I.); (A.D.); (S.A.)
- Department of Computer Science, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Sheraz Ahmed
- German Research Center for Artificial Intelligence (DFKI), 67663 Kaiserslautern, Germany; (M.A.I.); (A.D.); (S.A.)
- DeepReader GmbH, Trippstadter Str. 122, 67663 Kaiserslautern, Germany
| |
Collapse
|
102
|
The Functional Role of Long Non-Coding RNA in Myogenesis and Skeletal Muscle Atrophy. Cells 2022; 11:cells11152291. [PMID: 35892588 PMCID: PMC9332450 DOI: 10.3390/cells11152291] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
Skeletal muscle is a pivotal organ in humans that maintains locomotion and homeostasis. Muscle atrophy caused by sarcopenia and cachexia, which results in reduced muscle mass and impaired skeletal muscle function, is a serious health condition that decreases life longevity in humans. Recent studies have revealed the molecular mechanisms by which long non-coding RNAs (lncRNAs) regulate skeletal muscle mass and function through transcriptional regulation, fiber-type switching, and skeletal muscle cell proliferation. In addition, lncRNAs function as natural inhibitors of microRNAs and induce muscle hypertrophy or atrophy. Intriguingly, muscle atrophy modifies the expression of thousands of lncRNAs. Therefore, although their exact functions have not yet been fully elucidated, various novel lncRNAs associated with muscle atrophy have been identified. Here, we comprehensively review recent knowledge on the regulatory roles of lncRNAs in skeletal muscle atrophy. In addition, we discuss the issues and possibilities of targeting lncRNAs as a treatment for skeletal muscle atrophy and muscle wasting disorders in humans.
Collapse
|
103
|
Hussen BM, Kheder RK, Abdullah ST, Hidayat HJ, Rahman HS, Salihi A, Taheri M, Ghafouri-Fard S. Functional interplay between long non-coding RNAs and Breast CSCs. Cancer Cell Int 2022; 22:233. [PMID: 35864503 PMCID: PMC9306174 DOI: 10.1186/s12935-022-02653-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/12/2022] [Indexed: 12/14/2022] Open
Abstract
Breast cancer (BC) represents aggressive cancer affecting most women’s lives globally. Metastasis and recurrence are the two most common factors in a breast cancer patient's poor prognosis. Cancer stem cells (CSCs) are tumor cells that are able to self-renew and differentiate, which is a significant factor in metastasis and recurrence of cancer. Long non-coding RNAs (lncRNAs) describe a group of RNAs that are longer than 200 nucleotides and do not have the ability to code for proteins. Some of these lncRNAs can be mainly produced in various tissues and tumor forms. In the development and spread of malignancies, lncRNAs have a significant role in influencing multiple signaling pathways positively or negatively, making them promise useful diagnostic and prognostic markers in treating the disease and guiding clinical therapy. However, it is not well known how the interaction of lncRNAs with CSCs will affect cancer development and progression. Here, in this review, we attempt to summarize recent findings that focus on lncRNAs affect cancer stem cell self-renewal and differentiation in breast cancer development and progression, as well as the strategies and challenges for overcoming lncRNA's therapeutic resistance.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil , Kurdistan Region, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Ramiar Kamal Kheder
- Department of Medical Analysis, Faculty of Science, Tishk International University, Erbil, Iraq.,Medical Laboratory Science, College of Science, University of Raparin, Rania, KGR, Iraq
| | - Sara Tharwat Abdullah
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Heshu Sulaiman Rahman
- Department of Physiology, College of Medicine, University of Sulaimani, Sulaimaniyah, Republic of Iraq.,Department of Medical Laboratory Sciences, Komar University of Science and Technology, Sulaimaniyah, Republic of Iraq
| | - Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
104
|
Mao XD, Wei X, Xu T, Li TP, Liu KS. Research progress in breast cancer stem cells: characterization and future perspectives. Am J Cancer Res 2022; 12:3208-3222. [PMID: 35968346 PMCID: PMC9360222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023] Open
Abstract
More and more studies have proved that there are a small number of cells with self-renewal and differentiation ability in breast tumors, namely breast cancer stem cells. Such cells play a key role in the initiation, development and migration of breast tumors. The properties of breast tumor stem cells are regulated by a range of intracellular and extracellular factors, including important signaling pathways, transcription factors, non-coding RNAs, and cytokines such as Hedgehog, Wnt, Notch, microRNA93, microRNA100, and IL-6. Tumor microenvironment (such as mesenchymal stem cells, macrophages and cytokines) plays an important role in the regulation of breast tumor stem cells. Using the keywords including "breast cancer stem cells", "signal pathway", "chemotherapy tolerance", and "non-coding RNA", "triple negative breast cancer", "inhibitors", this study retrieved the original articles and reviews published before October 3, 2021, from PubMed and WEB OF SCI database and this study performed a comprehensive review of them. After treatment, there is a correlation between the metastasis-prone nature and recurrence with breast cancer stem cells. The signaling pathway of breast cancer stem cells plays a significant role in activating the function of breast cancer cells, regulating the differentiation of breast cancer cells and controlling the division of breast cancer cells. This imbalance leads to the uncontrolled growth and development of breast cancer cells. Targeted therapy that blocks the corresponding pathway may become a new perspective for breast cancer treatment. In addition, corresponding therapeutic strategies can be used according to the expression characteristics of different molecular types of breast cancer stem cells. For ER-positive breast cancer, simultaneous endocrine therapy and targeted therapy of tumor stem cells may improve the efficacy of endocrine therapy. Trastuzumab therapy significantly reduces the risk of recurrence of HER2-positive breast cancer. For drug-resistant patients, combination therapy is required due to the different phenotypes of epithelial-mesenchymal transforming tumor stem cells. This study briefly reviews the research progress of breast cancer stem cell-related signaling pathways and their inhibitors, in order to provide a reference for breast cancer patients to obtain more effective clinical treatment.
Collapse
Affiliation(s)
- Xiao-Dong Mao
- Department of Endocrinology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese MedicineNanjing 210028, Jiangsu, China
- Key Laboratory of TCM Syndrome & Treatment of Yingbing of State Administration of Traditional Chinese Medicine, Jiangsu Province Academy of Traditional Chinese MedicineNanjing 210028, Jiangsu, China
| | - Xiao Wei
- Department of Endocrinology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese MedicineNanjing 210028, Jiangsu, China
- Key Laboratory of TCM Syndrome & Treatment of Yingbing of State Administration of Traditional Chinese Medicine, Jiangsu Province Academy of Traditional Chinese MedicineNanjing 210028, Jiangsu, China
| | - Tao Xu
- Xi’an Jiaotong University Global Health InstituteXi’an 710049, Shanxi, China
| | - Tai-Ping Li
- Department of Neuro-Psychiatric Institute, The Affiliated Brain Hospital of Nanjing Medical UniversityNanjing 210029, Jiangsu, China
| | - Kang-Sheng Liu
- Department of Clinical Laboratory, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care HospitalNanjing 210029, Jiangsu, China
| |
Collapse
|
105
|
Xu X, Shen HR, Zhang JR, Li XL. The role of insulin-like growth factor 2 mRNA binding proteins in female reproductive pathophysiology. Reprod Biol Endocrinol 2022; 20:89. [PMID: 35706003 PMCID: PMC9199150 DOI: 10.1186/s12958-022-00960-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/10/2022] [Indexed: 11/10/2022] Open
Abstract
Insulin-like growth factor 2 (IGF2) mRNA binding proteins (IMPs) family belongs to a highly conserved family of RNA-binding proteins (RBPs) and is responsible for regulating RNA processing including localization, translation and stability. Mammalian IMPs (IMP1-3) take part in development, metabolism and tumorigenesis, where they are believed to play a major role in cell growth, metabolism, migration and invasion. IMPs have been identified that are expressed in ovary, placenta and embryo. The up-to-date evidence suggest that IMPs are involved in folliculogenesis, oocyte maturation, embryogenesis, implantation, and placentation. The dysregulation of IMPs not only contributes to carcinogenesis but also disturbs the female reproduction, and may participate in the pathogenesis of reproductive diseases and obstetric syndromes, such as polycystic ovary syndrome (PCOS), pre-eclampsia (PE), gestational diabetes mellitus (GDM) and gynecological tumors. In this review, we summarize the role of IMPs in female reproductive pathophysiology, and hope to provide new insights into the identification of potential therapeutic targets.
Collapse
Affiliation(s)
- Xiao Xu
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Hao-Ran Shen
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, People's Republic of China
| | - Jia-Rong Zhang
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Xue-Lian Li
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, People's Republic of China.
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
106
|
Lockd promotes myoblast proliferation and muscle regeneration via binding with DHX36 to facilitate 5' UTR rG4 unwinding and Anp32e translation. Cell Rep 2022; 39:110927. [PMID: 35675771 DOI: 10.1016/j.celrep.2022.110927] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/10/2022] [Accepted: 05/18/2022] [Indexed: 11/20/2022] Open
Abstract
Adult muscle stem cells, also known as satellite cells (SCs), play pivotal roles in muscle regeneration, and long non-coding RNA (lncRNA) functions in SCs remain largely unknown. Here, we identify a lncRNA, Lockd, which is induced in activated SCs upon acute muscle injury. We demonstrate that Lockd promotes SC proliferation; deletion of Lockd leads to cell-cycle arrest, and in vivo repression of Lockd in mouse muscles hinders regeneration process. Mechanistically, we show that Lockd directly interacts with RNA helicase DHX36 and the 5'end of Lockd possesses the strongest binding with DHX36. Furthermore, we demonstrate that Lockd stabilizes the interaction between DHX36 and EIF3B proteins; synergistically, this complex unwinds the RNA G-quadruplex (rG4) structure formed at Anp32e mRNA 5' UTR and promotes the translation of ANP32E protein, which is required for myoblast proliferation. Altogether, our findings identify a regulatory Lockd/DHX36/Anp32e axis that promotes myoblast proliferation and acute-injury-induced muscle regeneration.
Collapse
|
107
|
Camilleri-Robles C, Amador R, Klein CC, Guigó R, Corominas M, Ruiz-Romero M. Genomic and functional conservation of lncRNAs: lessons from flies. Mamm Genome 2022; 33:328-342. [PMID: 35098341 PMCID: PMC9114055 DOI: 10.1007/s00335-021-09939-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 12/09/2021] [Indexed: 12/18/2022]
Abstract
Over the last decade, the increasing interest in long non-coding RNAs (lncRNAs) has led to the discovery of these transcripts in multiple organisms. LncRNAs tend to be specifically, and often lowly, expressed in certain tissues, cell types and biological contexts. Although lncRNAs participate in the regulation of a wide variety of biological processes, including development and disease, most of their functions and mechanisms of action remain unknown. Poor conservation of the DNA sequences encoding for these transcripts makes the identification of lncRNAs orthologues among different species very challenging, especially between evolutionarily distant species such as flies and humans or mice. However, the functions of lncRNAs are unexpectedly preserved among different species supporting the idea that conservation occurs beyond DNA sequences and reinforcing the potential of characterising lncRNAs in animal models. In this review, we describe the features and roles of lncRNAs in the fruit fly Drosophila melanogaster, focusing on genomic and functional comparisons with human and mouse lncRNAs. We also discuss the current state of advances and limitations in the study of lncRNA conservation and future perspectives.
Collapse
Affiliation(s)
- Carlos Camilleri-Robles
- Departament de Genètica, Microbiologia I Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Raziel Amador
- Departament de Genètica, Microbiologia I Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Cecilia C Klein
- Departament de Genètica, Microbiologia I Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Roderic Guigó
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Catalonia, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain
| | - Montserrat Corominas
- Departament de Genètica, Microbiologia I Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Marina Ruiz-Romero
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Catalonia, Spain.
| |
Collapse
|
108
|
Xia Z, Yang C, Yang X, Wu S, Feng Z, Qu L, Chen X, Liu L, Ma Y. LncRNA MCM3AP-AS1 is downregulated in diabetic retinopathy and promotes cell apoptosis by regulating miR-211/SIRT1. Diabetol Metab Syndr 2022; 14:73. [PMID: 35570299 PMCID: PMC9107717 DOI: 10.1186/s13098-022-00836-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/19/2022] [Indexed: 11/24/2022] Open
Abstract
AIM This study aimed to investigate the role of lncRNA MCM3AP-AS1 in diabetic retinopathy (DR). METHODS Plasma MCM3AP-AS1 levels in DR patients (n = 80), T2DM patients (n = 80), and Controls (n = 80) were measured by qPCR and compared using ANOVA (one-way) and Tukey test. The expressions of lncRNA MCM3AP-AS1 and miR-211 in Human retinal pigment epithelial cells (hRPE) line ARPE-19 were detected by RT-qPCR. Western blot and annexin V-FITC staining were performed to investigate the role of MCM3AP-AS1/SIRT1 in ARPE-19 cell proliferation and apoptosis in vitro. RESULTS We observed that MCM3AP-AS1 was downregulated in DR patients 25 comparing to T2D patients without significantly complications. Bioinformatics analysis showed that MCM3AP-AS1 might bind miR-211. However, no significant correlation between these two factors was observed in DR patients. Consistently, overexpression of MCM3AP-AS1 and miR-211 failed to affect the expression of each other in hRPE. Interestingly, MCM3AP-AS1 overexpression upregulated SIRT1, a target of miR-211. Moreover, MCM3AP-AS1 was downregulated in DR patients compared to type 2 diabetic mellitus patients without significant complications. In RPEs, high glucose treatment downregulated MCM3AP-AS1. Cell apoptosis analysis showed that MCM3AP-AS1 and SIRT1 overexpression decreased the apoptotic rate of RPEs, and miR-211 overexpression reduced the effect of MCM3AP-AS1 and SIRT1 overexpression. CONCLUSION MCM3AP-AS1 is downregulated in DR and promotes cell apoptosis by regulating miR-211/SIRT1.
Collapse
Affiliation(s)
- Zhaoxia Xia
- Department of Ophthalmology, the Sixth Affiliated Hospital, Sun Yat-Sen University, No. Two Heng Road 26th, Tianhe District, Guangzhou, Guangdong, 510655, People's Republic of China.
| | - Chaoying Yang
- Department of Dermatology, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, People's Republic of China
| | - Xiaoxi Yang
- Department of Ophthalmology, the Sixth Affiliated Hospital, Sun Yat-Sen University, No. Two Heng Road 26th, Tianhe District, Guangzhou, Guangdong, 510655, People's Republic of China
| | - Shuduan Wu
- Department of Ophthalmology, the Sixth Affiliated Hospital, Sun Yat-Sen University, No. Two Heng Road 26th, Tianhe District, Guangzhou, Guangdong, 510655, People's Republic of China
| | - Zhizhen Feng
- Department of Ophthalmology, the Sixth Affiliated Hospital, Sun Yat-Sen University, No. Two Heng Road 26th, Tianhe District, Guangzhou, Guangdong, 510655, People's Republic of China
| | - Lei Qu
- Department of Ophthalmology, the Sixth Affiliated Hospital, Sun Yat-Sen University, No. Two Heng Road 26th, Tianhe District, Guangzhou, Guangdong, 510655, People's Republic of China
| | - Xianghua Chen
- Department of Ophthalmology, the Sixth Affiliated Hospital, Sun Yat-Sen University, No. Two Heng Road 26th, Tianhe District, Guangzhou, Guangdong, 510655, People's Republic of China
| | - Linyu Liu
- Department of Ophthalmology, the Sixth Affiliated Hospital, Sun Yat-Sen University, No. Two Heng Road 26th, Tianhe District, Guangzhou, Guangdong, 510655, People's Republic of China
| | - Yanling Ma
- Department of Ophthalmology, the Sixth Affiliated Hospital, Sun Yat-Sen University, No. Two Heng Road 26th, Tianhe District, Guangzhou, Guangdong, 510655, People's Republic of China
| |
Collapse
|
109
|
DMDRMR promotes angiogenesis via antagonizing DAB2IP in clear cell renal cell carcinoma. Cell Death Dis 2022; 13:456. [PMID: 35562342 PMCID: PMC9106801 DOI: 10.1038/s41419-022-04898-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 04/22/2022] [Accepted: 04/29/2022] [Indexed: 12/14/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) patients are highly angiogenic and treated by targeted therapies against VEGFA/VEGFR signaling pathway. However, tumors with such targeted therapies remain a significant clinic challenge. Understanding the underlying mechanism against angiogenesis is highly desired. Here, we demonstrated that the lncRNA DMDRMR serves as a sponge of miR-378a-5p to increase EZH2 and SMURF1 expression, thus promoting EZH2-mediated transcriptional repression of DAB2IP and SMURF1-mediated degradation of DAB2IP. Consequently, this axis activates VEGFA/VEGFR2 signaling pathway, resulting in angiogenesis and resistance of tumor cells to sunitinib in ccRCC. Moreover, the competing endogenous RNA regulatory axis of DMDRMR is clinically relevant to ccRCC pathogenesis and prognosis of patients with ccRCC. Our results support that the DMDRMR/miR-378a-5p/DAB2IP axis may serve as a novel target for combination diagnosis or therapy of ccRCC patients. Our findings may have highly clinical relevance for future translation to develop the targeted therapies for patients with ccRCC.
Collapse
|
110
|
Xu Y, Jiang Y, Wang Y, Jia B, Gao S, Yu H, Zhang H, Lv C, Li H, Li T. LINC00473-modified bone marrow mesenchymal stem cells incorporated thermosensitive PLGA hydrogel transplantation for steroid-induced osteonecrosis of femoral head: A detailed mechanistic study and validity evaluation. Bioeng Transl Med 2022; 7:e10275. [PMID: 35600648 PMCID: PMC9115691 DOI: 10.1002/btm2.10275] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 11/23/2022] Open
Abstract
The pathogenesis of steroid-induced osteonecrosis of the femoral head (SONFH) involves a glucocorticoid-induced imbalance of osteogenic and adipogenic differentiation, and apoptosis of bone marrow mesenchymal stem cells (BMSCs). An increasing number of genes, especially noncoding RNAs, have been implicated in the function of BMSCs. Our previous studies have confirmed the key role of LINC00473 and miR-23a-3p on the osteogenic, adipogenic differentiation, and apoptosis of BMSCs. However, the underlying mechanism of this process is still unclear. Based on bioinformatics analysis, here we investigated the effects of LINC00473 on the LRP5/Wnt/β-catenin signaling pathway in the osteogenesis and adipogenesis of BMSCs, as well as the PEBP1/Akt/Bad/Bcl-2 signaling pathway in dexamethasone- (Dex-) induced apoptosis of BMSCs. Our data showed that LINC00473 could promote osteogenesis and suppress the adipogenesis of BMSCs through the activation of the miR-23a-3p/LRP5/Wnt/β-catenin signaling pathway axis, while rescuing BMSCs from Dex-induced apoptosis by activating the miR-23a-3p/PEBP1/Akt/Bad/Bcl-2 signaling pathway axis. Notably, we observed that LINC00473 interacted with miR-23a-3p in an Argonaute 2 (AGO2)-dependent manner based on dual-luciferase reporter assay, AGO2-related RNA immunoprecipitation, and RNA antisense purification assay. Furthermore, injectable thermosensitive polylactic-co-glycolic acid (PLGA) hydrogel loaded with rat-derived BMSCs (rBMSCs) modified by LINC00473 were used for the treatment of SONFH in a rat model. Our results demonstrated that PLGA hydrogels provided a suitable environment for harboring rBMSCs. Besides, transplantation of PLGA hydrogels loaded with rBMSCs modified by LINC00473 could significantly promote the bone repair and reconstruction of the necrotic area at the femoral head in our SONFH rat model. Surprisingly, compared with the transplantation of BMSCs alone, the transplanted rBMSCs encapsulated within the PLGA hydrogel could migrate from the medullary cavity to the femoral head. In summary, LINC00473 promoted osteogenesis, inhibited adipogenesis, and antagonized Dex-induced apoptosis of BMSCs. Therefore, LINC00473 could provide a new strategy for the treatment of SONFH.
Collapse
Affiliation(s)
- Yingxing Xu
- Department of Joint SurgeryThe Affiliated Hospital of Qingdao UniversityQingdaoChina
- Department of MedicineQingdao UniversityQingdaoChina
| | - Yaping Jiang
- Department of MedicineQingdao UniversityQingdaoChina
- Department of Oral ImplantologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Yingzhen Wang
- Department of Joint SurgeryThe Affiliated Hospital of Qingdao UniversityQingdaoChina
- Department of MedicineQingdao UniversityQingdaoChina
| | - Bin Jia
- Department of Joint SurgeryThe Affiliated Hospital of Qingdao UniversityQingdaoChina
- Department of MedicineQingdao UniversityQingdaoChina
| | - Song Gao
- Department of RadiologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Haiyang Yu
- Department of RadiologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Haining Zhang
- Department of Joint SurgeryThe Affiliated Hospital of Qingdao UniversityQingdaoChina
- Department of MedicineQingdao UniversityQingdaoChina
| | - Chengyu Lv
- Department of Joint SurgeryThe Affiliated Hospital of Qingdao UniversityQingdaoChina
- Department of MedicineQingdao UniversityQingdaoChina
| | - Haiyan Li
- Department of Joint SurgeryThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Tao Li
- Department of Joint SurgeryThe Affiliated Hospital of Qingdao UniversityQingdaoChina
- Department of MedicineQingdao UniversityQingdaoChina
| |
Collapse
|
111
|
Cheng L, Wang H, Maboh R, Mao G, Wu X, Chen H. LncRNA LINC00281/Annexin A2 Regulates Vascular Smooth Muscle Cell Phenotype Switching via the Nuclear Factor-Kappa B Signaling Pathway. J Cardiovasc Transl Res 2022; 15:971-984. [PMID: 35478454 DOI: 10.1007/s12265-022-10242-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/21/2022] [Indexed: 12/28/2022]
Abstract
Abnormal phenotype switch in vascular smooth muscle cells (VSMCs) plays an important role in the initiation and progression of vascular proliferative diseases. Annexin A2 (ANXA2), related to the pro-inflammatory response, contributes to the proliferation and migration of VSMCs. This study explored the mechanisms involved in the regulation of VSMC phenotype modulation via ANXA2. The results revealed that ANXA2 promotes the phosphorylation of p65 and co-translocates with p65 into the nucleus, resulting in VSMC proliferation, migration, and dedifferentiation. Based on bioinformatics predictions and RNA immunoprecipitation assays, LINC00281 was confirmed to be an upstream regulator of ANXA2. Taken together, ANXA2, which is negatively regulated by the long noncoding RNA (lncRNA) LINC00281, has significant importance in the regulation of VSMC proliferation, migration, and phenotype switching via the nuclear factor-kappa B (NF-кB) p65 signaling pathway. This indicates that the lncRNA LINC00281/ANXA2/NF-кB p65 signaling pathway might be a new therapeutic target for vascular proliferative diseases.
Collapse
Affiliation(s)
- Lan Cheng
- The Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Huan Wang
- Hypertension Laboratory, Fujian Provincial Cardiovascular Disease Institute, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - ReneNfornah Maboh
- The Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Gaowei Mao
- The Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Xiaoying Wu
- Hypertension Laboratory, Fujian Provincial Cardiovascular Disease Institute, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Hui Chen
- The Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China. .,Hypertension Laboratory, Fujian Provincial Cardiovascular Disease Institute, Fujian Provincial Hospital, Fuzhou, 350001, China.
| |
Collapse
|
112
|
Non-Coding RNAs Regulate Spontaneous Abortion: A Global Network and System Perspective. Int J Mol Sci 2022; 23:ijms23084214. [PMID: 35457031 PMCID: PMC9028476 DOI: 10.3390/ijms23084214] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 12/25/2022] Open
Abstract
Spontaneous abortion is a common pregnancy complication that negatively impacts women’s health and commercial pig production. It has been demonstrated that non-coding RNA (ncRNA) is involved in SA by affecting cell proliferation, invasion, apoptosis, epithelial-mesenchymal transformation (EMT), migration, and immune response. Over the last decade, research on ncRNAs in SA has primarily concentrated on micro RNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). In this review, we discuss recent ncRNA studies focused on the function and mechanism of miRNAs, lncRNAs, and circRNAs in regulating SA. Meanwhile, we suggest that a ceRNA regulatory network exists in the onset and development of SA. A deeper understanding of this network will accelerate the process of the quest for potential RNA markers for SA diagnosis and treatment.
Collapse
|
113
|
Yu Y, Pang D, Li C, Gu X, Chen Y, Ou R, Wei Q, Shang H. The expression discrepancy and characteristics of long non-coding RNAs in peripheral blood leukocytes from amyotrophic lateral sclerosis patients. Mol Neurobiol 2022; 59:3678-3689. [PMID: 35364800 DOI: 10.1007/s12035-022-02789-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/12/2021] [Indexed: 02/08/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is known to be a progressive neurodegenerative disease that affects upper and lower motor neurons. Less than 10% of ALS patients are defined as familial ALS, and more than 90% are sporadic ALS (SALS). According to the genomic information described in existing databases, up to 98% of the human genome consists of non-coding sequences. Nearly 40% of long non-coding RNAs (lncRNAs) are specifically expressed in the brain. We believe that the discrepancy of lncRNAs expression plays a key role in neurodegenerative diseases. We screened 30 lncRNAs with altered expression from peripheral blood leukocytes of SALS patients by microarray and validated 13 of them in leukocytes of SALS, Parkinson's disease (PD) patients, and healthy controls (HC). We followed the bioinformatics to perform a functional enrichment analysis of co-expressed mRNAs, transcription factors, and lncRNAs for functional prediction. We identified that lnc-DYRYK2-7:1, lnc-ABCA12-3:1, and lnc-POTEM-4:7 show decreased expression in SALS patients, whereas in PD patients, they show increased expression or no change. In addition, expression of lnc-CNTN4-2:1 and lnc-NR3C2-8:1 was decreased in both SALS and PD patients. We found that XIST was only reduced in male patients with SALS and PD, and not in female patients with SALS but was elevated in PD by gender grouping. We also performed GO term enrichment and KEGG pathway analysis for lncRNAs showing differential expression in microarray. We discovered that a significant proportion of differential expressed lncRNAs were associated with various signaling pathways and transcription factors which are consistent with other clinical findings.
Collapse
Affiliation(s)
- Yujiao Yu
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, Sichuan, 610041, China
| | - Dejiang Pang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, Sichuan, 610041, China
| | - Chunyu Li
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, Sichuan, 610041, China
| | - Xiaojing Gu
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, Sichuan, 610041, China
| | - Yongping Chen
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, Sichuan, 610041, China
| | - Ruwei Ou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, Sichuan, 610041, China
| | - Qianqian Wei
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, Sichuan, 610041, China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
114
|
Yang Q, Al-Hendy A. The Regulatory Functions and the Mechanisms of Long Non-Coding RNAs in Cervical Cancer. Cells 2022; 11:cells11071149. [PMID: 35406713 PMCID: PMC8998012 DOI: 10.3390/cells11071149] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 12/11/2022] Open
Abstract
Cervical cancer is one of the leading causes of death in gynecology cancer worldwide. High-risk human papillomaviruses (HPVs) are the major etiological agents for cervical cancer. Still, other factors also contribute to cervical cancer development because these cancers commonly arise decades after initial exposure to HPV. So far, the molecular mechanisms underlying the pathogenesis of cervical cancer are still quite limited, and a knowledge gap needs to be filled to help develop novel strategies that will ultimately facilitate the development of therapies and improve cervical cancer patient outcomes. Long non-coding RNAs (lncRNAs) have been increasingly shown to be involved in gene regulation, and the relevant role of lncRNAs in cervical cancer has recently been investigated. In this review, we summarize the recent progress in ascertaining the biological functions of lncRNAs in cervical cancer from the perspective of cervical cancer proliferation, invasion, and metastasis. In addition, we provide the current state of knowledge by discussing the molecular mechanisms underlying the regulation and emerging role of lncRNAs in the pathogenesis of cervical cancer. Comprehensive and deeper insights into lncRNA-mediated alterations and interactions in cellular events will help develop novel strategies to treat patients with cervical cancer.
Collapse
|
115
|
Liu T, Li H, Li Y, Wang L, Chen G, Pu G, Guo X, Cho WC, Fasihi Harandi M, Zheng Y, Luo X. Integrative Analysis of RNA Expression and Regulatory Networks in Mice Liver Infected by Echinococcus multilocularis. Front Cell Dev Biol 2022; 10:798551. [PMID: 35399512 PMCID: PMC8989267 DOI: 10.3389/fcell.2022.798551] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
The larvae of Echinococcus multilocularis causes alveolar echinococcosis, which poses a great threat to the public health. However, the molecular mechanisms underlying the host and parasite interactions are still unclear. Exploring the transcriptomic maps of mRNA, miRNA and lncRNA expressed in the liver in response to E. multilocularis infection will help us to understand its pathogenesis. Using liver perfusion, different cell populations including the hepatic cells, hepatic stellate cells and Kupffer cells were isolated from mice interperitoneally inoculated with protoscoleces. Their transcriptional profiles including lncRNAs, miRNAs and mRNAs were done by RNA-seq. Among these cell populations, the most differentially-expressed (DE) mRNA, lncRNAs and miRNAs were annotated and may involve in the pathological processes, mainly including metabolic disorders, immune responses and liver fibrosis. Following the integrative analysis of 38 differentially-expressed DEmiRNAs and 8 DElncRNAs, the lncRNA-mRNA-miRNA networks were constructed, including F63-miR-223-3p-Fbxw7/ZFP36/map1b, F63-miR-27-5p-Tdrd6/Dip2c/Wdfy4 and IFNgAS1-IFN-γ. These results unveil the presence of several potential lncRNA-mRNA-miRNA axes during E. multilocularis infection, and further exploring of these axes may contribute to better understanding of the pathogenic mechanisms.
Collapse
Affiliation(s)
- Tingli Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, China
| | - Hong Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, China
| | - Yanping Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, China
| | - Liqun Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, China
| | - Guoliang Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, China
| | - Guiting Pu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, China
| | - Xiaola Guo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, China
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| | - Majid Fasihi Harandi
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Yadong Zheng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Xuenong Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, China
| |
Collapse
|
116
|
Zhu X, Zhao J, Xu J. Long noncoding RNA LINC01426 promotes the progression of lung adenocarcinoma via regulating miRNA-125a-5p/ casein kinase 2 alpha 1 axis. Bioengineered 2022; 13:7020-7033. [PMID: 35266446 PMCID: PMC9208474 DOI: 10.1080/21655979.2022.2044251] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Although long noncoding RNAs (lncRNAs) in lung adenocarcinoma (LUAD) have been increasingly studied, LINC01426 has not been fully investigated in LUAD. The GEPIA database revealed that LINC01426 was upregulated in LUAD tissues. In our study, we further verified the significantly high expression of LINC01426 in LUAD tissues and cell lines. We also analyzed the LINC01426 expression level and LUAD clinical features and found that high LINC01426 expression was associated with tumor diameter; tumor, node, and metastases (TNM) staging; lymph node metastasis (LNM); and overall survival (OS) rate of LUAD patients. In vitro experiments revealed that suppression of LINC01426 could repress the proliferation, migration and invasion of LUAD cells. Then, the bioinformatic analysis revealed that there were binding domains between miR-125a-5p and the 3′-UTR of LINC01426. As revealed by dual-luciferase reporter gene experiment and RNA Binding Protein Immunoprecipitation (RIP) assay, miR-125a-5p could bind to LINC01426. Additionally, the results of qRT-PCR and Pearson’s analysis respectively revealed that miR-125a-5p was slightly expressed in LUAD and its expression was negatively correlated with LINC01426. Moreover, casein kinase 2 alpha 1 (CSNK2A1) was predicted to bind to miR-125a-5p. CSNK2A1 expression was remarkably high in LUAD tissues, negatively associated with miR-125a-5p, and positively correlated with LINC01426. Subsequently, our results showed that CSNK2A1 enhanced the malignant progression of LUAD cells. Overall, our study revealed that LINC01426 might regulate the malignant phenotype of LUAD via the miR-125a-5p/CSNK2A1 axis.
Collapse
Affiliation(s)
- Xiaoling Zhu
- Department of Oncology, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Jianguo Zhao
- Department of Oncology, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Jun Xu
- Department of Radiation Oncology, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| |
Collapse
|
117
|
Zhai L, Wan X, Wu R, Yu X, Li H, Zhong R, Zhu D, Zhang Y. Linc-RAM promotes muscle cell differentiation via regulating glycogen phosphorylase activity. CELL REGENERATION (LONDON, ENGLAND) 2022; 11:8. [PMID: 35254536 PMCID: PMC8901937 DOI: 10.1186/s13619-022-00109-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/18/2022] [Indexed: 12/13/2022]
Abstract
Long non-coding RNAs (lncRNAs) are important regulators of diverse biological processes, especially skeletal muscle cell differentiation. Most of the lncRNAs identified to date are localized in the nucleus and play regulatory roles in gene expression. The cytoplasmic lncRNAs are less well understood. We previously identified a long intergenic non-coding RNA (linc-RNA) activator of myogenesis (Linc-RAM) that directly binds MyoD in the nucleus to enhance muscle cell differentiation. Here, we report that a substantial fraction of Linc-RAM is localized in the cytoplasm of muscle cells. To explore the molecular functions of cytoplasmic Linc-RAM, we sought to identify Linc-RAM-binding proteins. We report here that Linc-RAM physically interacts with glycogen phosphorylase (PYGM) in the cytoplasm. Knockdown of PYGM significantly attenuates the function of Linc-RAM in promoting muscle cell differentiation. Loss-of-function and gain-of function assays demonstrated that PYGM enhances muscle cell differentiation in an enzymatic activity-dependent manner. Finally, we show that the interaction between Linc-RAM and PYGM positively regulates the enzymatic activity of PYGM in muscle cells. Collectively, our findings unveil a molecular mechanism through which cytoplasmic Linc-RAM contributes to muscle cell differentiation by regulating PYGM activity. Our findings establish that there is crosstalk between lncRNAs and cellular metabolism during myogenic cell differentiation.
Collapse
Affiliation(s)
- Lili Zhai
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.,Present address: NCPC New Drug Research and Development Co., Ltd., State Key Laboratory of Antibody Research & Development, Shijiazhuang, 052165, China
| | - Xin Wan
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Rimao Wu
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.,The Max-Planck Center for Tissue Stem Cell Research and Regenerative Medicine, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Xiaohua Yu
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Hu Li
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.,The Max-Planck Center for Tissue Stem Cell Research and Regenerative Medicine, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Ran Zhong
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Dahai Zhu
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China. .,The Max-Planck Center for Tissue Stem Cell Research and Regenerative Medicine, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
| | - Yong Zhang
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
118
|
Yang L, Li LP, Yi HC. DeepWalk based method to predict lncRNA-miRNA associations via lncRNA-miRNA-disease-protein-drug graph. BMC Bioinformatics 2022; 22:621. [PMID: 35216549 PMCID: PMC8875942 DOI: 10.1186/s12859-022-04579-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/18/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) play a crucial role in diverse biological processes and have been confirmed to be concerned with various diseases. Largely uncharacterized of the physiological role and functions of lncRNA remains. MicroRNAs (miRNAs), which are usually 20-24 nucleotides, have several critical regulatory parts in cells. LncRNA can be regarded as a sponge to adsorb miRNA and indirectly regulate transcription and translation. Thus, the identification of lncRNA-miRNA associations is essential and valuable. RESULTS In our work, we present DWLMI to infer the potential associations between lncRNAs and miRNAs by representing them as vectors via a lncRNA-miRNA-disease-protein-drug graph. Specifically, DeepWalk can be used to learn the behavior representation of vertices. The methods of fingerprint, k-mer and MeSH descriptors were mainly used to learn the attribute representation of vertices. By combining the above two kinds of information, unknown lncRNA-miRNA associations can be predicted by the random forest classifier. Under the five-fold cross-validation, the proposed DWLMI model obtained an average prediction accuracy of 95.22% with a sensitivity of 94.35% at the AUC of 98.56%. CONCLUSIONS The experimental results demonstrated that DWLMI can effectively predict the potential lncRNA-miRNA associated pairs, and the results can provide a new insight for related non-coding RNA researchers in the field of combing biology big data with deep learning.
Collapse
Affiliation(s)
- Long Yang
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Ping Li
- College of Grassland and Environmental Science, Xinjiang Agricultural University, Urumqi, 830052, China.
| | - Hai-Cheng Yi
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
119
|
Zhao Z, Wang Z, Pei L, Zhou X, Liu Y. Long non-coding ribonucleic acid AFAP1-AS1 promotes chondrocyte proliferation via the miR-512-3p/matrix metallopeptidase 13 (MMP-13) axis. Bioengineered 2022; 13:5386-5395. [PMID: 35188875 PMCID: PMC8973689 DOI: 10.1080/21655979.2022.2031390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Long-chain non-coding RNAs are reported to be involved in cartilage damage. However, less research on the role of actin filament-associated protein 1 antisense RNA 1 (AFAP1-AS1) in osteoarthritis. To investigate AFAP1-AS1 function in osteoarthritis development, AFAP1-AS1 and miR-512-3p expression levels in osteoarthritis cartilage and cells were evaluated using RT-qPCR. The downstream target genes of AFAP1-AS1 and miR-512-3p were predicted and validated using luciferase reporter assays. Moreover, a knee osteoarthritis model was established by injecting monoiodoacetate into the knee joints of mice. The effects of AFAP1-AS1 and miR-512-3p on osteoarthritis chondrocyte proliferation and MMP-13, collagen II, and collagen IV expressions were detected in vivo using CCK-8 assay and Western blotting and RT-qPCR, respectively. AFAP1-AS1 expression was upregulated in osteoarthritis cartilage and cells. MiR-512-3p expression was downregulated in osteoarthritis cartilage. AFAP1-AS1 overexpression inhibited miR-512-3p expression in chondrocytes. Furthermore, AFAP1-AS1 over-expression promoted chondrocyte proliferation, and miR-512-3p mimic inhibited chondrocyte proliferation in vivo. AFAP1-AS1 overexpression reduced type II and type IV collagen expression, while miR-512-3p overexpression promoted type II and type IV collagen in vivo. AFAP1-AS1 overexpression enhanced MMP-13 expression in vivo. AFAP1-AS1 overexpression regulated chondrocyte proliferation by inhibiting miR-512-3p expression in vivo. AFAP1-AS1 could be a potential target to treat osteoarthritis by inhibiting miR-512-3p and subsequently inducing chondrocyte proliferation and regulating matrix synthesis.
Collapse
Affiliation(s)
- Zhi Zhao
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui Province, P. R. China
| | - Zhiyan Wang
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui Province, P. R. China
| | - Lijia Pei
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui Province, P. R. China
| | - Xinshe Zhou
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui Province, P. R. China
| | - Yang Liu
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui Province, P. R. China
| |
Collapse
|
120
|
Zhu YS, Zhu J. Molecular and cellular functions of long non-coding RNAs in prostate and breast cancer. Adv Clin Chem 2022; 106:91-179. [PMID: 35152976 DOI: 10.1016/bs.acc.2021.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Long noncoding RNAs (lncRNAs) are defined as noncoding RNA transcripts with a length greater than 200 nucleotides. Research over the last decade has made great strides in our understanding of lncRNAs, especially in the biology of their role in cancer. In this article, we will briefly discuss the biogenesis and characteristics of lncRNAs, then review their molecular and cellular functions in cancer by using prostate and breast cancer as examples. LncRNAs are abundant, diverse, and evolutionarily, less conserved than protein-coding genes. They are often expressed in a tumor and cell-specific manner. As a key epigenetic factor, lncRNAs can use a wide variety of molecular mechanisms to regulate gene expression at each step of the genetic information flow pathway. LncRNAs display widespread effects on cell behavior, tumor growth, and metastasis. They act intracellularly and extracellularly in an autocrine, paracrine and endocrine fashion. Increased understanding of lncRNA's role in cancer has facilitated the development of novel biomarkers for cancer diagnosis, led to greater understanding of cancer prognosis, enabled better prediction of therapeutic responses, and promoted identification of potential targets for cancer therapy.
Collapse
Affiliation(s)
- Yuan-Shan Zhu
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Clinical and Translational Science Center, Weill Cornell Medicine, New York, NY, United States.
| | - Jifeng Zhu
- Clinical and Translational Science Center, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
121
|
Wu YZ, Chen YH, Cheng CT, Ann DK, Kuo CY. Amino acid restriction induces a long non-coding RNA UBA6-AS1 to regulate GCN2-mediated integrated stress response in breast cancer. FASEB J 2022; 36:e22201. [PMID: 35137449 DOI: 10.1096/fj.202101466r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/03/2022] [Accepted: 01/24/2022] [Indexed: 01/17/2023]
Abstract
Oncogene activation, massive proliferation, and increased nutrient demands often result in nutrient and oxygen deprivation in solid tumors including breast cancer (BC), leading to the induction of oxidative stress and endoplasmic reticulum (ER) stress, and subsequently triggering integrated stress response (ISR). To elucidate the role of long non-coding RNAs (lncRNAs) in the ISR of BC, we performed transcriptome analyses and identified a lncRNA, UBA6-AS1, which was upregulated upon amino acid deprivation and ER stress. UBA6-AS1 was preferentially induced in triple-negative BC (TNBC) cells deprived of arginine or glutamine, two critical amino acids required for cancer cell growth, or treated with ER stress inducers. Mechanistically, UBA6-AS1 was regulated through the GCN2/eIF2α/ATF4 pathway, one of the major routes mediating ISR in amino acid sensing. In addition, both in vitro and in vivo assays indicated that UBA6-AS1 promoted TNBC cell survival when cells encountered metabolic stress, implicating a regulatory role of UBA6-AS1 in response to intratumoral metabolic stress during tumor progression. Moreover, PARP1 expression and activity were positively regulated by the GCN2/UBA6-AS1 axis upon amino acid deprivation. In conclusion, our data suggest that UBA6-AS1 is a novel lncRNA regulating ISR upon metabolic stress induction to promote TNBC cell survival. Furthermore, the GCN2-ATF4 axis is important for UBA6-AS1 induction to enhance PARP1 activity and could serve as a marker for the susceptibility of PARP inhibitors in TNBC.
Collapse
Affiliation(s)
- Yi-Zhen Wu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Hsuan Chen
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, California, USA
| | - Chun-Ting Cheng
- Diabetes and Metabolism Research Institute, City of Hope, Duarte, California, USA
| | - David K Ann
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, California, USA.,Diabetes and Metabolism Research Institute, City of Hope, Duarte, California, USA
| | - Ching-Ying Kuo
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
122
|
Xu F, Zhong JY, Guo B, Lin X, Wu F, Li FXZ, Shan SK, Zheng MH, Wang Y, Xu QS, Lei LM, Tan CM, Liao XB, Yuan LQ. H19 Promotes Osteoblastic Transition by Acting as ceRNA of miR-140-5p in Vascular Smooth Muscle Cells. Front Cell Dev Biol 2022; 10:774363. [PMID: 35198556 PMCID: PMC8859097 DOI: 10.3389/fcell.2022.774363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/07/2022] [Indexed: 11/27/2022] Open
Abstract
Arterial medial calcification is a common disease in patients with type 2 diabetes, end-stage renal disease and hypertension, resulting in high incidence and mortality of cardiovascular event. H19 has been demonstrated to be involved in cardiovascular diseases like aortic valve diseases. However, role of H19 in arterial medial calcification remains largely unknown. We identified that H19 was upregulated in ß-glycerophosphate (β-GP) induced vascular smooth muscle cells (VSMCs), a cellular calcification model in vitro. Overexpression of H19 potentiated while knockdown of H19 inhibited osteogenic differentiation of VSMCs, as demonstrated by changes of osteogenic genes Runx2 and ALP as well as ALP activity. Notably, H19 interacted with miR-140-5p directly, as demonstrated by luciferase report system and RIP analysis. Mechanistically, miR-140-5p attenuated osteoblastic differentiation of VSMCs by targeting Satb2 and overexpression of miR-140-5p blocked H19 induced elevation of Satb2 as well as the promotion of osteoblastic differentiation of VSMCs. Interestingly, over-expression of Satb2 induced phosphorylation of ERK1/2 and p38MAPK. In conclusion, H19 promotes VSMC calcification by acting as competing endogenous RNA of miR-140-5p and at least partially by activating Satb2-induced ERK1/2 and p38MAPK signaling.
Collapse
Affiliation(s)
- Feng Xu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jia-Yu Zhong
- Department of Nuclear Medicine, Xiangya Hospital of Central South University, Changsha, China
| | - Bei Guo
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Feng Wu
- Department of Pathology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Fu-Xing-Zi Li
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Su-Kang Shan
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ming-Hui Zheng
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yi Wang
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qiu-Shuang Xu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Li-Min Lei
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Chang-Ming Tan
- Department of Cardiothoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiao-Bo Liao
- Department of Cardiothoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Ling-Qing Yuan, ; Xiao-Bo Liao,
| | - Ling-Qing Yuan
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Ling-Qing Yuan, ; Xiao-Bo Liao,
| |
Collapse
|
123
|
Liu W, Deng L, Xu A, Xiong X, Tao J, Chang J, Xu Y, Zhou Z. Identifying a novel IRF3/circUHRF1/miR-1306-5p/ARL4C axis in pancreatic ductal adenocarcinoma progression. Cell Cycle 2022; 21:392-405. [PMID: 34983293 PMCID: PMC8855851 DOI: 10.1080/15384101.2021.2020450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/29/2021] [Accepted: 12/09/2021] [Indexed: 01/26/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is considered one most aggressive and lethal cancer types worldwide. While its underlying mechanisms are still poorly understood. CircRNAs play essential roles in various biological progression, including PDAC. Here, our results found that circUHRF1 was highly expressed in PDAC tumor tissues compared with normal tissues. Next, Cell or animal models were constructed, CCK-8, cell colony, EdU, flow cytometry assay, transwell migration, and Western blot assays were applied. CircUHRF1 knockdown influenced PDAC cell proliferation, apoptosis, migration and EMT level in vitro, and tumor growth in vivo. Subsequently, bioinformatics analysis, AGO2-RIP, RNA pull-down, and dual-luciferase reporter assays were used to explore the downstream targets in PDAC progression. Our findings suggest that circUHRF1 regulated ARL4C expression to promote PDAC progression through sponging miR-1306-5p. The role of miR-1306-5p in PDAC cellular progression has been elucidated, and the expression association between miR-1306-5p and circUHRF1 or ARL4C in PDAC tissues was analyzed. Furthermore, circUHRF1 expression in PDAC cells could be transcriptionally regulated by IRF3. Collectively, our study demonstrated the role of IRF3/circUHRF1/miR-1306-5p/ARL4C axis in PDAC progression. Our results suggest that circUHRF1 is one promising diagnosis or therapeutic target for PDAC management.Abbreviations : CircRNA; Circular RNAPDAC; pancreatic ductal adenocarcinomaUHRF1; Ubiquitin-like with PHD and RING finger domain 1ARL4C; ADP Ribosylation Factor Like GTPase 4CRIP; RNA immunoprecipitationEDU; 5-Ethynyl-2'-deoxyuridineEMT; epithelial to mesenchymal transitionAGO2; Argonaute RISC Catalytic Component 2CCK8; Cell counting Kit-8IRF3; Interferon Regulatory Factor 3.
Collapse
Affiliation(s)
- Wei Liu
- Department of Medical Management, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Medical Management, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Lisha Deng
- Department of Neurosurgery, Hospital of Chengdu University of Traditional Chinese MedicineChengdu, China
| | - Anchun Xu
- Department of Clinical Laboratory, Hospital of Chengdu University of Traditional Chinese MedicineChengdu, China
| | - Xingcheng Xiong
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jing Tao
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jian Chang
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yiling Xu
- Obstetrics and Gynecology Department, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhilin Zhou
- Department of General Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
124
|
De la Fuente-Hernandez MA, Sarabia-Sanchez MA, Melendez-Zajgla J, Maldonado-Lagunas V. Role of lncRNAs into Mesenchymal Stromal Cell Differentiation. Am J Physiol Cell Physiol 2022; 322:C421-C460. [PMID: 35080923 DOI: 10.1152/ajpcell.00364.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Currently, findings support that 75% of the human genome is actively transcribed, but only 2% is translated into a protein, according to databases such as ENCODE (Encyclopedia of DNA Elements) [1]. The development of high-throughput sequencing technologies, computational methods for genome assembly and biological models have led to the realization of the importance of the previously unconsidered non-coding fraction of the genome. Along with this, noncoding RNAs have been shown to be epigenetic, transcriptional and post-transcriptional regulators in a large number of cellular processes [2]. Within the group of non-coding RNAs, lncRNAs represent a fascinating field of study, given the functional versatility in their mode of action on their molecular targets. In recent years, there has been an interest in learning about lncRNAs in MSC differentiation. The aim of this review is to address the signaling mechanisms where lncRNAs are involved, emphasizing their role in either stimulating or inhibiting the transition to differentiated cell. Specifically, the main types of MSC differentiation are discussed: myogenesis, osteogenesis, adipogenesis and chondrogenesis. The description of increasingly new lncRNAs reinforces their role as players in the well-studied field of MSC differentiation, allowing a step towards a better understanding of their biology and their potential application in the clinic.
Collapse
Affiliation(s)
- Marcela Angelica De la Fuente-Hernandez
- Facultad de Medicina, Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Laboratorio de Epigenética, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Miguel Angel Sarabia-Sanchez
- Facultad de Medicina, Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jorge Melendez-Zajgla
- Laboratorio de Genómica Funcional del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | | |
Collapse
|
125
|
Wang D, Ye R, Cai Z, Xue Y. Emerging roles of RNA-RNA interactions in transcriptional regulation. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1712. [PMID: 35042277 DOI: 10.1002/wrna.1712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/07/2021] [Accepted: 12/16/2021] [Indexed: 12/26/2022]
Abstract
Pervasive transcription of the human genome generates a massive amount of noncoding RNAs (ncRNAs) that lack protein-coding potential but play crucial roles in development, differentiation, and tumorigenesis. To achieve these biological functions, ncRNAs must first fold into intricate structures via intramolecular RNA-RNA interactions (RRIs) and then interact with different RNA substrates via intermolecular RRIs. RRIs are usually facilitated, stabilized, or mediated by RNA-binding proteins. With this guiding principle, several protein-based high-throughput methods have been developed for unbiased mapping of defined or all RNA-binding protein-mediated RRIs in various species and cell lines. In addition, some chemical-based approaches are also powerful to detect RRIs globally based on the fact that RNA duplex can be cross-linked by psoralen or its derivative 4'-aminomethyltrioxsalen. These efforts have significantly expanded our understanding of RRIs in determining the specificity and variability of gene regulation. Here, we review the current knowledge of the regulatory roles of RRI, focusing on their emerging roles in transcriptional regulation and nuclear body formation. This article is categorized under: RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry.
Collapse
Affiliation(s)
- Di Wang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Rong Ye
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhaokui Cai
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yuanchao Xue
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
126
|
Abstract
Most of the transcribed human genome codes for noncoding RNAs (ncRNAs), and long noncoding RNAs (lncRNAs) make for the lion's share of the human ncRNA space. Despite growing interest in lncRNAs, because there are so many of them, and because of their tissue specialization and, often, lower abundance, their catalog remains incomplete and there are multiple ongoing efforts to improve it. Consequently, the number of human lncRNA genes may be lower than 10,000 or higher than 200,000. A key open challenge for lncRNA research, now that so many lncRNA species have been identified, is the characterization of lncRNA function and the interpretation of the roles of genetic and epigenetic alterations at their loci. After all, the most important human genes to catalog and study are those that contribute to important cellular functions-that affect development or cell differentiation and whose dysregulation may play a role in the genesis and progression of human diseases. Multiple efforts have used screens based on RNA-mediated interference (RNAi), antisense oligonucleotide (ASO), and CRISPR screens to identify the consequences of lncRNA dysregulation and predict lncRNA function in select contexts, but these approaches have unresolved scalability and accuracy challenges. Instead-as was the case for better-studied ncRNAs in the past-researchers often focus on characterizing lncRNA interactions and investigating their effects on genes and pathways with known functions. Here, we focus most of our review on computational methods to identify lncRNA interactions and to predict the effects of their alterations and dysregulation on human disease pathways.
Collapse
|
127
|
Ghosal S, Zhu B, Huynh TT, Meuter L, Jha A, Talvacchio S, Knue M, Patel M, Prodanov T, Das S, Zeiger MA, Nilubol N, Shankavaram UT, Taieb D, Pacak K. A long noncoding RNA-microRNA expression signature predicts metastatic signature in pheochromocytomas and paragangliomas. Endocrine 2022; 75:244-253. [PMID: 34536193 DOI: 10.1007/s12020-021-02857-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/24/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE In hopes of discovering new markers for metastatic or aggressive phenotypes of pheochromocytomas and paragangliomas (PCPG), we analyzed the noncoding transcriptome from patient gene expression data in The Cancer Genome Atlas. METHODS Differential expression of miRNAs was observed between PCPG molecular subtypes. We specifically characterized candidate miRNAs that are upregulated in pseudohypoxic PCPGs with mutations in succinate dehydrogenase complex subunits, B and/or D (SDHB and/or SDHD, respectively), which are mutations associated with unfavorable clinical outcomes. RESULTS Our computational analysis identified four candidate miRNAs that showed elevated expression in metastatic compared to non-metastatic PCPGs: miR-182, miR-183, miR-96, and miR-383. We also found six candidate lncRNAs harboring opposite expression patterns from the miRNAs when we analyzed the expression profiles of their predicted target lncRNAs. Three of these lncRNA candidates, USP3-AS1, LINC00877, and AC009312.1, were validated to have reduced expression in metastatic compared to non-metastatic PCPGs. Finally, using univariate and multivariate analysis, we found miRNA miR-182 to be an independent predictor of metastasis-free survival in PCPGs. CONCLUSIONS We identified candidate miRNA and lncRNAs associated with metastasis-free survival in PCPGs.
Collapse
Affiliation(s)
- Suman Ghosal
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Boqun Zhu
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Thanh-Truc Huynh
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Leah Meuter
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Abhishek Jha
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sara Talvacchio
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Marianne Knue
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mayank Patel
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tamara Prodanov
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Shaoli Das
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Martha A Zeiger
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Naris Nilubol
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Uma T Shankavaram
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David Taieb
- Department of Nuclear Medicine, La Timone University Hospital, Aix-Marseille University, Marseille, France
- European Center for Research in Medical Imaging, Aix-Marseille University, Marseille, France
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
128
|
KRAS-related long noncoding RNAs in human cancers. Cancer Gene Ther 2022; 29:418-427. [PMID: 34489556 PMCID: PMC9113938 DOI: 10.1038/s41417-021-00381-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/29/2021] [Accepted: 08/11/2021] [Indexed: 02/08/2023]
Abstract
KRAS is one of the most widely prevalent proto-oncogenes in human cancers. The constitutively active KRAS oncoprotein contributes to both tumor onset and cancer development by promoting cell proliferation and anchorage-independent growth in a MAPK pathway-dependent manner. The expression of microRNAs (miRNAs) and the KRAS oncogene are known to be dysregulated in various cancers, while long noncoding RNAs (lncRNAs) can act as regulators of the miRNAs targeting KRAS oncogene in different cancers and have gradually become a focus of research in recent years. In this review article, we summarize recent advances in the research on lncRNAs that have sponging effects on KRAS-targeting miRNAs as crucial mediators of KRAS expression in different cell types and organs. A deeper understanding of lncRNA function in KRAS-driven cancers is of major fundamental importance and will provide a valuable clinical tool for the diagnosis, prognosis, and eventual treatment of cancers.
Collapse
|
129
|
Mofed D, Omran JI, Sabet S, Baiomy AA, Emara M, Salem TZ. The regulatory role of long non- coding RNAs as a novel controller of immune response against cancer cells. Mol Biol Rep 2022; 49:11775-11793. [PMID: 36207500 PMCID: PMC9712323 DOI: 10.1007/s11033-022-07947-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 09/14/2022] [Indexed: 02/01/2023]
Abstract
Immunotherapy has been established as a promising therapy for different cancer types. However, many patients experience primary or secondary resistance to treatment. Immune cells and anti-inflammatory factors are regulated by long noncoding RNAs (lncRNAs). In addition, lncRNAs have a role in immune resistance through antigen presentation loss or attenuation, PD-L1 upregulation, loss of T-cell activities, and activation of G-MDSCs and Tregs in the tumor environment. LncRNAs can also influence the interaction between cancer stem cells and immune cells in the tumor microenvironment, potentially resulting in cancer stem cell resistance to immunotherapy. Immunological-related lncRNAs can influence immune responses either directly by affecting neighboring protein-coding genes or indirectly by sponging miRNAs through various mechanisms. We have emphasized the role and levels of expression of lncRNAs that have been linked to immune cell formation, differentiation, and activation, which may have an influence on immunotherapy efficacy.
Collapse
Affiliation(s)
- Dina Mofed
- Molecular Biology and Virology lab, Biomedical Sciences Program, UST, Zewail City of Science and Technology, October Gardens, 6th of October City, 12578 Giza, Egypt
| | - Jihad I Omran
- Molecular Biology and Virology lab, Biomedical Sciences Program, UST, Zewail City of Science and Technology, October Gardens, 6th of October City, 12578 Giza, Egypt
| | - Salwa Sabet
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | - Ahmed A Baiomy
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | - Marwan Emara
- Center for Aging and Associated Diseases, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, 12578 Giza, Egypt
| | - Tamer Z. Salem
- Molecular Biology and Virology lab, Biomedical Sciences Program, UST, Zewail City of Science and Technology, October Gardens, 6th of October City, 12578 Giza, Egypt
| |
Collapse
|
130
|
Huang C, Ge F, Ma X, Dai R, Dingkao R, Zhaxi Z, Burenchao G, Bao P, Wu X, Guo X, Chu M, Yan P, Liang C. Comprehensive Analysis of mRNA, lncRNA, circRNA, and miRNA Expression Profiles and Their ceRNA Networks in the Longissimus Dorsi Muscle of Cattle-Yak and Yak. Front Genet 2021; 12:772557. [PMID: 34966412 PMCID: PMC8710697 DOI: 10.3389/fgene.2021.772557] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/15/2021] [Indexed: 12/18/2022] Open
Abstract
Cattle-yak, as the hybrid offspring of cattle (Bos taurus) and yak (Bos grunniens), demonstrates obvious heterosis in production performance. Male hybrid sterility has been focused on for a long time; however, the mRNAs and non-coding RNAs related to muscle development as well as their regulatory networks remain unclear. The phenotypic data showed that the production performance (i.e., body weight, withers height, body length, and chest girth) of cattle-yak was significantly better than that of the yak, and the economic benefits of the cattle-yak were higher under the same feeding conditions. Then, we detected the expression profiles of the longissimus dorsi muscle of cattle-yak and yak to systematically reveal the molecular basis using the high-throughput sequencing technology. Here, 7,126 mRNAs, 791 lncRNAs, and 1,057 circRNAs were identified to be differentially expressed between cattle-yaks and yaks in the longissimus dorsi muscle. These mRNAs, lncRNA targeted genes, and circRNA host genes were significantly enriched in myoblast differentiation and some signaling pathways related to muscle development (such as HIF-1 signaling pathway and PI3K-Akt signaling pathway). We constructed a competing endogenous RNA (ceRNA) network and found that some non-coding RNAs differentially expressed may be involved in the regulation of muscle traits. Taken together, this study may be used as a reference tool to provide the molecular basis for studying muscle development.
Collapse
Affiliation(s)
- Chun Huang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fei Ge
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaoming Ma
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Rongfeng Dai
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Renqing Dingkao
- Livestock Institute of Gannan Tibetan Autonomous Prefecture, Hezuo, China
| | - Zhuoma Zhaxi
- Haixi Agricultural and Animal Husbandry Technology Extension Service Center, Qinghai, China
| | - Getu Burenchao
- Haixi Agricultural and Animal Husbandry Technology Extension Service Center, Qinghai, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaoyun Wu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Chunnian Liang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
131
|
Nuñez-Olvera SI, Puente-Rivera J, Ramos-Payán R, Pérez-Plasencia C, Salinas-Vera YM, Aguilar-Arnal L, López-Camarillo C. Three-Dimensional Genome Organization in Breast and Gynecological Cancers: How Chromatin Folding Influences Tumorigenic Transcriptional Programs. Cells 2021; 11:75. [PMID: 35011637 PMCID: PMC8750285 DOI: 10.3390/cells11010075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/15/2021] [Accepted: 12/24/2021] [Indexed: 12/19/2022] Open
Abstract
A growing body of research on the transcriptome and cancer genome has demonstrated that many gynecological tumor-specific gene mutations are located in cis-regulatory elements. Through chromosomal looping, cis-regulatory elements interact which each other to control gene expression by bringing distant regulatory elements, such as enhancers and insulators, into close proximity with promoters. It is well known that chromatin connections may be disrupted in cancer cells, promoting transcriptional dysregulation and the expression of abnormal tumor suppressor genes and oncogenes. In this review, we examine the roles of alterations in 3D chromatin interactions. This includes changes in CTCF protein function, cancer-risk single nucleotide polymorphisms, viral integration, and hormonal response as part of the mechanisms that lead to the acquisition of enhancers or super-enhancers. The translocation of existing enhancers, as well as enhancer loss or acquisition of insulator elements that interact with gene promoters, is also revised. Remarkably, similar processes that modify 3D chromatin contacts in gene promoters may also influence the expression of non-coding RNAs, such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), which have emerged as key regulators of gene expression in a variety of cancers, including gynecological malignancies.
Collapse
Affiliation(s)
- Stephanie I. Nuñez-Olvera
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Jonathan Puente-Rivera
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico City 03100, Mexico;
| | - Rosalio Ramos-Payán
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacan City 80030, Mexico;
| | | | - Yarely M. Salinas-Vera
- Departamento de Bioquímica, Centro de Investigación y Estudios Avanzados, Mexico City 07360, Mexico;
| | - Lorena Aguilar-Arnal
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico City 03100, Mexico;
| |
Collapse
|
132
|
Yang Z, Liu D, Zhou H, Tao B, Chang L, Liu H, Luo H, Wang D, Liu W. A New Nanomaterial Based on Extracellular Vesicles Containing Chrysin-Induced Cell Apoptosis Through Let-7a in Tongue Squamous Cell Carcinoma. Front Bioeng Biotechnol 2021; 9:766380. [PMID: 34900962 PMCID: PMC8661124 DOI: 10.3389/fbioe.2021.766380] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Although the therapeutic strategy showed significant improvement, the therapeutic effect was poor on metastases in tongue squamous cell carcinoma (TSCC) which is the most malignant tumor found in the head and neck. Chrysin, similar to the flavonoids, plays an antitumor role by regulating the expression of ncRNAs in many kinds of cancers. Compared to flavonoids, gold nanoparticles (AuNPs) provide a novel insight into inhibiting cancer cell growth via photothermal therapy (PPT) which is irradiated by near-infrared radiation (NIR). However, most flavonoids and AuNPs lack specificity of tumor in vivo. The extracellular vesicles (EVs) which were abundant with ncRNAs are isolated from the cellular supernatant fluid and have the ability to carry drugs or nanoparticles to improve specificity. In the present study, we aimed to synthesize a new nanomaterial based on EVs containing chrysin and analyzed cell apoptosis in TSCC cells. Our results demonstrated that EVs-chrysin were isolated from SCC9 cells that were treated with chrysin. To improve the therapeutic effect, AuNPs were carried by EVs-chrysin (Au-EVs). Compared to BGC823 and HCC-LM3 cells, the uptake of Au-EVs was specific in SCC9 cells. Moreover, Au-EVs combined with NIR enhanced cell apoptosis in TSCC cells. To confirm the role of miRNAs in cell apoptosis, the differentially expressed miRNAs between EVs-Con and EVs-chrysin were screened by RNA-seq. The results revealed that the let-7a-3p family, which acts as the tumor suppressor, was upregulated in EVs-chrysin compared to EVs-Con. Thus, let-7a-3p was screened in the apoptosis pathway that was associated with the p53 protein. Furthermore, compared to the Con group, Au-EVs combined with the NIR group effectively inhibited tumor growth in vivo via increasing the expression of let-7a-3p. Together, as a new nanomaterial, Au-EVs induced cell apoptosis and inhibited tumor growth by regulating let-7a-3p expression in TSCC.
Collapse
Affiliation(s)
- Zhijing Yang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China.,Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Da Liu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Hengzong Zhou
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Boqiang Tao
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
| | - Lu Chang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
| | - Huimin Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
| | - Haoming Luo
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Weiwei Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
133
|
Luo C, Lin K, Hu C, Zhu X, Zhu J, Zhu Z. LINC01094 promotes pancreatic cancer progression by sponging miR-577 to regulate LIN28B expression and the PI3K/AKT pathway. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 26:523-535. [PMID: 34631282 PMCID: PMC8479296 DOI: 10.1016/j.omtn.2021.08.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 08/20/2021] [Indexed: 02/07/2023]
Abstract
The leading cause of death in pancreatic cancer (PC) patients is the progression of cancer metastasis. Recently, long non-coding RNAs (lncRNAs) have been shown to play an important role in regulating cancer cell proliferation and metastasis; however, its molecular basis in PC remains to be explored. In this study, we observed that LINC01094 was markedly overexpressed in PC tissues and was associated with poor patient prognosis. Downregulation of LINC01094 decreased the proliferation and metastasis of PC cells and inhibited tumorigenesis and metastasis in mouse xenografts. Mechanically, LINC01094 acted as an endogenous miR-577 sponge to increase the expression of its target gene, the RNA-binding protein lin-28 homolog B (LIN28B), by decoying the miR-577, thereby activating the PI3K/AKT pathway. Our findings suggest that LINC01094 plays critical roles in proliferation and metastasis of PC, implying that LINC01094 can be regarded as a new biomarker or therapeutic target for the treatment of PC.
Collapse
Affiliation(s)
- Chen Luo
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Province Medical College of Nanchang University, Nanchang, China
| | - Kang Lin
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Province Medical College of Nanchang University, Nanchang, China
| | - Cegui Hu
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Province Medical College of Nanchang University, Nanchang, China
| | - Xiaojian Zhu
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Province Medical College of Nanchang University, Nanchang, China
| | - Jinfeng Zhu
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Province Medical College of Nanchang University, Nanchang, China
| | - Zhengming Zhu
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Corresponding author: Zhengming Zhu, Department of General Surgery, Second Affiliation Hospital of Nanching University, Nanchang, China.
| |
Collapse
|
134
|
Wang Y, Sun X, Sun X. The Functions of LncRNA H19 in the Heart. Heart Lung Circ 2021; 31:341-349. [PMID: 34840062 DOI: 10.1016/j.hlc.2021.10.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 10/19/2022]
Abstract
Cardiovascular diseases (CVDs) are major causes of morbidity and mortality worldwide. Great effort has been put into exploring early diagnostic biomarkers and innovative therapeutic strategies for preventing CVD progression over the last two decades. Long non-coding RNAs (lncRNAs) have been identified as novel regulators in cardiac development and cardiac pathogenesis. For example, lncRNA H19 (H19), also known as a fetal gene abundant in adult heart and skeletal muscles and evolutionarily conserved in humans and mice, has a regulatory role in aortic aneurysm, myocardial hypertrophy, extracellular matrix reconstitution, and coronary artery diseases. Yet, the exact function of H19 in the heart remains unknown. This review summarises the functions of H19 in the heart and discusses the challenges and possible strategies of H19 research for cardiovascular disease.
Collapse
Affiliation(s)
- Yao Wang
- Shandong Institute of Endocrine and Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaojing Sun
- Department of Geriatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xianglan Sun
- Department of Geriatrics, Department of Geriatric Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
135
|
Emerging role of long non-coding RNAs in endothelial dysfunction and their molecular mechanisms. Biomed Pharmacother 2021; 145:112421. [PMID: 34798473 DOI: 10.1016/j.biopha.2021.112421] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are the novel class of transcripts involved in transcriptional, post-transcriptional, translational, and post-translational regulation of physiology and the pathology of diseases. Studies have evidenced that the impairment of endothelium is a critical event in the pathogenesis of atherosclerosis and its complications. Endothelial dysfunction is characterized by an imbalance in vasodilation and vasoconstriction, oxidative stress, proinflammatory factors, and nitric oxide bioavailability. Disruption of the endothelial barrier permeability, the first step in developing atherosclerotic lesions is a consequence of endothelial dysfunction. Though several factors interfere with the normal functioning of the endothelium, intrinsic epigenetic mechanisms governing endothelial function are regulated by lncRNAs and perturbations contribute to the pathogenesis of the disease. This review comprehensively addresses the biogenesis of lncRNA and molecular mechanisms underlying and regulation in endothelial function. An insight correlating lncRNAs and endothelial dysfunction-associated diseases can positively impact the development of novel biomarkers and therapeutic targets in endothelial dysfunction-associated diseases and treatment strategies.
Collapse
|
136
|
Chen S, Ju G, Gu J, Shi M, Wang Y, Wu X, Wang Q, Zheng L, Xiao T, Fan Y. Competing endogenous RNA network for esophageal cancer progression. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1473. [PMID: 34734025 PMCID: PMC8506737 DOI: 10.21037/atm-21-4478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/18/2021] [Indexed: 11/27/2022]
Abstract
Background Esophageal cancer (ESCA) constitutes one of the most common cancers worldwide. The identification of potential biomarkers is important to improving the diagnostic accuracy and treatment efficiency for patients with ESCA. In this study, we aimed to identify biomarkers related to ESCA progression through a comprehensive analysis of long non-coding RNAs (lncRNAs), microRNA (miRNAs), and mRNA expression profiles in ESCA. Methods Differentially expressed lncRNAs, miRNAs, and mRNAs (DElncRNAs, DEmiRNAs, and DEmRNAs, respectively) in ESCA samples compared with normal controls were obtained. A competing endogenous RNA (ceRNA) network consisting of interacting DElncRNAs, DEmiRNAs, and DEmRNAs was constructed using a combination of the miRCode and TargetScan databases. Relationships between RNAs in the ceRNA network and overall survival in patients with EC were explored through another independent ESCA dataset from The Cancer Genome Atlas. Results A total of 1,014 DElncRNAs, 3,677 DEmRNAs, and 35 DEmiRNAs were identified in ESCA samples compared with normal samples. Functional enrichment analysis indicated that the DEmRNAs were involved in cell activity, inflammatory response, and oxygen metabolism-related biological processes. A ceRNA network containing 5 DEmiRNAs, 582 DEmRNAs and 764 DElncRNAs was obtained. In the survival analysis, 39 genes were found to be significantly associated with overall survival in patients with EC, including GOLGA7, NFYB, TOP1, and TMTC3. Conclusions Our study constructed a ceRNA network for ESCA for the first time, which will be helpful for the disease’s diagnosis and treatment.
Collapse
Affiliation(s)
- Saihua Chen
- Department of Thoracic Surgery, Tumor Hospital Affiliated to Nantong University & Nantong Tumor Hospital, Nantong, China
| | - Guanjun Ju
- Department of Thoracic Surgery, Tumor Hospital Affiliated to Nantong University & Nantong Tumor Hospital, Nantong, China
| | - Jianmei Gu
- Department of Thoracic Surgery, Tumor Hospital Affiliated to Nantong University & Nantong Tumor Hospital, Nantong, China
| | - Minxin Shi
- Department of Thoracic Surgery, Tumor Hospital Affiliated to Nantong University & Nantong Tumor Hospital, Nantong, China
| | - Yilang Wang
- Department of Thoracic Surgery, Tumor Hospital Affiliated to Nantong University & Nantong Tumor Hospital, Nantong, China
| | - Xiaodan Wu
- Department of Thoracic Surgery, Tumor Hospital Affiliated to Nantong University & Nantong Tumor Hospital, Nantong, China
| | - Qing Wang
- Department of Thoracic Surgery, Tumor Hospital Affiliated to Nantong University & Nantong Tumor Hospital, Nantong, China
| | - Liyun Zheng
- Department of Thoracic Surgery, Tumor Hospital Affiliated to Nantong University & Nantong Tumor Hospital, Nantong, China
| | - Ting Xiao
- Department of Thoracic Surgery, Tumor Hospital Affiliated to Nantong University & Nantong Tumor Hospital, Nantong, China
| | - Yihui Fan
- Department of Thoracic Surgery, Tumor Hospital Affiliated to Nantong University & Nantong Tumor Hospital, Nantong, China
| |
Collapse
|
137
|
Saxena M, Hisano M, Neutzner M, Diepenbruck M, Ivanek R, Sharma K, Kalathur RKR, Bürglin TR, Risoli S, Christofori G. The long non-coding RNA ET-20 mediates EMT by impairing desmosomes in breast cancer cells. J Cell Sci 2021; 134:272428. [PMID: 34633031 DOI: 10.1242/jcs.258418] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 09/24/2021] [Indexed: 01/06/2023] Open
Abstract
The vast majority of breast cancer-associated deaths are due to metastatic spread of cancer cells, a process aided by epithelial-to-mesenchymal transition (EMT). Mounting evidence has indicated that long non-coding RNAs (lncRNAs) also contribute to tumor progression. We report the identification of 114 novel lncRNAs that change their expression during TGFβ-induced EMT in murine breast cancer cells (referred to as EMT-associated transcripts; ETs). Of these, the ET-20 gene localizes in antisense orientation within the tenascin C (Tnc) gene locus. TNC is an extracellular matrix protein that is critical for EMT and metastasis formation. Both ET-20 and Tnc are regulated by the EMT master transcription factor Sox4. Notably, ablation of ET-20 lncRNA effectively blocks Tnc expression and with it EMT. Mechanistically, ET-20 interacts with desmosomal proteins, thereby impairing epithelial desmosomes and promoting EMT. A short transcript variant of ET-20 is shown to be upregulated in invasive human breast cancer cell lines, where it also promotes EMT. Targeting ET-20 appears to be a therapeutically attractive lead to restrain EMT and breast cancer metastasis in addition to its potential utility as a biomarker for invasive breast cancer.
Collapse
Affiliation(s)
- Meera Saxena
- Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Mizue Hisano
- Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Melanie Neutzner
- Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Maren Diepenbruck
- Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Robert Ivanek
- Department of Biomedicine, University of Basel, 4058 Basel, Switzerland.,Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Kirti Sharma
- Proteomics Kymera Therapeutics Basel Cambridge, MA 02472, USA
| | - Ravi K R Kalathur
- Department of Biomedicine, University of Basel, 4058 Basel, Switzerland.,Murdoch Children's Research Institute, Royal Children's Hospital, 3052 Parkville, Australia
| | - Thomas R Bürglin
- Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Salvatore Risoli
- Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | | |
Collapse
|
138
|
The role of long non-coding RNAs in the regulation of pancreatic beta cell identity. Biochem Soc Trans 2021; 49:2153-2161. [PMID: 34581756 PMCID: PMC8589412 DOI: 10.1042/bst20210207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 12/29/2022]
Abstract
Type 2 diabetes (T2D) is a widespread disease affecting millions in every continental population. Pancreatic β-cells are central to the regulation of circulating glucose, but failure in the maintenance of their mass and/or functional identity leads to T2D. Long non-coding RNAs (lncRNAs) represent a relatively understudied class of transcripts which growing evidence implicates in diabetes pathogenesis. T2D-associated single nucleotide polymorphisms (SNPs) have been identified in lncRNA loci, although these appear to function primarily through regulating β-cell proliferation. In the last decade, over 1100 lncRNAs have been catalogued in islets and the roles of a few have been further investigated, definitively linking them to β-cell function. These studies show that lncRNAs can be developmentally regulated and show highly tissue-specific expression. lncRNAs regulate neighbouring β-cell-specific transcription factor expression, with knockdown or overexpression of lncRNAs impacting a network of other key genes and pathways. Finally, gene expression analysis in studies of diabetic models have uncovered a number of lncRNAs with roles in β-cell function. A deeper understanding of these lncRNA roles in maintaining β-cell identity, and its deterioration, is required to fully appreciate the β-cell molecular network and to advance novel diabetes treatments.
Collapse
|
139
|
Archacka K, Ciemerych MA, Florkowska A, Romanczuk K. Non-Coding RNAs as Regulators of Myogenesis and Postexercise Muscle Regeneration. Int J Mol Sci 2021; 22:ijms222111568. [PMID: 34768999 PMCID: PMC8583994 DOI: 10.3390/ijms222111568] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 12/21/2022] Open
Abstract
miRNAs and lncRNAs do not encode proteins, but they play an important role in the regulation of gene expression. They differ in length, biogenesis, and mode of action. In this work, we focus on the selected miRNAs and lncRNAs involved in the regulation of myogenesis and muscle regeneration. We present selected miRNAs and lncRNAs that have been shown to control myogenic differentiation and show that manipulation of their levels could be used to improve myogenic differentiation of various types of stem and progenitor cells. Finally, we discuss how physical activity affects miRNA and lncRNA expression and how it affects muscle well-being.
Collapse
|
140
|
Spinelli M, Boucard C, Ornaghi S, Schoeberlein A, Irene K, Coman D, Hyder F, Zhang L, Haesler V, Bordey A, Barnea E, Paidas M, Surbek D, Mueller M. Preimplantation factor modulates oligodendrocytes by H19-induced demethylation of NCOR2. JCI Insight 2021; 6:132335. [PMID: 34676826 PMCID: PMC8564895 DOI: 10.1172/jci.insight.132335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/15/2021] [Indexed: 12/17/2022] Open
Abstract
Failed or altered gliogenesis is a major characteristic of diffuse white matter injury in survivors of premature birth. The developmentally regulated long noncoding RNA (lncRNA) H19 inhibits S-adenosylhomocysteine hydrolase (SAHH) and contributes to methylation of diverse cellular components, such as DNA, RNA, proteins, lipids, and neurotransmitters. We showed that the pregnancy-derived synthetic PreImplantation Factor (sPIF) induces expression of the nuclear receptor corepressor 2 (NCOR2) via H19/SAHH-mediated DNA demethylation. In turn, NCOR2 affects oligodendrocyte differentiation markers. Accordingly, after hypoxic-ischemic brain injury in rodents, myelin protection and oligodendrocytes' fate are in part modulated by sPIF and H19. Our results revealed an unexpected mechanism of the H19/SAHH axis underlying myelin preservation during brain recovery and its use in treating neurodegenerative diseases can be envisioned.
Collapse
Affiliation(s)
- Marialuigia Spinelli
- Department of Obstetrics and Gynecology and Department of Biomedical Research, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Celiné Boucard
- Department of Obstetrics and Gynecology and Department of Biomedical Research, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Sara Ornaghi
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Andreina Schoeberlein
- Department of Obstetrics and Gynecology and Department of Biomedical Research, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Keller Irene
- Department for Biomedical Research and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | | | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging.,Department of Biomedical Engineering
| | - Longbo Zhang
- Department of Neurosurgery, and Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Valérie Haesler
- Department of Obstetrics and Gynecology and Department of Biomedical Research, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Angelique Bordey
- Department of Neurosurgery, and Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Eytan Barnea
- Department of Research, BioIncept LLC, New York, New York, USA
| | - Michael Paidas
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Daniel Surbek
- Department of Obstetrics and Gynecology and Department of Biomedical Research, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Martin Mueller
- Department of Obstetrics and Gynecology and Department of Biomedical Research, University Hospital Bern, University of Bern, Bern, Switzerland.,Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
141
|
He Z, Zhang J, Chen G, Cao J, Chen Y, Ai C, Wang H. H19/let-7 axis mediates caffeine exposure during pregnancy induced adrenal dysfunction and its multi-generation inheritance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148440. [PMID: 34465058 DOI: 10.1016/j.scitotenv.2021.148440] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/01/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Previously, we systemically confirmed that prenatal caffeine exposure (PCE) could cause intrauterine growth retardation (IUGR) and adrenal steroid synthesis dysfunction in offspring rats. However, the multi-generation inheritance of adrenal dysfunction and its epigenetic mechanism has not been reported. In this study, the PCE rat model was established, part of the pregnant rats were executed on gestational day 20, while the others were delivered normally and the fetal rats were reared into adulthood. The PCE female rats of filial generation 1 (F1) were mated with wild males to produce F2 offspring, and the same way to produce F3 offspring. All the adult female rats of three generations were sacrificed for the related detection. Results showed that PCE could decrease fetal weight, increase IUGR rate, and elevate serum corticosterone level. Meanwhile, the expression of fetal adrenal GR, DNMT3a/3b, miRNA let-7c increased while those of CTCF, H19, and StAR decreased, and the total methylation rate of the H19 promoter region was enhanced. We used SW-13 cells to clarify the molecular mechanism and found that cortisol-induced in vitro changes of these indexes were consistent with those in vivo. We confirmed that high level of cortisol through activating GR, on the one hand, promoted let-7 expression and inhibited StAR expression; on the other hand, caused high methylation and low expression of H19 by down-regulating CTCF and up-regulating DNMT3a/3b, then enhanced let-7 inhibitory effect on StAR by "molecular sponge" effect. Finally, in vivo experiments showed that the adrenal steroid synthesis function and H19/let-7 axis presented the glucocorticoid-dependent changes in the adult female F1, F2, and F3. In conclusion, PCE can cause female adrenal dysfunction with matrilineal multi-generation inheritance, which is related to the programming alteration of the H19/let-7 axis. This study provides a novel perspective to explain the multi-generation inheritance of fetal-originated disease in IUGR offspring.
Collapse
Affiliation(s)
- Zheng He
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China; Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jinzhi Zhang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Guanghui Chen
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Jiangang Cao
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Yawen Chen
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Can Ai
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan 430071, China.
| |
Collapse
|
142
|
Chen Z, Liu L, Xi X, Burn M, Karakaya C, Kallen AN. Aberrant H19 Expression Disrupts Ovarian Cyp17 and Testosterone Production and Is Associated with Polycystic Ovary Syndrome in Women. Reprod Sci 2021; 29:1357-1367. [PMID: 34655046 DOI: 10.1007/s43032-021-00700-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/16/2021] [Indexed: 10/20/2022]
Abstract
As one of the most common endocrine disorders affecting women, polycystic ovary syndrome (PCOS) is associated with serious conditions including anovulation, endometrial cancer, infertility, hyperandrogenemia, and an increased risk for obesity and metabolic derangements. One contributing etiology to the pathophysiology of hyperandrogenemia associated with PCOS is an intrinsic alteration in ovarian steroidogenesis, leading to enhanced synthesis of androgens including testosterone. Studies have suggested that the increased testosterone synthesis seen in PCOS is driven in part by increased activity of CYP17A1, the rate-limiting enzyme for the formation of androgens in the gonads and adrenal cortex, which represents a critical factor driving enhanced testosterone secretion in PCOS. In this work, we evaluated the hypothesis that dysregulation of the noncoding RNA H19 results in aberrant CYP17 and testosterone production. To achieve this, we measured Cyp17 in ovarian tissues of H19 knockout mice, and quantified serum testosterone levels, in comparison with wild-type controls. We also evaluated circulating and ovarian H19 expression and correlated results with the presence or absence of PCOS in a group of women undergoing evaluation and treatment for infertility. We found that the loss of H19 in a mouse model results in decreased ovarian Cyp17, along with decreased serum testosterone in female mice. Moreover, utilizing serum samples and cumulus cells from women with PCOS, we showed that circulating and ovarian levels of H19 are increased in women with PCOS compared to controls. Findings from our multimodal experimental strategy, involving both a mouse model of dysregulated H19 expression and clinical serum and ovarian cellular samples from women with PCOS, suggest that the loss of H19 may disrupt androgen production via a Cyp17-mediated mechanism. Conversely, excess H19 may play a role in the pathogenesis of PCOS-associated hyperandrogenemia.
Collapse
Affiliation(s)
- Zhaojuan Chen
- Department of Gynecology, Beijing Haidian Hospital of Traditional Chinese Medicine, Beijing, China
| | - Lan Liu
- Department of Obstetrics, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Xia Xi
- Peking University Shenzhen Hospital, Shenzhen, People's Republic of China
| | - Martina Burn
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, 333 Cedar St, PO Box 208063, New Haven, CT, 06512, USA
| | - Cengiz Karakaya
- Department of Medical Biochemistry, Gazi University School of Medicine, Ankara, Turkey
| | - Amanda N Kallen
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, 333 Cedar St, PO Box 208063, New Haven, CT, 06512, USA.
| |
Collapse
|
143
|
Han L, Yang L. Multidimensional Mechanistic Spectrum of Long Non-coding RNAs in Heart Development and Disease. Front Cardiovasc Med 2021; 8:728746. [PMID: 34604357 PMCID: PMC8483262 DOI: 10.3389/fcvm.2021.728746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022] Open
Abstract
With the large-scale genome-wide sequencing, long non-coding RNAs (lncRNAs) have been found to compose of a large portion of the human transcriptome. Recent studies demonstrated the multidimensional functions of lncRNAs in heart development and disease. The subcellular localization of lncRNA is considered as a key factor that determines lncRNA function. Cytosolic lncRNAs mainly regulate mRNA stability, mRNA translation, miRNA processing and function, whereas nuclear lncRNAs epigenetically regulate chromatin remodeling, structure, and gene transcription. In this review, we summarize the molecular mechanisms of cytosolic and nuclear lncRNAs in heart development and disease separately, and emphasize the recent progress to dictate the crosstalk of cytosolic and nuclear lncRNAs in orchestrating the same biological process. Given the low evolutionary conservation of most lncRNAs, deeper understanding of human lncRNA will uncover a new layer of human regulatory mechanism underlying heart development and disease, and benefit the future clinical treatment for human heart disease.
Collapse
Affiliation(s)
- Lei Han
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Lei Yang
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
144
|
Ma W, Gao Y, Zhang J, Yao X, Jia L, Xu Q. Long noncoding RNA LINC01410 promotes tumorigenesis of osteosarcoma cells via miR-497-5p/HMGA2 axis. J Biochem Mol Toxicol 2021; 35:e22921. [PMID: 34605103 DOI: 10.1002/jbt.22921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/14/2021] [Accepted: 09/20/2021] [Indexed: 11/08/2022]
Abstract
LINC01410 is a tumor promoter that is upregulated in some cancer types, such as osteosarcoma (OS). Nonetheless, its role in OS and the underlying molecular mechanism have not been fully understood. Hence, we sought to elucidate it. We performed reverse-transcription quantitative polymerase chain reaction for examining LINC01410, miR-497-5p and HMGA2 levels. Additionally, we carried out the cell counting kit-8 and Transwell assays for detecting cell proliferation and invasion/migration. Bioinformatics predicted that there was a miR-497-5p binding site in LINC01410 or HMGA2; meanwhile, miR-497-5p was found to interact with HMGA2 and LINC01410 through dual-luciferase reporter assay. LINC01410 and HMGA2 were high, and miR-497-5p showed low expression in OS tissues and cells. Cell function assay demonstrated that LINC01410 or HMGA2 knockdown or miR-497-5p overexpression obviously restrained OS proliferation, invasion, and migration. Oppositely, inhibiting miR-497-5p had the opposite effects. Functionally, miR-497-5p bound with LINC01410 3'-untranslated region and HMGA2 was found to be the miR-497-5p target gene. Lastly, LINC01410 enhanced OS cell growth, invasion, and migration via decreasing miR-497-5p expression, whereas increasing that of HMGA2. We have demonstrated that LINC01410 promoted OS development partly by miR-497-5p/HMGA2 signal transduction pathway and this provides a reference for studying the mechanism of LINC01410 in OS.
Collapse
Affiliation(s)
- Weiguo Ma
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China.,Department of Clinical Laboratory, Zhengzhou Key Laboratory of Digestive Tumor Markers, Zhengzhou, Henan, China
| | - Yun Gao
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China.,Department of Clinical Laboratory, Zhengzhou Key Laboratory of Digestive Tumor Markers, Zhengzhou, Henan, China
| | - Junhua Zhang
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China.,Department of Clinical Laboratory, Zhengzhou Key Laboratory of Digestive Tumor Markers, Zhengzhou, Henan, China
| | - Xiaobin Yao
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China.,Department of Clinical Laboratory, Zhengzhou Key Laboratory of Digestive Tumor Markers, Zhengzhou, Henan, China
| | - Lina Jia
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China.,Department of Clinical Laboratory, Zhengzhou Key Laboratory of Digestive Tumor Markers, Zhengzhou, Henan, China
| | - Qingxia Xu
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China.,Department of Clinical Laboratory, Zhengzhou Key Laboratory of Digestive Tumor Markers, Zhengzhou, Henan, China
| |
Collapse
|
145
|
Yang L, Wang YW, Lu YY, Li B, Chen KP, Li CJ. Genome-wide identification and characterization of long non-coding RNAs in Tribolium castaneum. INSECT SCIENCE 2021; 28:1262-1276. [PMID: 32978885 DOI: 10.1111/1744-7917.12867] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/19/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
Long non-coding RNAs (lncRNAs) are poorly understood in insects. In this study, we performed genome-wide analysis of lncRNAs in Tribolium castaneum by RNA-seq. In total, 4516 lncRNA transcripts corresponding to 3917 genes were identified from late embryos, early larvae, late larvae, early pupae, late pupae and early adults of T. castaneum, including 3152 novel lncRNAs and 1364 known lncRNAs. These lncRNAs have few exons and transcripts, and are short in length. During development, they exhibited nine different expression patterns. Functionally, they can act either by targeting messenger RNAs (1813 lncRNAs) and lncRNAs (45 lncRNAs) or as micro RNA (miRNA) precursors (46 lncRNAs). LncRNAs were observed to target the metabolic enzymes of glycolysis, TCA cycle and amino acids, demonstrating that lncRNAs control metabolism by regulating metabolic enzymes. Moreover, lncRNAs were shown to participate in cell differentiation and development via their targets. As miRNA precursors, lncRNAs could participate in the ecdysone signaling pathway. This study provides comprehensive information for lncRNAs of T. castaneum, and will promote functional analysis and target identification of lncRNAs in the insect.
Collapse
Affiliation(s)
- Liu Yang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - You-Wei Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Yao-Yao Lu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Ke-Ping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Cheng-Jun Li
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| |
Collapse
|
146
|
Yang L, Qiu LM, Fang Q, Stanley DW, Ye GY. Cellular and humoral immune interactions between Drosophila and its parasitoids. INSECT SCIENCE 2021; 28:1208-1227. [PMID: 32776656 DOI: 10.1111/1744-7917.12863] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/09/2020] [Accepted: 07/30/2020] [Indexed: 05/26/2023]
Abstract
The immune interactions occurring between parasitoids and their host insects, especially in Drosophila-wasp models, have long been the research focus of insect immunology and parasitology. Parasitoid infestation in Drosophila is counteracted by its multiple natural immune defense systems, which include cellular and humoral immunity. Occurring in the hemocoel, cellular immune responses involve the proliferation, differentiation, migration and spreading of host hemocytes and parasitoid encapsulation by them. Contrastingly, humoral immune responses rely more heavily on melanization and on the Toll, Imd and Jak/Stat immune pathways associated with antimicrobial peptides along with stress factors. On the wasps' side, successful development is achieved by introducing various virulence factors to counteract immune responses of Drosophila. Some or all of these factors manipulate the host's immunity for successful parasitism. Here we review current knowledge of the cellular and humoral immune interactions between Drosophila and its parasitoids, focusing on the defense mechanisms used by Drosophila and the strategies evolved by parasitic wasps to outwit it.
Collapse
Affiliation(s)
- Lei Yang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Li-Ming Qiu
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qi Fang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - David W Stanley
- USDA Agricultural Research Service, Biological Control of Insects Research Laboratory, Columbia, Missouri, United States
| | - Gong-Yin Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
147
|
Nilsson E, Vavakova M, Perfilyev A, Säll J, Jansson PA, Poulsen P, Esguerra JLS, Eliasson L, Vaag A, Göransson O, Ling C. Differential DNA Methylation and Expression of miRNAs in Adipose Tissue From Twin Pairs Discordant for Type 2 Diabetes. Diabetes 2021; 70:2402-2418. [PMID: 34315727 DOI: 10.2337/db20-0324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/21/2021] [Indexed: 11/13/2022]
Abstract
The prevalence of type 2 diabetes (T2D) is increasing worldwide, but current treatments have limitations. miRNAs may play a key role in the development of T2D and can be targets for novel therapies. Here, we examined whether T2D is associated with altered expression and DNA methylation of miRNAs using adipose tissue from 14 monozygotic twin pairs discordant for T2D. Four members each of the miR-30 and let-7-families were downregulated in adipose tissue of subjects with T2D versus control subjects, which was confirmed in an independent T2D case-control cohort. Further, DNA methylation of five CpG sites annotated to gene promoters of differentially expressed miRNAs, including miR-30a and let-7a-3, was increased in T2D versus control subjects. Luciferase experiments showed that increased DNA methylation of the miR-30a promoter reduced its transcription in vitro. Silencing of miR-30 in adipocytes resulted in reduced glucose uptake and TBC1D4 phosphorylation; downregulation of genes involved in demethylation and carbohydrate/lipid/amino acid metabolism; and upregulation of immune system genes. In conclusion, T2D is associated with differential DNA methylation and expression of miRNAs in adipose tissue. Downregulation of the miR-30 family may lead to reduced glucose uptake and altered expression of key genes associated with T2D.
Collapse
MESH Headings
- 3T3-L1 Cells
- Adipose Tissue/metabolism
- Adipose Tissue/pathology
- Aged
- Animals
- Arrhythmias, Cardiac/genetics
- Arrhythmias, Cardiac/pathology
- Case-Control Studies
- Cells, Cultured
- Cohort Studies
- DNA Methylation
- Denmark
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diseases in Twins/genetics
- Female
- Gene Expression
- Genetic Diseases, X-Linked/genetics
- Genetic Diseases, X-Linked/pathology
- Gigantism/genetics
- Gigantism/pathology
- Heart Defects, Congenital/genetics
- Heart Defects, Congenital/pathology
- Humans
- Intellectual Disability/genetics
- Intellectual Disability/pathology
- Male
- Mice
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Middle Aged
- Sweden
- Twins, Monozygotic/genetics
Collapse
Affiliation(s)
- Emma Nilsson
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Magdalena Vavakova
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
- Diabetes, Metabolism and Endocrinology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Alexander Perfilyev
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Johanna Säll
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Per-Anders Jansson
- Wallenberg Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Jonathan Lou S Esguerra
- Islet Cell Exocytosis Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Lena Eliasson
- Islet Cell Exocytosis Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Allan Vaag
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Olga Göransson
- Diabetes, Metabolism and Endocrinology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| |
Collapse
|
148
|
Wu X, Wang X, Shan L, Zhou J, Zhang X, Zhu E, Yuan H, Wang B. High-mobility group AT-Hook 1 mediates the role of nuclear factor I/X in osteogenic differentiation through activating canonical Wnt signaling. Stem Cells 2021; 39:1349-1361. [PMID: 34028135 DOI: 10.1002/stem.3418] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 04/29/2021] [Indexed: 11/09/2022]
Abstract
It was previously reported that the loss of the transcription factor nuclear factor I/X (NFIX) gene in mice impaired endochondral ossification and mineralization in bone. However, the cellular and molecular basis for the defect remains unexplored. In this study, we investigated if and how NFIX regulates osteoblast differentiation. Nfix mRNA was induced during osteogenic and adipogenic differentiation of progenitor cells. Loss-of-function and gain-of-function studies revealed that NFIX induced osteoblast differentiation and impaired adipocyte formation from progenitor cells. RNA-seq and promoter analysis revealed that NFIX transcriptionally stimulated the expression of high-mobility group AT-Hook 1 (HMGA1). We then demonstrated that HMGA1 stimulated osteogenic differentiation of progenitor cells at the expense of adipogenic differentiation. The effect of Nfix siRNA on the differentiation of progenitor cells could be attenuated when HMGA1 was simultaneously overexpressed. Further investigations revealed the stimulatory effect of NFIX and HMGA1 on canonical wingless-type MMTV integration site family (Wnt) signaling. HMGA1 transcriptionally activates the expression of low-density lipoprotein receptor-related protein 5. Finally, in vivo transfection of Nfix siRNA to the marrow of mice reduced osteoblasts and increased fat accumulation in the marrow, and inactivated HMGA1/β-catenin signaling in bone marrow mesenchymal stem cells. This study suggests that HMGA1 plays a role in osteoblast commitment and mediates the function of NFIX through transcriptionally activating canonical Wnt signaling.
Collapse
Affiliation(s)
- Xiaowen Wu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Institute of Endocrinology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Xiaochen Wang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Institute of Endocrinology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Liying Shan
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Institute of Endocrinology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Jie Zhou
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Institute of Endocrinology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Xin Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Institute of Endocrinology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Endong Zhu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Institute of Endocrinology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Hairui Yuan
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Institute of Endocrinology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Baoli Wang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Institute of Endocrinology, Tianjin Medical University, Tianjin, People's Republic of China
| |
Collapse
|
149
|
Brichant G, Laraki I, Henry L, Munaut C, Nisolle M. New Therapeutics in Endometriosis: A Review of Hormonal, Non-Hormonal, and Non-Coding RNA Treatments. Int J Mol Sci 2021; 22:10498. [PMID: 34638843 PMCID: PMC8508913 DOI: 10.3390/ijms221910498] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 12/14/2022] Open
Abstract
Endometriosis is defined as endometrial-like tissue outside the uterine cavity. It is a chronic inflammatory estrogen-dependent disease causing pain and infertility in about 10% of women of reproductive age. Treatment nowadays consists of medical and surgical therapies. Medical treatments are based on painkillers and hormonal treatments. To date, none of the medical treatments have been able to cure the disease and symptoms recur as soon as the medication is stopped. The development of new biomedical targets, aiming at the cellular and molecular mechanisms responsible for endometriosis, is needed. This article summarizes the most recent medications under investigation in endometriosis treatment with an emphasis on non-coding RNAs that are emerging as key players in several human diseases, including cancer and endometriosis.
Collapse
Affiliation(s)
- Geraldine Brichant
- Obstetrics and Gynecology Department, ULiege, 4000 Liège, Belgium; (I.L.); (L.H.); (M.N.)
| | - Ines Laraki
- Obstetrics and Gynecology Department, ULiege, 4000 Liège, Belgium; (I.L.); (L.H.); (M.N.)
| | - Laurie Henry
- Obstetrics and Gynecology Department, ULiege, 4000 Liège, Belgium; (I.L.); (L.H.); (M.N.)
| | - Carine Munaut
- Laboratory of Tumor and Development Biology, Giga-Cancer, ULiege, 4000 Liège, Belgium;
| | - Michelle Nisolle
- Obstetrics and Gynecology Department, ULiege, 4000 Liège, Belgium; (I.L.); (L.H.); (M.N.)
| |
Collapse
|
150
|
Ma Y, Shen N, Wicha MS, Luo M. The Roles of the Let-7 Family of MicroRNAs in the Regulation of Cancer Stemness. Cells 2021; 10:cells10092415. [PMID: 34572067 PMCID: PMC8469079 DOI: 10.3390/cells10092415] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/01/2021] [Accepted: 09/08/2021] [Indexed: 12/17/2022] Open
Abstract
Cancer has long been viewed as a disease of normal development gone awry. Cancer stem-like cells (CSCs), also termed as tumor-initiating cells (TICs), are increasingly recognized as a critical tumor cell population that drives not only tumorigenesis but also cancer progression, treatment resistance and metastatic relapse. The let-7 family of microRNAs (miRNAs), first identified in C. elegans but functionally conserved from worms to human, constitutes an important class of regulators for diverse cellular functions ranging from cell proliferation, differentiation and pluripotency to cancer development and progression. Here, we review the current state of knowledge regarding the roles of let-7 miRNAs in regulating cancer stemness. We outline several key RNA-binding proteins, long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) involved in the regulation of let-7 biogenesis, maturation and function. We then highlight key gene targets and signaling pathways that are regulated or mutually regulated by the let-7 family of miRNAs to modulate CSC characteristics in various types of cancer. We also summarize the existing evidence indicating distinct metabolic pathways regulated by the let-7 miRNAs to impact CSC self-renewal, differentiation and treatment resistance. Lastly, we review current preclinical studies and discuss the clinical implications for developing let-7-based replacement strategies as potential cancer therapeutics that can be delivered through different platforms to target CSCs and reduce/overcome treatment resistance when applied alone or in combination with current chemo/radiation or molecularly targeted therapies. By specifically targeting CSCs, these strategies have the potential to significantly improve the efficacy of cancer therapies.
Collapse
Affiliation(s)
- Yuxi Ma
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI 48109, USA; (Y.M.); (N.S.)
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Na Shen
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI 48109, USA; (Y.M.); (N.S.)
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Max S. Wicha
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI 48109, USA; (Y.M.); (N.S.)
- Correspondence: (M.S.W.); (M.L.)
| | - Ming Luo
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI 48109, USA; (Y.M.); (N.S.)
- Correspondence: (M.S.W.); (M.L.)
| |
Collapse
|