101
|
Patel H, Stavrou I, Shrestha RL, Draviam V, Frame MC, Brunton VG. Kindlin1 regulates microtubule function to ensure normal mitosis. J Mol Cell Biol 2016; 8:338-48. [PMID: 26993041 PMCID: PMC4991666 DOI: 10.1093/jmcb/mjw009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 10/13/2015] [Accepted: 11/08/2015] [Indexed: 11/14/2022] Open
Abstract
Loss of Kindlin 1 (Kin1) results in the skin blistering disorder Kindler Syndrome (KS), whose symptoms also include skin atrophy and reduced keratinocyte proliferation. Kin1 binds to integrins to modulate their activation and more recently it has been shown to regulate mitotic spindles and cell survival in a Plk1-dependent manner. Here we report that short-term Kin1 deletion in mouse skin results in impaired mitosis, which is associated with reduced acetylated tubulin (ac-tub) levels and cell proliferation. In cells, impaired mitosis and reduced ac-tub levels are also accompanied by reduced microtubule stability, all of which are rescued by HDAC6 inhibition. The ability of Kin1 to regulate HDAC6-dependent cellular ac-tub levels is dependent on its phosphorylation by Plk1. Taken together, these data define a novel role for Kin1 in microtubule acetylation and stability and offer a mechanistic insight into how certain KS phenotypes, such as skin atrophy and reduced cell proliferation, arise.
Collapse
Affiliation(s)
- Hitesh Patel
- Edinburgh Cancer Research Centre, Institute of Genetics & Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Ifigeneia Stavrou
- Edinburgh Cancer Research Centre, Institute of Genetics & Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Roshan L Shrestha
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Viji Draviam
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK Present address: School of Biological and Chemical Sciences, Queen Mary University of London, London, E11 4NS, UK
| | - Margaret C Frame
- Edinburgh Cancer Research Centre, Institute of Genetics & Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Valerie G Brunton
- Edinburgh Cancer Research Centre, Institute of Genetics & Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK
| |
Collapse
|
102
|
Hai Y, Christianson DW. Histone deacetylase 6 structure and molecular basis of catalysis and inhibition. Nat Chem Biol 2016; 12:741-7. [PMID: 27454933 PMCID: PMC4990478 DOI: 10.1038/nchembio.2134] [Citation(s) in RCA: 370] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/11/2016] [Indexed: 12/11/2022]
Abstract
Histone deacetylase 6 (HDAC6) is a critical target for drug design due to its role in oncogenic transformation and cancer metastasis, and is unique among all histone deacetylases in that it contains tandem catalytic domains designated CD1 and CD2. We now report the crystal structures of CD2 from Homo sapiens and CD1 and CD2 from Danio rerio HDAC6, and we correlate these structures with activity measurements using a panel of 13 different substrates. The catalytic activity of CD2 from both species exhibits broad substrate specificity, whereas that of CD1 is highly specific for substrates bearing C-terminal acetyllysine residues. Crystal structures of substrate complexes yield unprecedented snapshots of the catalytic mechanism. Additionally, crystal structures of complexes with 8 different inhibitors, including Belinostat and Panobinostat (currently used in cancer chemotherapy), the macrocyclic tetrapeptide HC toxin, and the HDAC6-specific inhibitor N-hydroxy-4-(2-[(2-hydroxyethyl)(phenyl)amino]-2-oxoethyl)benzamide, reveal surprising new insight regarding changes in Zn2+ coordination and isozyme-specific inhibition.
Collapse
Affiliation(s)
- Yang Hai
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Radcliffe Institute for Advanced Study and Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
103
|
Memon D, Dawson K, Smowton CSF, Xing W, Dive C, Miller CJ. Hypoxia-driven splicing into noncoding isoforms regulates the DNA damage response. NPJ Genom Med 2016; 1:16020. [PMID: 28480052 PMCID: PMC5417364 DOI: 10.1038/npjgenmed.2016.20] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 12/26/2022] Open
Abstract
Tumour hypoxia is associated with poor patient outcome and resistance to therapy. It is accompanied by widespread changes in gene expression mediated largely through the transcription factors HIF1/2/3α. Hypoxia impacts on multiple pathways throughout the cell and has widespread effects on phenotype. Here we use sample-specific annotation approaches to determine the changes in transcript architecture that arise as result of alternative splicing in hypoxic cells. Using in vivo data generated from a time course in reduced oxygenation we identified genome-wide switching between coding and noncoding isoforms, including a significant number of components of the DNA damage response pathway. Notably, HDAC6, a master regulator of the cytotoxic response, and TP53BP1, which sits at the nexus of the double-strand break repair pathway, both underwent a marked transition towards an intron-retention pattern with a concomitant decline in protein levels. These transitions from coding to noncoding isoforms were recapitulated in a large and independent cohort of 499 colorectal samples taken from The Cancer Genome Atlas (TCGA). The set of altered genes was enriched for multiple components of the Fanconi Anaemia, nucleotide excision and double-strand break repair pathways, and together correlating with tumour status at last contact. Altogether, these data demonstrate a new role for hypoxia-driven alternative splicing in regulating DNA damage response, and highlight the importance of considering alternative splicing as a critical factor in our understanding of human disease.
Collapse
Affiliation(s)
- Danish Memon
- RNA Biology Group, CRUK Manchester Institute, The University of Manchester, Manchester, UK
| | - Keren Dawson
- RNA Biology Group, CRUK Manchester Institute, The University of Manchester, Manchester, UK
| | - Christopher SF Smowton
- Scientific Computing Team, CRUK Manchester Institute, The University of Manchester, Manchester, UK
| | - Wei Xing
- Scientific Computing Team, CRUK Manchester Institute, The University of Manchester, Manchester, UK
| | - Caroline Dive
- Clinical and Experimental Pharmacology Group, CRUK Manchester Institute, The University of Manchester, Manchester, UK
| | - Crispin J Miller
- RNA Biology Group, CRUK Manchester Institute, The University of Manchester, Manchester, UK
| |
Collapse
|
104
|
Zhang XM, Gavande N, Parajuli P, Bepler G. Implications of the USP10-HDAC6 axis in lung cancer - A path to precision medicine. JOURNAL OF CANCER BIOLOGY 2016; 2:10.46439/cancerbiology.2.015. [PMID: 34746935 PMCID: PMC8570638 DOI: 10.46439/cancerbiology.2.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Lung cancer is the leading cause of cancer death among both men and women in the United States. Because lung cancer is genetically heterogeneous, tailored therapy alone or in combination with chemotherapy would increase patient overall survival as compared with the one-size-fits-all chemotherapy. TP53-mutant lung cancer accounts for more than half of all lung cancer cases and is oftentimes more aggressive and resistant to chemotherapy. Directly targeting mutant p53 has not yet been successful, so identification of novel therapy targets and biomarkers in the TP53-mutant lung cancer is urgently needed to increase the overall survival in this subgroup. Deubiquitinating enzymes (DUBs) regulate a vast majority of proteins (DUBs' substrates) via removal of ubiquitin moieties or ubiquitin chains from these proteins, thereby altering the stability and/or functions of these substrates. In this review, we will focus on a DUB, referred to as ubiquitin-specific peptidase 10 (USP10) whose substrates include both oncogenic proteins and tumor suppressors. Therefore, targeting USP10 in cancer is highly context-dependent. Here, we will discuss USP10's functions in cancer by examining its various known substrates. In particular, we will elaborate our recent findings in the oncogenic role of USP10 in the TP53-mutant subgroup of lung cancer, focusing on USP10's function in the DNA damage response (DDR) via histone deacetylase 6 (HDAC6). Overall, these findings support the notion that targeting USP10 in the TP53-mutant subgroup of NSCLC would sensitize patients to cisplatin-based chemotherapy. Generating potent and specific clinically relevant USP10 inhibitors would benefit the TP53-mutant subgroup of NSCLC patients.
Collapse
Affiliation(s)
- Xiaohong Mary Zhang
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, 4100 John R. Street, Detroit, Michigan, 48201, USA
| | - Navnath Gavande
- Department Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, Michigan, 48201, USA
| | - Prahlad Parajuli
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, 4100 John R. Street, Detroit, Michigan, 48201, USA
| | - Gerold Bepler
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, 4100 John R. Street, Detroit, Michigan, 48201, USA
| |
Collapse
|
105
|
Piekna-Przybylska D, Bambara RA, Balakrishnan L. Acetylation regulates DNA repair mechanisms in human cells. Cell Cycle 2016; 15:1506-17. [PMID: 27104361 DOI: 10.1080/15384101.2016.1176815] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The p300-mediated acetylation of enzymes involved in DNA repair and replication has been previously shown to stimulate or inhibit their activities in reconstituted systems. To explore the role of acetylation on DNA repair in cells we constructed plasmid substrates carrying inactivating damages in the EGFP reporter gene, which should be repaired in cells through DNA mismatch repair (MMR) or base excision repair (BER) mechanisms. We analyzed efficiency of repair within these plasmid substrates in cells exposed to deacetylase and acetyltransferase inhibitors, and also in cells deficient in p300 acetyltransferase. Our results indicate that protein acetylation improves DNA mismatch repair in MMR-proficient HeLa cells and also in MMR-deficient HCT116 cells. Moreover, results suggest that stimulated repair of mismatches in MMR-deficient HCT116 cells is done though a strand-displacement synthesis mechanism described previously for Okazaki fragments maturation and also for the EXOI-independent pathway of MMR. Loss of p300 reduced repair of mismatches in MMR-deficient cells, but did not have evident effects on BER mechanisms, including the long patch BER pathway. Hypoacetylation of the cells in the presence of acetyltransferase inhibitor, garcinol generally reduced efficiency of BER of 8-oxoG damage, indicating that some steps in the pathway are stimulated by acetylation.
Collapse
Affiliation(s)
- Dorota Piekna-Przybylska
- a Department of Microbiology and Immunology , School of Medicine and Dentistry, University of Rochester , Rochester , NY , USA
| | - Robert A Bambara
- a Department of Microbiology and Immunology , School of Medicine and Dentistry, University of Rochester , Rochester , NY , USA
| | - Lata Balakrishnan
- b Department of Biology , Indiana University-Purdue University Indianapolis , Indianapolis , IN , USA
| |
Collapse
|
106
|
Yang Q, Laknaur A, Elam L, Ismail N, Gavrilova-Jordan L, Lue J, Diamond MP, Al-Hendy A. Identification of Polycomb Group Protein EZH2-Mediated DNA Mismatch Repair Gene MSH2 in Human Uterine Fibroids. Reprod Sci 2016; 23:1314-25. [PMID: 27036951 DOI: 10.1177/1933719116638186] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Uterine fibroids (UFs) are benign smooth muscle neoplasms affecting up to 70% of reproductive age women. Treatment of symptomatic UFs places a significant economic burden on the US health-care system. Several specific genetic abnormalities have been described as etiologic factors of UFs, suggesting that a low DNA damage repair capacity may be involved in the formation of UF. In this study, we used human fibroid and adjacent myometrial tissues, as well as an in vitro cell culture model, to evaluate the expression of MutS homolog 2 (MSH2), which encodes a protein belongs to the mismatch repair system. In addition, we deciphered the mechanism by which polycomb repressive complex 2 protein, EZH2, deregulates MSH2 in UFs. The RNA expression analysis demonstrated the deregulation of MSH2 expression in UF tissues in comparison to its adjacent myometrium. Notably, protein levels of MSH2 were upregulated in 90% of fibroid tissues (9 of 10) as compared to matched adjacent myometrial tissues. Human fibroid primary cells treated with 3-deazaneplanocin A (DZNep), chemical inhibitor of EZH2, exhibited a significant increase in MSH2 expression (P < .05). Overexpression of EZH2 using an adenoviral vector approach significantly downregulated the expression of MSH2 (P < .05). Chromatin immunoprecipitation assay demonstrated that enrichment of H3K27me3 in promoter regions of MSH2 was significantly decreased in DZNep-treated fibroid cells as compared to vehicle control. These data suggest that EZH2-H3K27me3 regulatory mechanism dynamically changes the expression levels of DNA mismatch repair gene MSH2, through epigenetic mark H3K27me3. MSH2 may be considered as a marker for early detection of UFs.
Collapse
Affiliation(s)
- Qiwei Yang
- Division of Translational Research, Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Archana Laknaur
- Division of Translational Research, Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Lelyand Elam
- Division of Translational Research, Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Nahed Ismail
- Clinical Microbiology Division, Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Larisa Gavrilova-Jordan
- Division of Translational Research, Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - John Lue
- Division of Translational Research, Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Michael P Diamond
- Division of Translational Research, Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ayman Al-Hendy
- Division of Translational Research, Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
107
|
Zhang M, Hu C, Tong D, Xiang S, Williams K, Bai W, Li GM, Bepler G, Zhang X. Ubiquitin-specific Peptidase 10 (USP10) Deubiquitinates and Stabilizes MutS Homolog 2 (MSH2) to Regulate Cellular Sensitivity to DNA Damage. J Biol Chem 2016; 291:10783-91. [PMID: 26975374 DOI: 10.1074/jbc.m115.700047] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Indexed: 11/06/2022] Open
Abstract
MSH2 is a key DNA mismatch repair protein, which plays an important role in genomic stability. In addition to its DNA repair function, MSH2 serves as a sensor for DNA base analogs-provoked DNA replication errors and binds to various DNA damage-induced adducts to trigger cell cycle arrest or apoptosis. Loss or depletion of MSH2 from cells renders resistance to certain DNA-damaging agents. Therefore, the level of MSH2 determines DNA damage response. Previous studies showed that the level of MSH2 protein is modulated by the ubiquitin-proteasome pathway, and histone deacetylase 6 (HDAC6) serves as an ubiquitin E3 ligase. However, the deubiquitinating enzymes, which regulate MSH2 remain unknown. Here we report that ubiquitin-specific peptidase 10 (USP10) interacts with and stabilizes MSH2. USP10 deubiquitinates MSH2 in vitro and in vivo Moreover, the protein level of MSH2 is positively correlated with the USP10 protein level in a panel of lung cancer cell lines. Knockdown of USP10 in lung cancer cells exhibits increased cell survival and decreased apoptosis upon the treatment of DNA-methylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and antimetabolite 6-thioguanine (6-TG). The above phenotypes can be rescued by ectopic expression of MSH2. In addition, knockdown of MSH2 decreases the cellular mismatch repair activity. Overall, our results suggest a novel USP10-MSH2 pathway regulating DNA damage response and DNA mismatch repair.
Collapse
Affiliation(s)
- Mu Zhang
- From the Department of Pathology and Cell Biology, Morsani College of Medicine, Tampa, Florida 33612
| | - Chen Hu
- From the Department of Pathology and Cell Biology, Morsani College of Medicine, Tampa, Florida 33612
| | - Dan Tong
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Shengyan Xiang
- From the Department of Pathology and Cell Biology, Morsani College of Medicine, Tampa, Florida 33612
| | - Kendra Williams
- From the Department of Pathology and Cell Biology, Morsani College of Medicine, Tampa, Florida 33612
| | - Wenlong Bai
- From the Department of Pathology and Cell Biology, Morsani College of Medicine, Tampa, Florida 33612, Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, and
| | - Guo-Min Li
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Gerold Bepler
- Molecular Therapeutics Program, Karmanos Cancer Institute, Detroit, Michigan 48201
| | - Xiaohong Zhang
- From the Department of Pathology and Cell Biology, Morsani College of Medicine, Tampa, Florida 33612, Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, and
| |
Collapse
|
108
|
Regulation of mismatch repair by histone code and posttranslational modifications in eukaryotic cells. DNA Repair (Amst) 2015; 38:68-74. [PMID: 26719139 DOI: 10.1016/j.dnarep.2015.11.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 09/09/2015] [Accepted: 11/30/2015] [Indexed: 12/15/2022]
Abstract
DNA mismatch repair (MMR) protects genome integrity by correcting DNA replication-associated mispairs, modulating DNA damage-induced cell cycle checkpoints and regulating homeologous recombination. Loss of MMR function leads to cancer development. This review describes progress in understanding how MMR is carried out in the context of chromatin and how chromatin organization/compaction, epigenetic mechanisms and posttranslational modifications of MMR proteins influence and regulate MMR in eukaryotic cells.
Collapse
|
109
|
Peña-Diaz J, Rasmussen LJ. Approaches to diagnose DNA mismatch repair gene defects in cancer. DNA Repair (Amst) 2015; 38:147-154. [PMID: 26708048 DOI: 10.1016/j.dnarep.2015.11.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 08/12/2015] [Accepted: 11/30/2015] [Indexed: 12/12/2022]
Abstract
The DNA repair pathway mismatch repair (MMR) is responsible for the recognition and correction of DNA biosynthetic errors caused by inaccurate nucleotide incorporation during replication. Faulty MMR leads to failure to address the mispairs or insertion deletion loops (IDLs) left behind by the replicative polymerases and results in increased mutation load at the genome. The realization that defective MMR leads to a hypermutation phenotype and increased risk of tumorigenesis highlights the relevance of this pathway for human disease. The association of MMR defects with increased risk of cancer development was first observed in colorectal cancer patients that carried inactivating germline mutations in MMR genes and the disease was named as hereditary non-polyposis colorectal cancer (HNPCC). Currently, a growing list of cancers is found to be MMR defective and HNPCC has been renamed Lynch syndrome (LS) partly to include the associated risk of developing extra-colonic cancers. In addition, a number of non-hereditary, mostly epigenetic, alterations of MMR genes have been described in sporadic tumors. Besides conferring a strong cancer predisposition, genetic or epigenetic inactivation of MMR genes also renders cells resistant to some chemotherapeutic agents. Therefore, diagnosis of MMR deficiency has important implications for the management of the patients, the surveillance of their relatives in the case of LS and for the choice of treatment. Some of the alterations found in MMR genes have already been well defined and their pathogenicity assessed. Despite this substantial wealth of knowledge, the effects of a large number of alterations remain uncharacterized (variants of uncertain significance, VUSs). The advent of personalized genomics is likely to increase the list of VUSs found in MMR genes and anticipates the need of diagnostic tools for rapid assessment of their pathogenicity. This review describes current tools and future strategies for addressing the relevance of MMR gene alterations in human disease.
Collapse
Affiliation(s)
- Javier Peña-Diaz
- Center for Healthy Aging, Department of Neuroscience and Pharmacology, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Lene Juel Rasmussen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
110
|
Li L, Yang XJ. Tubulin acetylation: responsible enzymes, biological functions and human diseases. Cell Mol Life Sci 2015; 72:4237-55. [PMID: 26227334 PMCID: PMC11113413 DOI: 10.1007/s00018-015-2000-5] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 07/22/2015] [Accepted: 07/24/2015] [Indexed: 12/28/2022]
Abstract
Microtubules have important functions ranging from maintenance of cell morphology to subcellular transport, cellular signaling, cell migration, and formation of cell polarity. At the organismal level, microtubules are crucial for various biological processes, such as viral entry, inflammation, immunity, learning and memory in mammals. Microtubules are subject to various covalent modifications. One such modification is tubulin acetylation, which is associated with stable microtubules and conserved from protists to humans. In the past three decades, this reversible modification has been studied extensively. In mammals, its level is mainly governed by opposing actions of α-tubulin acetyltransferase 1 (ATAT1) and histone deacetylase 6 (HDAC6). Knockout studies of the mouse enzymes have yielded new insights into biological functions of tubulin acetylation. Abnormal levels of this modification are linked to neurological disorders, cancer, heart diseases and other pathological conditions, thereby yielding important therapeutic implications. This review summarizes related studies and concludes that tubulin acetylation is important for regulating microtubule architecture and maintaining microtubule integrity. Together with detyrosination, glutamylation and other modifications, tubulin acetylation may form a unique 'language' to regulate microtubule structure and function.
Collapse
Affiliation(s)
- Lin Li
- Rosalind and Morris Goodman Cancer Research Center, Montreal, QC, H3A 1A3, Canada
- Department of Medicine, Montreal, QC, H3A 1A3, Canada
| | - Xiang-Jiao Yang
- Rosalind and Morris Goodman Cancer Research Center, Montreal, QC, H3A 1A3, Canada.
- Department of Medicine, Montreal, QC, H3A 1A3, Canada.
- Department of Biochemistry, McGill University, Montreal, QC, H3A 1A3, Canada.
- McGill University Health Center, Montreal, QC, H3A 1A3, Canada.
| |
Collapse
|
111
|
Shen Y, Wei W, Zhou DX. Histone Acetylation Enzymes Coordinate Metabolism and Gene Expression. TRENDS IN PLANT SCIENCE 2015; 20:614-621. [PMID: 26440431 DOI: 10.1016/j.tplants.2015.07.005] [Citation(s) in RCA: 238] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 07/23/2015] [Indexed: 05/18/2023]
Abstract
Histone lysine acetylation is well known for being important in the epigenetic regulation of gene expression in eukaryotic cells. Recent studies have uncovered a plethora of acetylated proteins involved in important metabolic pathways, such as photosynthesis and respiration in plants. Enzymes involved in histone acetylation and deacetylation are being identified as regulators of acetylation of metabolic enzymes. Importantly, key metabolites, such as acetyl-CoA and NAD(+), are involved in protein acetylation and deacetylation processes, and their cellular levels may regulate the activity of histone acetyltransferases (HAT) and deacetylases (HDAC). Further research is required to determine whether and how HATs and HDACs sense cellular metabolite signals to control gene expression and metabolic enzyme activity through lysine acetylation and deacetylation.
Collapse
Affiliation(s)
- Yuan Shen
- Institute of Plant Sciences Paris-Saclay (IPS2), University Paris-sud 11, 91405 Orsay, France
| | - Wei Wei
- Institute of interdisciplinary Scientific Research, Jianghan University, 430056, Wuhan, China
| | - Dao-Xiu Zhou
- Institute of Plant Sciences Paris-Saclay (IPS2), University Paris-sud 11, 91405 Orsay, France.
| |
Collapse
|
112
|
Radhakrishnan R, Li Y, Xiang S, Yuan F, Yuan Z, Telles E, Fang J, Coppola D, Shibata D, Lane WS, Zhang Y, Zhang X, Seto E. Histone deacetylase 10 regulates DNA mismatch repair and may involve the deacetylation of MutS homolog 2. J Biol Chem 2015. [PMID: 26221039 DOI: 10.1074/jbc.m114.612945] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MutS homolog 2 (MSH2) is an essential DNA mismatch repair (MMR) protein. It interacts with MSH6 or MSH3 to form the MutSα or MutSβ complex, respectively, which recognize base-base mispairs and insertions/deletions and initiate the repair process. Mutation or dysregulation of MSH2 causes genomic instability that can lead to cancer. MSH2 is acetylated at its C terminus, and histone deacetylase (HDAC6) deacetylates MSH2. However, whether other regions of MSH2 can be acetylated and whether other histone deacetylases (HDACs) and histone acetyltransferases (HATs) are involved in MSH2 deacetylation/acetylation is unknown. Here, we report that MSH2 can be acetylated at Lys-73 near the N terminus. Lys-73 is highly conserved across many species. Although several Class I and II HDACs interact with MSH2, HDAC10 is the major enzyme that deacetylates MSH2 at Lys-73. Histone acetyltransferase HBO1 might acetylate this residue. HDAC10 overexpression in HeLa cells stimulates cellular DNA MMR activity, whereas HDAC10 knockdown decreases DNA MMR activity. Thus, our study identifies an HDAC10-mediated regulatory mechanism controlling the DNA mismatch repair function of MSH2.
Collapse
Affiliation(s)
| | - Yixuan Li
- From the Departments of Molecular Oncology and
| | - Shengyan Xiang
- the Department of Pathology and Cell Biology, University of South Florida (USF) Morsani College of Medicine, Tampa, Florida 33612
| | - Fenghua Yuan
- the Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33136, and
| | | | | | - Jia Fang
- From the Departments of Molecular Oncology and
| | - Domenico Coppola
- Gastroenterology, and H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612
| | - David Shibata
- Gastroenterology, and H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612
| | - William S Lane
- the Mass Spectrometry and Proteomics Resource Laboratory, Harvard University, Cambridge, Massachusetts 02138
| | - Yanbin Zhang
- the Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33136, and
| | - Xiaohong Zhang
- From the Departments of Molecular Oncology and the Department of Pathology and Cell Biology, University of South Florida (USF) Morsani College of Medicine, Tampa, Florida 33612,
| | - Edward Seto
- From the Departments of Molecular Oncology and
| |
Collapse
|
113
|
Tong D, Ortega J, Kim C, Huang J, Gu L, Li GM. Arsenic Inhibits DNA Mismatch Repair by Promoting EGFR Expression and PCNA Phosphorylation. J Biol Chem 2015; 290:14536-41. [PMID: 25907674 DOI: 10.1074/jbc.m115.641399] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Indexed: 01/04/2023] Open
Abstract
Both genotoxic and non-genotoxic chemicals can act as carcinogens. However, while genotoxic compounds lead directly to mutations that promote unregulated cell growth, the mechanism by which non-genotoxic carcinogens lead to cellular transformation is poorly understood. Using a model non-genotoxic carcinogen, arsenic, we show here that exposure to arsenic inhibits mismatch repair (MMR) in human cells, possibly through its ability to stimulate epidermal growth factor receptor (EGFR)-dependent tyrosine phosphorylation of proliferating cellular nuclear antigen (PCNA). HeLa cells exposed to exogenous arsenic demonstrate a dose- and time-dependent increase in the levels of EGFR and tyrosine 211-phosphorylated PCNA. Cell extracts derived from arsenic-treated HeLa cells are defective in MMR, and unphosphorylated recombinant PCNA restores normal MMR activity to these extracts. These results suggest a model in which arsenic induces expression of EGFR, which in turn phosphorylates PCNA, and phosphorylated PCNA then inhibits MMR, leading to increased susceptibility to carcinogenesis. This study suggests a putative novel mechanism of action for arsenic and other non-genotoxic carcinogens.
Collapse
Affiliation(s)
- Dan Tong
- From the College of Life Sciences, Wuhan University, Wuhan, China 430072, Department of Toxicology and Cancer Biology, Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky 40536, and Tsinghua University School of Medicine, Beijing, China 100084
| | - Janice Ortega
- Department of Toxicology and Cancer Biology, Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky 40536, and
| | - Christine Kim
- Department of Toxicology and Cancer Biology, Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky 40536, and
| | - Jian Huang
- From the College of Life Sciences, Wuhan University, Wuhan, China 430072
| | - Liya Gu
- Department of Toxicology and Cancer Biology, Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky 40536, and
| | - Guo-Min Li
- From the College of Life Sciences, Wuhan University, Wuhan, China 430072, Department of Toxicology and Cancer Biology, Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky 40536, and Tsinghua University School of Medicine, Beijing, China 100084
| |
Collapse
|
114
|
Mortenson JB, Heppler LN, Banks CJ, Weerasekara VK, Whited MD, Piccolo SR, Johnson WE, Thompson JW, Andersen JL. Histone deacetylase 6 (HDAC6) promotes the pro-survival activity of 14-3-3ζ via deacetylation of lysines within the 14-3-3ζ binding pocket. J Biol Chem 2015; 290:12487-96. [PMID: 25770209 DOI: 10.1074/jbc.m114.607580] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Indexed: 12/18/2022] Open
Abstract
The phospho-binding protein 14-3-3ζ acts as a signaling hub controlling a network of interacting partners and oncogenic pathways. We show here that lysines within the 14-3-3ζ binding pocket and protein-protein interface can be modified by acetylation. The positive charge on two of these lysines, Lys(49) and Lys(120), is critical for coordinating 14-3-3ζ-phosphoprotein interactions. Through screening, we identified HDAC6 as the Lys(49)/Lys(120) deacetylase. Inhibition of HDAC6 blocks 14-3-3ζ interactions with two well described interacting partners, Bad and AS160, which triggers their dephosphorylation at Ser(112) and Thr(642), respectively. Expression of an acetylation-refractory K49R/K120R mutant of 14-3-3ζ rescues both the HDAC6 inhibitor-induced loss of interaction and Ser(112)/Thr(642) phosphorylation. Furthermore, expression of the K49R/K120R mutant of 14-3-3ζ inhibits the cytotoxicity of HDAC6 inhibition. These data demonstrate a novel role for HDAC6 in controlling 14-3-3ζ binding activity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - William E Johnson
- the Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts 02215, and
| | - J Will Thompson
- the Institute for Genome Sciences and Policy, Duke University, Medical Center, Durham, North Carolina 27710
| | | |
Collapse
|