101
|
Watanabe S, Kawamoto S, Ohtani N, Hara E. Impact of senescence-associated secretory phenotype and its potential as a therapeutic target for senescence-associated diseases. Cancer Sci 2017; 108:563-569. [PMID: 28165648 PMCID: PMC5406532 DOI: 10.1111/cas.13184] [Citation(s) in RCA: 244] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/19/2017] [Accepted: 01/31/2017] [Indexed: 12/12/2022] Open
Abstract
"Cellular senescence" is a state in which cells undergo irreversible cell cycle arrest in response to a variety of cellular stresses. Once cells senesce, they are strongly resistant to any mitogens, including oncogenic stimuli. Therefore, cellular senescence has been assumed to be a potent anticancer mechanism. Although irreversible cell-cycle arrest is traditionally considered the major characteristic of senescent cells, recent studies have revealed some additional functions. Most noteworthy is the increased secretion of various secretory proteins, such as inflammatory cytokines, chemokines, growth factors, and MMPs, into the surrounding extracellular fluid. These newly recognized senescent phenotypes, termed senescence-associated secretory phenotypes (SASPs), reportedly contribute to tumor suppression, wound healing, embryonic development, and even tumorigenesis promotion. Thus, SASPs appear to be beneficial or deleterious, depending on the biological context. As senescent cells are known to accumulate during the aging process in vivo, it is quite possible that their accumulation in aged tissues promotes age-associated functional decline and various diseases, including cancers, at least to some extent. Here, we focus on and discuss the functional and regulatory network of SASPs toward opening up new possibilities for controlling aging and aging-associated diseases.
Collapse
Affiliation(s)
- Sugiko Watanabe
- Department of Molecular Microbiology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Shimpei Kawamoto
- Department of Molecular Microbiology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Naoko Ohtani
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Japan
| | - Eiji Hara
- Department of Molecular Microbiology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan.,The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
102
|
Hosogane M, Bosu L, Fukumoto E, Yamada H, Sato S, Nakayama K. Geminin is an indispensable inhibitor of Cdt1 in mouse embryonic stem cells. Genes Cells 2017; 22:360-375. [DOI: 10.1111/gtc.12482] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/26/2017] [Indexed: 11/26/2022]
Affiliation(s)
- Masaki Hosogane
- Department of Cell Proliferation, United Center for Advanced Research and Translational Medicine, Graduate School of Medicine; Tohoku University; 2-1 Seiryo-machi, Aoba-ku Sendai Miyagi 980-8575 Japan
| | - Lena Bosu
- Department of Cell Proliferation, United Center for Advanced Research and Translational Medicine, Graduate School of Medicine; Tohoku University; 2-1 Seiryo-machi, Aoba-ku Sendai Miyagi 980-8575 Japan
| | - Emiko Fukumoto
- Department of Cell Proliferation, United Center for Advanced Research and Translational Medicine, Graduate School of Medicine; Tohoku University; 2-1 Seiryo-machi, Aoba-ku Sendai Miyagi 980-8575 Japan
| | - Hidetoshi Yamada
- Department of Cell Proliferation, United Center for Advanced Research and Translational Medicine, Graduate School of Medicine; Tohoku University; 2-1 Seiryo-machi, Aoba-ku Sendai Miyagi 980-8575 Japan
| | - Soichiro Sato
- Department of Cell Proliferation, United Center for Advanced Research and Translational Medicine, Graduate School of Medicine; Tohoku University; 2-1 Seiryo-machi, Aoba-ku Sendai Miyagi 980-8575 Japan
| | - Keiko Nakayama
- Department of Cell Proliferation, United Center for Advanced Research and Translational Medicine, Graduate School of Medicine; Tohoku University; 2-1 Seiryo-machi, Aoba-ku Sendai Miyagi 980-8575 Japan
| |
Collapse
|
103
|
Gu JJ, Kaufman GP, Mavis C, Czuczman MS, Hernandez-Ilizaliturri FJ. Mitotic catastrophe and cell cycle arrest are alternative cell death pathways executed by bortezomib in rituximab resistant B-cell lymphoma cells. Oncotarget 2017; 8:12741-12753. [PMID: 28055975 PMCID: PMC5355050 DOI: 10.18632/oncotarget.14405] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 12/05/2016] [Indexed: 12/20/2022] Open
Abstract
The ubiqutin-proteasome system (UPS) plays a role in rituximab-chemotherapy resistance and bortezomib (BTZ) possesses caspase-dependent (i.e. Bak stabilization) and a less characterized caspase-independent mechanism-of-action(s). Here, we define BTZ-induced caspase-independent cell death pathways. A panel of rituximab-sensitive (RSCL), rituximab-resistant cell lines (RRCL) and primary tumor cells derived from lymphoma patients (N = 13) were exposed to BTZ. Changes in cell viability, cell-cycle, senescence, and mitotic index were quantified. In resting conditions, RRCL exhibits a low-proliferation rate, accumulation of cells in S-phase and senescence. Exposure of RRCL to BTZ reduces cell senescence, induced G2-M phase cell-cycle arrest, and is associated with mitotic catastrophe. BTZ stabilized p21, CDC2, and cyclin B in RRCL and in primary tumor cells. Transient p21 knockdown alleviates BTZ-induced senescence inhibition, G2-M cell cycle blockade, and mitotic catastrophe. Our data suggest that BTZ can induce apoptosis or mitotic catastrophe and that p21 has a pivotal role in BTZ activity against RRCL.
Collapse
Affiliation(s)
- Juan J Gu
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Gregory P Kaufman
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, Celgene Corporation, Summit, NJ, USA
| | - Cory Mavis
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | - Francisco J Hernandez-Ilizaliturri
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
| |
Collapse
|
104
|
Cheng L, Yang Q, Li C, Dai L, Yang Y, Wang Q, Ding Y, Zhang J, Liu L, Zhang S, Fan P, Hu X, Xiang R, Yu D, Wei Y, Deng H. DDA1, a novel oncogene, promotes lung cancer progression through regulation of cell cycle. J Cell Mol Med 2017; 21:1532-1544. [PMID: 28211159 PMCID: PMC5542901 DOI: 10.1111/jcmm.13084] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/07/2016] [Indexed: 02/05/2023] Open
Abstract
Lung cancer is globally widespread and associated with high morbidity and mortality. DDA1 (DET1 and DDB1 associated 1) was first discovered and registered in the GenBank database by our colleagues. DDA1, an evolutionarily conserved gene, might have significant functions. Recent reports have demonstrated that DDA1 is linked to the ubiquitin–proteasome pathway and facilitates the degradation of target proteins. However, the function of DDA1 in lung cancer was previously unknown. This study aimed to investigate whether DDA1 contributes to tumorigenesis and progression of lung cancer. We found that the expression of DDA1 in normal lung cells and tissue was significantly lower than that in lung cancer and was associated with poor prognosis. DDA1 overexpression promoted proliferation of lung tumour cells and facilitated cell cycle progression in vitro and subcutaneous xenograft tumour progression in vivo. Mechanistically, this was associated with the regulation of S phase and cyclins including cyclin D1/D3/E1. These results indicate that DDA1 promotes lung cancer progression, potentially through promoting cyclins and cell cycle progression. Therefore, DDA1 may be a potential novel target for lung cancer treatment, and a biomarker for tumour prognosis.
Collapse
Affiliation(s)
- Lin Cheng
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qianmei Yang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Can Li
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lei Dai
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yang Yang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qingnan Wang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Ding
- Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junfeng Zhang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lei Liu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shuang Zhang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ping Fan
- Huaxi Biobank, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xun Hu
- Huaxi Biobank, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rong Xiang
- Department of Immunology, Nankai University School of Medicine, Tianjin, China
| | - Dechao Yu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hongxin Deng
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
105
|
Kollarovic G, Studencka M, Ivanova L, Lauenstein C, Heinze K, Lapytsko A, Talemi SR, Figueiredo AS, Schaber J. To senesce or not to senesce: how primary human fibroblasts decide their cell fate after DNA damage. Aging (Albany NY) 2016; 8:158-77. [PMID: 26830321 PMCID: PMC4761720 DOI: 10.18632/aging.100883] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Excessive DNA damage can induce an irreversible cell cycle arrest, called senescence, which is generally perceived as an important tumour-suppressor mechanism. However, it is unclear how cells decide whether to senesce or not after DNA damage. By combining experimental data with a parameterized mathematical model we elucidate this cell fate decision at the G1-S transition. Our model provides a quantitative and conceptually new understanding of how human fibroblasts decide whether DNA damage is beyond repair and senesce. Model and data imply that the G1-S transition is regulated by a bistable hysteresis switch with respect to Cdk2 activity, which in turn is controlled by the Cdk2/p21 ratio rather than cyclin abundance. We experimentally confirm the resulting predictions that to induce senescence i) in healthy cells both high initial and elevated background DNA damage are necessary and sufficient, and ii) in already damaged cells much lower additional DNA damage is sufficient. Our study provides a mechanistic explanation of a) how noise in protein abundances allows cells to overcome the G1-S arrest even with substantial DNA damage, potentially leading to neoplasia, and b) how accumulating DNA damage with age increasingly sensitizes cells for senescence.
Collapse
Affiliation(s)
- Gabriel Kollarovic
- Institute for Experimental Internal Medicine, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany.,Cancer Research Institute, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Maja Studencka
- Institute for Experimental Internal Medicine, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Lyubomira Ivanova
- Institute for Experimental Internal Medicine, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Claudia Lauenstein
- Institute for Experimental Internal Medicine, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Kristina Heinze
- Institute for Experimental Internal Medicine, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Anastasiya Lapytsko
- Institute for Experimental Internal Medicine, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Soheil Rastgou Talemi
- Institute for Experimental Internal Medicine, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Ana Sofia Figueiredo
- Institute for Experimental Internal Medicine, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Jörg Schaber
- Institute for Experimental Internal Medicine, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
106
|
Johmura Y, Nakanishi M. Multiple facets of p53 in senescence induction and maintenance. Cancer Sci 2016; 107:1550-1555. [PMID: 27560979 PMCID: PMC5132285 DOI: 10.1111/cas.13060] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/20/2016] [Accepted: 08/19/2016] [Indexed: 12/28/2022] Open
Abstract
Cellular senescence is a state of durable cell cycle arrest with metabolic activities distinct from those of the proliferative state. Since senescence was originally reported to be induced by various genotoxic stressors, such as telomere erosion and oncogenic signaling, it has been proposed to play a pivotal role in aging‐related changes and as an antitumorigenic barrier in vivo. However, the mechanisms underlying its induction and maintenance remain entirely elusive. We have recently found that abrupt activation of p53 at G2 results in a cell skipping mitosis and subsequently undergoing senescence. Surprisingly, we have also found that downregulation of p53 by SCFFbxo22 is crucial for the induction of a senescence‐associated phenotype. In this review, we provide an overview of recent advances in understanding the mechanisms underlying the timing and magnitude of activation of p53 during senescence.
Collapse
Affiliation(s)
- Yoshikazu Johmura
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Makoto Nakanishi
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan.,Division of Cancer Cell Biology, Department of Cancer Biology, Instuite of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
107
|
Li D, Fu J, Du M, Zhang H, Li L, Cen J, Li W, Chen X, Lin Y, Conway EM, Pikarsky E, Wang H, Pan G, Ji Y, Wang H, Hui L. Hepatocellular carcinoma repression by TNFα-mediated synergistic lethal effect of mitosis defect-induced senescence and cell death sensitization. Hepatology 2016; 64:1105-20. [PMID: 27177758 PMCID: PMC5089570 DOI: 10.1002/hep.28637] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 04/22/2016] [Accepted: 04/26/2016] [Indexed: 12/19/2022]
Abstract
UNLABELLED Hepatocellular carcinoma (HCC) is a cancer lacking effective therapies. Several measures have been proposed to treat HCCs, such as senescence induction, mitotic inhibition, and cell death promotion. However, data from other cancers suggest that single use of these approaches may not be effective. Here, by genetic targeting of Survivin, an inhibitor of apoptosis protein (IAP) that plays dual roles in mitosis and cell survival, we identified a tumor necrosis factor alpha (TNFα)-mediated synergistic lethal effect between senescence and apoptosis sensitization in malignant HCCs. Survivin deficiency results in mitosis defect-associated senescence in HCC cells, which triggers local inflammation and increased TNFα. Survivin inactivation also sensitizes HCC cells to TNFα-triggered cell death, which leads to marked HCC regression. Based on these findings, we designed a combination treatment using mitosis inhibitor and proapoptosis compounds. This treatment recapitulates the therapeutic effect of Survivin deletion and effectively eliminates HCCs, thus representing a potential strategy for HCC therapy. CONCLUSION Survivin ablation dramatically suppresses human and mouse HCCs by triggering senescence-associated TNFα and sensitizing HCC cells to TNFα-induced cell death. Combined use of mitotic inhibitor and second mitochondrial-derived activator of caspases mimetic can induce senescence-associated TNFα and enhance TNFα-induced cell death and synergistically eliminate HCC. (Hepatology 2016;64:1105-1120).
Collapse
Affiliation(s)
- Dan Li
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Jing Fu
- Eastern Hepatobiliary Surgery HospitalSecond Military Medical UniversityShanghaiChina
| | - Min Du
- Department of PathologyZhongshan HospitalFudan UniversityShanghaiChina
| | - Haibin Zhang
- Eastern Hepatobiliary Surgery HospitalSecond Military Medical UniversityShanghaiChina
| | - Lu Li
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Jin Cen
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Weiyun Li
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Xiaotao Chen
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Yunfei Lin
- Center for Drug Safety Evaluation and ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Edward M. Conway
- Center for Blood ResearchDivision of Hematology‐OncologyDepartment of MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Eli Pikarsky
- Department of Immunology and Cancer ResearchInstitute for Medical Research Israel Canada, and Department of Pathology, Hadassah‐Hebrew University Medical CenterJerusalemIsrael
| | - Hongyan Wang
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Guoyu Pan
- Center for Drug Safety Evaluation and ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Yuan Ji
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Hong‐Yang Wang
- Eastern Hepatobiliary Surgery HospitalSecond Military Medical UniversityShanghaiChina
| | - Lijian Hui
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
108
|
Takeshita K, Ogawa HI, Maeda T. Structural chromosome aberrations cause swelling of the nucleus. Genes Environ 2016; 38:22. [PMID: 27733886 PMCID: PMC5045629 DOI: 10.1186/s41021-016-0047-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 05/27/2016] [Indexed: 11/24/2022] Open
Abstract
Background Carcinogens are known to cause swelling of the mammalian cell nucleus. However, the mechanism of the swelling and its toxicological significance have not been fully elucidated. Since nuclear swelling (NS hereafter) has been frequently observed in chromosomal aberration (CA hereafter) tests (in vitro), the relationship between NS and CAs was investigated in this study. Results In a short-term CA test using the fibroblast CHL cell line, the appearance of NS increased in a dose-dependent manner after exposure to six types of clastogens (mitomycin C, methyl methane sulfonate, 1-methyl-3-nitro-1-nitrosoguanidine, benzo[a]pyrene, cyclophosphamide monohydrate, and 9,10-dimethyl-2-benzanthracene), and a strong correlation was found between NS (%) and CAs (%) at each dosage. Therefore, we hypothesized that clastogens cause NS in cultured mammalian cells, since the mouse lymphoma L5178Y cell line is known to have a similar sensitivity to clastogens. Thus, we measured NS for 14 compounds (clastogens) that are known to induce structural CAs, 4 aneugens, and 12 non-mutagenes. Almost all clastogens caused NS of more than 5 %, which increased in a dose-dependent manner. Among the aneugens, colchicine, and diethylstilbestrol caused the same level of NS % as the clastogens, while carbendazim and trichlorfon caused a similar level of NS % as the clastogens only at higher levels of cytotoxicity. Almost all the non-mutagens caused less than 5 % NS. Conclusions These results strongly suggest that NS is mainly caused by structural aberrations in the nucleus during interphase of the cell cycle.
Collapse
Affiliation(s)
- Kenji Takeshita
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Fukuoka, 808-0196 Japan ; UBE Scientific Analysis Laboratory, Inc, 1978-5 Kogushi, Ube, Yamaguchi 755-8633 Japan
| | - Hiroaki I Ogawa
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Fukuoka, 808-0196 Japan
| | - Toshinari Maeda
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Fukuoka, 808-0196 Japan
| |
Collapse
|
109
|
Matsumura K, Nakata S, Taniguchi K, Ii H, Ashihara E, Kageyama S, Kawauchi A, Yoshiki T. Depletion of γ-glutamylcyclotransferase inhibits breast cancer cell growth via cellular senescence induction mediated by CDK inhibitor upregulation. BMC Cancer 2016; 16:748. [PMID: 27658708 PMCID: PMC5034417 DOI: 10.1186/s12885-016-2779-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 09/14/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Chromosome 7 open reading frame 24 (C7orf24) was originally identified as a highly expressed protein in various types of cancer, and later shown to be a γ-glutamylcyclotransferase (GGCT). GGCT depletion in cancer cells has anti-proliferative effects in vitro and in vivo, and it is therefore considered a promising candidate as a therapeutic target. However, the cellular events induced by GGCT depletion remain unclear. METHODS GGCT was depleted by siRNA in MCF7, MDA-MB-231, PC3, A172, Hela, and LNCaP cells. Induction of cellular senescence was evaluated with senescence-associated β-galactosidase (SA-β-Gal) staining. Expression levels of p21WAF1/CIP1 and p16INK4A were assessed by qRT-PCR and Western blotting. Effects of simultaneous double knockdown of p21WAF1/CIP1 and p16INK4A together with GGCT on cell cycle regulation and cell growth was measured by flow cytometry, and trypan blue dye exclusion test. RESULTS We found that GGCT knockdown induces significant cellular senescence in various cancer cells. Cyclin dependent kinase inhibitor p21WAF1/CIP1 and/or p16INK4A were upregulated in all cell lines tested. Simultaneous knockdown of p21WAF1/CIP1 recovered the cell cycle arrest, attenuated cellular senescence induction, and rescued the subsequent growth inhibition in GGCT-silenced MCF7 breast cancer cells. In contrast, in GGCT silenced MDA-MB-231 breast cancer cells, GGCT depletion upregulated p16INK4A, which played a regulatory role in senescence induction, instead of p21WAF1/CIP1. CONCLUSIONS Our findings demonstrate that induction of cellular senescence mediated by the upregulation of cyclin-dependent kinase inhibitors is a major event underlying the anti-proliferative effect of GGCT depletion in breast cancer cells, highlighting the potential of GGCT blockade as a therapeutic strategy to induce cellular senescence.
Collapse
Affiliation(s)
- Kengo Matsumura
- Department of Clinical Oncology, Kyoto Pharmaceutical University, Misasagi-Nakauchicho 5, Yamashinaku, Kyoto, 607-8414, Japan
| | - Susumu Nakata
- Department of Clinical Oncology, Kyoto Pharmaceutical University, Misasagi-Nakauchicho 5, Yamashinaku, Kyoto, 607-8414, Japan.
| | - Keiko Taniguchi
- Department of Clinical Oncology, Kyoto Pharmaceutical University, Misasagi-Nakauchicho 5, Yamashinaku, Kyoto, 607-8414, Japan
| | - Hiromi Ii
- Department of Clinical Oncology, Kyoto Pharmaceutical University, Misasagi-Nakauchicho 5, Yamashinaku, Kyoto, 607-8414, Japan
| | - Eishi Ashihara
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Misasagi-Nakauchicho 5, Yamashinaku, Kyoto, 607-8414, Japan
| | - Susumu Kageyama
- Department of Urology, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| | - Akihiro Kawauchi
- Department of Urology, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| | - Tatsuhiro Yoshiki
- Department of Clinical Oncology, Kyoto Pharmaceutical University, Misasagi-Nakauchicho 5, Yamashinaku, Kyoto, 607-8414, Japan.,Department of Urology, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| |
Collapse
|
110
|
Palacio L, Krishnan V, Le NLO, Sharpless NE, Beauséjour CM. Sustained p16 INK4a expression is required to prevent IR-induced tumorigenesis in mice. Oncogene 2016; 36:1309-1314. [PMID: 27568978 PMCID: PMC5336385 DOI: 10.1038/onc.2016.298] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 06/29/2016] [Accepted: 07/17/2016] [Indexed: 12/17/2022]
Abstract
Exposure of murine and human tissues to ionizing radiation (IR) induces the expression of p16INK4a, a tumor suppressor gene and senescence/aging biomarker. Increased p16INK4a expression is often delayed several weeks post exposure to IR. In this context, it remains unclear if it occurs to suppress aberrant cellular growth of potentially transformed cells or is simply a result of IR-induced loss of tissue homeostasis. To address this question, we used a conditional p16INK4a null mouse model and determined the impact of p16INK4a inactivation long-term post exposure to IR. We found that, in vitro, bone marrow stromal cells exposed to IR enter DNA replication following p16INK4a inactivation. However, these cells did not resume growth; instead, they mostly underwent cell cycle arrest in G2. Similarly, delayed inactivation of p16INK4a in mice several weeks post exposure to IR resulted in increased BrdU incorporation and cancer incidence. In fact, we found that the onset of tumorigenesis was similar whether p16INK4a was inactivated before or after exposure to IR. Overall, our results suggest that IR-induced p16INK4a dependent growth arrest is reversible in mice and that sustained p16INK4a expression is necessary to protect against tumorigenesis.
Collapse
Affiliation(s)
- L Palacio
- Centre de Recherche du Centre Hospitalier Universitaire Ste-Justine, Montréal, Canada.,Département de Pharmacologie, Université de Montréal, Montréal, Canada
| | - V Krishnan
- Centre de Recherche du Centre Hospitalier Universitaire Ste-Justine, Montréal, Canada.,Département de Pharmacologie, Université de Montréal, Montréal, Canada
| | - N L O Le
- Centre de Recherche du Centre Hospitalier Universitaire Ste-Justine, Montréal, Canada
| | - N E Sharpless
- Departments of Medicine and Genetics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - C M Beauséjour
- Centre de Recherche du Centre Hospitalier Universitaire Ste-Justine, Montréal, Canada.,Département de Pharmacologie, Université de Montréal, Montréal, Canada
| |
Collapse
|
111
|
Feringa FM, Krenning L, Koch A, van den Berg J, van den Broek B, Jalink K, Medema RH. Hypersensitivity to DNA damage in antephase as a safeguard for genome stability. Nat Commun 2016; 7:12618. [PMID: 27561326 PMCID: PMC5007458 DOI: 10.1038/ncomms12618] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 07/18/2016] [Indexed: 12/25/2022] Open
Abstract
Activation of the DNA-damage response can lead to the induction of an arrest at various stages in the cell cycle. These arrests are reversible in nature, unless the damage is too excessive. Here we find that checkpoint reversibility is lost in cells that are in very late G2, but not yet fully committed to enter mitosis (antephase). We show that antephase cells exit the cell cycle and enter senescence at levels of DNA damage that induce a reversible arrest in early G2. We show that checkpoint reversibility critically depends on the presence of the APC/C inhibitor Emi1, which is degraded just before mitosis. Importantly, ablation of the cell cycle withdrawal mechanism in antephase promotes cell division in the presence of broken chromosomes. Thus, our data uncover a novel, but irreversible, DNA-damage response in antephase that is required to prevent the propagation of DNA damage during cell division.
Collapse
Affiliation(s)
- Femke M Feringa
- Division of Cell Biology I and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Lenno Krenning
- Division of Cell Biology I and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands.,Hubrecht Institute, The Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht 3584CT, The Netherlands
| | - André Koch
- Division of Cell Biology I and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Jeroen van den Berg
- Division of Cell Biology I and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Bram van den Broek
- Division of Cell Biology I and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Kees Jalink
- Division of Cell Biology I and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - René H Medema
- Division of Cell Biology I and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| |
Collapse
|
112
|
Johmura Y, Yamashita E, Shimada M, Nakanishi K, Nakanishi M. Defective DNA repair increases susceptibility to senescence through extension of Chk1-mediated G2 checkpoint activation. Sci Rep 2016; 6:31194. [PMID: 27507734 PMCID: PMC4979019 DOI: 10.1038/srep31194] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/14/2016] [Indexed: 02/03/2023] Open
Abstract
Susceptibility to senescence caused by defective DNA repair is a major hallmark of progeroid syndrome patients, but molecular mechanisms of how defective DNA repair predisposes to senescence are largely unknown. We demonstrate here that suppression of DNA repair pathways extends the duration of Chk1-dependent G2 checkpoint activation and sensitizes cells to senescence through enhancement of mitosis skipping. Extension of G2 checkpoint activation by introduction of the TopBP1 activation domain and the nondegradable mutant of Claspin sensitizes cells to senescence. In contrast, a shortening of G2 checkpoint activation by expression of SIRT6 or depletion of OTUB2 reduces susceptibility to senescence. Fibroblasts from progeroid syndromes tested shows a correlation between an extension of G2 checkpoint activation and an increase in the susceptibility to senescence. These results suggest that extension of G2 checkpoint activation caused by defective DNA repair is critical for senescence predisposition in progeroid syndrome patients.
Collapse
Affiliation(s)
- Yoshikazu Johmura
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Emiri Yamashita
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Midori Shimada
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Keiko Nakanishi
- Department of Perinatology, Institute for Developmental Research, Aichi Human Service Center, 713-8 Kamiya-cho, Kasugai, Aichi 480-0392, Japan
| | - Makoto Nakanishi
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
- Division of Cancer Cell Biology, Department of Cancer Biology, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
113
|
Zhou Z, He M, Shah AA, Wan Y. Insights into APC/C: from cellular function to diseases and therapeutics. Cell Div 2016; 11:9. [PMID: 27418942 PMCID: PMC4944252 DOI: 10.1186/s13008-016-0021-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/27/2016] [Indexed: 02/07/2023] Open
Abstract
Anaphase-promoting complex/cyclosome (APC/C) is a multifunctional ubiquitin-protein ligase that targets different substrates for ubiquitylation and therefore regulates a variety of cellular processes such as cell division, differentiation, genome stability, energy metabolism, cell death, autophagy as well as carcinogenesis. Activity of APC/C is principally governed by two WD-40 domain proteins, Cdc20 and Cdh1, in and beyond cell cycle. In the past decade, the results based on numerous biochemical, 3D structural, mouse genetic and small molecule inhibitor studies have largely attracted our attention into the emerging role of APC/C and its regulation in biological function, human diseases and potential therapeutics. This review will aim to summarize some recently reported insights into APC/C in regulating cellular function, connection of its dysfunction with human diseases and its implication of therapeutics.
Collapse
Affiliation(s)
- Zhuan Zhou
- Department of Cell Biology, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Hillman Cancer Center, HCC2.6c, Pittsburgh, PA 15213 USA
| | - Mingjing He
- Department of Cell Biology, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Hillman Cancer Center, HCC2.6c, Pittsburgh, PA 15213 USA ; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 Sichuan People's Republic of China
| | - Anil A Shah
- Department of Cell Biology, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Hillman Cancer Center, HCC2.6c, Pittsburgh, PA 15213 USA
| | - Yong Wan
- Department of Cell Biology, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Hillman Cancer Center, HCC2.6c, Pittsburgh, PA 15213 USA
| |
Collapse
|
114
|
Shimada M, Goshima T, Matsuo H, Johmura Y, Haruta M, Murata K, Tanaka H, Ikawa M, Nakanishi K, Nakanishi M. Essential role of autoactivation circuitry on Aurora B-mediated H2AX-pS121 in mitosis. Nat Commun 2016; 7:12059. [PMID: 27389782 PMCID: PMC4941122 DOI: 10.1038/ncomms12059] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 05/20/2016] [Indexed: 02/06/2023] Open
Abstract
Proper deposition and activation of Aurora B at the centromere is critical for faithful chromosome segregation in mammals. However, the mechanistic basis for abrupt Aurora B kinase activation at the centromere has not yet been fully understood. We demonstrate here that Aurora B-mediated phosphorylation of histone H2AX at serine 121 (H2AX-pS121) promotes Aurora B autophosphorylation and is essential for proper chromosome segregation. Aurora B-mediated H2AX-pS121 is specifically detected at the centromere during mitosis. H2AX depletion results in a severe defect in activation and deposition of Aurora B at this locus. A phosphomimic mutant of H2AX at S121 interacts with activated Aurora B more efficiently than wild-type in vitro. Taken together, these results propose a model in which Aurora B-mediated H2AX-pS121 probably provide a platform for Aurora B autoactivation circuitry at centromeres and thus play a pivotal role in proper chromosome segregation. Aurora B activation at the centromere is critical for faithful chromosome segregation in mammals. Here the authors show that Aurora B-mediated phosphorylation of histone H2AX at serine 121 is essential for Aurora B auto-activation circuitry at centromeres, ensuring proper chromosome segregation.
Collapse
Affiliation(s)
- Midori Shimada
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Takahiro Goshima
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Hiromi Matsuo
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Yoshikazu Johmura
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Mayumi Haruta
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Kazuhiro Murata
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Hiromitsu Tanaka
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Nagasaki 859-3298, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Keiko Nakanishi
- Department of Perinatology, Institute for Developmental Research, Aichi Human Service Center, 713-8 Kamiya-cho, Kasugai, Aichi 489-0392, Japan
| | - Makoto Nakanishi
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan.,Division of Cancer Cell Biology, Department of Cancer Biology, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
115
|
Affiliation(s)
- Lenno Krenning
- a Division of Cell Biology I and Cancer Genomic Center ; The Netherlands Cancer Institute ; Amsterdam , The Netherlands ;
| | | |
Collapse
|
116
|
Nakayama Y, Inoue T. Antiproliferative Fate of the Tetraploid Formed after Mitotic Slippage and Its Promotion; A Novel Target for Cancer Therapy Based on Microtubule Poisons. Molecules 2016; 21:molecules21050663. [PMID: 27213315 PMCID: PMC6274067 DOI: 10.3390/molecules21050663] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/10/2016] [Accepted: 05/13/2016] [Indexed: 12/20/2022] Open
Abstract
Microtubule poisons inhibit spindle function, leading to activation of spindle assembly checkpoint (SAC) and mitotic arrest. Cell death occurring in prolonged mitosis is the first target of microtubule poisons in cancer therapies. However, even in the presence of microtubule poisons, SAC and mitotic arrest are not permanent, and the surviving cells exit the mitosis without cytokinesis (mitotic slippage), becoming tetraploid. Another target of microtubule poisons-based cancer therapy is antiproliferative fate after mitotic slippage. The ultimate goal of both the microtubule poisons-based cancer therapies involves the induction of a mechanism defined as mitotic catastrophe, which is a bona fide intrinsic oncosuppressive mechanism that senses mitotic failure and responds by driving a cell to an irreversible antiproliferative fate of death or senescence. This mechanism of antiproliferative fate after mitotic slippage is not as well understood. We provide an overview of mitotic catastrophe, and explain new insights underscoring a causal association between basal autophagy levels and antiproliferative fate after mitotic slippage, and propose possible improved strategies. Additionally, we discuss nuclear alterations characterizing the mitotic catastrophe (micronuclei, multinuclei) after mitotic slippage, and a possible new type of nuclear alteration (clustered micronuclei).
Collapse
Affiliation(s)
- Yuji Nakayama
- Division of Functional Genomics, Research Center for Bioscience and Technology, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan.
| | - Toshiaki Inoue
- Division of Human Genome Science, Department of Molecular and Cellular Biology, School of Life Sciences, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan.
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan.
| |
Collapse
|
117
|
Abstract
Ageing-associated changes that affect articular tissues promote the development of osteoarthritis (OA). Although ageing and OA are closely linked, they are independent processes. Several potential mechanisms by which ageing contributes to OA have been elucidated. This Review focuses on the contributions of the following factors: age-related inflammation (also referred to as 'inflammaging'); cellular senescence (including the senescence-associated secretory phenotype (SASP)); mitochondrial dysfunction and oxidative stress; dysfunction in energy metabolism due to reduced activity of 5'-AMP-activated protein kinase (AMPK), which is associated with reduced autophagy; and alterations in cell signalling due to age-related changes in the extracellular matrix. These various processes contribute to the development of OA by promoting a proinflammatory, catabolic state accompanied by increased susceptibility to cell death that together lead to increased joint tissue destruction and defective repair of damaged matrix. The majority of studies to date have focused on articular cartilage, and it will be important to determine whether similar mechanisms occur in other joint tissues. Improved understanding of ageing-related mechanisms that promote OA could lead to the discovery of new targets for therapies that aim to slow or stop the progression of this chronic and disabling condition.
Collapse
Affiliation(s)
- Richard F Loeser
- Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology, 3300 Thurston Building, Campus Box 7280, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7280, USA
| | - John A Collins
- Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology, 3300 Thurston Building, Campus Box 7280, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7280, USA
| | - Brian O Diekman
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, 450 West Drive, Campus Box 7295, Chapel Hill, North Carolina 27599-7295, USA
| |
Collapse
|
118
|
Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat Med 2016; 21:1424-35. [PMID: 26646499 DOI: 10.1038/nm.4000] [Citation(s) in RCA: 1567] [Impact Index Per Article: 174.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/28/2015] [Indexed: 12/14/2022]
Abstract
Cellular senescence, a process that imposes permanent proliferative arrest on cells in response to various stressors, has emerged as a potentially important contributor to aging and age-related disease, and it is an attractive target for therapeutic exploitation. A wealth of information about senescence in cultured cells has been acquired over the past half century; however, senescence in living organisms is poorly understood, largely because of technical limitations relating to the identification and characterization of senescent cells in tissues and organs. Furthermore, newly recognized beneficial signaling functions of senescence suggest that indiscriminately targeting senescent cells or modulating their secretome for anti-aging therapy may have negative consequences. Here we discuss current progress and challenges in understanding the stressors that induce senescence in vivo, the cell types that are prone to senesce, and the autocrine and paracrine properties of senescent cells in the contexts of aging and age-related diseases as well as disease therapy.
Collapse
|
119
|
Tumour resistance in induced pluripotent stem cells derived from naked mole-rats. Nat Commun 2016; 7:11471. [PMID: 27161380 PMCID: PMC4866046 DOI: 10.1038/ncomms11471] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 03/30/2016] [Indexed: 12/19/2022] Open
Abstract
The naked mole-rat (NMR, Heterocephalus glaber), which is the longest-lived rodent species, exhibits extraordinary resistance to cancer. Here we report that NMR somatic cells exhibit a unique tumour-suppressor response to reprogramming induction. In this study, we generate NMR-induced pluripotent stem cells (NMR-iPSCs) and find that NMR-iPSCs do not exhibit teratoma-forming tumorigenicity due to the species-specific activation of tumour-suppressor alternative reading frame (ARF) and a disruption mutation of the oncogene ES cell-expressed Ras (ERAS). The forced expression of Arf in mouse iPSCs markedly reduces tumorigenicity. Furthermore, we identify an NMR-specific tumour-suppression phenotype—ARF suppression-induced senescence (ASIS)—that may protect iPSCs and somatic cells from ARF suppression and, as a consequence, tumorigenicity. Thus, NMR-specific ARF regulation and the disruption of ERAS regulate tumour resistance in NMR-iPSCs. Our findings obtained from studies of NMR-iPSCs provide new insight into the mechanisms of tumorigenicity in iPSCs and cancer resistance in the NMR. The naked mole-rat exhibits an exceptional resistance to cancer. Here, the authors show that induced pluripotent stem cells derived from the naked mole-rat lack teratoma-forming tumorigenicity due to a naked mole-rat-specific ARF-dependent tumour-suppression mechanism.
Collapse
|
120
|
Ercilla A, Llopis A, Feu S, Aranda S, Ernfors P, Freire R, Agell N. New origin firing is inhibited by APC/CCdh1 activation in S-phase after severe replication stress. Nucleic Acids Res 2016; 44:4745-62. [PMID: 26939887 PMCID: PMC4889930 DOI: 10.1093/nar/gkw132] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/23/2016] [Indexed: 01/28/2023] Open
Abstract
Defects in DNA replication and repair are known to promote genomic instability, a hallmark of cancer cells. Thus, eukaryotic cells have developed complex mechanisms to ensure accurate duplication of their genomes. While DNA damage response has been extensively studied in tumour cells, the pathways implicated in the response to replication stress are less well understood especially in non-transformed cells. Here we show that in non-transformed cells, APC/C(Cdh1) is activated upon severe replication stress. Activation of APC/C(Cdh1) prevents new origin firing and induces permanent arrest in S-phase. Moreover, Rad51-mediated homologous recombination is also impaired under these conditions. APC/C(Cdh1) activation in S-phase occurs after replication forks have been processed into double strand breaks. Remarkably, this activation, which correlates with decreased Emi1 levels, is not prevented by ATR/ATM inhibition, but it is abrogated in cells depleted of p53 or p21. Importantly, we found that the lack of APC/C(Cdh1) activity correlated with an increase in genomic instability. Taken together, our results define a new APC/C(Cdh1) function that prevents cell cycle resumption after prolonged replication stress by inhibiting origin firing, which may act as an additional mechanism in safeguarding genome integrity.
Collapse
Affiliation(s)
- Amaia Ercilla
- Departament de Biologia Cellular, Immunologia i Neurociències, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, C/ Casanova 143, 08036 Barcelona, Spain
| | - Alba Llopis
- Departament de Biologia Cellular, Immunologia i Neurociències, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, C/ Casanova 143, 08036 Barcelona, Spain
| | - Sonia Feu
- Departament de Biologia Cellular, Immunologia i Neurociències, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, C/ Casanova 143, 08036 Barcelona, Spain
| | - Sergi Aranda
- Center for Genomic Regulation (CRG), C/ Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Patrik Ernfors
- Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
| | - Raimundo Freire
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologias Biomedicas, 38320 Tenerife, Spain
| | - Neus Agell
- Departament de Biologia Cellular, Immunologia i Neurociències, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, C/ Casanova 143, 08036 Barcelona, Spain
| |
Collapse
|
121
|
Johmura Y, Sun J, Kitagawa K, Nakanishi K, Kuno T, Naiki-Ito A, Sawada Y, Miyamoto T, Okabe A, Aburatani H, Li S, Miyoshi I, Takahashi S, Kitagawa M, Nakanishi M. SCF(Fbxo22)-KDM4A targets methylated p53 for degradation and regulates senescence. Nat Commun 2016; 7:10574. [PMID: 26868148 PMCID: PMC4754341 DOI: 10.1038/ncomms10574] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 12/30/2015] [Indexed: 12/25/2022] Open
Abstract
Recent evidence has revealed that senescence induction requires fine-tuned activation of p53, however, mechanisms underlying the regulation of p53 activity during senescence have not as yet been clearly established. We demonstrate here that SCFFbxo22-KDM4A is a senescence-associated E3 ligase targeting methylated p53 for degradation. We find that Fbxo22 is highly expressed in senescent cells in a p53-dependent manner, and that SCFFbxo22 ubiquitylated p53 and formed a complex with a lysine demethylase, KDM4A. Ectopic expression of a catalytic mutant of KDM4A stabilizes p53 and enhances p53 interaction with PHF20 in the presence of Fbxo22. SCFFbxo22-KDM4A is required for the induction of p16 and senescence-associated secretory phenotypes during the late phase of senescence. Fbxo22−/− mice are almost half the size of Fbxo22+/− mice owing to the accumulation of p53. These results indicate that SCFFbxo22-KDM4A is an E3 ubiquitin ligase that targets methylated p53 and regulates key senescent processes. Cellular senescence—the permanent cessation of cell proliferation—is a process that can be deregulated in cancer and other aging-related diseases. Here the authors demonstrate that the SCFFbxo22-KDM4A complex plays an essential role during senescence as an E3 ligase that targets methylated p53 for degradation.
Collapse
Affiliation(s)
- Yoshikazu Johmura
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, 467-8601 Nagoya, Japan
| | - Jia Sun
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, 467-8601 Nagoya, Japan
| | - Kyoko Kitagawa
- Department of Molecular Biology, Hamamatsu University School of Medicine, Higashi-ku, 431-3192 Hamamatsu, Japan
| | - Keiko Nakanishi
- Department of Perinatology, Aichi Human Service Center, Institute for Developmental Research, 713-8 Kamiya-cho, Kasugai, Aichi 489-0392, Japan
| | - Toshiya Kuno
- Department of Experimental Pathology and Tumor Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, 467-8601 Nagoya, Japan
| | - Aya Naiki-Ito
- Department of Experimental Pathology and Tumor Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, 467-8601 Nagoya, Japan
| | - Yumi Sawada
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, 467-8601 Nagoya, Japan
| | - Tomomi Miyamoto
- Department of Comparative and Experimental Medicine and Center for Animal Sciences, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, 467-8601 Nagoya, Japan
| | - Atsushi Okabe
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, 153-8904 Tokyo, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, 153-8904 Tokyo, Japan
| | - ShengFan Li
- Zhongshan Hospital of Dalian University, 6 Jiefang St, Zhongshan District, 116001 Dalian, China
| | - Ichiro Miyoshi
- Department of Comparative and Experimental Medicine and Center for Animal Sciences, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, 467-8601 Nagoya, Japan
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, 467-8601 Nagoya, Japan
| | - Masatoshi Kitagawa
- Department of Molecular Biology, Hamamatsu University School of Medicine, Higashi-ku, 431-3192 Hamamatsu, Japan
| | - Makoto Nakanishi
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, 467-8601 Nagoya, Japan
| |
Collapse
|
122
|
Affiliation(s)
- Stéphane Ansieau
- Centre de Recherche en Cancérologie de Lyon, Inserm UMR-1052, CNRS UMR-5286, Université de Lyon I, Centre Léon Bérard, Lyon, France
| | - Guillaume Collin
- Centre de Recherche en Cancérologie de Lyon, Inserm UMR-1052, CNRS UMR-5286, Université de Lyon I, Centre Léon Bérard, Lyon, France
| |
Collapse
|
123
|
Jonchère B, Vétillard A, Toutain B, Guette C, Coqueret O. [Contribution to tumor escape and chemotherapy response: A choice between senescence and apoptosis in heterogeneous tumors]. Bull Cancer 2016; 103:73-86. [PMID: 26762946 DOI: 10.1016/j.bulcan.2015.10.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 10/29/2015] [Accepted: 10/29/2015] [Indexed: 10/22/2022]
Abstract
Understanding adaptive signaling pathways in response to chemotherapy is one of the main challenges of cancer treatment. Activated in response to DNA damage, cell cycle and mitotic checkpoints activate the p53-p21 and p16-Rb pathways and induce apoptosis or senescence. Since senescent cells survive and produce a secretome that influences neighbouring cells, it is not particularly clear whether these responses are equivalent and if tumor cells escape these two suppressive pathways to the same extent. Predicting escape is also complicated by the fact that cancer cells adapt to treatments by activating the epithelial-mesenchymal transition and by producing clones with cancer-initiating cells features. Dedifferentiation pathways used in stressful conditions reconstitute dividing and sometimes more aggressive populations in response to chemotherapy. These observations illustrate the importance of tumor heterogeneity and the adaptation capacities of different intra-tumoral subclones. Depending on their oncogenic profile, on their localisation within the tumor and on their interaction with stromal cells, these subclones are expected to have different responses and adaptation capacities to chemotherapy. A complete eradication will certainly rely on combination therapies that can kill at the same time the bulk of the sensitive tumor but can also prevent plasticity and the generation of persistent clones.
Collapse
Affiliation(s)
- Barbara Jonchère
- Paul-Papin ICO Cancer Center, Inserm U892, CNRS 6299, Angers University, 15, rue André-Boquel, 49055 Angers, France
| | - Alexandra Vétillard
- Paul-Papin ICO Cancer Center, Inserm U892, CNRS 6299, Angers University, 15, rue André-Boquel, 49055 Angers, France
| | - Bertrand Toutain
- Paul-Papin ICO Cancer Center, Inserm U892, CNRS 6299, Angers University, 15, rue André-Boquel, 49055 Angers, France
| | - Catherine Guette
- Paul-Papin ICO Cancer Center, Inserm U892, CNRS 6299, Angers University, 15, rue André-Boquel, 49055 Angers, France
| | - Olivier Coqueret
- Paul-Papin ICO Cancer Center, Inserm U892, CNRS 6299, Angers University, 15, rue André-Boquel, 49055 Angers, France.
| |
Collapse
|
124
|
Haruta M, Shimada M, Nishiyama A, Johmura Y, Le Tallec B, Debatisse M, Nakanishi M. Loss of maintenance DNA methylation results in abnormal DNA origin firing during DNA replication. Biochem Biophys Res Commun 2015; 469:960-6. [PMID: 26721438 DOI: 10.1016/j.bbrc.2015.12.090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 12/20/2015] [Indexed: 12/22/2022]
Abstract
The mammalian maintenance methyltransferase DNMT1 [DNA (cytosine-5-)-methyltransferase 1] mediates the inheritance of the DNA methylation pattern during replication. Previous studies have shown that depletion of DNMT1 causes a severe growth defect and apoptosis in differentiated cells. However, the detailed mechanisms behind this phenomenon remain poorly understood. Here we show that conditional ablation of Dnmt1 in murine embryonic fibroblasts (MEFs) resulted in an aberrant DNA replication program showing an accumulation of late-S phase replication and causing severely defective growth. Furthermore, we found that the catalytic activity and replication focus targeting sequence of DNMT1 are required for a proper DNA replication program. Taken together, our findings suggest that the maintenance of DNA methylation by DNMT1 plays a critical role in proper regulation of DNA replication in mammalian cells.
Collapse
Affiliation(s)
- Mayumi Haruta
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Midori Shimada
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan.
| | - Atsuya Nishiyama
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Yoshikazu Johmura
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Benoît Le Tallec
- Institut Curie, Centre de Recherche, 26 rue d'Ulm, CNRS UMR 3244, 75248 ParisCedex 05, France
| | - Michelle Debatisse
- Institut Curie, Centre de Recherche, 26 rue d'Ulm, CNRS UMR 3244, 75248 ParisCedex 05, France
| | - Makoto Nakanishi
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan.
| |
Collapse
|
125
|
Kitadate A, Ikeda S, Teshima K, Ito M, Toyota I, Hasunuma N, Takahashi N, Miyagaki T, Sugaya M, Tagawa H. MicroRNA-16 mediates the regulation of a senescence-apoptosis switch in cutaneous T-cell and other non-Hodgkin lymphomas. Oncogene 2015; 35:3692-704. [PMID: 26640145 DOI: 10.1038/onc.2015.435] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 10/09/2015] [Accepted: 10/11/2015] [Indexed: 01/07/2023]
Abstract
Multiple sequential genetic and epigenetic alterations underlie cancer development and progression. Overcoming cellular senescence is an early step in cancer pathogenesis. Here, we demonstrate that a noncoding regulatory RNA, microRNA-16 (miR-16), has the potential to induce cellular senescence. First, we examined the expression of miR-16 in primary cutaneous T-cell lymphoma (CTCL) and other non-Hodgkin T/natural killer (NK)-cell lymphomas and found that miR-16 was downregulated than that in the corresponding normal cells. Notably, miR-16 expression was reduced as the primary CTCL progressed from the early stage to the advanced stage. Next, we transduced CTCL cells with miR-16 to examine whether this miRNA exhibited tumor-suppressive effects in CTCL cells. In CTCL cells expressing wild-type p53, forced expression of miR-16 enhanced p21 expression via downregulation of the polycomb group protein Bmi1, thereby inducing cellular senescence. Alternatively, in CTCL cells lacking functional p53, miR-16 induced compensatory apoptosis. The miR-16 transfection significantly decreased senescent cells and increased apoptotic cells in p21-knockdown CTCL cells expressing wild-type p53, suggesting that the presence or absence of p21 may be the most important condition in the senescence-apoptosis switch in CTCL lymphomagenesis. Furthermore, we found that the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) restored the expression of miR-16 and its essential targets, induced senescence in CTCL cells expressing wild-type p53 and promoted apoptosis in cells with nonfunctional p53. Moreover, we found that other T/NK-cell lymphoma cell lines showed similar tumor-suppressive effects in response to miR-16 and SAHA and that these effects were dependent on p53 status. These results suggested that epigenetic silencing of miR-16 may be a key step during lymphoma development. Elucidation of the essential targets of miR-16 and SAHA provides a basis for the clinical application of SAHA in the treatment of CTCL and other non-Hodgkin T/NK-cell lymphomas.
Collapse
Affiliation(s)
- A Kitadate
- Department of Hematology, Nephrology and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - S Ikeda
- Department of Hematology, Nephrology and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - K Teshima
- Department of Hematology, Nephrology and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - M Ito
- Department of Hematology, Nephrology and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - I Toyota
- Department of Hematology, Nephrology and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - N Hasunuma
- Department of Dermatology, Akita University, Akita, Japan
| | - N Takahashi
- Department of Hematology, Nephrology and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - T Miyagaki
- Department of Dermatology, University of Tokyo, Tokyo, Japan
| | - M Sugaya
- Department of Dermatology, University of Tokyo, Tokyo, Japan
| | - H Tagawa
- Department of Hematology, Nephrology and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| |
Collapse
|
126
|
Abstract
Senescence was classically defined as an irreversible cell cycle arrest in G1 phase (G1 exit) triggered by eroded telomeres in aged primary cells. The molecular basis of this G1 arrest is thought to be due to a DNA damage response, resulting in accumulation of the cyclin dependent kinase (Cdk) inhibitors p21 and p16 that block the inactivating phosphorylation of the retinoblastoma tumor suppressor pRb, thereby preventing DNA replication. More than a decade ago, several studies showed that p21 also mediates permanent DNA damage-induced cell cycle arrest in G2 (G2 exit) by inhibiting mitotic Cdk complexes and pRb phosphorylation. The idea that the senescence program can also be launched after G2 arrest has gained support from several recent publications, including evidence for its existence in vivo.
Collapse
Affiliation(s)
- Véronique Gire
- a Centre de Recherche en Biologie Macromoléculaire (CRBM) ; CNRS UMR5237; Montpellier , France
| | | |
Collapse
|
127
|
Bennett DC. Genetics of melanoma progression: the rise and fall of cell senescence. Pigment Cell Melanoma Res 2015; 29:122-40. [PMID: 26386262 DOI: 10.1111/pcmr.12422] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/15/2015] [Indexed: 12/13/2022]
Abstract
There are many links between cell senescence and the genetics of melanoma, meaning both familial susceptibility and somatic-genetic changes in sporadic melanoma. For example, CDKN2A, the best-known melanoma susceptibility gene, encodes two effectors of cell senescence, while other familial melanoma genes are related to telomeres and their maintenance. This article aimed to analyze our current knowledge of the genetic or epigenetic driver changes necessary to generate a cutaneous metastatic melanoma, the commonest order in which these occur, and the relation of these changes to the biology and pathology of melanoma progression. Emphasis is laid on the role of cell senescence and the escape from senescence leading to cellular immortality, the ability to divide indefinitely.
Collapse
Affiliation(s)
- Dorothy C Bennett
- Molecular Cell Sciences Research Centre, St George's, University of London, Cranmer Terrace, London, UK
| |
Collapse
|
128
|
Bargiela-Iparraguirre J, Prado-Marchal L, Pajuelo-Lozano N, Jiménez B, Perona R, Sánchez-Pérez I. Mad2 and BubR1 modulates tumourigenesis and paclitaxel response in MKN45 gastric cancer cells. Cell Cycle 2015; 13:3590-601. [PMID: 25483095 DOI: 10.4161/15384101.2014.962952] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Aneuploidy and chromosomal instability (CIN) are common features of gastric cancer (GC), but their contribution to carcinogenesis and antitumour therapy response is still poorly understood. Failures in the mitotic checkpoint induced by changes in expression levels of the spindle assembly checkpoint (SAC) proteins cause the missegregation of chromosomes in mitosis as well as aneuploidy. To evaluate the possible contribution of SAC to GC, we analyzed the expression levels of proteins of the mitotic checkpoint complex in a cohort of GC cell lines. We found that the central SAC proteins, Mad2 and BubR1, were the more prominently expressed members in disseminated GC cell lines. Silencing of Mad2 and BubR1 in MKN45 and ST2957 cells decreased their cell proliferation, migration and invasion abilities, indicating that Mad2 and BubR1 could contribute to cellular transformation and tumor progression in GC. We next evaluated whether silencing of SAC proteins could affect the response to microtubule poisons. We discovered that paclitaxel treatment increased cell survival in MKN45 cells interfered for Mad2 or BubR1 expression. However, apoptosis (assessed by caspase-3 activation, PARP proteolysis and levels of antiapoptotic Bcl 2-family members), the DNA damage response (assessed by H2Ax phosphorylation) and exit from mitosis (assessed by Cyclin B degradation and Cdk1 regulation) were activated equally between cells, independently of Mad2 or BubR1-protein levels. In contrast, we observed that the silencing of Mad2 or BubR1 in MKN45 cells showed the induction of a senescence-like phenotype accompanied by cell enlargement, increased senescence-associated β-galactosidase activity and increased IL-6 and IL-8 expression. In addition, the senescent phenotype is highly increased after treatment with PTX, indicating that senescence could prevent tumorigenesis in GC. In conclusion, the results presented here suggest that Mad2 and BubR1 could be used as prognostic markers of tumor progression and new pharmacological targets in the treatment for GC.
Collapse
Key Words
- BMC, bleomycin
- BubR1
- BubR1, budding uninhibited by benzimidazoles 1 homolog B protein (gene BUB1B)
- CDDP, cisplatin
- CIN, chromosome instability
- DDR, DNA damage response
- Mad2
- Mad2, mitotic arrest deficient-like-1 protein (gene Mad2L1)
- Monopolar Spindle kinase, MPS1
- PTX, paclitaxel
- SAC, spindle assembly checkpoint
- SASP, senescence associate secretory phenotype
- apoptosis
- gastric cancer
- mitosis
- paclitaxel
- senescence
- γH2AX, phosphorylated H2AX
Collapse
|
129
|
Sadaie M, Dillon C, Narita M, Young ARJ, Cairney CJ, Godwin LS, Torrance CJ, Bennett DC, Keith WN, Narita M. Cell-based screen for altered nuclear phenotypes reveals senescence progression in polyploid cells after Aurora kinase B inhibition. Mol Biol Cell 2015; 26:2971-85. [PMID: 26133385 PMCID: PMC4551313 DOI: 10.1091/mbc.e15-01-0003] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 05/22/2015] [Accepted: 06/23/2015] [Indexed: 12/23/2022] Open
Abstract
Cellular senescence is a widespread stress response and is widely considered to be an alternative cancer therapeutic goal. Unlike apoptosis, senescence is composed of a diverse set of subphenotypes, depending on which of its associated effector programs are engaged. Here we establish a simple and sensitive cell-based prosenescence screen with detailed validation assays. We characterize the screen using a focused tool compound kinase inhibitor library. We identify a series of compounds that induce different types of senescence, including a unique phenotype associated with irregularly shaped nuclei and the progressive accumulation of G1 tetraploidy in human diploid fibroblasts. Downstream analyses show that all of the compounds that induce tetraploid senescence inhibit Aurora kinase B (AURKB). AURKB is the catalytic component of the chromosome passenger complex, which is involved in correct chromosome alignment and segregation, the spindle assembly checkpoint, and cytokinesis. Although aberrant mitosis and senescence have been linked, a specific characterization of AURKB in the context of senescence is still required. This proof-of-principle study suggests that our protocol is capable of amplifying tetraploid senescence, which can be observed in only a small population of oncogenic RAS-induced senescence, and provides additional justification for AURKB as a cancer therapeutic target.
Collapse
Affiliation(s)
- Mahito Sadaie
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Christian Dillon
- Cancer Research Technology Discovery Laboratories, Wolfson Institute for Biomedical Research, London WC1E 6BT, United Kingdom
| | - Masashi Narita
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Andrew R. J. Young
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Claire J. Cairney
- Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Lauren S. Godwin
- St. George's, University of London, London SW17 0RE, United Kingdom
| | | | | | - W. Nicol Keith
- Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Masashi Narita
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| |
Collapse
|
130
|
Dikovskaya D, Cole JJ, Mason SM, Nixon C, Karim SA, McGarry L, Clark W, Hewitt RN, Sammons MA, Zhu J, Athineos D, Leach JDG, Marchesi F, van Tuyn J, Tait SW, Brock C, Morton JP, Wu H, Berger SL, Blyth K, Adams PD. Mitotic Stress Is an Integral Part of the Oncogene-Induced Senescence Program that Promotes Multinucleation and Cell Cycle Arrest. Cell Rep 2015; 12:1483-96. [PMID: 26299965 PMCID: PMC4562906 DOI: 10.1016/j.celrep.2015.07.055] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 06/22/2015] [Accepted: 07/27/2015] [Indexed: 12/18/2022] Open
Abstract
Oncogene-induced senescence (OIS) is a tumor suppression mechanism that blocks cell proliferation in response to oncogenic signaling. OIS is frequently accompanied by multinucleation; however, the origin of this is unknown. Here, we show that multinucleate OIS cells originate mostly from failed mitosis. Prior to senescence, mutant H-RasV12 activation in primary human fibroblasts compromised mitosis, concordant with abnormal expression of mitotic genes functionally linked to the observed mitotic spindle and chromatin defects. Simultaneously, H-RasV12 activation enhanced survival of cells with damaged mitoses, culminating in extended mitotic arrest and aberrant exit from mitosis via mitotic slippage. ERK-dependent transcriptional upregulation of Mcl1 was, at least in part, responsible for enhanced survival and slippage of cells with mitotic defects. Importantly, mitotic slippage and oncogene signaling cooperatively induced senescence and key senescence effectors p21 and p16. In summary, activated Ras coordinately triggers mitotic disruption and enhanced cell survival to promote formation of multinucleate senescent cells.
Collapse
Affiliation(s)
- Dina Dikovskaya
- Institute of Cancer Sciences, CR-UK Beatson Laboratories, University of Glasgow, Glasgow G61 1BD, UK.
| | - John J Cole
- Institute of Cancer Sciences, CR-UK Beatson Laboratories, University of Glasgow, Glasgow G61 1BD, UK
| | - Susan M Mason
- Beatson Institute for Cancer Research, Glasgow G61 1BD, UK
| | - Colin Nixon
- Beatson Institute for Cancer Research, Glasgow G61 1BD, UK
| | - Saadia A Karim
- Beatson Institute for Cancer Research, Glasgow G61 1BD, UK
| | - Lynn McGarry
- Beatson Institute for Cancer Research, Glasgow G61 1BD, UK
| | - William Clark
- Beatson Institute for Cancer Research, Glasgow G61 1BD, UK
| | - Rachael N Hewitt
- Institute of Cancer Sciences, CR-UK Beatson Laboratories, University of Glasgow, Glasgow G61 1BD, UK
| | - Morgan A Sammons
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Jiajun Zhu
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | | | - Joshua D G Leach
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1BD, UK
| | - Francesco Marchesi
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1BD, UK
| | - John van Tuyn
- Institute of Cancer Sciences, CR-UK Beatson Laboratories, University of Glasgow, Glasgow G61 1BD, UK
| | - Stephen W Tait
- Institute of Cancer Sciences, CR-UK Beatson Laboratories, University of Glasgow, Glasgow G61 1BD, UK
| | - Claire Brock
- Institute of Cancer Sciences, CR-UK Beatson Laboratories, University of Glasgow, Glasgow G61 1BD, UK
| | | | - Hong Wu
- Fox Chase Cancer Center, Philadelphia, PA 19111-2497, USA
| | - Shelley L Berger
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Karen Blyth
- Beatson Institute for Cancer Research, Glasgow G61 1BD, UK
| | - Peter D Adams
- Institute of Cancer Sciences, CR-UK Beatson Laboratories, University of Glasgow, Glasgow G61 1BD, UK.
| |
Collapse
|
131
|
Unruhe B, Schröder E, Wünsch D, Knauer SK. An Old Flame Never Dies: Survivin in Cancer and Cellular Senescence. Gerontology 2015; 62:173-81. [PMID: 26159786 DOI: 10.1159/000432398] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/18/2015] [Indexed: 11/19/2022] Open
Abstract
Survivin (BIRC5) is highly expressed in the vast majority of human cancers and is associated with chemotherapy resistance, increased tumor recurrence and shortened patient survival, making it an attractive therapeutic target. Initially identified as an inhibitor of apoptosis protein, it also plays a major role in the regulation of cell division. As such, it acts as a subunit of the chromosomal passenger complex, composed of the mitotic kinase aurora B, borealin and inner centromere protein, and is essential for proper chromosome segregation and cytokinesis. For both biological functions, interaction of survivin's nuclear export signal with the nuclear export receptor chromosome region maintenance 1 is absolutely essential. The timely orchestration of survivin's wide protein interaction repertoire is further modulated by different posttranslational modifications occurring in a cell-cycle-dependent manner. Recent data furthermore indicate additional roles of survivin in the DNA damage response, contributing to therapy resistance, yet the underlying molecular details are still not completely resolved. This also holds true for a potential involvement of survivin in senescence regulation. An age-related accumulation of survivin probably contributes to the apoptosis resistance observed in aged as well as in senescent cells, while it might promote escape from therapy-induced senescence. This review seeks to integrate the current knowledge on survivin's diverse and complex biological functions. By linking the 'old' facts about survivin with recent findings in research areas such as DNA damage response and aging, we want to highlight survivin's crucial role in a variety of cellular processes.
Collapse
Affiliation(s)
- Britta Unruhe
- Institute for Molecular Biology II, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | | | | | | |
Collapse
|
132
|
Abstract
'Cellular senescence', a term originally defining the characteristics of cultured cells that exceed their replicative limit, has been broadened to describe durable states of proliferative arrest induced by disparate stress factors. Proposed relationships between cellular senescence, tumour suppression, loss of tissue regenerative capacity and ageing suffer from lack of uniform definition and consistently applied criteria. Here, we highlight caveats in interpreting the importance of suboptimal senescence-associated biomarkers, expressed either alone or in combination. We advocate that more-specific descriptors be substituted for the now broadly applied umbrella term 'senescence' in defining the suite of diverse physiological responses to cellular stress.
Collapse
Affiliation(s)
- Norman E Sharpless
- Department of Medicine and Genetics and The Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7295, USA
| | - Charles J Sherr
- Department of Tumor Cell Biology and The Howard Hughes Medical Institute, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-2794, USA
| |
Collapse
|
133
|
Tominaga K. The emerging role of senescent cells in tissue homeostasis and pathophysiology. PATHOBIOLOGY OF AGING & AGE RELATED DISEASES 2015; 5:27743. [PMID: 25994420 PMCID: PMC4439419 DOI: 10.3402/pba.v5.27743] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/03/2015] [Accepted: 05/03/2015] [Indexed: 12/21/2022]
Abstract
Cellular senescence is a state of permanent growth arrest and is thought to play a pivotal role in tumor suppression. Cellular senescence may play an important role in tumor suppression, wound healing, and protection against tissue fibrosis in physiological conditions in vivo. However, accumulating evidence that senescent cells may have harmful effects in vivo and may contribute to tissue remodeling, organismal aging, and many age-related diseases also exists. Cellular senescence can be induced by various intrinsic and extrinsic factors. Both p53/p21 and p16/RB pathways are important for irreversible growth arrest in senescent cells. Senescent cells secret numerous biologically active factors. This specific secretion phenotype by senescent cells may largely contribute to physiological and pathological consequences in organisms. Here I review the molecular basis of cell cycle arrest and the specific secretion phenotype in cellular senescence. I also summarize the current knowledge of the role of cellular senescence in vivo in physiological and pathological settings.
Collapse
Affiliation(s)
- Kaoru Tominaga
- Division of Functional Biochemistry, Department of Biochemistry, Jichi Medical University, Shimotsuke, Japan;
| |
Collapse
|
134
|
Binucleated HeLa cells are formed by cytokinesis failure in starvation and keep the potential of proliferation. Cytotechnology 2015; 68:1123-30. [PMID: 25894790 DOI: 10.1007/s10616-015-9869-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 03/24/2015] [Indexed: 10/23/2022] Open
Abstract
Many cytological studies have reported that the numbers of binucleated cells were elevated in various tumors. However, binucleated cells are observed in not only malignant tumors but also normal tissues. Thus, the clinical significance of binucleated cells is controversial. Here we attempted to elucidate the characteristics of binucleated HeLa cells using time-lapse microscopy. To examine the frequency, viability, proliferation, and formation mechanism of binucleated cells, we grew HeLa cells on chamber slides and tissue culture dishes in DMEM supplemented with (10, 3, 1 and 0.5 % media) and without fetal bovine serum (0 % medium). The proliferation was evaluated by the medium improvement examination (cultured for 2 more days in 10% medium after culturing in 0% medium; starvation). In the 0 % medium, 150 binucleated cells were formed by cytokinesis failure. There were significantly more binucleated cells in the 0 % medium than in the 10, 3, 1 and 0.5 % media. About twice the number of binucleated cells underwent mitosis in the improvement examinations than in the serum-free examination. We found here that starvation induced the binucleation of HeLa cells and that some binucleated cells can reproduce. These findings might be helpful for understanding binucleated cells in tumors.
Collapse
|
135
|
Jaiswal H, Lindqvist A. Bystander communication and cell cycle decisions after DNA damage. Front Genet 2015; 6:63. [PMID: 25774166 PMCID: PMC4343024 DOI: 10.3389/fgene.2015.00063] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/08/2015] [Indexed: 01/07/2023] Open
Abstract
The DNA damage response (DDR) has two main goals, to repair the damaged DNA and to communicate the presence of damaged DNA. This communication allows the adaptation of cellular behavior to minimize the risk associated with DNA damage. In particular, cell cycle progression must be adapted after a DNA-damaging insult, and cells either pause or terminally exit the cell cycle during a DDR. As cells can accumulate mutations after a DDR due to error-prone DNA repair, terminal cell cycle exit may prevent malignant transformation. The tumor suppressor p53 plays a key role in promoting terminal cell cycle exit. Interestingly, p53 has been implicated in communication of a stress response to surrounding cells, known as the bystander response. Recently, surrounding cells have also been shown to affect the damaged cell, suggesting the presence of intercellular feedback loops. How such feedback may affect terminal cell cycle exit remains unclear, but its presence calls for caution in evaluating cellular outcome without controlling the cellular surrounding. In addition, such feedback may contribute to how the cellular environment affects malignant transformation after DNA damage.
Collapse
Affiliation(s)
- Himjyot Jaiswal
- Department of Cell and Molecular Biology, Karolinska Institutet , Stockholm, Sweden
| | - Arne Lindqvist
- Department of Cell and Molecular Biology, Karolinska Institutet , Stockholm, Sweden
| |
Collapse
|
136
|
Matsuoka K, Iimori M, Niimi S, Tsukihara H, Watanabe S, Kiyonari S, Kiniwa M, Ando K, Tokunaga E, Saeki H, Oki E, Maehara Y, Kitao H. Trifluridine Induces p53-Dependent Sustained G2 Phase Arrest with Its Massive Misincorporation into DNA and Few DNA Strand Breaks. Mol Cancer Ther 2015; 14:1004-13. [PMID: 25700705 DOI: 10.1158/1535-7163.mct-14-0236] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 02/13/2015] [Indexed: 11/16/2022]
Abstract
Trifluridine (FTD) is a key component of the novel oral antitumor drug TAS-102, which consists of FTD and a thymidine phosphorylase inhibitor. Like 5-fluoro-2'-deoxyuridine (FdUrd), a deoxynucleoside form of 5-fluorouracil metabolite, FTD is sequentially phosphorylated and not only inhibits thymidylate synthase activity, but is also incorporated into DNA. Although TAS-102 was effective for the treatment of refractory metastatic colorectal cancer in clinical trials, the mechanism of FTD-induced cytotoxicity is not completely understood. Here, we show that FTD as well as FdUrd induce transient phosphorylation of Chk1 at Ser345, and that this is followed by accumulation of p53 and p21 proteins in p53-proficient human cancer cell lines. In particular, FTD induced p53-dependent sustained arrest at G2 phase, which was associated with a proteasome-dependent decrease in the Cyclin B1 protein level and the suppression of CCNB1 and CDK1 gene expression. In addition, a p53-dependent increase in p21 protein was associated with an FTD-induced decrease in Cyclin B1 protein. Although numerous ssDNA and dsDNA breaks were induced by FdUrd, few DNA strand breaks were detected in FTD-treated HCT-116 cells despite massive FTD misincorporation into genomic DNA, suggesting that the antiproliferative effect of FTD is not due to the induction of DNA strand breaks. These distinctive effects of FTD provide insights into the cellular mechanism underlying its antitumor effect and may explain the clinical efficacy of TAS-102.
Collapse
Affiliation(s)
- Kazuaki Matsuoka
- Innovative Anticancer Strategy for Therapeutics and Diagnosis Group, Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka, Kyushu, Japan. Taiho Pharmaceutical Co. Ltd., Tokushima, Japan
| | - Makoto Iimori
- Department of Molecular Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Kyushu, Japan
| | - Shinichiro Niimi
- Innovative Anticancer Strategy for Therapeutics and Diagnosis Group, Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka, Kyushu, Japan. Taiho Pharmaceutical Co. Ltd., Tokushima, Japan
| | - Hiroshi Tsukihara
- Innovative Anticancer Strategy for Therapeutics and Diagnosis Group, Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka, Kyushu, Japan. Taiho Pharmaceutical Co. Ltd., Tokushima, Japan
| | - Sugiko Watanabe
- Innovative Anticancer Strategy for Therapeutics and Diagnosis Group, Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka, Kyushu, Japan
| | - Shinichi Kiyonari
- Innovative Anticancer Strategy for Therapeutics and Diagnosis Group, Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka, Kyushu, Japan. Department of Biochemistry, Graduate School of Medicine, Nagoya University; Nagoya, Japan
| | - Mamoru Kiniwa
- Innovative Anticancer Strategy for Therapeutics and Diagnosis Group, Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka, Kyushu, Japan. Taiho Pharmaceutical Co. Ltd., Tokushima, Japan
| | - Koji Ando
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Kyushu, Japan
| | - Eriko Tokunaga
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Kyushu, Japan
| | - Hiroshi Saeki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Kyushu, Japan
| | - Eiji Oki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Kyushu, Japan
| | - Yoshihiko Maehara
- Innovative Anticancer Strategy for Therapeutics and Diagnosis Group, Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka, Kyushu, Japan. Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Kyushu, Japan
| | - Hiroyuki Kitao
- Innovative Anticancer Strategy for Therapeutics and Diagnosis Group, Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka, Kyushu, Japan. Department of Molecular Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Kyushu, Japan.
| |
Collapse
|
137
|
Shaltiel IA, Krenning L, Bruinsma W, Medema RH. The same, only different - DNA damage checkpoints and their reversal throughout the cell cycle. J Cell Sci 2015; 128:607-20. [PMID: 25609713 DOI: 10.1242/jcs.163766] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cell cycle checkpoints activated by DNA double-strand breaks (DSBs) are essential for the maintenance of the genomic integrity of proliferating cells. Following DNA damage, cells must detect the break and either transiently block cell cycle progression, to allow time for repair, or exit the cell cycle. Reversal of a DNA-damage-induced checkpoint not only requires the repair of these lesions, but a cell must also prevent permanent exit from the cell cycle and actively terminate checkpoint signalling to allow cell cycle progression to resume. It is becoming increasingly clear that despite the shared mechanisms of DNA damage detection throughout the cell cycle, the checkpoint and its reversal are precisely tuned to each cell cycle phase. Furthermore, recent findings challenge the dogmatic view that complete repair is a precondition for cell cycle resumption. In this Commentary, we highlight cell-cycle-dependent differences in checkpoint signalling and recovery after a DNA DSB, and summarise the molecular mechanisms that underlie the reversal of DNA damage checkpoints, before discussing when and how cell fate decisions after a DSB are made.
Collapse
Affiliation(s)
- Indra A Shaltiel
- The Netherlands Cancer Institute, Division of Cell Biology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Lenno Krenning
- The Netherlands Cancer Institute, Division of Cell Biology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Wytse Bruinsma
- The Netherlands Cancer Institute, Division of Cell Biology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - René H Medema
- The Netherlands Cancer Institute, Division of Cell Biology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
138
|
Childs BG, Baker DJ, Kirkland JL, Campisi J, van Deursen JM. Senescence and apoptosis: dueling or complementary cell fates? EMBO Rep 2014; 15:1139-53. [PMID: 25312810 DOI: 10.15252/embr.201439245] [Citation(s) in RCA: 638] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In response to a variety of stresses, mammalian cells undergo a persistent proliferative arrest known as cellular senescence. Many senescence-inducing stressors are potentially oncogenic, strengthening the notion that senescence evolved alongside apoptosis to suppress tumorigenesis. In contrast to apoptosis, senescent cells are stably viable and have the potential to influence neighboring cells through secreted soluble factors, which are collectively known as the senescence-associated secretory phenotype (SASP). However, the SASP has been associated with structural and functional tissue and organ deterioration and may even have tumor-promoting effects, raising the interesting evolutionary question of why apoptosis failed to outcompete senescence as a superior cell fate option. Here, we discuss the advantages that the senescence program may have over apoptosis as a tumor protective mechanism, as well as non-neoplastic functions that may have contributed to its evolution. We also review emerging evidence for the idea that senescent cells are present transiently early in life and are largely beneficial for development, regeneration and homeostasis, and only in advanced age do senescent cells accumulate to an organism's detriment.
Collapse
Affiliation(s)
- Bennett G Childs
- Departments of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Darren J Baker
- Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | | | - Jan M van Deursen
- Departments of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
139
|
Panopoulos A, Pacios-Bras C, Choi J, Yenjerla M, Sussman MA, Fotedar R, Margolis RL. Failure of cell cleavage induces senescence in tetraploid primary cells. Mol Biol Cell 2014; 25:3105-18. [PMID: 25143403 PMCID: PMC4196863 DOI: 10.1091/mbc.e14-03-0844] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Induction of tetraploidy through cleavage failure induces G1 arrest and senescence in primary mammalian cells but not in immortal cells. Induction of senescence occurs without DNA damage, and the capacity to become senescent appears to be a prerequisite of tetraploid arrest. Tetraploidy can arise from various mitotic or cleavage defects in mammalian cells, and inheritance of multiple centrosomes induces aneuploidy when tetraploid cells continue to cycle. Arrest of the tetraploid cell cycle is therefore potentially a critical cellular control. We report here that primary rat embryo fibroblasts (REF52) and human foreskin fibroblasts become senescent in tetraploid G1 after drug- or small interfering RNA (siRNA)-induced failure of cell cleavage. In contrast, T-antigen–transformed REF52 and p53+/+ HCT116 tumor cells rapidly become aneuploid by continuing to cycle after cleavage failure. Tetraploid primary cells quickly become quiescent, as determined by loss of the Ki-67 proliferation marker and of the fluorescent ubiquitination-based cell cycle indicator/late cell cycle marker geminin. Arrest is not due to DNA damage, as the γ-H2AX DNA damage marker remains at control levels after tetraploidy induction. Arrested tetraploid cells finally become senescent, as determined by SA-β-galactosidase activity. Tetraploid arrest is dependent on p16INK4a expression, as siRNA suppression of p16INK4a bypasses tetraploid arrest, permitting primary cells to become aneuploid. We conclude that tetraploid primary cells can become senescent without DNA damage and that induction of senescence is critical to tetraploidy arrest.
Collapse
Affiliation(s)
- Andreas Panopoulos
- Tumor Initiation and Maintenance Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Cristina Pacios-Bras
- Department of Immunology and Oncology, Centro Nacional de Biotecnologia, Consejo Superior de Investigaciones Científicas, E-28049 Madrid, Spain
| | - Justin Choi
- Tumor Initiation and Maintenance Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Mythili Yenjerla
- Tumor Initiation and Maintenance Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Mark A Sussman
- San Diego Heart Research Institute and Department of Biology; San Diego State University, San Diego, CA 92182
| | - Rati Fotedar
- Tumor Initiation and Maintenance Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Robert L Margolis
- Tumor Initiation and Maintenance Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| |
Collapse
|