101
|
Stubenvoll MD, Medley JC, Irwin M, Song MH. ATX-2, the C. elegans Ortholog of Human Ataxin-2, Regulates Centrosome Size and Microtubule Dynamics. PLoS Genet 2016; 12:e1006370. [PMID: 27689799 PMCID: PMC5045193 DOI: 10.1371/journal.pgen.1006370] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/16/2016] [Indexed: 11/26/2022] Open
Abstract
Centrosomes are critical sites for orchestrating microtubule dynamics, and exhibit dynamic changes in size during the cell cycle. As cells progress to mitosis, centrosomes recruit more microtubules (MT) to form mitotic bipolar spindles that ensure proper chromosome segregation. We report a new role for ATX-2, a C. elegans ortholog of Human Ataxin-2, in regulating centrosome size and MT dynamics. ATX-2, an RNA-binding protein, forms a complex with SZY-20 in an RNA-independent fashion. Depleting ATX-2 results in embryonic lethality and cytokinesis failure, and restores centrosome duplication to zyg-1 mutants. In this pathway, SZY-20 promotes ATX-2 abundance, which inversely correlates with centrosome size. Centrosomes depleted of ATX-2 exhibit elevated levels of centrosome factors (ZYG-1, SPD-5, γ-Tubulin), increasing MT nucleating activity but impeding MT growth. We show that ATX-2 influences MT behavior through γ-Tubulin at the centrosome. Our data suggest that RNA-binding proteins play an active role in controlling MT dynamics and provide insight into the control of proper centrosome size and MT dynamics.
Collapse
Affiliation(s)
- Michael D. Stubenvoll
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Jeffrey C. Medley
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Miranda Irwin
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Mi Hye Song
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| |
Collapse
|
102
|
Abraham KJ, Chan JNY, Salvi JS, Ho B, Hall A, Vidya E, Guo R, Killackey SA, Liu N, Lee JE, Brown GW, Mekhail K. Intersection of calorie restriction and magnesium in the suppression of genome-destabilizing RNA-DNA hybrids. Nucleic Acids Res 2016; 44:8870-8884. [PMID: 27574117 PMCID: PMC5063000 DOI: 10.1093/nar/gkw752] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/20/2016] [Indexed: 12/14/2022] Open
Abstract
Dietary calorie restriction is a broadly acting intervention that extends the lifespan of various organisms from yeast to mammals. On another front, magnesium (Mg2+) is an essential biological metal critical to fundamental cellular processes and is commonly used as both a dietary supplement and treatment for some clinical conditions. If connections exist between calorie restriction and Mg2+ is unknown. Here, we show that Mg2+, acting alone or in response to dietary calorie restriction, allows eukaryotic cells to combat genome-destabilizing and lifespan-shortening accumulations of RNA–DNA hybrids, or R-loops. In an R-loop accumulation model of Pbp1-deficient Saccharomyces cerevisiae, magnesium ions guided by cell membrane Mg2+ transporters Alr1/2 act via Mg2+-sensitive R-loop suppressors Rnh1/201 and Pif1 to restore R-loop suppression, ribosomal DNA stability and cellular lifespan. Similarly, human cells deficient in ATXN2, the human ortholog of Pbp1, exhibit nuclear R-loop accumulations repressible by Mg2+ in a process that is dependent on the TRPM7 Mg2+ transporter and the RNaseH1 R-loop suppressor. Thus, we identify Mg2+ as a biochemical signal of beneficial calorie restriction, reveal an R-loop suppressing function for human ATXN2 and propose that practical magnesium supplementation regimens can be used to combat R-loop accumulation linked to the dysfunction of disease-linked human genes.
Collapse
Affiliation(s)
- Karan J Abraham
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Janet N Y Chan
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Jayesh S Salvi
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Brandon Ho
- Department of Biochemistry and Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Amanda Hall
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Elva Vidya
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Ru Guo
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Samuel A Killackey
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Nancy Liu
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Jeffrey E Lee
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada Canada Research Chairs Program, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Grant W Brown
- Department of Biochemistry and Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Karim Mekhail
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada Canada Research Chairs Program, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
103
|
Gnazzo MM, Uhlemann EME, Villarreal AR, Shirayama M, Dominguez EG, Skop AR. The RNA-binding protein ATX-2 regulates cytokinesis through PAR-5 and ZEN-4. Mol Biol Cell 2016; 27:3052-3064. [PMID: 27559134 PMCID: PMC5063614 DOI: 10.1091/mbc.e16-04-0219] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/17/2016] [Indexed: 12/15/2022] Open
Abstract
The mechanisms that mediate the temporal and spatial recruitment of cell division factors to the spindle midzone and midbody remain unclear. Cell division is regulated by the conserved RNA-binding protein, ATX-2/Ataxin-2, which facilitates the targeting of ZEN-4 to the spindle midzone by mediating PAR-5. The spindle midzone harbors both microtubules and proteins necessary for furrow formation and the completion of cytokinesis. However, the mechanisms that mediate the temporal and spatial recruitment of cell division factors to the spindle midzone and midbody remain unclear. Here we describe a mechanism governed by the conserved RNA-binding protein ATX-2/Ataxin-2, which targets and maintains ZEN-4 at the spindle midzone. ATX-2 does this by regulating the amount of PAR-5 at mitotic structures, particularly the spindle, centrosomes, and midbody. Preventing ATX-2 function leads to elevated levels of PAR-5, enhanced chromatin and centrosome localization of PAR-5–GFP, and ultimately a reduction of ZEN-4–GFP at the spindle midzone. Codepletion of ATX-2 and PAR-5 rescued the localization of ZEN-4 at the spindle midzone, indicating that ATX-2 mediates the localization of ZEN-4 upstream of PAR-5. We provide the first direct evidence that ATX-2 is necessary for cytokinesis and suggest a model in which ATX-2 facilitates the targeting of ZEN-4 to the spindle midzone by mediating the posttranscriptional regulation of PAR-5.
Collapse
Affiliation(s)
- Megan M Gnazzo
- Laboratory of Genetics and Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706
| | - Eva-Maria E Uhlemann
- Laboratory of Genetics and Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706
| | - Alex R Villarreal
- Laboratory of Genetics and Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706
| | - Masaki Shirayama
- Program in Molecular Medicine, RNA Therapeutics Institute, and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605
| | - Eddie G Dominguez
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705
| | - Ahna R Skop
- Laboratory of Genetics and Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
104
|
Chan WF, Parks-Dely JA, Magor BG, Magor KE. The Minor MHC Class I Gene UDA of Ducks Is Regulated by Let-7 MicroRNA. THE JOURNAL OF IMMUNOLOGY 2016; 197:1212-20. [DOI: 10.4049/jimmunol.1600332] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/08/2016] [Indexed: 01/10/2023]
|
105
|
Dissecting the expression relationships between RNA-binding proteins and their cognate targets in eukaryotic post-transcriptional regulatory networks. Sci Rep 2016; 6:25711. [PMID: 27161996 PMCID: PMC4861959 DOI: 10.1038/srep25711] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/21/2016] [Indexed: 12/13/2022] Open
Abstract
RNA-binding proteins (RBPs) are pivotal in orchestrating several steps in the metabolism of RNA in eukaryotes thereby controlling an extensive network of RBP-RNA interactions. Here, we employed CLIP (cross-linking immunoprecipitation)-seq datasets for 60 human RBPs and RIP-ChIP (RNP immunoprecipitation-microarray) data for 69 yeast RBPs to construct a network of genome-wide RBP- target RNA interactions for each RBP. We show in humans that majority (~78%) of the RBPs are strongly associated with their target transcripts at transcript level while ~95% of the studied RBPs were also found to be strongly associated with expression levels of target transcripts when protein expression levels of RBPs were employed. At transcript level, RBP - RNA interaction data for the yeast genome, exhibited a strong association for 63% of the RBPs, confirming the association to be conserved across large phylogenetic distances. Analysis to uncover the features contributing to these associations revealed the number of target transcripts and length of the selected protein-coding transcript of an RBP at the transcript level while intensity of the CLIP signal, number of RNA-Binding domains, location of the binding site on the transcript, to be significant at the protein level. Our analysis will contribute to improved modelling and prediction of post-transcriptional networks.
Collapse
|
106
|
Sellier C, Campanari ML, Julie Corbier C, Gaucherot A, Kolb-Cheynel I, Oulad-Abdelghani M, Ruffenach F, Page A, Ciura S, Kabashi E, Charlet-Berguerand N. Loss of C9ORF72 impairs autophagy and synergizes with polyQ Ataxin-2 to induce motor neuron dysfunction and cell death. EMBO J 2016; 35:1276-97. [PMID: 27103069 DOI: 10.15252/embj.201593350] [Citation(s) in RCA: 317] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 03/15/2016] [Indexed: 12/12/2022] Open
Abstract
An intronic expansion of GGGGCC repeats within the C9ORF72 gene is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia (ALS-FTD). Ataxin-2 with intermediate length of polyglutamine expansions (Ataxin-2 Q30x) is a genetic modifier of the disease. Here, we found that C9ORF72 forms a complex with the WDR41 and SMCR8 proteins to act as a GDP/GTP exchange factor for RAB8a and RAB39b and to thereby control autophagic flux. Depletion of C9orf72 in neurons partly impairs autophagy and leads to accumulation of aggregates of TDP-43 and P62 proteins, which are histopathological hallmarks of ALS-FTD SMCR8 is phosphorylated by TBK1 and depletion of TBK1 can be rescued by phosphomimetic mutants of SMCR8 or by constitutively active RAB39b, suggesting that TBK1, SMCR8, C9ORF72, and RAB39b belong to a common pathway regulating autophagy. While depletion of C9ORF72 only has a partial deleterious effect on neuron survival, it synergizes with Ataxin-2 Q30x toxicity to induce motor neuron dysfunction and neuronal cell death. These results indicate that partial loss of function of C9ORF72 is not deleterious by itself but synergizes with Ataxin-2 toxicity, suggesting a double-hit pathological mechanism in ALS-FTD.
Collapse
Affiliation(s)
- Chantal Sellier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, Strasbourg University, Illkirch, France
| | - Maria-Letizia Campanari
- Sorbonne Université, Université Pierre et Marie Curie (UPMC), Université de Paris 06, Unité Mixte 75, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1127, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 7225 Institut du Cerveau et de la Moelle Épinière (ICM), 75013, Paris, France
| | - Camille Julie Corbier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, Strasbourg University, Illkirch, France
| | - Angeline Gaucherot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, Strasbourg University, Illkirch, France
| | - Isabelle Kolb-Cheynel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, Strasbourg University, Illkirch, France
| | - Mustapha Oulad-Abdelghani
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, Strasbourg University, Illkirch, France
| | - Frank Ruffenach
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, Strasbourg University, Illkirch, France
| | - Adeline Page
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, Strasbourg University, Illkirch, France
| | - Sorana Ciura
- Sorbonne Université, Université Pierre et Marie Curie (UPMC), Université de Paris 06, Unité Mixte 75, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1127, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 7225 Institut du Cerveau et de la Moelle Épinière (ICM), 75013, Paris, France
| | - Edor Kabashi
- Sorbonne Université, Université Pierre et Marie Curie (UPMC), Université de Paris 06, Unité Mixte 75, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1127, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 7225 Institut du Cerveau et de la Moelle Épinière (ICM), 75013, Paris, France
| | - Nicolas Charlet-Berguerand
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, Strasbourg University, Illkirch, France
| |
Collapse
|
107
|
Meierhofer D, Halbach M, Şen NE, Gispert S, Auburger G. Ataxin-2 (Atxn2)-Knock-Out Mice Show Branched Chain Amino Acids and Fatty Acids Pathway Alterations. Mol Cell Proteomics 2016; 15:1728-39. [PMID: 26850065 DOI: 10.1074/mcp.m115.056770] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Indexed: 12/13/2022] Open
Abstract
Human Ataxin-2 (ATXN2) gene locus variants have been associated with obesity, diabetes mellitus type 1,and hypertension in genome-wide association studies, whereas mouse studies showed the knock-out of Atxn2 to lead to obesity, insulin resistance, and dyslipidemia. Intriguingly, the deficiency of ATXN2 protein orthologs in yeast and flies rescues the neurodegeneration process triggered by TDP-43 and Ataxin-1 toxicity. To understand the molecular effects of ATXN2 deficiency by unbiased approaches, we quantified the global proteome and metabolome of Atxn2-knock-out mice with label-free mass spectrometry. In liver tissue, significant downregulations of the proteins ACADS, ALDH6A1, ALDH7A1, IVD, MCCC2, PCCA, OTC, together with bioinformatic enrichment of downregulated pathways for branched chain and other amino acid metabolism, fatty acids, and citric acid cycle were observed. Statistical trends in the cerebellar proteome and in the metabolomic profiles supported these findings. They are in good agreement with recent claims that PBP1, the yeast ortholog of ATXN2, sequestrates the nutrient sensor TORC1 in periods of cell stress. Overall, ATXN2 appears to modulate nutrition and metabolism, and its activity changes are determinants of growth excess or cell atrophy.
Collapse
Affiliation(s)
- David Meierhofer
- From the ‡Max Planck Institute for Molecular Genetics, Ihnestraβe 63-73, 14195 Berlin, Germany;
| | - Melanie Halbach
- §Experimental Neurology, Building 89, Goethe University Medical School, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Nesli Ece Şen
- §Experimental Neurology, Building 89, Goethe University Medical School, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Suzana Gispert
- §Experimental Neurology, Building 89, Goethe University Medical School, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Georg Auburger
- §Experimental Neurology, Building 89, Goethe University Medical School, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| |
Collapse
|
108
|
Lee JA, Damianov A, Lin CH, Fontes M, Parikshak NN, Anderson ES, Geschwind DH, Black DL, Martin KC. Cytoplasmic Rbfox1 Regulates the Expression of Synaptic and Autism-Related Genes. Neuron 2015; 89:113-28. [PMID: 26687839 DOI: 10.1016/j.neuron.2015.11.025] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/03/2015] [Accepted: 11/06/2015] [Indexed: 12/31/2022]
Abstract
Human genetic studies have identified the neuronal RNA binding protein, Rbfox1, as a candidate gene for autism spectrum disorders. While Rbfox1 functions as a splicing regulator in the nucleus, it is also alternatively spliced to produce cytoplasmic isoforms. To investigate the function of cytoplasmic Rbfox1, we knocked down Rbfox proteins in mouse neurons and rescued with cytoplasmic or nuclear Rbfox1. Transcriptome profiling showed that nuclear Rbfox1 rescued splicing changes, whereas cytoplasmic Rbfox1 rescued changes in mRNA levels. iCLIP-seq of subcellular fractions revealed that Rbfox1 bound predominantly to introns in nascent RNA, while cytoplasmic Rbox1 bound to 3' UTRs. Cytoplasmic Rbfox1 binding increased target mRNA stability and translation, and Rbfox1 and miRNA binding sites overlapped significantly. Cytoplasmic Rbfox1 target mRNAs were enriched in genes involved in cortical development and autism. Our results uncover a new Rbfox1 regulatory network and highlight the importance of cytoplasmic RNA metabolism to cortical development and disease.
Collapse
Affiliation(s)
- Ji-Ann Lee
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Andrey Damianov
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Chia-Ho Lin
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mariana Fontes
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Neelroop N Parikshak
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Erik S Anderson
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Daniel H Geschwind
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Douglas L Black
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kelsey C Martin
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
109
|
Hubstenberger A, Cameron C, Noble SL, Keenan S, Evans TC. Modifiers of solid RNP granules control normal RNP dynamics and mRNA activity in early development. J Cell Biol 2015; 211:703-16. [PMID: 26527741 PMCID: PMC4639854 DOI: 10.1083/jcb.201504044] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 09/25/2015] [Indexed: 12/13/2022] Open
Abstract
Modifiers of aberrant solid RNP granules suggest new insights into pathways that control dynamics of large-scale RNP bodies and mRNAs during C. elegans oogenesis. Ribonucleoproteins (RNPs) often coassemble into supramolecular bodies with regulated dynamics. The factors controlling RNP bodies and connections to RNA regulation are unclear. During Caenorhabditis elegans oogenesis, cytoplasmic RNPs can transition among diffuse, liquid, and solid states linked to mRNA regulation. Loss of CGH-1/Ddx6 RNA helicase generates solid granules that are sensitive to mRNA regulators. Here, we identified 66 modifiers of RNP solids induced by cgh-1 mutation. A majority of genes promote or suppress normal RNP body assembly, dynamics, or metabolism. Surprisingly, polyadenylation factors promote RNP coassembly in vivo, suggesting new functions of poly(A) tail regulation in RNP dynamics. Many genes carry polyglutatmine (polyQ) motifs or modulate polyQ aggregation, indicating possible connections with neurodegenerative disorders induced by CAG/polyQ expansion. Several RNP body regulators repress translation of mRNA subsets, suggesting that mRNAs are repressed by multiple mechanisms. Collectively, these findings suggest new pathways of RNP modification that control large-scale coassembly and mRNA activity during development.
Collapse
Affiliation(s)
- Arnaud Hubstenberger
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 Pierre-and-Marie-Curie University, University Paris 06, 75005 Paris, France
| | - Cristiana Cameron
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Scott L Noble
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 Graduate Program in Molecular Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Sean Keenan
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Thomas C Evans
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
110
|
Yang Y, Wen L, Zhu H. Unveiling the hidden function of long non-coding RNA by identifying its major partner-protein. Cell Biosci 2015; 5:59. [PMID: 26500759 PMCID: PMC4618879 DOI: 10.1186/s13578-015-0050-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/08/2015] [Indexed: 12/13/2022] Open
Abstract
Tens of thousands of long non-coding RNAs (lncRNAs) have been discovered in eukarya, but their functions are largely unknown. Fortunately, lncRNA-protein interactions may offer details of how lncRNAs play important roles in various biological processes, thus identifying proteins associated with lncRNA is critical. Here we review progress of molecular archetypes that lncRNAs execute as guides, scaffolds, or decoys for protein, focusing on advantages, shortcomings and applications of various conventional and emerging technologies to probe lncRNAs and protein interactions, including protein-centric biochemistry approaches such as nRIP and CLIP, and RNA-centric biochemistry approaches such as ChIRP, CHART and RAP. Overall, this review provides strategies for probing interactions between lncRNAs and protein.
Collapse
Affiliation(s)
- Yongfang Yang
- Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, 100083 Beijing, China
| | - Liwei Wen
- Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, 100083 Beijing, China
| | - Hongliang Zhu
- Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, 100083 Beijing, China
| |
Collapse
|
111
|
Nóbrega C, Carmo-Silva S, Albuquerque D, Vasconcelos-Ferreira A, Vijayakumar UG, Mendonça L, Hirai H, de Almeida LP. Re-establishing ataxin-2 downregulates translation of mutant ataxin-3 and alleviates Machado-Joseph disease. Brain 2015; 138:3537-54. [PMID: 26490332 DOI: 10.1093/brain/awv298] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/25/2015] [Indexed: 01/09/2023] Open
Abstract
Machado-Joseph disease is a progressive neurodegenerative disorder associated with the polyQ-expanded ataxin-3 (encoded by ATXN3), for which no therapy is available. With the aim of clarifying the mechanism of neurodegeneration, we hypothesized that the abnormally long polyQ tract would interact aberrantly with ataxin-2 (encoded by ATXN2), another polyQ protein whose function has recently been linked to translational regulation. Using patient's samples and cellular and animal's models we found that in Machado-Joseph disease: (i) ataxin-2 levels are reduced; and (ii) its subcellular localization is changed towards the nucleus. Restoring ataxin-2 levels by lentiviral-mediated overexpression: (i) reduced mutant ataxin-3 levels; and (ii) rescued behaviour defects and neuropathology in a transgenic mouse model of Machado-Joseph disease. Conversely (i) mutating the ataxin-2 motif that enables binding to its natural interactor and translation activator poly(A)-binding protein; or (ii) overexpressing poly(A)-binding protein, had opposite effects, increasing mutant ataxin-3 translation and aggregation. This work suggests that in Machado-Joseph disease, mutant ataxin-3 drives an abnormal reduction of ataxin-2 levels, which overactivates poly(A)-binding protein, increases translation of mutant ataxin-3 and other proteins and aggravates Machado-Joseph disease. Re-establishment of ataxin-2 levels reduces mutant ataxin-3 and alleviates Machado-Joseph disease pathogenesis opening a new avenue for therapeutic intervention in this and potentially other polyQ disorders.
Collapse
Affiliation(s)
- Clévio Nóbrega
- 1 CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, FMUC, 3004- 504 Coimbra, Portugal
| | - Sara Carmo-Silva
- 1 CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, FMUC, 3004- 504 Coimbra, Portugal 2 Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - David Albuquerque
- 3 Faculty of Sciences and Technology, University of Coimbra, 3004- 517 Coimbra, Portugal
| | - Ana Vasconcelos-Ferreira
- 1 CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, FMUC, 3004- 504 Coimbra, Portugal 2 Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Udaya-Geetha Vijayakumar
- 1 CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, FMUC, 3004- 504 Coimbra, Portugal
| | - Liliana Mendonça
- 1 CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, FMUC, 3004- 504 Coimbra, Portugal
| | - Hirokazu Hirai
- 4 Department of Neurophysiology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Luís Pereira de Almeida
- 1 CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, FMUC, 3004- 504 Coimbra, Portugal 2 Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
112
|
Fittschen M, Lastres-Becker I, Halbach MV, Damrath E, Gispert S, Azizov M, Walter M, Müller S, Auburger G. Genetic ablation of ataxin-2 increases several global translation factors in their transcript abundance but decreases translation rate. Neurogenetics 2015; 16:181-92. [PMID: 25721894 PMCID: PMC4475250 DOI: 10.1007/s10048-015-0441-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 02/10/2015] [Indexed: 12/12/2022]
Abstract
Spinocerebellar ataxia type 2 (SCA2) and amyotrophic lateral sclerosis (ALS) are neurodegenerative disorders, caused or modified by an unstable CAG-repeat expansion in the SCA2 gene, which encodes a polyglutamine (polyQ) domain expansion in ataxin-2 (ATXN2). ATXN2 is an RNA-binding protein and interacts with the poly(A)-binding protein PABPC1, localizing to ribosomes at the rough endoplasmic reticulum. Under cell stress, ATXN2, PABPC1 and small ribosomal subunits are relocated to stress granules, where mRNAs are protected from translation and from degradation. It is unknown whether ATXN2 associates preferentially with specific mRNAs or how it modulates RNA processing. Here, we investigated the RNA profile of the liver and cerebellum from Atxn2 knockout (Atxn2 (-/-)) mice at two adult ages, employing oligonucleotide microarrays. Prominent increases were observed for Lsm12/Paip1 (>2-fold), translation modulators known as protein interactor/competitor of ATXN2 and for Plin3/Mttp (>1.3-fold), known as apolipoprotein modulators in agreement with the hepatosteatosis phenotype of the Atxn2 (-/-) mice. Consistent modest upregulations were also observed for many factors in the ribosome and the translation/secretion apparatus. Quantitative reverse transcriptase PCR in liver tissue validated >1.2-fold upregulations for the ribosomal biogenesis modulator Nop10, the ribosomal components Rps10, Rps18, Rpl14, Rpl18, Gnb2l1, the translation initiation factors Eif2s2, Eif3s6, Eif4b, Pabpc1 and the rER translocase factors Srp14, Ssr1, Sec61b. Quantitative immunoblots substantiated the increased abundance of NOP10, RPS3, RPS6, RPS10, RPS18, GNB2L1 in SDS protein fractions, and of PABPC1. In mouse embryonal fibroblasts, ATXN2 absence also enhanced phosphorylation of the ribosomal protein S6 during growth stimulation, while impairing the rate of overall protein synthesis rates, suggesting a block between the enhanced translation drive and the impaired execution. Thus, the physiological role of ATXN2 subtly modifies the abundance of cellular translation factors as well as global translation.
Collapse
Affiliation(s)
- M Fittschen
- Experimental Neurology, Goethe University Medical School, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Li Q, Uemura Y, Kawahara Y. Cross-linking and immunoprecipitation of nuclear RNA-binding proteins. Methods Mol Biol 2015; 1262:247-63. [PMID: 25555586 DOI: 10.1007/978-1-4939-2253-6_15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The systematic identification of in vivo targets of nuclear RNA-binding proteins (RBPs) is crucial to elucidate the physiological functions of each RBP. However, it has been difficult to distinguish real targets from nonspecifically bound RNAs and to determine the exact binding sites of each RBP by using a conventional RNA-immunoprecipitation (RIP) method. Photoactivatable Ribonucleoside-Enhanced Cross-linking and Immunoprecipitation (PAR-CLIP) is a recently developed method that relies on RNA-protein cross-linking to reduce the contamination of nonspecifically bound RNAs. Furthermore, in combination with high-throughput sequencing followed by bioinformatic analysis, the exact RBP-binding sites can be identified at a single nucleotide resolution. Here, we describe in detail a PAR-CLIP protocol to prepare cDNA libraries for high-throughput sequencing from RNA fragments that are bound to RBPs not only in the nucleus but also in the cytoplasm.
Collapse
Affiliation(s)
- Quan Li
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | | | | |
Collapse
|