101
|
Marceau CD, Puschnik AS, Majzoub K, Ooi YS, Brewer SM, Fuchs G, Swaminathan K, Mata MA, Elias JE, Sarnow P, Carette JE. Genetic dissection of Flaviviridae host factors through genome-scale CRISPR screens. Nature 2016; 535:159-63. [PMID: 27383987 PMCID: PMC4964798 DOI: 10.1038/nature18631] [Citation(s) in RCA: 332] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 06/10/2016] [Indexed: 12/15/2022]
Abstract
The Flaviviridae are a family of viruses that cause severe human diseases. For example, dengue virus (DENV) is a rapidly emerging pathogen causing an estimated 100 million symptomatic infections annually worldwide. No approved antivirals are available to date and clinical trials with a tetravalent dengue vaccine showed disappointingly low protection rates. Hepatitis C virus (HCV) also remains a major medical problem, with 160 million chronically infected patients worldwide and only expensive treatments available. Despite distinct differences in their pathogenesis and modes of transmission, the two viruses share common replication strategies. A detailed understanding of the host functions that determine viral infection is lacking. Here we use a pooled CRISPR genetic screening strategy to comprehensively dissect host factors required for these two highly important Flaviviridae members. For DENV, we identified endoplasmic-reticulum (ER)-associated multi-protein complexes involved in signal sequence recognition, N-linked glycosylation and ER-associated degradation. DENV replication was nearly completely abrogated in cells deficient in the oligosaccharyltransferase (OST) complex. Mechanistic studies pinpointed viral RNA replication and not entry or translation as the crucial step requiring the OST complex. Moreover, we show that viral non-structural proteins bind to the OST complex. The identified ER-associated protein complexes were also important for infection by other mosquito-borne flaviviruses including Zika virus, an emerging pathogen causing severe birth defects. By contrast, the most significant genes identified in the HCV screen were distinct and included viral receptors, RNA-binding proteins and enzymes involved in metabolism. We found an unexpected link between intracellular flavin adenine dinucleotide (FAD) levels and HCV replication. This study shows notable divergence in host-depenency factors between DENV and HCV, and illuminates new host targets for antiviral therapy.
Collapse
|
102
|
Meyers NL, Fontaine KA, Kumar GR, Ott M. Entangled in a membranous web: ER and lipid droplet reorganization during hepatitis C virus infection. Curr Opin Cell Biol 2016; 41:117-24. [PMID: 27240021 DOI: 10.1016/j.ceb.2016.05.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/04/2016] [Accepted: 05/05/2016] [Indexed: 12/19/2022]
Abstract
Hepatitis C virus (HCV) is a major cause of liver disease worldwide. To establish and maintain chronic infection, HCV extensively rearranges cellular organelles to generate distinct compartments for viral RNA replication and virion assembly. Here, we review our current knowledge of how HCV proliferates and remodels ER-derived membranes while preserving and expanding associated lipid droplets during viral infection. Unraveling the molecular mechanisms responsible for HCV-induced membrane reorganization will enhance our understanding of the HCV life-cycle, the associated liver pathology, and the biology of the ER:lipid droplet interface in general.
Collapse
Affiliation(s)
- Nathan L Meyers
- Gladstone Institutes, University of California San Francisco, 1650 Owens Street, San Francisco, CA 94941, United States
| | - Krystal A Fontaine
- Gladstone Institutes, University of California San Francisco, 1650 Owens Street, San Francisco, CA 94941, United States
| | - G Renuka Kumar
- Gladstone Institutes, University of California San Francisco, 1650 Owens Street, San Francisco, CA 94941, United States
| | - Melanie Ott
- Gladstone Institutes, University of California San Francisco, 1650 Owens Street, San Francisco, CA 94941, United States.
| |
Collapse
|
103
|
Karousis ED, Nasif S, Mühlemann O. Nonsense-mediated mRNA decay: novel mechanistic insights and biological impact. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:661-82. [PMID: 27173476 PMCID: PMC6680220 DOI: 10.1002/wrna.1357] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/31/2016] [Accepted: 04/04/2016] [Indexed: 12/19/2022]
Abstract
Nonsense‐mediated mRNA decay (NMD) was originally coined to define a quality control mechanism that targets mRNAs with truncated open reading frames due to the presence of a premature termination codon. Meanwhile, it became clear that NMD has a much broader impact on gene expression and additional biological functions beyond quality control are continuously being discovered. We review here the current views regarding the molecular mechanisms of NMD, according to which NMD ensues on mRNAs that fail to terminate translation properly, and point out the gaps in our understanding. We further summarize the recent literature on an ever‐rising spectrum of biological processes in which NMD appears to be involved, including homeostatic control of gene expression, development and differentiation, as well as viral defense. WIREs RNA 2016, 7:661–682. doi: 10.1002/wrna.1357 This article is categorized under:
RNA Interactions with Proteins and Other Molecules > Protein–RNA Interactions: Functional Implications RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Turnover and Surveillance > Regulation of RNA Stability
Collapse
Affiliation(s)
| | - Sofia Nasif
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Oliver Mühlemann
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| |
Collapse
|
104
|
Ottens F, Gehring NH. Physiological and pathophysiological role of nonsense-mediated mRNA decay. Pflugers Arch 2016; 468:1013-28. [PMID: 27138169 DOI: 10.1007/s00424-016-1826-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/07/2016] [Accepted: 04/18/2016] [Indexed: 12/27/2022]
Abstract
Nonsense-mediated messenger RNA (mRNA) decay (NMD) is a quality control mechanism that degrades irregular or faulty mRNAs. NMD mainly degrades mRNAs, which contain a premature termination codon (PTC) and therefore encode a truncated protein. Furthermore, NMD alters the expression of different types of cellular mRNAs, the so-called endogenous NMD substrates. In this review, we focus on the impact of NMD on cellular and molecular physiology. We specify key classes of NMD substrates and provide a detailed overview of the physiological function of gene regulation by NMD. We also describe different mechanisms of NMD substrate degradation and how the regulation of the NMD machinery affects cellular physiology. Finally, we outline the physiological functions of central NMD factors.
Collapse
Affiliation(s)
- Franziska Ottens
- Institute for Genetics, University of Cologne, Zuelpicher Str. 47a, 50674, Cologne, Germany
| | - Niels H Gehring
- Institute for Genetics, University of Cologne, Zuelpicher Str. 47a, 50674, Cologne, Germany.
| |
Collapse
|
105
|
Nakano K, Watanabe T. HTLV-1 Rex Tunes the Cellular Environment Favorable for Viral Replication. Viruses 2016; 8:58. [PMID: 26927155 PMCID: PMC4810248 DOI: 10.3390/v8030058] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/09/2016] [Accepted: 02/09/2016] [Indexed: 12/18/2022] Open
Abstract
Human T-cell leukemia virus type-1 (HTLV-1) Rex is a viral RNA binding protein. The most important and well-known function of Rex is stabilizing and exporting viral mRNAs from the nucleus, particularly for unspliced/partially-spliced mRNAs encoding the structural proteins essential for viral replication. Without Rex, these unspliced viral mRNAs would otherwise be completely spliced. Therefore, Rex is vital for the translation of structural proteins and the stabilization of viral genomic RNA and, thus, for viral replication. Rex schedules the period of extensive viral replication and suppression to enter latency. Although the importance of Rex in the viral life-cycle is well understood, the underlying molecular mechanism of how Rex achieves its function has not been clarified. For example, how does Rex protect unspliced/partially-spliced viral mRNAs from the host cellular splicing machinery? How does Rex protect viral mRNAs, antigenic to eukaryotic cells, from cellular mRNA surveillance mechanisms? Here we will discuss these mechanisms, which explain the function of Rex as an organizer of HTLV-1 expression based on previously and recently discovered aspects of Rex. We also focus on the potential influence of Rex on the homeostasis of the infected cell and how it can exert its function.
Collapse
Affiliation(s)
- Kazumi Nakano
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1, Shirokanedai, Minatoku, Tokyo 108-8639, Japan.
| | - Toshiki Watanabe
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1, Shirokanedai, Minatoku, Tokyo 108-8639, Japan.
| |
Collapse
|
106
|
Liu S, Zhao T, Song B, Zhou J, Wang TT. Comparative Proteomics Reveals Important Viral-Host Interactions in HCV-Infected Human Liver Cells. PLoS One 2016; 11:e0147991. [PMID: 26808496 PMCID: PMC4726516 DOI: 10.1371/journal.pone.0147991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/11/2016] [Indexed: 01/17/2023] Open
Abstract
Hepatitis C virus (HCV) poses a global threat to public health. HCV envelop protein E2 is the major component on the virus envelope, which plays an important role in virus entry and morphogenesis. Here, for the first time, we affinity purified E2 complex formed in HCV-infected human hepatoma cells and conducted comparative mass spectrometric analyses. 85 cellular proteins and three viral proteins were successfully identified in three independent trials, among which alphafetoprotein (AFP), UDP-glucose: glycoprotein glucosyltransferase 1 (UGT1) and HCV NS4B were further validated as novel E2 binding partners. Subsequent functional characterization demonstrated that gene silencing of UGT1 in human hepatoma cell line Huh7.5.1 markedly decreased the production of infectious HCV, indicating a regulatory role of UGT1 in viral lifecycle. Domain mapping experiments showed that HCV E2-NS4B interaction requires the transmembrane domains of the two proteins. Altogether, our proteomics study has uncovered key viral and cellular factors that interact with E2 and provided new insights into our understanding of HCV infection.
Collapse
Affiliation(s)
- Shufeng Liu
- Center for Immunology and Infectious Diseases, Bioscience Division, SRI International, Harrisonburg, Virginia, 22802, United States of America
| | - Ting Zhao
- College of Pharmacy, University of Michigan, Ann Arbor, Michigan, 48109, United States of America
| | - BenBen Song
- SLS Global Technical Support, Pall Corporation, Port Washington, New York, 11050, United States of America
| | - Jianhua Zhou
- Department of Urology, School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, 15232, United States of America
| | - Tony T. Wang
- Center for Immunology and Infectious Diseases, Bioscience Division, SRI International, Harrisonburg, Virginia, 22802, United States of America
- * E-mail:
| |
Collapse
|
107
|
Pokharel YR, Saarela J, Szwajda A, Rupp C, Rokka A, Lal Kumar Karna S, Teittinen K, Corthals G, Kallioniemi O, Wennerberg K, Aittokallio T, Westermarck J. Relevance Rank Platform (RRP) for Functional Filtering of High Content Protein-Protein Interaction Data. Mol Cell Proteomics 2015; 14:3274-83. [PMID: 26499835 DOI: 10.1074/mcp.m115.050773] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Indexed: 11/06/2022] Open
Abstract
High content protein interaction screens have revolutionized our understanding of protein complex assembly. However, one of the major challenges in translation of high content protein interaction data is identification of those interactions that are functionally relevant for a particular biological question. To address this challenge, we developed a relevance ranking platform (RRP), which consist of modular functional and bioinformatic filters to provide relevance rank among the interactome proteins. We demonstrate the versatility of RRP to enable a systematic prioritization of the most relevant interaction partners from high content data, highlighted by the analysis of cancer relevant protein interactions for oncoproteins Pin1 and PME-1. We validated the importance of selected interactions by demonstration of PTOV1 and CSKN2B as novel regulators of Pin1 target c-Jun phosphorylation and reveal previously unknown interacting proteins that may mediate PME-1 effects via PP2A-inhibition. The RRP framework is modular and can be modified to answer versatile research problems depending on the nature of the biological question under study. Based on comparison of RRP to other existing filtering tools, the presented data indicate that RRP offers added value especially for the analysis of interacting proteins for which there is no sufficient prior knowledge available. Finally, we encourage the use of RRP in combination with either SAINT or CRAPome computational tools for selecting the candidate interactors that fulfill the both important requirements, functional relevance, and high confidence interaction detection.
Collapse
Affiliation(s)
- Yuba Raj Pokharel
- From the ‡Institute for Molecular Medicine Finland FIMM, University of Helsinki, PO Box 20, FIN-00014 Helsinki, Finland; §Centre for Biotechnology, ‖Faculty of Life Science and Biotechnology, South Asian University, New Delhi 110021, India
| | - Jani Saarela
- From the ‡Institute for Molecular Medicine Finland FIMM, University of Helsinki, PO Box 20, FIN-00014 Helsinki, Finland
| | - Agnieszka Szwajda
- From the ‡Institute for Molecular Medicine Finland FIMM, University of Helsinki, PO Box 20, FIN-00014 Helsinki, Finland
| | | | | | | | - Kaisa Teittinen
- **Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere and Tampere University Hospital, FIN-33014, Tampere, Finland
| | | | - Olli Kallioniemi
- From the ‡Institute for Molecular Medicine Finland FIMM, University of Helsinki, PO Box 20, FIN-00014 Helsinki, Finland
| | - Krister Wennerberg
- From the ‡Institute for Molecular Medicine Finland FIMM, University of Helsinki, PO Box 20, FIN-00014 Helsinki, Finland
| | - Tero Aittokallio
- From the ‡Institute for Molecular Medicine Finland FIMM, University of Helsinki, PO Box 20, FIN-00014 Helsinki, Finland
| | - Jukka Westermarck
- From the ‡Institute for Molecular Medicine Finland FIMM, University of Helsinki, PO Box 20, FIN-00014 Helsinki, Finland; §Centre for Biotechnology, ¶Department of Pathology,University of Turku and Åbo Akademi, Turku, Finland, PO Box 123, FIN-20521 Turku, Finland.;
| |
Collapse
|
108
|
Colpitts CC, El-Saghire H, Pochet N, Schuster C, Baumert TF. High-throughput approaches to unravel hepatitis C virus-host interactions. Virus Res 2015; 218:18-24. [PMID: 26410623 DOI: 10.1016/j.virusres.2015.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/18/2015] [Accepted: 09/22/2015] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) remains a major global health burden, with more than 130 million individuals chronically infected and at risk for the development of hepatocellular carcinoma (HCC). The recent clinical licensing of direct-acting antivirals enables viral cure. However, limited access to therapy and treatment failure in patient subgroups warrants a continuing effort to develop complementary antiviral strategies. Furthermore, once fibrosis is established, curing HCV infection does not eliminate the risk for HCC. High-throughput approaches and screens have enabled the investigation of virus-host interactions on a genome-wide scale. Gain- and loss-of-function screens have identified essential host-dependency factors in the HCV viral life cycle, such as host cell entry factors or regulatory factors for viral replication and assembly. Network analyses of systems-scale data sets provided a comprehensive view of the cellular state following HCV infection, thus improving our understanding of the virus-induced responses of the target cell. Interactome, metabolomics and gene expression studies identified dysregulated cellular processes potentially contributing to HCV pathogenesis and HCC. Drug screens using chemical libraries led to the discovery of novel antivirals. Here, we review the contribution of high-throughput approaches for the investigation of virus-host interactions, viral pathogenesis and drug discovery.
Collapse
Affiliation(s)
- Che C Colpitts
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Hussein El-Saghire
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Nathalie Pochet
- Program in Translational NeuroPsychiatric Genomics, Brigham and Women's Hospital, Harvard Medical School, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Catherine Schuster
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Thomas F Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France; Université de Strasbourg, 67000 Strasbourg, France; Institut Hospitalo-Universitaire, PôleHépato-digestif, HôpitauxUniversitaires de Strasbourg, 67000 Strasbourg, France.
| |
Collapse
|
109
|
Abstract
Deciphering the many interactions that occur between a virus and host cell over the course of infection is paramount to understanding mechanisms of pathogenesis and to the future development of antiviral therapies. Over the past decade, researchers have started to understand these complicated relationships through the development of methodologies, including advances in RNA interference, proteomics, and the development of genetic tools such as haploid cell lines, allowing high-throughput screening to identify critical contact points between virus and host. These advances have produced a wealth of data regarding host factors hijacked by viruses to promote infection, as well as antiviral factors responsible for subverting viral infection. This review highlights findings from virus-host screens and discusses our thoughts on the direction of screening strategies moving forward.
Collapse
Affiliation(s)
- Holly Ramage
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104; ,
| | - Sara Cherry
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104; ,
| |
Collapse
|
110
|
Shah PS, Wojcechowskyj JA, Eckhardt M, Krogan NJ. Comparative mapping of host-pathogen protein-protein interactions. Curr Opin Microbiol 2015; 27:62-8. [PMID: 26275922 DOI: 10.1016/j.mib.2015.07.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/21/2015] [Accepted: 07/21/2015] [Indexed: 01/19/2023]
Abstract
Pathogens usurp a variety of host pathways via protein-protein interactions to ensure efficient pathogen replication. Despite the existence of an impressive toolkit of systematic and unbiased approaches, we still lack a comprehensive list of these PPIs and an understanding of their functional implications. Here, we highlight the importance of harnessing genetic diversity of hosts and pathogens for uncovering the biochemical basis of pathogen restriction, virulence, fitness, and pathogenesis. We further suggest that integrating physical interaction data with orthogonal types of data will allow researchers to draw meaningful conclusions both for basic and translational science.
Collapse
Affiliation(s)
- Priya S Shah
- Department of Cellular and Molecular Pharmacology, University of California, Byers Hall, 1700 4th Street, San Francisco, CA 94158, United States; Department of Microbiology and Immunology, University of California, Genentech Hall, 600 16th Street, San Francisco, CA 94158, United States; QB3, University of California, Byers Hall, 1700 4th Street, Byers Hall, San Francisco, CA 94158, United States; J. David Gladstone Institutes, 1650 Owens Street, San Francisco, CA 94158, United States
| | - Jason A Wojcechowskyj
- Department of Cellular and Molecular Pharmacology, University of California, Byers Hall, 1700 4th Street, San Francisco, CA 94158, United States; QB3, University of California, Byers Hall, 1700 4th Street, Byers Hall, San Francisco, CA 94158, United States; J. David Gladstone Institutes, 1650 Owens Street, San Francisco, CA 94158, United States
| | - Manon Eckhardt
- Department of Cellular and Molecular Pharmacology, University of California, Byers Hall, 1700 4th Street, San Francisco, CA 94158, United States; QB3, University of California, Byers Hall, 1700 4th Street, Byers Hall, San Francisco, CA 94158, United States; J. David Gladstone Institutes, 1650 Owens Street, San Francisco, CA 94158, United States
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, Byers Hall, 1700 4th Street, San Francisco, CA 94158, United States; QB3, University of California, Byers Hall, 1700 4th Street, Byers Hall, San Francisco, CA 94158, United States; J. David Gladstone Institutes, 1650 Owens Street, San Francisco, CA 94158, United States.
| |
Collapse
|
111
|
Krogan NJ, Lippman S, Agard DA, Ashworth A, Ideker T. The cancer cell map initiative: defining the hallmark networks of cancer. Mol Cell 2015; 58:690-8. [PMID: 26000852 PMCID: PMC5359018 DOI: 10.1016/j.molcel.2015.05.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Progress in DNA sequencing has revealed the startling complexity of cancer genomes, which typically carry thousands of somatic mutations. However, it remains unclear which are the key driver mutations or dependencies in a given cancer and how these influence pathogenesis and response to therapy. Although tumors of similar types and clinical outcomes can have patterns of mutations that are strikingly different, it is becoming apparent that these mutations recurrently hijack the same hallmark molecular pathways and networks. For this reason, it is likely that successful interpretation of cancer genomes will require comprehensive knowledge of the molecular networks under selective pressure in oncogenesis. Here we announce the creation of a new effort, The Cancer Cell Map Initiative (CCMI), aimed at systematically detailing these complex interactions among cancer genes and how they differ between diseased and healthy states. We discuss recent progress that enables creation of these cancer cell maps across a range of tumor types and how they can be used to target networks disrupted in individual patients, significantly accelerating the development of precision medicine.
Collapse
Affiliation(s)
- Nevan J Krogan
- California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, San Francisco, CA 94143, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA; J. David Gladstone Institutes, San Francisco, CA 94143, USA; Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Scott Lippman
- Department of Medicine, University of California, San Diego, San Diego, CA 92093, USA; Moores Cancer Center, University of California, San Diego, San Diego, CA 92093, USA
| | - David A Agard
- California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, San Francisco, CA 94143, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 92093, USA
| | - Alan Ashworth
- Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 92093, USA
| | - Trey Ideker
- Department of Medicine, University of California, San Diego, San Diego, CA 92093, USA; Moores Cancer Center, University of California, San Diego, San Diego, CA 92093, USA.
| |
Collapse
|
112
|
Mirrashidi KM, Elwell CA, Verschueren E, Johnson JR, Frando A, Von Dollen J, Rosenberg O, Gulbahce N, Jang G, Johnson T, Jäger S, Gopalakrishnan AM, Sherry J, Dunn JD, Olive A, Penn B, Shales M, Cox JS, Starnbach MN, Derre I, Valdivia R, Krogan NJ, Engel J. Global Mapping of the Inc-Human Interactome Reveals that Retromer Restricts Chlamydia Infection. Cell Host Microbe 2015; 18:109-21. [PMID: 26118995 DOI: 10.1016/j.chom.2015.06.004] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/28/2015] [Accepted: 06/05/2015] [Indexed: 01/02/2023]
Abstract
Chlamydia trachomatis is a leading cause of genital and ocular infections for which no vaccine exists. Upon entry into host cells, C. trachomatis resides within a membrane-bound compartment—the inclusion—and secretes inclusion membrane proteins (Incs) that are thought to modulate the host-bacterium interface. To expand our understanding of Inc function(s), we subjected putative C. trachomatis Incs to affinity purification-mass spectroscopy (AP-MS). We identified Inc-human interactions for 38/58 Incs with enrichment in host processes consistent with Chlamydia's intracellular life cycle. There is significant overlap between Inc targets and viral proteins, suggesting common pathogenic mechanisms among obligate intracellular microbes. IncE binds to sorting nexins (SNXs) 5/6, components of the retromer, which relocalizes SNX5/6 to the inclusion membrane and augments inclusion membrane tubulation. Depletion of retromer components enhances progeny production, revealing that retromer restricts Chlamydia infection. This study demonstrates the value of proteomics in unveiling host-pathogen interactions in genetically challenging microbes.
Collapse
Affiliation(s)
- Kathleen M Mirrashidi
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Cherilyn A Elwell
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Erik Verschueren
- QB3, California Institute for Quantitative Biosciences, San Francisco, CA 94148, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jeffrey R Johnson
- QB3, California Institute for Quantitative Biosciences, San Francisco, CA 94148, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Andrew Frando
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - John Von Dollen
- QB3, California Institute for Quantitative Biosciences, San Francisco, CA 94148, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Oren Rosenberg
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Natali Gulbahce
- QB3, California Institute for Quantitative Biosciences, San Francisco, CA 94148, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gwendolyn Jang
- QB3, California Institute for Quantitative Biosciences, San Francisco, CA 94148, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Tasha Johnson
- QB3, California Institute for Quantitative Biosciences, San Francisco, CA 94148, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Stefanie Jäger
- QB3, California Institute for Quantitative Biosciences, San Francisco, CA 94148, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | - Jessica Sherry
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Joe Dan Dunn
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| | - Andrew Olive
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Bennett Penn
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michael Shales
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Gladstone Institutes, San Francisco, CA 94158, USA
| | - Jeffery S Cox
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Isabelle Derre
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06510, USA
| | - Raphael Valdivia
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| | - Nevan J Krogan
- QB3, California Institute for Quantitative Biosciences, San Francisco, CA 94148, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Gladstone Institutes, San Francisco, CA 94158, USA.
| | - Joanne Engel
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
113
|
Recent strategies and progress in identifying host factors involved in virus replication. Curr Opin Microbiol 2015; 26:79-88. [PMID: 26112615 PMCID: PMC7185747 DOI: 10.1016/j.mib.2015.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 03/17/2015] [Accepted: 06/02/2015] [Indexed: 11/23/2022]
Abstract
Viruses are completely dependent on their host cells for the successful production of progeny viruses. At each stage of the viral life cycle an intricate interplay between virus and host takes place with the virus aiming to usurp the host cell for its purposes and the host cell trying to block the intruder from propagation. In recent years these interactions have been studied on a global level by systems biology approaches, such as RNA interference screens, transcriptomic or proteomic methodologies, and exciting new insights into the pathogen-host relationship have been revealed. In this review, we summarize the available data, give examples for important findings from such studies and point out current limitations and potential future directions.
Collapse
|
114
|
Douam F, Ploss A. Proteomic approaches to analyzing hepatitis C virus biology. Proteomics 2015; 15:2051-65. [PMID: 25809442 PMCID: PMC4559851 DOI: 10.1002/pmic.201500009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 02/25/2015] [Accepted: 03/19/2015] [Indexed: 12/15/2022]
Abstract
Hepatitis C virus (HCV) is a major cause of liver disease worldwide. Acute infection often progresses to chronicity resulting frequently in fibrosis, cirrhosis, and in rare cases, in the development of hepatocellular carcinoma. Although HCV has proven to be an arduous object of research and has raised important technical challenges, several experimental models have been developed all over the last two decades in order to improve our understanding of the virus life cycle, pathogenesis and virus-host interactions. The recent development of direct acting-agents, leading to considerable progress in treatment of patients, represents the direct outcomes of these achievements. Proteomic approaches have been of critical help to shed light on several aspect of the HCV biology such as virion composition, viral replication, and virus assembly and to unveil diagnostic or prognostic markers of HCV-induced liver disease. Here, we review how proteomic approaches have led to improve our understanding of HCV life cycle and liver disease, thus highlighting the relevance of these approaches for studying the complex interactions between other challenging human viral pathogens and their host.
Collapse
Affiliation(s)
- Florian Douam
- Department of Molecular Biology, Princeton University, 110 Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, 110 Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544
| |
Collapse
|
115
|
Kane JR, Stanley DJ, Hultquist JF, Johnson JR, Mietrach N, Binning JM, Jónsson SR, Barelier S, Newton BW, Johnson TL, Franks-Skiba KE, Li M, Brown WL, Gunnarsson HI, Adalbjornsdóttir A, Fraser JS, Harris RS, Andrésdóttir V, Gross JD, Krogan NJ. Lineage-Specific Viral Hijacking of Non-canonical E3 Ubiquitin Ligase Cofactors in the Evolution of Vif Anti-APOBEC3 Activity. Cell Rep 2015; 11:1236-50. [PMID: 25981045 PMCID: PMC4613747 DOI: 10.1016/j.celrep.2015.04.038] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 03/13/2015] [Accepted: 04/18/2015] [Indexed: 11/29/2022] Open
Abstract
HIV-1 encodes the accessory protein Vif, which hijacks a host Cullin-RING ubiquitin ligase (CRL) complex as well as the non-canonical cofactor CBFβ, to antagonize APOBEC3 antiviral proteins. Non-canonical cofactor recruitment to CRL complexes by viral factors, to date, has only been attributed to HIV-1 Vif. To further study this phenomenon, we employed a comparative approach combining proteomic, biochemical, structural, and virological techniques to investigate Vif complexes across the lentivirus genus, including primate (HIV-1 and simian immunodeficiency virus macaque [SIVmac]) and non-primate (FIV, BIV, and MVV) viruses. We find that CBFβ is completely dispensable for the activity of non-primate lentiviral Vif proteins. Furthermore, we find that BIV Vif requires no cofactor and that MVV Vif requires a novel cofactor, cyclophilin A (CYPA), for stable CRL complex formation and anti-APOBEC3 activity. We propose modular conservation of Vif complexes allows for potential exaptation of functions through the acquisition of non-CRL-associated host cofactors while preserving anti-APOBEC3 activity.
Collapse
Affiliation(s)
- Joshua R Kane
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, QB3, University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - David J Stanley
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Judd F Hultquist
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, QB3, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Biochemistry, Molecular Biology and Biophysics, Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Jeffrey R Johnson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, QB3, University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Nicole Mietrach
- Institute for Experimental Pathology, University of Iceland, Keldur, 112 Reykjavík, Iceland
| | - Jennifer M Binning
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Stefán R Jónsson
- Institute for Experimental Pathology, University of Iceland, Keldur, 112 Reykjavík, Iceland
| | - Sarah Barelier
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Billy W Newton
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, QB3, University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Tasha L Johnson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, QB3, University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Kathleen E Franks-Skiba
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, QB3, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ming Li
- Department of Biochemistry, Molecular Biology and Biophysics, Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
| | - William L Brown
- Department of Biochemistry, Molecular Biology and Biophysics, Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Hörður I Gunnarsson
- Institute for Experimental Pathology, University of Iceland, Keldur, 112 Reykjavík, Iceland
| | | | - James S Fraser
- California Institute for Quantitative Biosciences, QB3, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Reuben S Harris
- Department of Biochemistry, Molecular Biology and Biophysics, Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Valgerður Andrésdóttir
- Institute for Experimental Pathology, University of Iceland, Keldur, 112 Reykjavík, Iceland
| | - John D Gross
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, QB3, University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA.
| |
Collapse
|
116
|
Sidrauski C, Tsai JC, Kampmann M, Hearn BR, Vedantham P, Jaishankar P, Sokabe M, Mendez AS, Newton BW, Tang EL, Verschueren E, Johnson JR, Krogan NJ, Fraser CS, Weissman JS, Renslo AR, Walter P. Pharmacological dimerization and activation of the exchange factor eIF2B antagonizes the integrated stress response. eLife 2015; 4:e07314. [PMID: 25875391 PMCID: PMC4426669 DOI: 10.7554/elife.07314] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/13/2015] [Indexed: 12/18/2022] Open
Abstract
The general translation initiation factor eIF2 is a major translational control point. Multiple signaling pathways in the integrated stress response phosphorylate eIF2 serine-51, inhibiting nucleotide exchange by eIF2B. ISRIB, a potent drug-like small molecule, renders cells insensitive to eIF2α phosphorylation and enhances cognitive function in rodents by blocking long-term depression. ISRIB was identified in a phenotypic cell-based screen, and its mechanism of action remained unknown. We now report that ISRIB is an activator of eIF2B. Our reporter-based shRNA screen revealed an eIF2B requirement for ISRIB activity. Our results define ISRIB as a symmetric molecule, show ISRIB-mediated stabilization of activated eIF2B dimers, and suggest that eIF2B4 (δ-subunit) contributes to the ISRIB binding site. We also developed new ISRIB analogs, improving its EC50 to 600 pM in cell culture. By modulating eIF2B function, ISRIB promises to be an invaluable tool in proof-of-principle studies aiming to ameliorate cognitive defects resulting from neurodegenerative diseases.
Collapse
Affiliation(s)
- Carmela Sidrauski
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Jordan C Tsai
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Martin Kampmann
- Howard Hughes Medical Institution, University of California, San Francisco, San Francisco, United States
| | - Brian R Hearn
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
| | - Punitha Vedantham
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
| | - Priyadarshini Jaishankar
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
| | - Masaaki Sokabe
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, United States
| | - Aaron S Mendez
- Howard Hughes Medical Institution, University of California, San Francisco, San Francisco, United States
| | - Billy W Newton
- QB3, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, United States
| | - Edward L Tang
- QB3, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, United States
| | - Erik Verschueren
- QB3, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, United States
| | - Jeffrey R Johnson
- QB3, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, United States
| | - Nevan J Krogan
- QB3, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, United States
| | - Christopher S Fraser
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, United States
| | - Jonathan S Weissman
- Howard Hughes Medical Institution, University of California, San Francisco, San Francisco, United States
| | - Adam R Renslo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
| | - Peter Walter
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
117
|
Rigby RE, Rehwinkel J. RNA degradation in antiviral immunity and autoimmunity. Trends Immunol 2015; 36:179-88. [PMID: 25709093 PMCID: PMC4358841 DOI: 10.1016/j.it.2015.02.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 02/02/2015] [Accepted: 02/02/2015] [Indexed: 01/09/2023]
Abstract
The nonsense-mediated decay (NMD) pathway defends cells against RNA virus invasion. NMD targets viral RNAs for degradation, including by the RNA exosome. Genetic deficiencies in NMD and RNA exosome components cause autoimmunity. NMD and the RNA exosome prevent aberrant activation of innate immune responses.
Post-transcriptional control determines the fate of cellular RNA molecules. Nonsense-mediated decay (NMD) provides quality control of mRNA, targeting faulty cellular transcripts for degradation by multiple nucleases including the RNA exosome. Recent findings have revealed a role for NMD in targeting viral RNA molecules, thereby restricting virus infection. Interestingly, NMD is also linked to immune responses at another level: mutations affecting the NMD or RNA exosome machineries cause chronic activation of defence programmes, resulting in autoimmune phenotypes. Here we place these observations in the context of other links between innate antiviral immunity and type I interferon mediated disease and examine two models: one in which expression or function of pathogen sensors is perturbed and one wherein host-derived RNA molecules with a propensity to activate such sensors accumulate.
Collapse
Affiliation(s)
- Rachel E Rigby
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Jan Rehwinkel
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK.
| |
Collapse
|
118
|
Davis ZH, Verschueren E, Jang GM, Kleffman K, Johnson JR, Park J, Von Dollen J, Maher MC, Johnson T, Newton W, Jäger S, Shales M, Horner J, Hernandez RD, Krogan NJ, Glaunsinger BA. Global mapping of herpesvirus-host protein complexes reveals a transcription strategy for late genes. Mol Cell 2015; 57:349-60. [PMID: 25544563 PMCID: PMC4305015 DOI: 10.1016/j.molcel.2014.11.026] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 08/20/2014] [Accepted: 11/21/2014] [Indexed: 12/19/2022]
Abstract
Mapping host-pathogen interactions has proven instrumental for understanding how viruses manipulate host machinery and how numerous cellular processes are regulated. DNA viruses such as herpesviruses have relatively large coding capacity and thus can target an extensive network of cellular proteins. To identify the host proteins hijacked by this pathogen, we systematically affinity tagged and purified all 89 proteins of Kaposi's sarcoma-associated herpesvirus (KSHV) from human cells. Mass spectrometry of this material identified over 500 virus-host interactions. KSHV causes AIDS-associated cancers, and its interaction network is enriched for proteins linked to cancer and overlaps with proteins that are also targeted by HIV-1. We found that the conserved KSHV protein ORF24 binds to RNA polymerase II and brings it to viral late promoters by mimicking and replacing cellular TATA-box-binding protein (TBP). This is required for herpesviral late gene expression, a complex and poorly understood phase of the viral lifecycle.
Collapse
Affiliation(s)
- Zoe H Davis
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Division of Infectious Diseases and Immunity, School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Erik Verschueren
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Gladstone Institutes, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gwendolyn M Jang
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Gladstone Institutes, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kevin Kleffman
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jeffrey R Johnson
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Gladstone Institutes, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jimin Park
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - John Von Dollen
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Gladstone Institutes, University of California, San Francisco, San Francisco, CA 94158, USA
| | - M Cyrus Maher
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Tasha Johnson
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Gladstone Institutes, University of California, San Francisco, San Francisco, CA 94158, USA
| | - William Newton
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Gladstone Institutes, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Stefanie Jäger
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Gladstone Institutes, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Michael Shales
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Gladstone Institutes, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Julie Horner
- Thermo Fisher Scientific, 355 River Oaks Parkway, San Jose, CA 95134, USA
| | - Ryan D Hernandez
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nevan J Krogan
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Gladstone Institutes, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Britt A Glaunsinger
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|