101
|
Salomón T, Sibbersen C, Hansen J, Britz D, Svart MV, Voss TS, Møller N, Gregersen N, Jørgensen KA, Palmfeldt J, Poulsen TB, Johannsen M. Ketone Body Acetoacetate Buffers Methylglyoxal via a Non-enzymatic Conversion during Diabetic and Dietary Ketosis. Cell Chem Biol 2017; 24:935-943.e7. [PMID: 28820963 DOI: 10.1016/j.chembiol.2017.07.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/12/2017] [Accepted: 07/25/2017] [Indexed: 12/18/2022]
Abstract
The α-oxoaldehyde methylglyoxal is a ubiquitous and highly reactive metabolite known to be involved in aging- and diabetes-related diseases. If not detoxified by the endogenous glyoxalase system, it exerts its detrimental effects primarily by reacting with biopolymers such as DNA and proteins. We now demonstrate that during ketosis, another metabolic route is operative via direct non-enzymatic aldol reaction between methylglyoxal and the ketone body acetoacetate, leading to 3-hydroxyhexane-2,5-dione. This novel metabolite is present at a concentration of 10%-20% of the methylglyoxal level in the blood of insulin-starved patients. By employing a metabolite-alkyne-tagging strategy it is clarified that 3-hydroxyhexane-2,5-dione is further metabolized to non-glycating species in human blood. The discovery represents a new direction within non-enzymatic metabolism and within the use of alkyne-tagging for metabolism studies and it revitalizes acetoacetate as a competent endogenous carbon nucleophile.
Collapse
Affiliation(s)
- Trine Salomón
- Department of Forensic Medicine, Aarhus University, Aarhus 8200, Denmark
| | | | - Jakob Hansen
- Department of Forensic Medicine, Aarhus University, Aarhus 8200, Denmark
| | - Dieter Britz
- Department of Chemistry, Aarhus University, Aarhus 8000, Denmark
| | - Mads Vandsted Svart
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus 8000, Denmark
| | - Thomas Schmidt Voss
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus 8000, Denmark
| | - Niels Møller
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus 8000, Denmark
| | - Niels Gregersen
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus 8000, Denmark
| | | | - Johan Palmfeldt
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus 8000, Denmark
| | | | - Mogens Johannsen
- Department of Forensic Medicine, Aarhus University, Aarhus 8200, Denmark.
| |
Collapse
|
102
|
Griffin M, Scotto D, Josephs DH, Mele S, Crescioli S, Bax HJ, Pellizzari G, Wynne MD, Nakamura M, Hoffmann RM, Ilieva KM, Cheung A, Spicer JF, Papa S, Lacy KE, Karagiannis SN. BRAF inhibitors: resistance and the promise of combination treatments for melanoma. Oncotarget 2017; 8:78174-78192. [PMID: 29100459 PMCID: PMC5652848 DOI: 10.18632/oncotarget.19836] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 07/25/2017] [Indexed: 12/31/2022] Open
Abstract
Identification of mutations in the gene encoding the serine/threonine-protein kinase, BRAF, and constitutive activation of the mitogen-activated protein kinase (MAPK) pathway in around 50% of malignant melanomas have led to the development and regulatory approval of targeted pathway inhibitor drugs. A proportion of patients are intrinsically resistant to BRAF inhibitors, and most patients who initially respond, acquire resistance within months. In this review, we discuss pathway inhibitors and their mechanisms of resistance, and we focus on numerous efforts to improve clinical benefits through combining agents with disparate modes of action, including combinations with checkpoint inhibitor antibodies. We discuss the merits of combination strategies based on enhancing immune responses or overcoming tumor-associated immune escape mechanisms. Emerging insights into mechanisms of action, resistance pathways and their impact on host-tumor relationships will inform the design of optimal combinations therapies to improve outcomes for patients who currently do not benefit from recent treatment breakthroughs.
Collapse
Affiliation(s)
- Merope Griffin
- St John's Institute of Dermatology, Genetics and Molecular Medicine, King's College London, Guy's Hospital, Tower Wing, London, UK
| | - Daniele Scotto
- St John's Institute of Dermatology, Genetics and Molecular Medicine, King's College London, Guy's Hospital, Tower Wing, London, UK
| | - Debra H. Josephs
- St John's Institute of Dermatology, Genetics and Molecular Medicine, King's College London, Guy's Hospital, Tower Wing, London, UK
- Research Oncology, School of Cancer Sciences, King's College London, Guy's Hospital, Bermondsey Wing, London, UK
| | - Silvia Mele
- St John's Institute of Dermatology, Genetics and Molecular Medicine, King's College London, Guy's Hospital, Tower Wing, London, UK
| | - Silvia Crescioli
- St John's Institute of Dermatology, Genetics and Molecular Medicine, King's College London, Guy's Hospital, Tower Wing, London, UK
| | - Heather J. Bax
- St John's Institute of Dermatology, Genetics and Molecular Medicine, King's College London, Guy's Hospital, Tower Wing, London, UK
- Research Oncology, School of Cancer Sciences, King's College London, Guy's Hospital, Bermondsey Wing, London, UK
| | - Giulia Pellizzari
- St John's Institute of Dermatology, Genetics and Molecular Medicine, King's College London, Guy's Hospital, Tower Wing, London, UK
- Research Oncology, School of Cancer Sciences, King's College London, Guy's Hospital, Bermondsey Wing, London, UK
| | - Matthew D. Wynne
- St John's Institute of Dermatology, Genetics and Molecular Medicine, King's College London, Guy's Hospital, Tower Wing, London, UK
| | - Mano Nakamura
- St John's Institute of Dermatology, Genetics and Molecular Medicine, King's College London, Guy's Hospital, Tower Wing, London, UK
| | - Ricarda M. Hoffmann
- St John's Institute of Dermatology, Genetics and Molecular Medicine, King's College London, Guy's Hospital, Tower Wing, London, UK
| | - Kristina M. Ilieva
- St John's Institute of Dermatology, Genetics and Molecular Medicine, King's College London, Guy's Hospital, Tower Wing, London, UK
- Breast Cancer Now Unit, School of Cancer Sciences, King's College London, Guy's Cancer Centre, London, UK
| | - Anthony Cheung
- St John's Institute of Dermatology, Genetics and Molecular Medicine, King's College London, Guy's Hospital, Tower Wing, London, UK
- Breast Cancer Now Unit, School of Cancer Sciences, King's College London, Guy's Cancer Centre, London, UK
| | - James F. Spicer
- Research Oncology, School of Cancer Sciences, King's College London, Guy's Hospital, Bermondsey Wing, London, UK
| | - Sophie Papa
- Research Oncology, School of Cancer Sciences, King's College London, Guy's Hospital, Bermondsey Wing, London, UK
| | - Katie E. Lacy
- St John's Institute of Dermatology, Genetics and Molecular Medicine, King's College London, Guy's Hospital, Tower Wing, London, UK
| | - Sophia N. Karagiannis
- St John's Institute of Dermatology, Genetics and Molecular Medicine, King's College London, Guy's Hospital, Tower Wing, London, UK
- Breast Cancer Now Unit, School of Cancer Sciences, King's College London, Guy's Cancer Centre, London, UK
| |
Collapse
|
103
|
Luo W, Qin L, Li B, Liao Z, Liang J, Xiao X, Xiao X, Mo Y, Huang G, Zhang Z, Zhou X, Li P. Inactivation of HMGCL promotes proliferation and metastasis of nasopharyngeal carcinoma by suppressing oxidative stress. Sci Rep 2017; 7:11954. [PMID: 28931870 PMCID: PMC5607293 DOI: 10.1038/s41598-017-11025-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 07/25/2017] [Indexed: 12/12/2022] Open
Abstract
Altered metabolism is considered as a hallmark of cancer. Here we investigated expression of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) 2 lyase (HMGCL), an essential enzyme in ketogenesis, which produces ketone bodies by the breakdown of fatty acids to supply energy, in nasopharyngeal carcinoma (NPC). The expression of HMGCL was silenced in NPC tissue. Downregulation of HMGCL in NPC was associated with low intracellular β-hydroxybutyrate (β-HB) production, thereby reducing reactive oxygen species (ROS) generation. Ectopic expression of HMGCL restored β-HB level, associated with suppressed proliferation and colony formation of NPC cells in vitro and decreased tumorigenicity in vivo. HMGCL suppressed the migration and invasion of NPC cells in vitro via mesenchymal-epithelial transition. Furthermore, extracellular β-HB supply suppressed the proliferation and migration of NPC cells. Both intra- and extracellular β-HB exerting a suppressive role in NPC depends on ROS generation. Ketogenesis may be impaired in NPC cells due to lack of HMGCL expression, suggesting that it may be a promising target in NPC therapy.
Collapse
Affiliation(s)
- Wenqi Luo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liting Qin
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Bo Li
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhipeng Liao
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiezhen Liang
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiling Xiao
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xue Xiao
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yingxi Mo
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Guangwu Huang
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhe Zhang
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaoying Zhou
- Life Science Institute, Guangxi Medical University, Nanning, China.
| | - Ping Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
104
|
Oliveira ÉAD, Lima DSD, Cardozo LE, Souza GFD, de Souza N, Alves-Fernandes DK, Faião-Flores F, Quincoces JAP, Barros SBDM, Nakaya HI, Monteiro G, Maria-Engler SS. Toxicogenomic and bioinformatics platforms to identify key molecular mechanisms of a curcumin-analogue DM-1 toxicity in melanoma cells. Pharmacol Res 2017; 125:178-187. [PMID: 28882690 DOI: 10.1016/j.phrs.2017.08.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/31/2017] [Accepted: 08/30/2017] [Indexed: 12/17/2022]
Abstract
Melanoma is a highly invasive and metastatic cancer with high mortality rates and chemoresistance. Around 50% of melanomas are driven by activating mutations in BRAF that has led to the development of potent anti-BRAF inhibitors. However resistance to anti-BRAF therapy usually develops within a few months and consequently there is a need to identify alternative therapies that will bypass BRAF inhibitor resistance. The curcumin analogue DM-1 (sodium 4-[5-(4-hydroxy-3-methoxy-phenyl)-3-oxo-penta-1,4-dienyl]-2-methoxy-phenolate) has substantial anti-tumor activity in melanoma, but its mechanism of action remains unclear. Here we use a synthetic lethal genetic screen in Saccharomyces cerevisiae to identify 211 genes implicated in sensitivity to DM-1 toxicity. From these 211 genes, 74 had close human orthologues implicated in oxidative phosphorylation, insulin signaling and iron and RNA metabolism. Further analysis identified 7 target genes (ADK, ATP6V0B, PEMT, TOP1, ZFP36, ZFP36L1, ZFP36L2) with differential expression during melanoma progression implicated in regulation of tumor progression, cell differentiation, and epithelial-mesenchymal transition. Of these TOP1 and ADK were regulated by DM-1 in treatment-naïve and vemurafenib-resistant melanoma cells respectively. These data reveal that the anticancer effect of curcumin analogues is likely to be mediated via multiple targets and identify several genes that represent candidates for combinatorial targeting in melanoma.
Collapse
Affiliation(s)
- Érica Aparecida de Oliveira
- Skin Biology Group, Clinical Chemistry and Toxicology Department, School of Pharmaceutical Sciences, University of Sao Paulo, FCF/USP, Sao Paulo, Brazil
| | - Diogenes Saulo de Lima
- Computational Systems Biology Laboratory, School of Pharmaceutical Sciences, University of Sao Paulo, FCF/USP, Sao Paulo, Brazil
| | - Lucas Esteves Cardozo
- Computational Systems Biology Laboratory, School of Pharmaceutical Sciences, University of Sao Paulo, FCF/USP, Sao Paulo, Brazil
| | | | - Nayane de Souza
- Skin Biology Group, Clinical Chemistry and Toxicology Department, School of Pharmaceutical Sciences, University of Sao Paulo, FCF/USP, Sao Paulo, Brazil
| | - Debora Kristina Alves-Fernandes
- Skin Biology Group, Clinical Chemistry and Toxicology Department, School of Pharmaceutical Sciences, University of Sao Paulo, FCF/USP, Sao Paulo, Brazil
| | - Fernanda Faião-Flores
- Skin Biology Group, Clinical Chemistry and Toxicology Department, School of Pharmaceutical Sciences, University of Sao Paulo, FCF/USP, Sao Paulo, Brazil
| | | | - Silvia Berlanga de Moraes Barros
- Skin Biology Group, Clinical Chemistry and Toxicology Department, School of Pharmaceutical Sciences, University of Sao Paulo, FCF/USP, Sao Paulo, Brazil
| | - Helder I Nakaya
- Computational Systems Biology Laboratory, School of Pharmaceutical Sciences, University of Sao Paulo, FCF/USP, Sao Paulo, Brazil
| | - Gisele Monteiro
- Biochemical Pharmaceutical Technology Department, School of Pharmaceutical Sciences, University of Sao Paulo, FCF/USP, Sao Paulo, Brazil
| | - Silvya Stuchi Maria-Engler
- Skin Biology Group, Clinical Chemistry and Toxicology Department, School of Pharmaceutical Sciences, University of Sao Paulo, FCF/USP, Sao Paulo, Brazil.
| |
Collapse
|
105
|
Kim WJ, Kim J. Looking to the metabolic landscapes for prostate health monitoring. Prostate Int 2017; 5:85-88. [PMID: 28828350 PMCID: PMC5551909 DOI: 10.1016/j.prnil.2017.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 03/14/2017] [Indexed: 02/02/2023] Open
Abstract
Abnormal metabolism is a widely accepted biological signature of prostatic diseases, including prostate cancer and benign prostate hyperplasia. Recently accumulated epidemiological and experimental evidence illustrate that the metabolic syndrome, impaired mitochondrial function, and prostatic pathological conditions intersect. The perturbed metabolism and metabolic mediates influence key signaling pathways in various prostatic pathological conditions. This short review article aids to highlight recent findings on metabolism, metabolic mechanisms, and mitochondrial metabolism as a possible route to finding a cure for prostate diseases, including prostate cancer. The effort to better understand the role that mitochondria plays in cancer metabolism and the biological meaning of defective and/or deleted mitochondrial DNA in cancer will also be discussed.
Collapse
Affiliation(s)
- Wun-Jae Kim
- Department of Urology, Chungbuk National University College of Medicine, Cheongju, South Korea
| | - Jayoung Kim
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Medicine, University of California Los Angeles, CA, USA
| |
Collapse
|
106
|
Zhao L, Fan J, Xia S, Pan Y, Liu S, Qian G, Qian Z, Kang HB, Arbiser JL, Pollack BP, Kudchadkar RR, Lawson DH, Rossi M, Abdel-Wahab O, Merghoub T, Khoury HJ, Khuri FR, Boise LH, Lonial S, Chen F, Chen J, Lin R. HMG-CoA synthase 1 is a synthetic lethal partner of BRAF V600E in human cancers. J Biol Chem 2017; 292:10142-10152. [PMID: 28468827 DOI: 10.1074/jbc.m117.788778] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/01/2017] [Indexed: 11/06/2022] Open
Abstract
Contributions of metabolic changes to cancer development and maintenance have received increasing attention in recent years. Although many human cancers share similar metabolic alterations, it remains unclear whether oncogene-specific metabolic alterations are required for tumor development. Using an RNAi-based screen targeting the majority of the known metabolic proteins, we recently found that oncogenic BRAFV600E up-regulates HMG-CoA lyase (HMGCL), which converts HMG-CoA to acetyl-CoA and a ketone body, acetoacetate, that selectively enhances BRAFV600E-dependent MEK1 activation in human cancer. Here, we identified HMG-CoA synthase 1 (HMGCS1), the upstream ketogenic enzyme of HMGCL, as an additional "synthetic lethal" partner of BRAFV600E Although HMGCS1 expression did not correlate with BRAFV600E mutation in human melanoma cells, HMGCS1 was selectively important for proliferation of BRAFV600E-positive melanoma and colon cancer cells but not control cells harboring active N/KRAS mutants, and stable knockdown of HMGCS1 only attenuated colony formation and tumor growth potential of BRAFV600E melanoma cells. Moreover, cytosolic HMGCS1 that co-localized with HMGCL and BRAFV600E was more important than the mitochondrial HMGCS2 isoform in BRAFV600E-expressing cancer cells in terms of acetoacetate production. Interestingly, HMGCL knockdown did not affect HMGCS1 expression levels, whereas HMGCS1 knockdown caused a compensating increase in HMGCL protein level because of attenuated protein degradation. However, this increase did not reverse the reduced ketogenesis in HMGCS1 knockdown cells. Mechanistically, HMGCS1 inhibition decreased intracellular acetoacetate levels, leading to reduced BRAFV600E-MEK1 binding and consequent MEK1 activation. We conclude that the ketogenic HMGCS1-HMGCL-acetoacetate axis may represent a promising therapeutic target for managing BRAFV600E-positive human cancers.
Collapse
Affiliation(s)
- Liang Zhao
- From the Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia 30322.,the Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jun Fan
- the Department of Radiation Oncology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Siyuan Xia
- From the Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Yaozhu Pan
- From the Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Shuangping Liu
- From the Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Guoqing Qian
- From the Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Zhiyu Qian
- From the Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Hee-Bum Kang
- From the Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Jack L Arbiser
- the Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia 30322.,the Atlanta Veterans Administration Medical Center, Decatur, Georgia 30033
| | - Brian P Pollack
- the Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia 30322.,the Atlanta Veterans Administration Medical Center, Decatur, Georgia 30033
| | - Ragini R Kudchadkar
- From the Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia 30322
| | - David H Lawson
- From the Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Michael Rossi
- From the Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Omar Abdel-Wahab
- the Memorial Sloan-Kettering Cancer Center, New York, NY 10065, and
| | - Taha Merghoub
- the Memorial Sloan-Kettering Cancer Center, New York, NY 10065, and
| | - Hanna J Khoury
- From the Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Fadlo R Khuri
- From the Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Lawrence H Boise
- From the Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Sagar Lonial
- From the Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Fangping Chen
- the Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jing Chen
- From the Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia 30322,
| | - Ruiting Lin
- From the Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, Georgia 30322
| |
Collapse
|
107
|
Holmquist EF, B Keiding U, Kold-Christensen R, Salomón T, Jørgensen KA, Kristensen P, Poulsen TB, Johannsen M. ReactELISA: Monitoring a Carbon Nucleophilic Metabolite by ELISA-a Study of Lipid Metabolism. Anal Chem 2017; 89:5066-5071. [PMID: 28376300 DOI: 10.1021/acs.analchem.7b00507] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We here present a conceptually novel reaction-based ELISA principle (ReactELISA) for quantitation of the carbon nucleophilic lipid metabolite acetoacetate. Key to the assay is the utilization of a highly chemoselective Friedländer reaction that captures and simultaneously stabilizes the nucleophilic metabolite directly in the biological matrix. By developing a bifunctional biotinylated capture probe, the Friedländer-acetoacetate adduct can be trapped and purified directly in streptavidin coated wells. Finally, we outline the selection and refinement of a highly selective recombinant antibody for specific adduct quantitation. The setup is very robust and, as we demonstrate via miniaturization for microplate format, amenable for screening of compounds or interventions that alter lipid metabolism in liver cell cultures. The assay-principle should be extendable to quantitation of other nucleophilic or electrophilic and perhaps even more reactive metabolites provided suitable capture probes and antibodies.
Collapse
Affiliation(s)
- Emil F Holmquist
- Department of Forensic Medicine, Aarhus University , Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark.,Department of Chemistry, Aarhus University , Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Ulrik B Keiding
- Department of Forensic Medicine, Aarhus University , Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark.,Department of Chemistry, Aarhus University , Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Rasmus Kold-Christensen
- Department of Forensic Medicine, Aarhus University , Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark.,Department of Chemistry, Aarhus University , Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Trine Salomón
- Department of Forensic Medicine, Aarhus University , Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Karl Anker Jørgensen
- Department of Chemistry, Aarhus University , Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Peter Kristensen
- Department of Engineering, Aarhus University , Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Thomas B Poulsen
- Department of Chemistry, Aarhus University , Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Mogens Johannsen
- Department of Forensic Medicine, Aarhus University , Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| |
Collapse
|
108
|
Thompson N, Adams DJ, Ranzani M. Synthetic lethality: emerging targets and opportunities in melanoma. Pigment Cell Melanoma Res 2017; 30:183-193. [PMID: 28097822 PMCID: PMC5396340 DOI: 10.1111/pcmr.12573] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/11/2017] [Indexed: 02/06/2023]
Abstract
Great progress has been made in the treatment of melanoma through use of targeted therapies and immunotherapy. One approach that has not been fully explored is synthetic lethality, which exploits somatically acquired changes, usually driver mutations, to specifically kill tumour cells. We outline the various approaches that may be applied to identify synthetic lethal interactions and define how these interactions may drive drug discovery efforts.
Collapse
Affiliation(s)
- Nicola Thompson
- Experimental Cancer Genetics, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK
| | - David J Adams
- Experimental Cancer Genetics, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Marco Ranzani
- Experimental Cancer Genetics, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK
| |
Collapse
|
109
|
Iommarini L, Ghelli A, Gasparre G, Porcelli AM. Mitochondrial metabolism and energy sensing in tumor progression. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:582-590. [PMID: 28213331 DOI: 10.1016/j.bbabio.2017.02.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/06/2017] [Accepted: 02/13/2017] [Indexed: 01/14/2023]
Abstract
Energy homeostasis is pivotal for cell fate since metabolic regulation, cell proliferation and death are strongly dependent on the balance between catabolic and anabolic pathways. In particular, metabolic and energetic changes have been observed in cancer cells even before the discovery of oncogenes and tumor suppressors, but have been neglected for a long time. Instead, during the past 20years a renaissance of the study of tumor metabolism has led to a revised and more accurate sight of the metabolic landscape of cancer cells. In this scenario, genetic, biochemical and clinical evidences place mitochondria as key actors in cancer metabolic restructuring, not only because there are energy and biosynthetic intermediates manufacturers, but also because occurrence of mutations in metabolic enzymes encoded by both nuclear and mitochondrial DNA has been associated to different types of cancer. Here we provide an overview of the possible mechanisms modulating mitochondrial energy production and homeostasis in the intriguing scenario of neoplastic cells, focusing on the double-edged role of 5'-AMP activated protein kinase in cancer metabolism. This article is part of a Special Issue entitled Mitochondria in Cancer, edited by Giuseppe Gasparre, Rodrigue Rossignol and Pierre Sonveaux.
Collapse
Affiliation(s)
- Luisa Iommarini
- Dipartimento Farmacia e Biotecnologie (FABIT), Università di Bologna, Via Selmi 3, 40126 Bologna, Italy.
| | - Anna Ghelli
- Dipartimento Farmacia e Biotecnologie (FABIT), Università di Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Giuseppe Gasparre
- Dipartimento Scienze Mediche e Chirurgiche (DIMEC), U.O. Genetica Medica, Pol. Universitario S. Orsola-Malpighi, Università di Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Anna Maria Porcelli
- Dipartimento Farmacia e Biotecnologie (FABIT), Università di Bologna, Via Selmi 3, 40126 Bologna, Italy; Centro Interdipartimentale di Ricerca Industriale Scienze della Vita e Tecnologie per la Salute, Università di Bologna, Via Tolara di Sopra, 41/E, 40064 Ozzano dell'Emilia, Italy
| |
Collapse
|
110
|
Xia S, Lin R, Jin L, Zhao L, Kang HB, Pan Y, Liu S, Qian G, Qian Z, Konstantakou E, Zhang B, Dong JT, Chung YR, Abdel-Wahab O, Merghoub T, Zhou L, Kudchadkar RR, Lawson DH, Khoury HJ, Khuri FR, Boise LH, Lonial S, Lee BH, Pollack BP, Arbiser JL, Fan J, Lei QY, Chen J. Prevention of Dietary-Fat-Fueled Ketogenesis Attenuates BRAF V600E Tumor Growth. Cell Metab 2017; 25:358-373. [PMID: 28089569 PMCID: PMC5299059 DOI: 10.1016/j.cmet.2016.12.010] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 09/27/2016] [Accepted: 12/16/2016] [Indexed: 01/06/2023]
Abstract
Lifestyle factors, including diet, play an important role in the survival of cancer patients. However, the molecular mechanisms underlying pathogenic links between diet and particular oncogenic mutations in human cancers remain unclear. We recently reported that the ketone body acetoacetate selectively enhances BRAF V600E mutant-dependent MEK1 activation in human cancers. Here we show that a high-fat ketogenic diet increased serum levels of acetoacetate, leading to enhanced tumor growth potential of BRAF V600E-expressing human melanoma cells in xenograft mice. Treatment with hypolipidemic agents to lower circulating acetoacetate levels or an inhibitory homolog of acetoacetate, dehydroacetic acid, to antagonize acetoacetate-BRAF V600E binding attenuated BRAF V600E tumor growth. These findings reveal a signaling basis underlying a pathogenic role of dietary fat in BRAF V600E-expressing melanoma, providing insights into the design of conceptualized "precision diets" that may prevent or delay tumor progression based on an individual's specific oncogenic mutation profile.
Collapse
Affiliation(s)
- Siyuan Xia
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Ruiting Lin
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Lingtao Jin
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Liang Zhao
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Hee-Bum Kang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Yaozhu Pan
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Shuangping Liu
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Guoqing Qian
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Zhiyu Qian
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Evmorfia Konstantakou
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Baotong Zhang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Jin-Tang Dong
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | | | | | - Taha Merghoub
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lu Zhou
- Cancer Metabolism Laboratory, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Ragini R Kudchadkar
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - David H Lawson
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Hanna J Khoury
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Fadlo R Khuri
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Lawrence H Boise
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Sagar Lonial
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Benjamin H Lee
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Brian P Pollack
- Department of Dermatology, Emory University, Atlanta, GA 30322, USA; Atlanta Veterans Administration Medical Center, Atlanta, GA 30322, USA
| | - Jack L Arbiser
- Department of Dermatology, Emory University, Atlanta, GA 30322, USA; Atlanta Veterans Administration Medical Center, Atlanta, GA 30322, USA
| | - Jun Fan
- Department of Radiation Oncology, Winship Cancer Institute of Emory, School of Medicine, Emory University, Atlanta, GA 30322, USA.
| | - Qun-Ying Lei
- Cancer Metabolism Laboratory, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| | - Jing Chen
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, School of Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
111
|
Abstract
Ketone body metabolism is a central node in physiological homeostasis. In this review, we discuss how ketones serve discrete fine-tuning metabolic roles that optimize organ and organism performance in varying nutrient states and protect from inflammation and injury in multiple organ systems. Traditionally viewed as metabolic substrates enlisted only in carbohydrate restriction, observations underscore the importance of ketone bodies as vital metabolic and signaling mediators when carbohydrates are abundant. Complementing a repertoire of known therapeutic options for diseases of the nervous system, prospective roles for ketone bodies in cancer have arisen, as have intriguing protective roles in heart and liver, opening therapeutic options in obesity-related and cardiovascular disease. Controversies in ketone metabolism and signaling are discussed to reconcile classical dogma with contemporary observations.
Collapse
Affiliation(s)
- Patrycja Puchalska
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA
| | - Peter A Crawford
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA.
| |
Collapse
|
112
|
Rossi ED, Martini M, Bizzarro T, Schmitt F, Longatto-Filho A, Larocca LM. Somatic mutations in solid tumors: a spectrum at the service of diagnostic armamentarium or an indecipherable puzzle? The morphological eyes looking for BRAF and somatic molecular detections on cyto-histological samples. Oncotarget 2017; 8:3746-3760. [PMID: 27738305 PMCID: PMC5356915 DOI: 10.18632/oncotarget.12564] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 10/03/2016] [Indexed: 12/12/2022] Open
Abstract
This review article deals with the analysis and the detection of the morphological features associated with somatic mutations, mostly BRAFV600E mutation, on both cytological and histological samples of carcinomas. Few authors demonstrated that some architectural and specific cellular findings (i.e. polygonal eosinophilic cells defined as "plump cells" and sickle-shaped nuclei) are able to predict BRAF V600E mutation in both cytological and histological samples of papillary thyroid carcinoma (PTC) as well as in other carcinomas. In the current review article we evaluated the first comprehensive analysis of the morphological prediction of BRAFV600E and other somatic mutations in different malignant lesions with the description of the possible mechanisms beneath these morphologic features. The detection of predictive morphological features, mostly on FNAC, may add helpful information to the stratification of the malignant risk and personalized management of cancers. Additionally, the knowledge of the molecular mechanism of different oncogenic drivers can lead to the organ-specific triaging selection of cases and can provide significant insight for targeted therapies in different malignant lesions.
Collapse
Affiliation(s)
- Esther Diana Rossi
- Division of Anatomic Pathology and Histology, Università Cattolica del Sacro Cuore, “Agostino Gemelli” School of Medicine, Rome, Italy
| | - Maurizio Martini
- Division of Anatomic Pathology and Histology, Università Cattolica del Sacro Cuore, “Agostino Gemelli” School of Medicine, Rome, Italy
| | - Tommaso Bizzarro
- Division of Anatomic Pathology and Histology, Università Cattolica del Sacro Cuore, “Agostino Gemelli” School of Medicine, Rome, Italy
| | - Fernando Schmitt
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
- Department of Medicine and Pathology, Laboratoire National de Santé, Luxembourg
| | - Adhemar Longatto-Filho
- Department of Pathology, Laboratory of Medical Investigation, University of São Paulo School of Medicine, Brazil
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Molecular Oncology Research Center, Barretos Cancer Hospital, Pio XII Foundation, Barretos, Brazil
| | - Luigi Maria Larocca
- Division of Anatomic Pathology and Histology, Università Cattolica del Sacro Cuore, “Agostino Gemelli” School of Medicine, Rome, Italy
| |
Collapse
|
113
|
Poulogiannis G. Deconstructing the Metabolic Networks of Oncogenic Signaling Using Targeted Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS). Methods Mol Biol 2017; 1636:405-414. [PMID: 28730494 DOI: 10.1007/978-1-4939-7154-1_26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Metabolic reprogramming is recognized as an emerging hallmark of oncogenic signaling and cancer development. Hence the need to identify novel quantitative analytical platforms for studying metabolism in vitro and in vivo has dramatically increased. Here, we describe the experimental workflow for a targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach involving positive/negative ion switching to analyze >250 metabolites of central carbon metabolism, nucleotides, and amino acids.
Collapse
|
114
|
Abstract
Over the last decade mass spectrometry imaging (MSI) has been integrated in to many areas of drug discovery and development. It can have significant impact in oncology drug discovery as it allows efficacy and safety of compounds to be assessed against the backdrop of the complex tumour microenvironment. We will discuss the roles of MSI in investigating compound and metabolite biodistribution and defining pharmacokinetic -pharmacodynamic relationships, analysis that is applicable to all drug discovery projects. We will then look more specifically at how MSI can be used to understand tumour metabolism and other applications specific to oncology research. This will all be described alongside the challenges of applying MSI to industry research with increased use of metrology for MSI.
Collapse
|
115
|
Grabacka M, Pierzchalska M, Dean M, Reiss K. Regulation of Ketone Body Metabolism and the Role of PPARα. Int J Mol Sci 2016; 17:ijms17122093. [PMID: 27983603 PMCID: PMC5187893 DOI: 10.3390/ijms17122093] [Citation(s) in RCA: 225] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 12/28/2022] Open
Abstract
Ketogenesis and ketolysis are central metabolic processes activated during the response to fasting. Ketogenesis is regulated in multiple stages, and a nuclear receptor peroxisome proliferator activated receptor α (PPARα) is one of the key transcription factors taking part in this regulation. PPARα is an important element in the metabolic network, where it participates in signaling driven by the main nutrient sensors, such as AMP-activated protein kinase (AMPK), PPARγ coactivator 1α (PGC-1α), and mammalian (mechanistic) target of rapamycin (mTOR) and induces hormonal mediators, such as fibroblast growth factor 21 (FGF21). This work describes the regulation of ketogenesis and ketolysis in normal and malignant cells and briefly summarizes the positive effects of ketone bodies in various neuropathologic conditions.
Collapse
Affiliation(s)
- Maja Grabacka
- Department of Food Biotechnology, Faculty of Food Technology, University of Agriculture, ul. Balicka 122, 30-149 Kraków, Poland.
| | - Malgorzata Pierzchalska
- Department of Food Biotechnology, Faculty of Food Technology, University of Agriculture, ul. Balicka 122, 30-149 Kraków, Poland.
| | - Matthew Dean
- Neurological Cancer Research, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA.
| | - Krzysztof Reiss
- Neurological Cancer Research, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA.
| |
Collapse
|
116
|
Huang WC, Lee DY, Chang GD. Enrichment of Metabolite-Binding Proteins by Affinity Elution in Tandem Hydrophobic Interaction Chromatography (AETHIC) Reveals RKIP Regulating ERK Signaling in an ATP-Dependent Manner. J Proteome Res 2016; 15:3574-3584. [PMID: 27633746 DOI: 10.1021/acs.jproteome.6b00328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
To elucidate the molecular mechanisms underlying the action of bioactive compounds such as metabolites, identification of their binding targets is essential. However, available techniques for enriching metabolite-binding proteins are practically restrained by special equipment requirements and laborious efforts. Here we have developed a novel method, affinity elution in tandem hydrophobic interaction chromatography (AETHIC), which enables enrichment of metabolite-binding proteins from a crude tissue extract. AETHIC constitutes two major steps, protein fractionation and affinity elution. The basic strategy of AETHIC uses a series of HIC matrices encompassing aliphatic chains of different length and thus provides a wide range of hydrophobicity for interactions with most proteins. Thereafter, target proteins are eluted selectively by a given ligand. As our first proof-of-principle, we demonstrated that AETHIC was able to enrich ATP-binding proteins from porcine brain extract. In addition, we have demonstrated that raf kinase inhibitory protein (RKIP) is an ATP-binding protein and ATP attenuates the interaction between RKIP and Raf-1. In parallel, short-term ATP depletion in cultured HEK293 cells augments interaction between RKIP and Raf-1, resulting in decreased activation of the downstream ERK signaling. Therefore, the ATP-binding function renders RKIP's inhibition on Raf-1 modulated by cellular ATP concentrations. These data shed light on how energy levels affect the propagation of cellular signaling. Taken together, the enclosed results advocate the potential of AETHIC in the study of metabolite-protein interactions.
Collapse
Affiliation(s)
- Wei-Chieh Huang
- Graduate Institute of Biochemical Sciences, National Taiwan University , No.1, Section 4, Roosevelt Road, Taipei 106, Taiwan
| | - Der-Yen Lee
- Graduate Institute of Integrated Medicine, China Medical University , No. 91, Hsueh-Shih Road, Taichung 40402, Taiwan
| | - Geen-Dong Chang
- Graduate Institute of Biochemical Sciences, National Taiwan University , No.1, Section 4, Roosevelt Road, Taipei 106, Taiwan
| |
Collapse
|
117
|
Berger NA. Actionable Intelligence Provided by Pancreatic Cancer Genomic Landscape: Are Targets for Curative Therapy On The Map? Transl Cancer Res 2016; 5:S243-S247. [PMID: 27656419 PMCID: PMC5028114 DOI: 10.21037/tcr.2016.08.07] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Nathan A Berger
- Departments Medicine, Biochemistry and Genomic Sciences, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine
| |
Collapse
|
118
|
Abstract
Oncogenes are key drivers of tumor growth. Although several cancer-driving mechanisms have been identified, the role of oncogenes in shaping metabolic patterns in cancer cells is only beginning to be appreciated. Recent studies show that oncogenes directly regulate critical metabolic enzymes and metabolic signaling pathways. Here, we present evidence for oncogene-directed cancer metabolic regulation and discuss the importance of identifying underlying mechanisms that can be targeted for developing precision cancer therapies.
Collapse
|
119
|
Fey D, Matallanas D, Rauch J, Rukhlenko OS, Kholodenko BN. The complexities and versatility of the RAS-to-ERK signalling system in normal and cancer cells. Semin Cell Dev Biol 2016; 58:96-107. [PMID: 27350026 DOI: 10.1016/j.semcdb.2016.06.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 06/18/2016] [Indexed: 12/19/2022]
Abstract
The intricate dynamic control and plasticity of RAS to ERK mitogenic, survival and apoptotic signalling has mystified researches for more than 30 years. Therapeutics targeting the oncogenic aberrations within this pathway often yield unsatisfactory, even undesired results, as in the case of paradoxical ERK activation in response to RAF inhibition. A direct approach of inhibiting single oncogenic proteins misses the dynamic network context governing the network signal processing. In this review, we discuss the signalling behaviour of RAS and RAF proteins in normal and in cancer cells, and the emerging systems-level properties of the RAS-to-ERK signalling network. We argue that to understand the dynamic complexities of this control system, mathematical models including mechanistic detail are required. Looking into the future, these dynamic models will build the foundation upon which more effective, rational approaches to cancer therapy will be developed.
Collapse
Affiliation(s)
- Dirk Fey
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| | - David Matallanas
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jens Rauch
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Oleksii S Rukhlenko
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Boris N Kholodenko
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
120
|
Hutton JE, Wang X, Zimmerman LJ, Slebos RJC, Trenary IA, Young JD, Li M, Liebler DC. Oncogenic KRAS and BRAF Drive Metabolic Reprogramming in Colorectal Cancer. Mol Cell Proteomics 2016; 15:2924-38. [PMID: 27340238 DOI: 10.1074/mcp.m116.058925] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Indexed: 12/13/2022] Open
Abstract
Metabolic reprogramming, in which altered utilization of glucose and glutamine supports rapid growth, is a hallmark of most cancers. Mutations in the oncogenes KRAS and BRAF drive metabolic reprogramming through enhanced glucose uptake, but the broader impact of these mutations on pathways of carbon metabolism is unknown. Global shotgun proteomic analysis of isogenic DLD-1 and RKO colon cancer cell lines expressing mutant and wild type KRAS or BRAF, respectively, failed to identify significant differences (at least 2-fold) in metabolic protein abundance. However, a multiplexed parallel reaction monitoring (PRM) strategy targeting 73 metabolic proteins identified significant protein abundance increases of 1.25-twofold in glycolysis, the nonoxidative pentose phosphate pathway, glutamine metabolism, and the phosphoserine biosynthetic pathway in cells with KRAS G13D mutations or BRAF V600E mutations. These alterations corresponded to mutant KRAS and BRAF-dependent increases in glucose uptake and lactate production. Metabolic reprogramming and glucose conversion to lactate in RKO cells were proportional to levels of BRAF V600E protein. In DLD-1 cells, these effects were independent of the ratio of KRAS G13D to KRAS wild type protein. A study of 8 KRAS wild type and 8 KRAS mutant human colon tumors confirmed the association of increased expression of glycolytic and glutamine metabolic proteins with KRAS mutant status. Metabolic reprogramming is driven largely by modest (<2-fold) alterations in protein expression, which are not readily detected by the global profiling methods most commonly employed in proteomic studies. The results indicate the superiority of more precise, multiplexed, pathway-targeted analyses to study functional proteome systems. Data are available through MassIVE Accession MSV000079486 at ftp://MSV000079486@massive.ucsd.edu.
Collapse
Affiliation(s)
| | | | - Lisa J Zimmerman
- From the ‡Department of Biochemistry, ¶Jim Ayers Institute for Precancer Detection and Diagnosis
| | - Robbert J C Slebos
- From the ‡Department of Biochemistry, ¶Jim Ayers Institute for Precancer Detection and Diagnosis
| | | | - Jamey D Young
- ‖Chemical & Biomolecular Engineering, **Molecular Physiology & Biophysics
| | - Ming Li
- ‡‡Department of Biostatistics, Vanderbilt University, Nashville, Tennessee 37232
| | - Daniel C Liebler
- From the ‡Department of Biochemistry, ¶Jim Ayers Institute for Precancer Detection and Diagnosis,
| |
Collapse
|
121
|
Rossi ED, Schmitt F. When Morphology Meets Somatic Mutations: The New Possible Scenario in Thyroid Fine-Needle Aspiration. Acta Cytol 2016; 60:93-6. [PMID: 27288325 DOI: 10.1159/000446796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/04/2016] [Indexed: 12/30/2022]
Abstract
This study points to the analysis of the morphological features suggestive of somatic mutations, mostly the BRAFV600E mutation, on cytological samples of thyroid carcinomas. According to the literature, the application of ancillary techniques on cytology comes in handy as a challenging aid in ruling out a malignant outcome on both conventional and liquid-based cytological preparations. However, the evaluation of somatic mutations, including BRAFV600E, usually performed by DNA techniques, may have some limitations in a worldwide diffusion. In this perspective, few authors emphasized the morphological search for BRAFV600E mutations harbored in papillary thyroid carcinoma (PTC) and characterized by specific architectural and cellular findings (i.e. eosinophilic cells defined as 'plump cells' and sickle-shaped nuclei). Hence, the detection of eosinophilic cytoplasm of mutated PTC cells seems to suggest the possible involvement of the 'Warburg effect' pioneering the ability of cancer cells to convert glucose into lactic acid. The recent yields of immunohistochemical expression of monocarboxylate transporters in mutated PTCs may suggest the accumulation of lactate in these plump cells. Equally importantly, the detection of these morphological findings using fine-needle aspiration cytology may be helpful in triaging thyroid lesions and limiting costs. Additionally, it may lead to the stratification of the malignant risk and personalized management in cases with multifocal lesions.
Collapse
Affiliation(s)
- Esther Diana Rossi
- Division of Anatomic Pathology and Histology, Agostino Gemelli School of Medicine, Universitx00E0; Cattolica del Sacro Cuore, Rome, Italy
| | | |
Collapse
|
122
|
Ratnikov BI, Scott DA, Osterman AL, Smith JW, Ronai ZA. Metabolic rewiring in melanoma. Oncogene 2016; 36:147-157. [PMID: 27270434 PMCID: PMC5140782 DOI: 10.1038/onc.2016.198] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/07/2016] [Accepted: 04/07/2016] [Indexed: 02/07/2023]
Abstract
Oncogene-driven metabolic rewiring is an adaptation to low nutrient and oxygen conditions in the tumor microenvironment that enables cancer cells of diverse origin to hyperproliferate. Aerobic glycolysis and enhanced reliance on glutamine utilization are prime examples of such rewiring. However, tissue of origin as well as specific genetic and epigenetic changes determines gene expression profiles underlying these metabolic alterations in specific cancers. In melanoma, activation of the mitogen-activated protein kinase (MAPK) pathway driven by mutant BRAF or NRAS is a primary cause of malignant transformation. Activity of the MAPK pathway, as well as other factors, such as HIF1α, Myc and MITF, are among those that control the balance between non-oxidative and oxidative branches of central carbon metabolism. Here, we discuss the nature of metabolic alterations that underlie melanoma development and affect its response to therapy.
Collapse
Affiliation(s)
- B I Ratnikov
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla CA, USA
| | - D A Scott
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla CA, USA
| | - A L Osterman
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla CA, USA
| | - J W Smith
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla CA, USA
| | - Z A Ronai
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla CA, USA
| |
Collapse
|
123
|
Vázquez-Arreguín K, Tantin D. The Oct1 transcription factor and epithelial malignancies: Old protein learns new tricks. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1859:792-804. [PMID: 26877236 PMCID: PMC4880489 DOI: 10.1016/j.bbagrm.2016.02.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 02/06/2016] [Accepted: 02/09/2016] [Indexed: 01/29/2023]
Abstract
The metazoan-specific POU domain transcription factor family comprises activities underpinning developmental processes such as embryonic pluripotency and neuronal specification. Some POU family proteins efficiently bind an 8-bp DNA element known as the octamer motif. These proteins are known as Oct transcription factors. Oct1/POU2F1 is the only widely expressed POU factor. Unlike other POU factors it controls no specific developmental or organ system. Oct1 was originally described to operate at target genes associated with proliferation and immune modulation, but more recent results additionally identify targets associated with oxidative and cytotoxic stress resistance, metabolic regulation, stem cell function and other unexpected processes. Oct1 is pro-oncogenic in multiple contexts, and several recent reports provide broad evidence that Oct1 has prognostic and therapeutic value in multiple epithelial tumor settings. This review focuses on established and emerging roles of Oct1 in epithelial tumors, with an emphasis on mechanisms of transcription regulation by Oct1 that may underpin these findings. This article is part of a Special Issue entitled: The Oct Transcription Factor Family, edited by Dr. Dean Tantin.
Collapse
Affiliation(s)
- Karina Vázquez-Arreguín
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Dean Tantin
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
124
|
Pance A. Oct-1, to go or not to go? That is the PolII question. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:820-4. [PMID: 27063953 DOI: 10.1016/j.bbagrm.2016.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 10/22/2022]
Abstract
The Oct transcription factors recognise an octamer DNA element from which they regulate transcription of specific target genes. Oct-1 is the only member of the subfamily that is ubiquitously expressed and has a wide role in transcriptional control. Through interaction with various partner proteins, Oct-1 can modulate accessibility to the chromatin to recruit the transcription machinery and form the pre-initiation complex. The recruited PolII is induced to initiate transcription and stalled until elongation is triggered on interaction with signalling transcription factors. In this way, Oct-1 can fulfil general roles in transcription by opening the chromatin as well as transduce extracellular signals by relaying activation through various interacting partners. The emerging picture of Oct-1 is that of a complex and versatile transcription factor with fundamental functions in cell homeostasis and signal response in general as well as cell specific contexts. This article is part of a Special Issue entitled: The Oct Transcription Factor Family, edited by Dr. Dean Tantin.
Collapse
Affiliation(s)
- Alena Pance
- The Wellcome Trust Sanger Institute, Hinxton CB10 1SA, Cambridgeshire, UK.
| |
Collapse
|
125
|
Abstract
Otto Warburg discovered that cancer cells exhibit a high rate of glycolysis in the presence of ample oxygen, a process termed aerobic glycolysis, in 1924 (Warburg et al., 1924). Since then we have significantly advanced our understanding of cancers' fuel choice to meet their demands for energy and for the production of biosynthetic precursors. In this review, we will discuss the preferred nutrients of cancer cells and how they are utilized to satisfy their bioenergetic and biosynthetic needs. In addition, we will describe how cell intrinsic and extrinsic factors such as oncogene mutations, nutrient and oxygen availability, and other microenvironmental factors influence fuel choice.
Collapse
Affiliation(s)
- Gina M DeNicola
- Meyer Cancer Center, Weill Cornell Medical College, New York, NY 10065, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
126
|
Smith LK, Rao AD, McArthur GA. Targeting metabolic reprogramming as a potential therapeutic strategy in melanoma. Pharmacol Res 2016; 107:42-47. [PMID: 26924126 DOI: 10.1016/j.phrs.2016.02.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/08/2016] [Accepted: 02/09/2016] [Indexed: 12/28/2022]
Abstract
Metabolic reprogramming is a recognized hallmark of cancer. In order to support continued proliferation and growth, tumor cells must metabolically adapt to balance their bioenergetic and biosynthetic needs. To achieve this, cancer cells switch from mitochondrial oxidative phosphorylation to predominantly rely on glycolysis, a process known as the "Warburg effect". The BRAF oncogene has recently emerged as a critical regulator of this process in melanoma, bringing to the fore the importance of metabolic reprogramming in the pathogenesis and treatment of metastatic melanoma. In this review, we summarize our current understanding of oncogenic reprogramming of metabolism in BRAF and NRAS mutant melanoma, and highlight emerging evidence supporting a metabolic basis for MAPK pathway inhibitor resistance and metabolic vulnerabilities that may be exploited to overcome this.
Collapse
Affiliation(s)
- Lorey K Smith
- Molecular Oncology Laboratory, Oncogenic Signaling and Growth Control Program, Peter MacCallum Cancer Centre, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Australia
| | - Aparna D Rao
- Molecular Oncology Laboratory, Oncogenic Signaling and Growth Control Program, Peter MacCallum Cancer Centre, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Australia
| | - Grant A McArthur
- Molecular Oncology Laboratory, Oncogenic Signaling and Growth Control Program, Peter MacCallum Cancer Centre, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Australia; Translational Research Laboratory, Cancer Therapeutics Program, Peter MacCallum Cancer Centre, Australia; Department of Pathology, University of Melbourne, Australia; Department of Medicine, St. Vincent's Hospital, University of Melbourne, Australia.
| |
Collapse
|
127
|
Trousil S, Zheng B. Addicted to AA (Acetoacetate): A Point of Convergence between Metabolism and BRAF Signaling. Mol Cell 2015; 59:333-4. [PMID: 26253025 DOI: 10.1016/j.molcel.2015.07.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this issue Kang et al. (2015) show that oncogenic BRAF(V600E) stimulates expression of ketogenic enzyme 3-hydroxy-3-methylglutaryl-CoA lyase and promotes the formation of the ketone body acetoacetate, which subsequently enhances BRAF(V600E)/MEK/ERK signaling.
Collapse
Affiliation(s)
- Sebastian Trousil
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Bin Zheng
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
128
|
Karachaliou N, Pilotto S, Teixidó C, Viteri S, González-Cao M, Riso A, Morales-Espinosa D, Molina MA, Chaib I, Santarpia M, Richardet E, Bria E, Rosell R. Melanoma: oncogenic drivers and the immune system. ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:265. [PMID: 26605311 PMCID: PMC4630557 DOI: 10.3978/j.issn.2305-5839.2015.08.06] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 08/04/2015] [Indexed: 12/19/2022]
Abstract
Advances and in-depth understanding of the biology of melanoma over the past 30 years have contributed to a change in the consideration of melanoma as one of the most therapy-resistant malignancies. The finding that oncogenic BRAF mutations drive tumor growth in up to 50% of melanomas led to a molecular therapy revolution for unresectable and metastatic disease. Moving beyond BRAF, inactivation of immune regulatory checkpoints that limit T cell responses to melanoma has provided targets for cancer immunotherapy. In this review, we discuss the molecular biology of melanoma and we focus on the recent advances of molecularly targeted and immunotherapeutic approaches.
Collapse
|
129
|
|