101
|
Lydic TA, Goo YH. Lipidomics unveils the complexity of the lipidome in metabolic diseases. Clin Transl Med 2018; 7:4. [PMID: 29374337 PMCID: PMC5786598 DOI: 10.1186/s40169-018-0182-9] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/08/2018] [Indexed: 12/30/2022] Open
Abstract
Dysregulation of lipid metabolism is responsible for pathologies of human diseases including metabolic diseases. Recent advances in lipidomics analysis allow for the targeted and untargeted identification of lipid species and for their quantification in normal and diseased conditions. Herein, this review provides a brief introduction to lipidomics, highlights its application to characterize the lipidome at the cellular and physiological levels under different biological conditions, and discusses the potential for the use of lipidomics in the discovery of biomarkers.
Collapse
Affiliation(s)
- Todd A Lydic
- Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA.
| | - Young-Hwa Goo
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA.
| |
Collapse
|
102
|
Reinke H, Asher G. Liver size: Waning by day, Waxing by Night. Hepatology 2018; 67:441-443. [PMID: 28873232 DOI: 10.1002/hep.29506] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/24/2017] [Accepted: 08/29/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Hans Reinke
- University of Düsseldorf Medical Faculty Institute of Clinical Chemistry and Laboratory Diagnostics, Düsseldorf, Germany.,IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Gad Asher
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
103
|
Veyrat-Durebex C, Bocca C, Chupin S, Kouassi Nzoughet J, Simard G, Lenaers G, Reynier P, Blasco H. Metabolomics and Lipidomics Profiling of a Combined Mitochondrial Plus Endoplasmic Reticulum Fraction of Human Fibroblasts: A Robust Tool for Clinical Studies. J Proteome Res 2017; 17:745-750. [PMID: 29111762 DOI: 10.1021/acs.jproteome.7b00637] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mitochondria and endoplasmic reticulum (ER) are physically and functionally connected. This close interaction, via mitochondria-associated membranes, is increasingly explored and supports the importance of studying these two organelles as a whole. Metabolomics and lipidomics are powerful approaches for the exploration of metabolic pathways that may be useful to provide deeper information on these organelles' functions, dysfunctions, and interactions. We developed a quick and simple experimental procedure for the purification of a mitochondria-ER fraction from human fibroblasts. We applied combined metabolomics and lipidomics analyses by mass spectrometry with excellent reproducibility. Seventy-two metabolites and 418 complex lipids were detected with a mean coefficient of variation around 12%, among which many were specific to the mitochondrial metabolism. Thus this strategy based on robust mitochondria-ER extraction and "omics" combination will be useful for investigating the pathophysiology of complex diseases.
Collapse
Affiliation(s)
- Charlotte Veyrat-Durebex
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire , 49933 Angers, France.,Equipe Mitolab, Institut MITOVASC, UMR CNRS 6015, INSERM 1083, Université d'Angers , 49933 Angers, France
| | - Cinzia Bocca
- Equipe Mitolab, Institut MITOVASC, UMR CNRS 6015, INSERM 1083, Université d'Angers , 49933 Angers, France
| | - Stéphanie Chupin
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire , 49933 Angers, France
| | - Judith Kouassi Nzoughet
- Equipe Mitolab, Institut MITOVASC, UMR CNRS 6015, INSERM 1083, Université d'Angers , 49933 Angers, France
| | - Gilles Simard
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire , 49933 Angers, France
| | - Guy Lenaers
- Equipe Mitolab, Institut MITOVASC, UMR CNRS 6015, INSERM 1083, Université d'Angers , 49933 Angers, France
| | - Pascal Reynier
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire , 49933 Angers, France.,Equipe Mitolab, Institut MITOVASC, UMR CNRS 6015, INSERM 1083, Université d'Angers , 49933 Angers, France
| | - Hélène Blasco
- Equipe Mitolab, Institut MITOVASC, UMR CNRS 6015, INSERM 1083, Université d'Angers , 49933 Angers, France.,Université François-Rabelais , INSERM U930, 37000 Tours, France.,Laboratoire de Biochimie et Biologie Moléculaire, CHRU de Tours , 37044 Tours, France
| |
Collapse
|
104
|
Lipidomics reveals diurnal lipid oscillations in human skeletal muscle persisting in cellular myotubes cultured in vitro. Proc Natl Acad Sci U S A 2017; 114:E8565-E8574. [PMID: 28973848 DOI: 10.1073/pnas.1705821114] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Circadian clocks play an important role in lipid homeostasis, with impact on various metabolic diseases. Due to the central role of skeletal muscle in whole-body metabolism, we aimed at studying muscle lipid profiles in a temporal manner. Moreover, it has not been shown whether lipid oscillations in peripheral tissues are driven by diurnal cycles of rest-activity and food intake or are able to persist in vitro in a cell-autonomous manner. To address this, we investigated lipid profiles over 24 h in human skeletal muscle in vivo and in primary human myotubes cultured in vitro. Glycerolipids, glycerophospholipids, and sphingolipids exhibited diurnal oscillations, suggesting a widespread circadian impact on muscle lipid metabolism. Notably, peak levels of lipid accumulation were in phase coherence with core clock gene expression in vivo and in vitro. The percentage of oscillating lipid metabolites was comparable between muscle tissue and cultured myotubes, and temporal lipid profiles correlated with transcript profiles of genes implicated in their biosynthesis. Lipids enriched in the outer leaflet of the plasma membrane oscillated in a highly coordinated manner in vivo and in vitro. Lipid metabolite oscillations were strongly attenuated upon siRNA-mediated clock disruption in human primary myotubes. Taken together, our data suggest an essential role for endogenous cell-autonomous human skeletal muscle oscillators in regulating lipid metabolism independent of external synchronizers, such as physical activity or food intake.
Collapse
|
105
|
Agmon E, Stockwell BR. Lipid homeostasis and regulated cell death. Curr Opin Chem Biol 2017; 39:83-89. [PMID: 28645028 PMCID: PMC5581689 DOI: 10.1016/j.cbpa.2017.06.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/30/2017] [Accepted: 06/03/2017] [Indexed: 01/13/2023]
Abstract
Modern lipidomics analysis paints a dynamic picture of membrane organizations, as changing and adapting lipid assemblies that play an active role in cellular function. This article highlights how the lipid composition of membranes determines specific organelle functions, how homeostatic mechanisms maintain these functions by regulating physical properties of membranes, and how cells disrupt lipid homeostasis to bring about regulated cell death (RCD). These are broad phenomena, and representative examples are reviewed here. In particular, the mechanisms of ferroptosis - a form of RCD brought about by lipid peroxidation - are highlighted, demonstrating how lipid metabolism drives cells' lipid composition toward states of increased sensitivity to lipid oxidation. An understanding of these interactions has begun to give rise to lipid-based therapies. This article reviews current successes of such therapies, and suggests directions for future developments.
Collapse
Affiliation(s)
- Eran Agmon
- Department of Biological Sciences, Columbia University, 550 West 120th Street, MC 4846, New York, NY 10027, United States
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, 550 West 120th Street, MC 4846, New York, NY 10027, United States; Department of Chemistry, Columbia University, 550 West 120th Street, MC 4846, New York, NY 10027, United States.
| |
Collapse
|
106
|
Dyar KA, Eckel-Mahan KL. Circadian Metabolomics in Time and Space. Front Neurosci 2017; 11:369. [PMID: 28744188 PMCID: PMC5504240 DOI: 10.3389/fnins.2017.00369] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 06/13/2017] [Indexed: 12/11/2022] Open
Abstract
Circadian rhythms are widely known to govern human health and disease, but specific pathogenic mechanisms linking circadian disruption to metabolic diseases are just beginning to come to light. This is thanks in part to the development and application of various "omics"-based tools in biology and medicine. Current high-throughput technologies allow for the simultaneous monitoring of multiple dynamic cellular events over time, ranging from gene expression to metabolite abundance and sub-cellular localization. These fundamental temporal and spatial perspectives have allowed for a more comprehensive understanding of how various dynamic cellular events and biochemical processes are related in health and disease. With advances in technology, metabolomics has become a more routine "omics" approach for studying metabolism, and "circadian metabolomics" (i.e., studying the 24-h metabolome) has recently been undertaken by several groups. To date, circadian metabolomes have been reported for human serum, saliva, breath, and urine, as well as tissues from several species under specific disease or mutagenesis conditions. Importantly, these studies have consistently revealed that 24-h rhythms are prevalent in almost every tissue and metabolic pathway. Furthermore, these circadian rhythms in tissue metabolism are ultimately linked to and directed by internal 24-h biological clocks. In this review, we will attempt to put these data-rich circadian metabolomics experiments into perspective to find out what they can tell us about metabolic health and disease, and what additional biomarker potential they may reveal.
Collapse
Affiliation(s)
- Kenneth A Dyar
- Molecular Endocrinology, Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HMGU) and German Center for Diabetes Research (DZD)Munich, Germany
| | - Kristin L Eckel-Mahan
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at HoustonHouston, TX, United States
| |
Collapse
|
107
|
Effect of high fat diet on phenotype, brain transcriptome and lipidome in Alzheimer's model mice. Sci Rep 2017; 7:4307. [PMID: 28655926 PMCID: PMC5487356 DOI: 10.1038/s41598-017-04412-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/15/2017] [Indexed: 02/01/2023] Open
Abstract
We examined the effect of chronic high fat diet (HFD) on amyloid deposition and cognition of 12-months old APP23 mice, and correlated the phenotype to brain transcriptome and lipidome. HFD significantly increased amyloid plaques and worsened cognitive performance compared to mice on normal diet (ND). RNA-seq results revealed that in HFD mice there was an increased expression of genes related to immune response, such as Trem2 and Tyrobp. We found a significant increase of TREM2 immunoreactivity in the cortex in response to HFD, most pronounced in female mice that correlated to the amyloid pathology. Down-regulated by HFD were genes related to neuron projections and synaptic transmission in agreement to the significantly deteriorated neurite morphology and cognition in these mice. To examine the effect of the diet on the brain lipidome, we performed Shotgun Lipidomics. While there was no difference in the total amounts of phospholipids of each class, we revealed that the levels of 24 lipid sub-species in the brain were significantly modulated by HFD. Network visualization of correlated lipids demonstrated overall imbalance with most prominent effect on cardiolipin molecular sub-species. This integrative approach demonstrates that HFD elicits a complex response at molecular, cellular and system levels in the CNS.
Collapse
|
108
|
Stone MB, Shelby SA, Veatch SL. Super-Resolution Microscopy: Shedding Light on the Cellular Plasma Membrane. Chem Rev 2017; 117:7457-7477. [PMID: 28211677 PMCID: PMC5471115 DOI: 10.1021/acs.chemrev.6b00716] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Lipids and the membranes they form are fundamental building blocks of cellular life, and their geometry and chemical properties distinguish membranes from other cellular environments. Collective processes occurring within membranes strongly impact cellular behavior and biochemistry, and understanding these processes presents unique challenges due to the often complex and myriad interactions between membrane components. Super-resolution microscopy offers a significant gain in resolution over traditional optical microscopy, enabling the localization of individual molecules even in densely labeled samples and in cellular and tissue environments. These microscopy techniques have been used to examine the organization and dynamics of plasma membrane components, providing insight into the fundamental interactions that determine membrane functions. Here, we broadly introduce the structure and organization of the mammalian plasma membrane and review recent applications of super-resolution microscopy to the study of membranes. We then highlight some inherent challenges faced when using super-resolution microscopy to study membranes, and we discuss recent technical advancements that promise further improvements to super-resolution microscopy and its application to the plasma membrane.
Collapse
Affiliation(s)
- Matthew B Stone
- Biophysics, University of Michigan, Chemistry 930 N University Ave, Ann Arbor 48109
| | - Sarah A Shelby
- Biophysics, University of Michigan, Chemistry 930 N University Ave, Ann Arbor 48109
| | - Sarah L Veatch
- Biophysics, University of Michigan, Chemistry 930 N University Ave, Ann Arbor 48109
| |
Collapse
|
109
|
Shotgun lipidomics in substantiating lipid peroxidation in redox biology: Methods and applications. Redox Biol 2017; 12:946-955. [PMID: 28494428 PMCID: PMC5423350 DOI: 10.1016/j.redox.2017.04.030] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/10/2017] [Accepted: 04/23/2017] [Indexed: 11/27/2022] Open
Abstract
Multi-dimensional mass spectrometry-based shotgun lipidomics (MDMS-SL) has made profound advances for comprehensive analysis of cellular lipids. It represents one of the most powerful tools in analyzing lipids directly from lipid extracts of biological samples. It enables the analysis of nearly 50 lipid classes and thousands of individual lipid species with high accuracy/precision. The redox imbalance causes oxidative stress, resulting in lipid peroxidation, and alterations in lipid metabolism and homeostasis. Some lipid classes such as oxidized fatty acids, 4-hydroxyalkenal species, and plasmalogen are sensitive to oxidative stress or generated corresponding to redox imbalance. Therefore, accurate assessment of these lipid classes can provide not only the redox states, but also molecular insights into the pathogenesis of diseases. This review focuses on the advances of MDMS-SL in analysis of these lipid classes and molecular species, and summarizes their recent representative applications in biomedical/biological research. We believe that MDMS-SL can make great contributions to redox biology through substantiating the aberrant lipid metabolism, signaling, trafficking, and homeostasis under oxidative stress-related condition.
Collapse
|
110
|
Adamovich Y, Ladeuix B, Golik M, Koeners MP, Asher G. Rhythmic Oxygen Levels Reset Circadian Clocks through HIF1α. Cell Metab 2017; 25:93-101. [PMID: 27773695 DOI: 10.1016/j.cmet.2016.09.014] [Citation(s) in RCA: 215] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/02/2016] [Accepted: 09/23/2016] [Indexed: 12/19/2022]
Abstract
The mammalian circadian system consists of a master clock in the brain that synchronizes subsidiary oscillators in peripheral tissues. The master clock maintains phase coherence in peripheral cells through systemic cues such as feeding-fasting and temperature cycles. Here, we examined the role of oxygen as a resetting cue for circadian clocks. We continuously measured oxygen levels in living animals and detected daily rhythms in tissue oxygenation. Oxygen cycles, within the physiological range, were sufficient to synchronize cellular clocks in a HIF1α-dependent manner. Furthermore, several clock genes responded to changes in oxygen levels through HIF1α. Finally, we found that a moderate reduction in oxygen levels for a short period accelerates the adaptation of wild-type but not of HIF1α-deficient mice to the new time in a jet lag protocol. We conclude that oxygen, via HIF1α activation, is a resetting cue for circadian clocks and propose oxygen modulation as therapy for jet lag.
Collapse
Affiliation(s)
- Yaarit Adamovich
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Benjamin Ladeuix
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Marina Golik
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Maarten P Koeners
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol BS8 1TH, UK
| | - Gad Asher
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel.
| |
Collapse
|
111
|
Li S, Shui K, Zhang Y, Lv Y, Deng W, Ullah S, Zhang L, Xue Y. CGDB: a database of circadian genes in eukaryotes. Nucleic Acids Res 2016; 45:D397-D403. [PMID: 27789706 PMCID: PMC5210527 DOI: 10.1093/nar/gkw1028] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 12/17/2022] Open
Abstract
We report a database of circadian genes in eukaryotes (CGDB, http://cgdb.biocuckoo.org), containing ∼73 000 circadian-related genes in 68 animals, 39 plants and 41 fungi. Circadian rhythm is ∼24 h rhythm in behavioral and physiological processes that exists in almost all organisms on the earth. Defects in the circadian system are highly associated with a number of diseases such as cancers. Although several databases have been established for rhythmically expressed genes, a comprehensive database of cycling genes across phyla is still lacking. From the literature, we collected 1382 genes of which transcript level oscillations were validated using methods such as RT-PCR, northern blot and in situ hybridization. Given that many genes exhibit different oscillatory patterns in different tissues/cells within an organism, we have included information regarding the phase and amplitude of the oscillation, as well as the tissue/cells in which the oscillation was identified. Using these well characterized cycling genes, we have then conducted an orthologous search and identified ∼45 000 potential cycling genes from 148 eukaryotes. Given that significant effort has been devoted to identifying cycling genes by transcriptome profiling, we have also incorporated these results, a total of over 26 000 genes, into our database.
Collapse
Affiliation(s)
- Shujing Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.,Department of Life Sciences, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Ke Shui
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Ying Zhang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yongqiang Lv
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Wankun Deng
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Shahid Ullah
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Luoying Zhang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yu Xue
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
112
|
Furse S, Scott DJ. Three-Dimensional Distribution of Phospholipids in Gram Negative Bacteria. Biochemistry 2016; 55:4742-7. [PMID: 27509296 DOI: 10.1021/acs.biochem.6b00541] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Exploration of the molecular structure of the bacterial cell envelope informs our understanding of its role in bacterial growth. This is crucial for research into both inhibiting and promoting bacterial growth as well as fundamental studies of cell cycle control. The spatial arrangement of the lipids in the cell envelope of Gram negative bacteria in particular has attracted considerable research attention in recent years. In this mini-review, we explore advances in understanding the spatial distribution of lipids in the model Gram negative prokaryote Escherichia coli. This includes the distribution of lipids in three dimensions, (a) lateral distribution within a monolayer, (b) asymmetry between bilayers and monolayers, and (c) distribution as a function of progress through membrane division (temporal shifts). We conclude that lipid distribution in E. coli and probably all bacteria is dynamic despite a narrow lipid profile and that the biophysical properties of the membrane are inhomogeneous as a result. Finally, we suggest that further work in this field may indicate how lipid distribution is controlled and what this means for bacterial growth and metabolism and even cell cycle control.
Collapse
Affiliation(s)
- Samuel Furse
- MBI, Department of Molecular Biology, University of Bergen , Thormøhlensgate 55, 5008 Bergen, Norway
| | - David J Scott
- National Centre for Macromolecular Hydrodynamics, University of Nottingham , College Road, Sutton Bonington, Nottinghamshire LE12 5RD, U.K.,ISIS Spallation Neutron Source, STFC, Rutherford Appleton Laboratory , Harwell Science and Innovation Campus, Harwell, Oxon OX11 0QX, U.K
| |
Collapse
|
113
|
Manella G, Asher G. The Circadian Nature of Mitochondrial Biology. Front Endocrinol (Lausanne) 2016; 7:162. [PMID: 28066327 PMCID: PMC5165042 DOI: 10.3389/fendo.2016.00162] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 12/07/2016] [Indexed: 12/22/2022] Open
Abstract
Circadian clocks orchestrate the daily changes in physiology and behavior of light-sensitive organisms. These clocks measure about 24 h and tick in a self-sustained and cell-autonomous manner. Mounting evidence points toward a tight intertwining between circadian clocks and metabolism. Although various aspects of circadian control of metabolic functions have been extensively studied, our knowledge regarding circadian mitochondrial function is rudimentary. In this review, we will survey the current literature related to the circadian nature of mitochondrial biology: from mitochondrial omics studies (e.g., proteome, acetylome, and lipidome), through dissection of mitochondrial morphology, to analyses of mitochondrial processes such as nutrient utilization and respiration. We will describe potential mechanisms that are implicated in circadian regulation of mitochondrial functions in mammals and discuss the possibility of a mitochondrial-autonomous oscillator.
Collapse
Affiliation(s)
- Gal Manella
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Gad Asher
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
- *Correspondence: Gad Asher,
| |
Collapse
|