101
|
Co-translational assembly of mammalian nuclear multisubunit complexes. Nat Commun 2019; 10:1740. [PMID: 30988355 PMCID: PMC6465333 DOI: 10.1038/s41467-019-09749-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 03/29/2019] [Indexed: 01/07/2023] Open
Abstract
Cells dedicate significant energy to build proteins often organized in multiprotein assemblies with tightly regulated stoichiometries. As genes encoding subunits assembling in a multisubunit complex are dispersed in the genome of eukaryotes, it is unclear how these protein complexes assemble. Here, we show that mammalian nuclear transcription complexes (TFIID, TREX-2 and SAGA) composed of a large number of subunits, but lacking precise architectural details are built co-translationally. We demonstrate that dimerization domains and their positions in the interacting subunits determine the co-translational assembly pathway (simultaneous or sequential). The lack of co-translational interaction can lead to degradation of the partner protein. Thus, protein synthesis and complex assembly are linked in building mammalian multisubunit complexes, suggesting that co-translational assembly is a general principle in mammalian cells to avoid non-specific interactions and protein aggregation. These findings will also advance structural biology by defining endogenous co-translational building blocks in the architecture of multisubunit complexes. Genes encoding protein complex subunits are often dispersed in the genome of eukaryotes, raising the question how these protein complexes assemble. Here, the authors provide evidence that mammalian nuclear transcription complexes are formed co-translationally to ensure specific and functional interactions.
Collapse
|
102
|
Timmers HTM, Tora L. Transcript Buffering: A Balancing Act between mRNA Synthesis and mRNA Degradation. Mol Cell 2019; 72:10-17. [PMID: 30290147 DOI: 10.1016/j.molcel.2018.08.023] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/20/2018] [Accepted: 08/15/2018] [Indexed: 10/28/2022]
Abstract
Transcript buffering involves reciprocal adjustments between overall rates in mRNA synthesis and degradation to maintain similar cellular concentrations of mRNAs. This phenomenon was first discovered in yeast and encompasses coordination between the nuclear and cytoplasmic compartments. Transcript buffering was revealed by novel methods for pulse labeling of RNA to determine in vivo synthesis and degradation rates. In this Perspective, we discuss the current knowledge of transcript buffering. Emphasis is placed on the future challenges to determine the nature and directionality of the buffering signals, the generality of transcript buffering beyond yeast, and the molecular mechanisms responsible for this balancing.
Collapse
Affiliation(s)
- H Th Marc Timmers
- German Cancer Consortium (DKTK), partner site Freiburg, German Cancer Research Center (DKFZ) Zentrale Klinische Forschung (ZKF), and Medical Faculty-University of Freiburg, Breisacher Str. 66, 79106 Freiburg, Germany.
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, UMR7104, INSERM U1258 and Université de Strasbourg, 67404 Illkirch, France.
| |
Collapse
|
103
|
Elías-Villalobos A, Barrales RR, Ibeas JI. Chromatin modification factors in plant pathogenic fungi: Insights from Ustilago maydis. Fungal Genet Biol 2019; 129:52-64. [PMID: 30980908 DOI: 10.1016/j.fgb.2019.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 03/25/2019] [Accepted: 04/08/2019] [Indexed: 01/10/2023]
Abstract
Adaptation to the environment is a requirement for the survival of every organism. For pathogenic fungi this also implies coping with the different conditions that occur during the infection cycle. After detecting changes to external media, organisms must modify their gene expression patterns in order to accommodate the new circumstances. Control of gene expression is a complex process that involves the coordinated action of multiple regulatory elements. Chromatin modification is a well-known mechanism for controlling gene expression in response to environmental changes in all eukaryotes. In pathogenic fungi, chromatin modifications are known to play crucial roles in controlling host interactions and their virulence capacity, yet little is known about the specific genes they directly target and to which signals they respond. The smut fungus Ustilago maydis is an excellent model system in which multiple molecular and cellular approaches are available to study biotrophic interactions. Many target genes regulated during the infection process have been well studied, however, how they are controlled and specifically how chromatin modifications affect gene regulation in the context of infection is not well known in this organism. Here, we analyse the presence of chromatin modifying enzymes and complexes in U. maydis and discuss their putative roles in this plant pathogen in the context of findings from other organisms, including other plant pathogens such as Magnaporthe oryzae and Fusarium graminearum. We propose U. maydis as a remarkable organism with interesting chromatin features, which would allow finding new functions of chromatin modifications during plant pathogenesis.
Collapse
Affiliation(s)
- Alberto Elías-Villalobos
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), UMR5237-Centre National de la Recherche Scientifique-Université de Montpellier, Montpellier, France.
| | - Ramón R Barrales
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, de Sevilla-Consejo Superior de Investigaciones Científicas-Junta de Andalucía, Sevilla, Spain.
| | - José I Ibeas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, de Sevilla-Consejo Superior de Investigaciones Científicas-Junta de Andalucía, Sevilla, Spain
| |
Collapse
|
104
|
Transcription initiation factor TBP: old friend new questions. Biochem Soc Trans 2019; 47:411-423. [DOI: 10.1042/bst20180623] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 12/14/2022]
Abstract
Abstract
In all domains of life, the regulation of transcription by DNA-dependent RNA polymerases (RNAPs) is achieved at the level of initiation to a large extent. Whereas bacterial promoters are recognized by a σ-factor bound to the RNAP, a complex set of transcription factors that recognize specific promoter elements is employed by archaeal and eukaryotic RNAPs. These initiation factors are of particular interest since the regulation of transcription critically relies on initiation rates and thus formation of pre-initiation complexes. The most conserved initiation factor is the TATA-binding protein (TBP), which is of crucial importance for all archaeal-eukaryotic transcription initiation complexes and the only factor required to achieve full rates of initiation in all three eukaryotic and the archaeal transcription systems. Recent structural, biochemical and genome-wide mapping data that focused on the archaeal and specialized RNAP I and III transcription system showed that the involvement and functional importance of TBP is divergent from the canonical role TBP plays in RNAP II transcription. Here, we review the role of TBP in the different transcription systems including a TBP-centric discussion of archaeal and eukaryotic initiation complexes. We furthermore highlight questions concerning the function of TBP that arise from these findings.
Collapse
|
105
|
Nune M, Morgan MT, Connell Z, McCullough L, Jbara M, Sun H, Brik A, Formosa T, Wolberger C. FACT and Ubp10 collaborate to modulate H2B deubiquitination and nucleosome dynamics. eLife 2019; 8:40988. [PMID: 30681413 PMCID: PMC6372288 DOI: 10.7554/elife.40988] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 01/24/2019] [Indexed: 12/21/2022] Open
Abstract
Monoubiquitination of histone H2B (H2B-Ub) plays a role in transcription and DNA replication, and is required for normal localization of the histone chaperone, FACT. In yeast, H2B-Ub is deubiquitinated by Ubp8, a subunit of SAGA, and Ubp10. Although they target the same substrate, loss of Ubp8 and Ubp10 cause different phenotypes and alter the transcription of different genes. We show that Ubp10 has poor activity on yeast nucleosomes, but that the addition of FACT stimulates Ubp10 activity on nucleosomes and not on other substrates. Consistent with a role for FACT in deubiquitinating H2B in vivo, a FACT mutant strain shows elevated levels of H2B-Ub. Combination of FACT mutants with deletion of Ubp10, but not Ubp8, confers increased sensitivity to hydroxyurea and activates a cryptic transcription reporter, suggesting that FACT and Ubp10 may coordinate nucleosome assembly during DNA replication and transcription. Our findings reveal unexpected interplay between H2B deubiquitination and nucleosome dynamics.
Collapse
Affiliation(s)
- Melesse Nune
- Program in Molecular Biophysics, Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Michael T Morgan
- Program in Molecular Biophysics, Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Zaily Connell
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Laura McCullough
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Muhammad Jbara
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, Israel
| | - Hao Sun
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ashraf Brik
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, Israel
| | - Tim Formosa
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Cynthia Wolberger
- Program in Molecular Biophysics, Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
106
|
Yokoyama A. RNA Polymerase II-Dependent Transcription Initiated by Selectivity Factor 1: A Central Mechanism Used by MLL Fusion Proteins in Leukemic Transformation. Front Genet 2019; 9:722. [PMID: 30693017 PMCID: PMC6339877 DOI: 10.3389/fgene.2018.00722] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/21/2018] [Indexed: 11/13/2022] Open
Abstract
Cancer cells transcribe RNAs in a characteristic manner in order to maintain their oncogenic potentials. In eukaryotes, RNA is polymerized by three distinct RNA polymerases, RNA polymerase I, II, and III (RNAP1, RNAP2, and RNAP3, respectively). The transcriptional machinery that initiates each transcription reaction has been purified and characterized. Selectivity factor 1 (SL1) is the complex responsible for RNAP1 pre-initiation complex formation. However, whether it plays any role in RNAP2-dependent transcription remains unclear. Our group previously found that SL1 specifically associates with AF4 family proteins. AF4 family proteins form the AEP complex with ENL family proteins and the P-TEFb elongation factor. Similar complexes have been independently characterized by several different laboratories and are often referred to as super elongation complex. The involvement of AEP in RNAP2-dependent transcription indicates that SL1 must play an important role in RNAP2-dependent transcription. To date, this role of SL1 has not been appreciated. In leukemia, AF4 and ENL family genes are frequently rearranged to form chimeric fusion genes with MLL. The resultant MLL fusion genes produce chimeric MLL fusion proteins comprising MLL and AEP components. The MLL portion functions as a targeting module, which specifically binds chromatin containing di-/tri-methylated histone H3 lysine 36 and non-methylated CpGs. This type of chromatin is enriched at the promoters of transcriptionally active genes which allows MLL fusion proteins to selectively bind to transcriptionally-active/CpG-rich gene promoters. The fusion partner portion, which recruits other AEP components and SL1, is responsible for activation of RNAP2-dependent transcription. Consequently, MLL fusion proteins constitutively activate the transcription of previously-transcribed MLL target genes. Structure/function analysis has shown that the ability of MLL fusion proteins to transform hematopoietic progenitors depends on the recruitment of AEP and SL1. Thus, the AEP/SL1-mediated gene activation pathway appears to be the central mechanism of MLL fusion-mediated transcriptional activation. However, the molecular mechanism by which SL1 activates RNAP2-dependent transcription remains largely unclear. This review aims to cover recent discoveries of the mechanism of transcriptional activation by MLL fusion proteins and to introduce novel roles of SL1 in RNAP2-dependent transcription by discussing how the RNAP1 machinery may be involved in RNAP2-dependent gene regulation.
Collapse
Affiliation(s)
- Akihiko Yokoyama
- Tsuruoka Meatabolomics Laboratory, National Cancer Center, Yamagata, Japan
| |
Collapse
|
107
|
Knoll ER, Zhu ZI, Sarkar D, Landsman D, Morse RH. Role of the pre-initiation complex in Mediator recruitment and dynamics. eLife 2018; 7:39633. [PMID: 30540252 PMCID: PMC6322861 DOI: 10.7554/elife.39633] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 12/12/2018] [Indexed: 12/19/2022] Open
Abstract
The Mediator complex stimulates the cooperative assembly of a pre-initiation complex (PIC) and recruitment of RNA Polymerase II (Pol II) for gene activation. The core Mediator complex is organized into head, middle, and tail modules, and in budding yeast (Saccharomyces cerevisiae), Mediator recruitment has generally been ascribed to sequence-specific activators engaging the tail module triad of Med2-Med3-Med15 at upstream activating sequences (UASs). We show that yeast lacking Med2-Med3-Med15 are viable and that Mediator and PolII are recruited to promoters genome-wide in these cells, albeit at reduced levels. To test whether Mediator might alternatively be recruited via interactions with the PIC, we examined Mediator association genome-wide after depleting PIC components. We found that depletion of Taf1, Rpb3, and TBP profoundly affected Mediator association at active gene promoters, with TBP being critical for transit of Mediator from UAS to promoter, while Pol II and Taf1 stabilize Mediator association at proximal promoters.
Collapse
Affiliation(s)
- Elisabeth R Knoll
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, United States
| | - Z Iris Zhu
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, Bethesda, United States
| | - Debasish Sarkar
- Wadsworth Center, New York State Department of Health, Albany, United States
| | - David Landsman
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, Bethesda, United States
| | - Randall H Morse
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, United States.,Wadsworth Center, New York State Department of Health, Albany, United States
| |
Collapse
|
108
|
Chaperonin CCT checkpoint function in basal transcription factor TFIID assembly. Nat Struct Mol Biol 2018; 25:1119-1127. [PMID: 30510221 PMCID: PMC6292499 DOI: 10.1038/s41594-018-0156-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/25/2018] [Indexed: 12/12/2022]
Abstract
TFIID is a cornerstone of eukaryotic gene regulation. Distinct TFIID
complexes with unique subunit composition exist and several TFIID subunits are
shared with other complexes, conveying intricate cellular decision making to
control subunit allocation and functional assembly of this essential
transcription factor. However, the underlying molecular mechanisms remain poorly
understood. Here, we used quantitative proteomics to examine TFIID submodules
and assembly mechanisms in human cells. Structural and mutational analysis of
the cytoplasmic TAF5-TAF6-TAF9 submodule identified novel interactions crucial
for TFIID integrity, and for allocating TAF9 to TFIID or the SAGA co-activator
complex. We discover a key checkpoint function for the chaperonin CCT, which
specifically associates with nascent TAF5 for subsequent handover to TAF6-TAF9
and ultimate holo-TFIID formation. Our findings illustrate at the molecular
level how multisubunit complexes are crafted in the cell, involving checkpoint
decisions facilitated by a chaperone machine.
Collapse
|
109
|
Lorch Y, Maier-Davis B, Kornberg RD. Histone Acetylation Inhibits RSC and Stabilizes the +1 Nucleosome. Mol Cell 2018; 72:594-600.e2. [PMID: 30401433 PMCID: PMC6290470 DOI: 10.1016/j.molcel.2018.09.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 08/09/2018] [Accepted: 09/20/2018] [Indexed: 12/12/2022]
Abstract
The +1 nucleosome of yeast genes, within which reside transcription start sites, is characterized by histone acetylation, by the displacement of an H2A-H2B dimer, and by a persistent association with the RSC chromatin-remodeling complex. Here we demonstrate the interrelationship of these characteristics and the conversion of a nucleosome to the +1 state in vitro. Contrary to expectation, acetylation performs an inhibitory role, preventing the removal of a nucleosome by RSC. Inhibition is due to both enhanced RSC-histone interaction and diminished histone-chaperone interaction. Acetylation does not prevent all RSC activity, because stably bound RSC removes an H2A-H2B dimer on a timescale of seconds in an irreversible manner.
Collapse
Affiliation(s)
- Yahli Lorch
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Barbara Maier-Davis
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Roger D Kornberg
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
110
|
Baptista T, Devys D. Saccharomyces cerevisiae Metabolic Labeling with 4-thiouracil and the Quantification of Newly Synthesized mRNA As a Proxy for RNA Polymerase II Activity. J Vis Exp 2018. [PMID: 30394386 DOI: 10.3791/57982] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Global defects in RNA polymerase II transcription might be overlooked by transcriptomic studies analyzing steady-state RNA. Indeed, the global decrease in mRNA synthesis has been shown to be compensated by a simultaneous decrease in mRNA degradation to restore normal steady-state levels. Hence, the genome-wide quantification of mRNA synthesis, independently from mRNA decay, is the best direct reflection of RNA polymerase II transcriptional activity. Here, we discuss a method using non-perturbing metabolic labeling of nascent RNAs in Saccharomyces cerevisiae (S. cerevisiae). Specifically, the cells are cultured for 6 min with a uracil analog, 4-thiouracil, and the labeled newly transcribed RNAs are purified and quantified to determine the synthesis rates of all individual mRNA. Moreover, using labeled Schizosaccharomyces pombe cells as internal standard allows comparing mRNA synthesis in different S. cerevisiae strains. Using this protocol and fitting the data with a dynamic kinetic model, the corresponding mRNA decay rates can be determined.
Collapse
Affiliation(s)
- Tiago Baptista
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, Illkirch, France; Université de Strasbourg
| | - Didier Devys
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, Illkirch, France; Université de Strasbourg;
| |
Collapse
|
111
|
Fischer V, Schumacher K, Tora L, Devys D. Global role for coactivator complexes in RNA polymerase II transcription. Transcription 2018; 10:29-36. [PMID: 30299209 PMCID: PMC6351120 DOI: 10.1080/21541264.2018.1521214] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
SAGA and TFIID are related transcription complexes, which were proposed to alternatively deliver TBP at different promoter classes. Recent genome-wide studies in yeast revealed that both complexes are required for the transcription of a vast majority of genes by RNA polymerase II raising new questions about the role of coactivators.
Collapse
Affiliation(s)
- Veronique Fischer
- a Institut de Génétique et de Biologie Moléculaire et Cellulaire , Illkirch , France.,b Centre National de la Recherche Scientifique , UMR7104 , Illkirch , France.,c Institut National de la Santé et de la Recherche Médicale , Illkirch , France.,d Université de Strasbourg , Illkirch , France
| | - Kenny Schumacher
- a Institut de Génétique et de Biologie Moléculaire et Cellulaire , Illkirch , France.,b Centre National de la Recherche Scientifique , UMR7104 , Illkirch , France.,c Institut National de la Santé et de la Recherche Médicale , Illkirch , France.,d Université de Strasbourg , Illkirch , France
| | - Laszlo Tora
- a Institut de Génétique et de Biologie Moléculaire et Cellulaire , Illkirch , France.,b Centre National de la Recherche Scientifique , UMR7104 , Illkirch , France.,c Institut National de la Santé et de la Recherche Médicale , Illkirch , France.,d Université de Strasbourg , Illkirch , France
| | - Didier Devys
- a Institut de Génétique et de Biologie Moléculaire et Cellulaire , Illkirch , France.,b Centre National de la Recherche Scientifique , UMR7104 , Illkirch , France.,c Institut National de la Santé et de la Recherche Médicale , Illkirch , France.,d Université de Strasbourg , Illkirch , France
| |
Collapse
|
112
|
Haberle V, Stark A. Eukaryotic core promoters and the functional basis of transcription initiation. Nat Rev Mol Cell Biol 2018; 19:621-637. [PMID: 29946135 PMCID: PMC6205604 DOI: 10.1038/s41580-018-0028-8] [Citation(s) in RCA: 446] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RNA polymerase II (Pol II) core promoters are specialized DNA sequences at transcription start sites of protein-coding and non-coding genes that support the assembly of the transcription machinery and transcription initiation. They enable the highly regulated transcription of genes by selectively integrating regulatory cues from distal enhancers and their associated regulatory proteins. In this Review, we discuss the defining properties of gene core promoters, including their sequence features, chromatin architecture and transcription initiation patterns. We provide an overview of molecular mechanisms underlying the function and regulation of core promoters and their emerging functional diversity, which defines distinct transcription programmes. On the basis of the established properties of gene core promoters, we discuss transcription start sites within enhancers and integrate recent results obtained from dedicated functional assays to propose a functional model of transcription initiation. This model can explain the nature and function of transcription initiation at gene starts and at enhancers and can explain the different roles of core promoters, of Pol II and its associated factors and of the activating cues provided by enhancers and the transcription factors and cofactors they recruit.
Collapse
Affiliation(s)
- Vanja Haberle
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Alexander Stark
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria.
- Medical University of Vienna, Vienna Biocenter (VBC), Vienna, Austria.
| |
Collapse
|
113
|
Oliete-Calvo P, Serrano-Quílez J, Nuño-Cabanes C, Pérez-Martínez ME, Soares LM, Dichtl B, Buratowski S, Pérez-Ortín JE, Rodríguez-Navarro S. A role for Mog1 in H2Bub1 and H3K4me3 regulation affecting RNAPII transcription and mRNA export. EMBO Rep 2018; 19:embr.201845992. [PMID: 30249596 DOI: 10.15252/embr.201845992] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 08/28/2018] [Accepted: 08/31/2018] [Indexed: 12/11/2022] Open
Abstract
Monoubiquitination of histone H2B (to H2Bub1) is required for downstream events including histone H3 methylation, transcription, and mRNA export. The mechanisms and players regulating these events have not yet been completely delineated. Here, we show that the conserved Ran-binding protein Mog1 is required to sustain normal levels of H2Bub1 and H3K4me3 in Saccharomyces cerevisiae Mog1 is needed for gene body recruitment of Rad6, Bre1, and Rtf1 that are involved in H2B ubiquitination and genetically interacts with these factors. We provide evidence that the absence of MOG1 impacts on cellular processes such as transcription, DNA replication, and mRNA export, which are linked to H2Bub1. Importantly, the mRNA export defect in mog1Δ strains is exacerbated by the absence of factors that decrease H2Bub1 levels. Consistent with a role in sustaining H2Bub and H3K4me3 levels, Mog1 co-precipitates with components that participate in these modifications such as Bre1, Rtf1, and the COMPASS-associated factors Shg1 and Sdc1. These results reveal a novel role for Mog1 in H2B ubiquitination, transcription, and mRNA biogenesis.
Collapse
Affiliation(s)
- Paula Oliete-Calvo
- Gene expression and mRNA Metabolism Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Joan Serrano-Quílez
- Gene expression and mRNA Metabolism Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain.,Gene expression and mRNA Metabolism Laboratory, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Carme Nuño-Cabanes
- Gene expression and mRNA Metabolism Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain.,Gene expression and mRNA Metabolism Laboratory, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - María E Pérez-Martínez
- Departamento de Bioquímica y Biología Molecular and E.R.I. Biotecmed, Facultad de Biología, Universitat de València, Burjassot, Spain
| | - Luis M Soares
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Bernhard Dichtl
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Centre for Cellular and Molecular Biology, Deakin University, Geelong, Vic., Australia
| | - Stephen Buratowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - José E Pérez-Ortín
- Departamento de Bioquímica y Biología Molecular and E.R.I. Biotecmed, Facultad de Biología, Universitat de València, Burjassot, Spain
| | - Susana Rodríguez-Navarro
- Gene expression and mRNA Metabolism Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain .,Gene expression and mRNA Metabolism Laboratory, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| |
Collapse
|
114
|
Structural basis for activation of SAGA histone acetyltransferase Gcn5 by partner subunit Ada2. Proc Natl Acad Sci U S A 2018; 115:10010-10015. [PMID: 30224453 DOI: 10.1073/pnas.1805343115] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Gcn5 histone acetyltransferase (HAT) subunit of the SAGA transcriptional coactivator complex catalyzes acetylation of histone H3 and H2B N-terminal tails, posttranslational modifications associated with gene activation. Binding of the SAGA subunit partner Ada2 to Gcn5 activates Gcn5's intrinsically weak HAT activity on histone proteins, but the mechanism for this activation by the Ada2 SANT domain has remained elusive. We have employed Fab antibody fragments as crystallization chaperones to determine crystal structures of a yeast Ada2/Gcn5 complex. Our structural and biochemical results indicate that the Ada2 SANT domain does not activate Gcn5's activity by directly affecting histone peptide binding as previously proposed. Instead, the Ada2 SANT domain enhances Gcn5 binding of the enzymatic cosubstrate acetyl-CoA. This finding suggests a mechanism for regulating chromatin modification enzyme activity: controlling binding of the modification cosubstrate instead of the histone substrate.
Collapse
|
115
|
Nassrallah A, Rougée M, Bourbousse C, Drevensek S, Fonseca S, Iniesto E, Ait-Mohamed O, Deton-Cabanillas AF, Zabulon G, Ahmed I, Stroebel D, Masson V, Lombard B, Eeckhout D, Gevaert K, Loew D, Genovesio A, Breyton C, De Jaeger G, Bowler C, Rubio V, Barneche F. DET1-mediated degradation of a SAGA-like deubiquitination module controls H2Bub homeostasis. eLife 2018; 7:37892. [PMID: 30192741 PMCID: PMC6128693 DOI: 10.7554/elife.37892] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/22/2018] [Indexed: 12/11/2022] Open
Abstract
DE-ETIOLATED 1 (DET1) is an evolutionarily conserved component of the ubiquitination machinery that mediates the destabilization of key regulators of cell differentiation and proliferation in multicellular organisms. In this study, we provide evidence from Arabidopsis that DET1 is essential for the regulation of histone H2B monoubiquitination (H2Bub) over most genes by controlling the stability of a deubiquitination module (DUBm). In contrast with yeast and metazoan DUB modules that are associated with the large SAGA complex, the Arabidopsis DUBm only comprises three proteins (hereafter named SGF11, ENY2 and UBP22) and appears to act independently as a major H2Bub deubiquitinase activity. Our study further unveils that DET1-DDB1-Associated-1 (DDA1) protein interacts with SGF11 in vivo, linking the DET1 complex to light-dependent ubiquitin-mediated proteolytic degradation of the DUBm. Collectively, these findings uncover a signaling path controlling DUBm availability, potentially adjusting H2Bub turnover capacity to the cell transcriptional status.
Collapse
Affiliation(s)
- Amr Nassrallah
- Centro Nacional de Biotecnología, CNB-CSIC, Madrid, Spain
| | - Martin Rougée
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, Paris, France.,Université Paris-Sud, Orsay, France
| | - Clara Bourbousse
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, Paris, France.,Université Paris-Sud, Orsay, France
| | - Stephanie Drevensek
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Sandra Fonseca
- Centro Nacional de Biotecnología, CNB-CSIC, Madrid, Spain
| | - Elisa Iniesto
- Centro Nacional de Biotecnología, CNB-CSIC, Madrid, Spain
| | - Ouardia Ait-Mohamed
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Anne-Flore Deton-Cabanillas
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Gerald Zabulon
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Ikhlak Ahmed
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - David Stroebel
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Vanessa Masson
- Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie PSL Research University, 75005 Paris, France
| | - Berangere Lombard
- Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie PSL Research University, 75005 Paris, France
| | - Dominique Eeckhout
- Department of Plant Systems Biology, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Kris Gevaert
- Department of Biochemistry, Ghent University, Ghent, Belgium.,VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Damarys Loew
- Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie PSL Research University, 75005 Paris, France
| | - Auguste Genovesio
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Cecile Breyton
- Université Grenoble Alpes, Institut de Biologie Structurale, Grenoble, France
| | - Geert De Jaeger
- Department of Plant Systems Biology, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Chris Bowler
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Vicente Rubio
- Centro Nacional de Biotecnología, CNB-CSIC, Madrid, Spain
| | - Fredy Barneche
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
116
|
Morrow ME, Morgan MT, Clerici M, Growkova K, Yan M, Komander D, Sixma TK, Simicek M, Wolberger C. Active site alanine mutations convert deubiquitinases into high-affinity ubiquitin-binding proteins. EMBO Rep 2018; 19:embr.201745680. [PMID: 30150323 PMCID: PMC6172466 DOI: 10.15252/embr.201745680] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 07/24/2018] [Accepted: 07/31/2018] [Indexed: 11/26/2022] Open
Abstract
A common strategy for exploring the biological roles of deubiquitinating enzymes (DUBs) in different pathways is to study the effects of replacing the wild‐type DUB with a catalytically inactive mutant in cells. We report here that a commonly studied DUB mutation, in which the catalytic cysteine is replaced with alanine, can dramatically increase the affinity of some DUBs for ubiquitin. Overexpression of these tight‐binding mutants thus has the potential to sequester cellular pools of monoubiquitin and ubiquitin chains. As a result, cells expressing these mutants may display unpredictable dominant negative physiological effects that are not related to loss of DUB activity. The structure of the SAGA DUB module bound to free ubiquitin reveals the structural basis for the 30‐fold higher affinity of Ubp8C146A for ubiquitin. We show that an alternative option, substituting the active site cysteine with arginine, can inactivate DUBs while also decreasing the affinity for ubiquitin.
Collapse
Affiliation(s)
- Marie E Morrow
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael T Morgan
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marcello Clerici
- Division of Biochemistry and Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Ming Yan
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David Komander
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Titia K Sixma
- Division of Biochemistry and Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Michal Simicek
- Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic.,Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Cynthia Wolberger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
117
|
Bruzzone MJ, Grünberg S, Kubik S, Zentner GE, Shore D. Distinct patterns of histone acetyltransferase and Mediator deployment at yeast protein-coding genes. Genes Dev 2018; 32:1252-1265. [PMID: 30108132 PMCID: PMC6120713 DOI: 10.1101/gad.312173.118] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 06/19/2018] [Indexed: 02/07/2023]
Abstract
Here, Bruzzone et al. explore the relative contributions of the transcriptional coactivators Mediator and two histone acetyltransferase (HAT) complexes, NuA4 and SAGA, to RNA polymerase II association at specific genes and gene classes by rapid nuclear depletion of key complex subunits. They show that the NuA4 HAT Esa1 differentially affects certain groups of genes, whereas the SAGA HAT Gcn5 has a weaker but more uniform effect, and their findings suggest that at least three distinct combinations of coactivator deployment are used to generate moderate or high transcription levels. The transcriptional coactivators Mediator and two histone acetyltransferase (HAT) complexes, NuA4 and SAGA, play global roles in transcriptional activation. Here we explore the relative contributions of these factors to RNA polymerase II association at specific genes and gene classes by rapid nuclear depletion of key complex subunits. We show that the NuA4 HAT Esa1 differentially affects certain groups of genes, whereas the SAGA HAT Gcn5 has a weaker but more uniform effect. Relative dependence on Esa1 and Tra1, a shared component of NuA4 and SAGA, distinguishes two large groups of coregulated growth-promoting genes. In contrast, we show that the activity of Mediator is particularly important at a separate, small set of highly transcribed TATA-box-containing genes. Our analysis indicates that at least three distinct combinations of coactivator deployment are used to generate moderate or high transcription levels and suggests that each may be associated with distinct forms of regulation.
Collapse
Affiliation(s)
- Maria Jessica Bruzzone
- Department of Molecular Biology, Institute of Genetics and Genomics in Geneva, 1211 Geneva 4, Switzerland
| | - Sebastian Grünberg
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Slawomir Kubik
- Department of Molecular Biology, Institute of Genetics and Genomics in Geneva, 1211 Geneva 4, Switzerland
| | - Gabriel E Zentner
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | - David Shore
- Department of Molecular Biology, Institute of Genetics and Genomics in Geneva, 1211 Geneva 4, Switzerland
| |
Collapse
|
118
|
Evangelista FM, Maglott-Roth A, Stierle M, Brino L, Soutoglou E, Tora L. Transcription and mRNA export machineries SAGA and TREX-2 maintain monoubiquitinated H2B balance required for DNA repair. J Cell Biol 2018; 217:3382-3397. [PMID: 30054449 PMCID: PMC6168256 DOI: 10.1083/jcb.201803074] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/19/2018] [Accepted: 06/28/2018] [Indexed: 11/22/2022] Open
Abstract
The SAGA coactivator complex and the nuclear pore–associated TREX-2 complex couple transcription with mRNA export. Evangelista et al. identify a novel interplay between TREX-2 and the deubiquitination module of SAGA that is necessary to maintain monoubiquitinated H2B levels required for efficient DNA repair through homologous recombination. DNA repair is critical to maintaining genome integrity, and its dysfunction can cause accumulation of unresolved damage that leads to genomic instability. The Spt–Ada–Gcn5 acetyltransferase (SAGA) coactivator complex and the nuclear pore–associated transcription and export complex 2 (TREX-2) couple transcription with mRNA export. In this study, we identify a novel interplay between human TREX-2 and the deubiquitination module (DUBm) of SAGA required for genome stability. We find that the scaffold subunit of TREX-2, GANP, positively regulates DNA repair through homologous recombination (HR). In contrast, DUBm adaptor subunits ENY2 and ATXNL3 are required to limit unscheduled HR. These opposite roles are achieved through monoubiquitinated histone H2B (H2Bub1). Interestingly, the activity of the DUBm of SAGA on H2Bub1 is dependent on the integrity of the TREX-2 complex. Thus, we describe the existence of a functional interaction between human TREX-2 and SAGA DUBm that is key to maintaining the H2B/HB2ub1 balance needed for efficient repair and HR.
Collapse
Affiliation(s)
- Federica M Evangelista
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Anne Maglott-Roth
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Matthieu Stierle
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Laurent Brino
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Evi Soutoglou
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France .,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France .,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| |
Collapse
|
119
|
Petty EL, Evpak M, Pillus L. Connecting GCN5's centromeric SAGA to the mitotic tension-sensing checkpoint. Mol Biol Cell 2018; 29:2201-2212. [PMID: 29995571 PMCID: PMC6249797 DOI: 10.1091/mbc.e17-12-0701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Multiple interdependent mechanisms ensure faithful segregation of chromosomes during cell division. Among these, the spindle assembly checkpoint monitors attachment of spindle microtubules to the centromere of each chromosome, whereas the tension-sensing checkpoint monitors the opposing forces between sister chromatid centromeres for proper biorientation. We report here a new function for the deeply conserved Gcn5 acetyltransferase in the centromeric localization of Rts1, a key player in the tension-sensing checkpoint. Rts1 is a regulatory component of protein phopshatase 2A, a near universal phosphatase complex, which is recruited to centromeres by the Shugoshin (Sgo) checkpoint component under low-tension conditions to maintain sister chromatid cohesion. We report that loss of Gcn5 disrupts centromeric localization of Rts1. Increased RTS1 dosage robustly suppresses gcn5∆ cell cycle and chromosome segregation defects, including restoration of Rts1 to centromeres. Sgo1’s Rts1-binding function also plays a key role in RTS1 dosage suppression of gcn5∆ phenotypes. Notably, we have identified residues of the centromere histone H3 variant Cse4 that function in these chromosome segregation-related roles of RTS1. Together, these findings expand the understanding of the mechanistic roles of Gcn5 and Cse4 in chromosome segregation.
Collapse
Affiliation(s)
- Emily L Petty
- Division of Biological Sciences, Molecular Biology, UCSD Moores Cancer Center, University of California, San Diego, La Jolla, CA 92103
| | - Masha Evpak
- Division of Biological Sciences, Molecular Biology, UCSD Moores Cancer Center, University of California, San Diego, La Jolla, CA 92103
| | - Lorraine Pillus
- Division of Biological Sciences, Molecular Biology, UCSD Moores Cancer Center, University of California, San Diego, La Jolla, CA 92103
| |
Collapse
|
120
|
Teves SS, An L, Bhargava-Shah A, Xie L, Darzacq X, Tjian R. A stable mode of bookmarking by TBP recruits RNA polymerase II to mitotic chromosomes. eLife 2018; 7:35621. [PMID: 29939130 PMCID: PMC6037474 DOI: 10.7554/elife.35621] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/23/2018] [Indexed: 12/18/2022] Open
Abstract
Maintenance of transcription programs is challenged during mitosis when chromatin becomes condensed and transcription is silenced. How do the daughter cells re-establish the original transcription program? Here, we report that the TATA-binding protein (TBP), a key component of the core transcriptional machinery, remains bound globally to active promoters in mouse embryonic stem cells during mitosis. Using live-cell single-molecule imaging, we observed that TBP mitotic binding is highly stable, with an average residence time of minutes, in stark contrast to typical TFs with residence times of seconds. To test the functional effect of mitotic TBP binding, we used a drug-inducible degron system and found that TBP promotes the association of RNA Polymerase II with mitotic chromosomes, and facilitates transcriptional reactivation following mitosis. These results suggest that the core transcriptional machinery promotes efficient transcription maintenance globally.
Collapse
Affiliation(s)
- Sheila S Teves
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, CIRM Center of Excellence, University of California, Berkeley, Berkeley, United States
| | - Luye An
- Department of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, United States
| | - Aarohi Bhargava-Shah
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, CIRM Center of Excellence, University of California, Berkeley, Berkeley, United States
| | - Liangqi Xie
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, CIRM Center of Excellence, University of California, Berkeley, Berkeley, United States
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, CIRM Center of Excellence, University of California, Berkeley, Berkeley, United States
| | - Robert Tjian
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, CIRM Center of Excellence, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, Berkeley, United States
| |
Collapse
|
121
|
El-Saafin F, Curry C, Ye T, Garnier JM, Kolb-Cheynel I, Stierle M, Downer NL, Dixon MP, Negroni L, Berger I, Thomas T, Voss AK, Dobyns W, Devys D, Tora L. Homozygous TAF8 mutation in a patient with intellectual disability results in undetectable TAF8 protein, but preserved RNA polymerase II transcription. Hum Mol Genet 2018; 27:2171-2186. [PMID: 29648665 PMCID: PMC5985725 DOI: 10.1093/hmg/ddy126] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 01/21/2023] Open
Abstract
The human general transcription factor TFIID is composed of the TATA-binding protein (TBP) and 13 TBP-associated factors (TAFs). In eukaryotic cells, TFIID is thought to nucleate RNA polymerase II (Pol II) preinitiation complex formation on all protein coding gene promoters and thus, be crucial for Pol II transcription. In a child with intellectual disability, mild microcephaly, corpus callosum agenesis and poor growth, we identified a homozygous splice-site mutation in TAF8 (NM_138572.2: c.781-1G > A). Our data indicate that the patient's mutation generates a frame shift and an unstable TAF8 mutant protein with an unrelated C-terminus. The mutant TAF8 protein could not be detected in extracts from the patient's fibroblasts, indicating a loss of TAF8 function and that the mutation is most likely causative. Moreover, our immunoprecipitation and proteomic analyses show that in patient cells only partial TAF complexes exist and that the formation of the canonical TFIID is impaired. In contrast, loss of TAF8 in mouse embryonic stem cells and blastocysts leads to cell death and to a global decrease in Pol II transcription. Astonishingly however, in human TAF8 patient cells, we could not detect any cellular phenotype, significant changes in genome-wide Pol II occupancy and pre-mRNA transcription. Thus, the disorganization of the essential holo-TFIID complex did not affect global Pol II transcription in the patient's fibroblasts. Our observations further suggest that partial TAF complexes, and/or an altered TFIID containing a mutated TAF8, could support human development and thus, the absence of holo-TFIID is less deleterious for transcription than originally predicted.
Collapse
Affiliation(s)
- Farrah El-Saafin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Cynthia Curry
- University of California, San Francisco, San Francisco, CA, USA
- Genetic Medicine, University Pediatric Specialists, Fresno, CA 93701, USA
| | - Tao Ye
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Jean-Marie Garnier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Isabelle Kolb-Cheynel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Matthieu Stierle
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Natalie L Downer
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Mathew P Dixon
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Luc Negroni
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Imre Berger
- School of Biochemistry and Bristol Research Centre for Synthetic Biology BrisSynBio, University of Bristol, Bristol BS8 1TD, UK
| | - Tim Thomas
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Anne K Voss
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - William Dobyns
- Departments of Pediatrics and Neurology, University of Washington, Seattle, WA 98101, USA
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Didier Devys
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Laszlo Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| |
Collapse
|
122
|
Berg MD, Genereaux J, Karagiannis J, Brandl CJ. The Pseudokinase Domain of Saccharomyces cerevisiae Tra1 Is Required for Nuclear Localization and Incorporation into the SAGA and NuA4 Complexes. G3 (BETHESDA, MD.) 2018; 8:1943-1957. [PMID: 29626083 PMCID: PMC5982823 DOI: 10.1534/g3.118.200288] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/04/2018] [Indexed: 12/29/2022]
Abstract
Tra1 is an essential component of the SAGA/SLIK and NuA4 complexes in S. cerevisiae, recruiting these co-activator complexes to specific promoters. As a PIKK family member, Tra1 is characterized by a C-terminal phosphoinositide 3-kinase (PI3K) domain. Unlike other PIKK family members (e.g., Tor1, Tor2, Mec1, Tel1), Tra1 has no demonstrable kinase activity. We identified three conserved arginine residues in Tra1 that reside proximal or within the cleft between the N- and C-terminal subdomains of the PI3K domain. To establish a function for Tra1's PI3K domain and specifically the cleft region, we characterized a tra1 allele where these three arginine residues are mutated to glutamine. The half-life of the Tra1[Formula: see text] protein is reduced but its steady state level is maintained at near wild-type levels by a transcriptional feedback mechanism. The tra1[Formula: see text] allele results in slow growth under stress and alters the expression of genes also regulated by other components of the SAGA complex. Tra1[Formula: see text] is less efficiently transported to the nucleus than the wild-type protein. Likely related to this, Tra1[Formula: see text] associates poorly with SAGA/SLIK and NuA4. The ratio of Spt7SLIK to Spt7SAGA increases in the tra1[Formula: see text] strain and truncated forms of Spt20 become apparent upon isolation of SAGA/SLIK. Intragenic suppressor mutations of tra1[Formula: see text] map to the cleft region further emphasizing its importance. We propose that the PI3K domain of Tra1 is directly or indirectly important for incorporating Tra1 into SAGA and NuA4 and thus the biosynthesis and/or stability of the intact complexes.
Collapse
Affiliation(s)
- Matthew D Berg
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada N6A5C1
| | - Julie Genereaux
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada N6A5C1
| | - Jim Karagiannis
- Department of Biology, Western University, London, Ontario, Canada N6A5B7
| | - Christopher J Brandl
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada N6A5C1
| |
Collapse
|
123
|
Bondy-Chorney E, Denoncourt A, Sai Y, Downey M. Nonhistone targets of KAT2A and KAT2B implicated in cancer biology 1. Biochem Cell Biol 2018; 97:30-45. [PMID: 29671337 DOI: 10.1139/bcb-2017-0297] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Lysine acetylation is a critical post-translation modification that can impact a protein's localization, stability, and function. Originally thought to only occur on histones, we now know thousands of nonhistone proteins are also acetylated. In conjunction with many other proteins, lysine acetyltransferases (KATs) are incorporated into large protein complexes that carry out these modifications. In this review we focus on the contribution of two KATs, KAT2A and KAT2B, and their potential roles in the development and progression of cancer. Systems biology demands that we take a broad look at protein function rather than focusing on individual pathways or targets. As such, in this review we examine KAT2A/2B-directed nonhistone protein acetylations in cancer in the context of the 10 "Hallmarks of Cancer", as defined by Hanahan and Weinberg. By focusing on specific examples of KAT2A/2B-directed acetylations with well-defined mechanisms or strong links to a cancer phenotype, we aim to reinforce the complex role that these enzymes play in cancer biology.
Collapse
Affiliation(s)
- Emma Bondy-Chorney
- Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, 451 Smyth Rd., Ottawa, ON KIH 8M5, Canada.,Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, 451 Smyth Rd., Ottawa, ON KIH 8M5, Canada
| | - Alix Denoncourt
- Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, 451 Smyth Rd., Ottawa, ON KIH 8M5, Canada.,Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, 451 Smyth Rd., Ottawa, ON KIH 8M5, Canada
| | - Yuka Sai
- Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, 451 Smyth Rd., Ottawa, ON KIH 8M5, Canada.,Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, 451 Smyth Rd., Ottawa, ON KIH 8M5, Canada
| | - Michael Downey
- Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, 451 Smyth Rd., Ottawa, ON KIH 8M5, Canada.,Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, 451 Smyth Rd., Ottawa, ON KIH 8M5, Canada
| |
Collapse
|
124
|
García-Molinero V, García-Martínez J, Reja R, Furió-Tarí P, Antúnez O, Vinayachandran V, Conesa A, Pugh BF, Pérez-Ortín JE, Rodríguez-Navarro S. The SAGA/TREX-2 subunit Sus1 binds widely to transcribed genes and affects mRNA turnover globally. Epigenetics Chromatin 2018; 11:13. [PMID: 29598828 PMCID: PMC5875001 DOI: 10.1186/s13072-018-0184-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/23/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Eukaryotic transcription is regulated through two complexes, the general transcription factor IID (TFIID) and the coactivator Spt-Ada-Gcn5 acetyltransferase (SAGA). Recent findings confirm that both TFIID and SAGA contribute to the synthesis of nearly all transcripts and are recruited genome-wide in yeast. However, how this broad recruitment confers selectivity under specific conditions remains an open question. RESULTS Here we find that the SAGA/TREX-2 subunit Sus1 associates with upstream regulatory regions of many yeast genes and that heat shock drastically changes Sus1 binding. While Sus1 binding to TFIID-dominated genes is not affected by temperature, its recruitment to SAGA-dominated genes and RP genes is significantly disturbed under heat shock, with Sus1 relocated to environmental stress-responsive genes in these conditions. Moreover, in contrast to recent results showing that SAGA deubiquitinating enzyme Ubp8 is dispensable for RNA synthesis, genomic run-on experiments demonstrate that Sus1 contributes to synthesis and stability of a wide range of transcripts. CONCLUSIONS Our study provides support for a model in which SAGA/TREX-2 factor Sus1 acts as a global transcriptional regulator in yeast but has differential activity at yeast genes as a function of their transcription rate or during stress conditions.
Collapse
Affiliation(s)
- Varinia García-Molinero
- Gene Expression and RNA Metabolism Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Eduardo Primo Yúfera 3, 46012, Valencia, Spain.,Inserm Avenir: 'Biology of Repetitive Sequences'-Institute of Human Genetics, CNRS UPR1142, Montpellier, France
| | - José García-Martínez
- Departamento de Genética and E.R.I. Biotecmed, Facultad de Biología, Universitat de València, C/Dr. Moliner 50, 46100, Burjassot, Spain
| | - Rohit Reja
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, The Pennsylvania State University, Pennsylvania, PA, 16802, USA.,Genentech Inc., South San Francisco, CA, USA
| | - Pedro Furió-Tarí
- Genomics of Gene Expression Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| | - Oreto Antúnez
- Departamento de Bioquímica y Biología Molecular and E.R.I. Biotecmed, Facultad de Biología, Universitat de València, C/Dr. Moliner 50, 46100, Burjassot, Spain
| | - Vinesh Vinayachandran
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, The Pennsylvania State University, Pennsylvania, PA, 16802, USA
| | - Ana Conesa
- Genomics of Gene Expression Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Eduardo Primo Yúfera 3, 46012, Valencia, Spain.,Microbiology and Cell Science Department, Institute for Food and Agricultural Sciences, University of Florida, P.O. Box 110700, Gainesville, FL, 32611-0700, USA.,Genetics Institute, University of Florida, 2033 Mowry Road, Gainesville, FL, 32610, USA
| | - B Franklin Pugh
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, The Pennsylvania State University, Pennsylvania, PA, 16802, USA
| | - José E Pérez-Ortín
- Departamento de Bioquímica y Biología Molecular and E.R.I. Biotecmed, Facultad de Biología, Universitat de València, C/Dr. Moliner 50, 46100, Burjassot, Spain
| | - Susana Rodríguez-Navarro
- Gene Expression and RNA Metabolism Laboratory, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), Jaime Roig 11, 46010, Valencia, Spain. .,Gene Expression and RNA Metabolism Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Eduardo Primo Yúfera 3, 46012, Valencia, Spain.
| |
Collapse
|
125
|
Vinayachandran V, Reja R, Rossi MJ, Park B, Rieber L, Mittal C, Mahony S, Pugh BF. Widespread and precise reprogramming of yeast protein-genome interactions in response to heat shock. Genome Res 2018; 28:357-366. [PMID: 29444801 PMCID: PMC5848614 DOI: 10.1101/gr.226761.117] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 01/25/2018] [Indexed: 11/24/2022]
Abstract
Gene expression is controlled by a variety of proteins that interact with the genome. Their precise organization and mechanism of action at every promoter remains to be worked out. To better understand the physical interplay among genome-interacting proteins, we examined the temporal binding of a functionally diverse subset of these proteins: nucleosomes (H3), H2AZ (Htz1), SWR (Swr1), RSC (Rsc1, Rsc3, Rsc58, Rsc6, Rsc9, Sth1), SAGA (Spt3, Spt7, Ubp8, Sgf11), Hsf1, TFIID (Spt15/TBP and Taf1), TFIIB (Sua7), TFIIH (Ssl2), FACT (Spt16), Pol II (Rpb3), and Pol II carboxyl-terminal domain (CTD) phosphorylation at serines 2, 5, and 7. They were examined under normal and acute heat shock conditions, using the ultrahigh resolution genome-wide ChIP-exo assay in Saccharomyces cerevisiae Our findings reveal a precise positional organization of proteins bound at most genes, some of which rapidly reorganize within minutes of heat shock. This includes more precise positional transitions of Pol II CTD phosphorylation along the 5' ends of genes than previously seen. Reorganization upon heat shock includes colocalization of SAGA with promoter-bound Hsf1, a change in RSC subunit enrichment from gene bodies to promoters, and Pol II accumulation within promoter/+1 nucleosome regions. Most of these events are widespread and not necessarily coupled to changes in gene expression. Together, these findings reveal protein-genome interactions that are robustly reprogrammed in precise and uniform ways far beyond what is elicited by changes in gene expression.
Collapse
Affiliation(s)
- Vinesh Vinayachandran
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Rohit Reja
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Matthew J Rossi
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Bongsoo Park
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Lila Rieber
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Chitvan Mittal
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Shaun Mahony
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - B Franklin Pugh
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
126
|
Xu Y, Milazzo JP, Somerville TDD, Tarumoto Y, Huang YH, Ostrander EL, Wilkinson JE, Challen GA, Vakoc CR. A TFIID-SAGA Perturbation that Targets MYB and Suppresses Acute Myeloid Leukemia. Cancer Cell 2018; 33:13-28.e8. [PMID: 29316427 PMCID: PMC5764110 DOI: 10.1016/j.ccell.2017.12.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/22/2017] [Accepted: 12/05/2017] [Indexed: 01/08/2023]
Abstract
Targeting of general coactivators is an emerging strategy to interfere with oncogenic transcription factors (TFs). However, coactivator perturbations often lead to pleiotropic effects by influencing numerous TFs. Here we identify TAF12, a subunit of TFIID and SAGA coactivator complexes, as a selective requirement for acute myeloid leukemia (AML) progression. We trace this dependency to a direct interaction between the TAF12/TAF4 histone-fold heterodimer and the transactivation domain of MYB, a TF with established roles in leukemogenesis. Ectopic expression of the TAF4 histone-fold fragment can efficiently squelch TAF12 in cells, suppress MYB, and regress AML in mice. Our study reveals a strategy for potent MYB inhibition in AML and highlights how an oncogenic TF can be selectively neutralized by targeting a general coactivator complex.
Collapse
Affiliation(s)
- Yali Xu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Molecular and Cellular Biology Program, Stony Brook University, New York, NY 11794, USA
| | - Joseph P Milazzo
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Yusuke Tarumoto
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Yu-Han Huang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Elizabeth L Ostrander
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John E Wilkinson
- ULAM/Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Grant A Challen
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
127
|
Wang L, Koutelou E, Hirsch C, McCarthy R, Schibler A, Lin K, Lu Y, Jeter C, Shen J, Barton MC, Dent SYR. GCN5 Regulates FGF Signaling and Activates Selective MYC Target Genes during Early Embryoid Body Differentiation. Stem Cell Reports 2017; 10:287-299. [PMID: 29249668 PMCID: PMC5768892 DOI: 10.1016/j.stemcr.2017.11.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/14/2017] [Accepted: 11/14/2017] [Indexed: 12/12/2022] Open
Abstract
Precise control of gene expression during development is orchestrated by transcription factors and co-regulators including chromatin modifiers. How particular chromatin-modifying enzymes affect specific developmental processes is not well defined. Here, we report that GCN5, a histone acetyltransferase essential for embryonic development, is required for proper expression of multiple genes encoding components of the fibroblast growth factor (FGF) signaling pathway in early embryoid bodies (EBs). Gcn5-/- EBs display deficient activation of ERK and p38, mislocalization of cytoskeletal components, and compromised capacity to differentiate toward mesodermal lineage. Genomic analyses identified seven genes as putative direct targets of GCN5 during early differentiation, four of which are cMYC targets. These findings established a link between GCN5 and the FGF signaling pathway and highlighted specific GCN5-MYC partnerships in gene regulation during early differentiation.
Collapse
Affiliation(s)
- Li Wang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Program in Epigenetics and Molecular Carcinogenesis, The Graduate School of Biomedical Sciences (GSBS) of the University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Evangelia Koutelou
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Calley Hirsch
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Ryan McCarthy
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Andria Schibler
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Program in Genes and Development, The Graduate School of Biomedical Sciences (GSBS) of the University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Kevin Lin
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Collene Jeter
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Jianjun Shen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Michelle C Barton
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Program in Epigenetics and Molecular Carcinogenesis, The Graduate School of Biomedical Sciences (GSBS) of the University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Program in Genes and Development, The Graduate School of Biomedical Sciences (GSBS) of the University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Sharon Y R Dent
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Program in Epigenetics and Molecular Carcinogenesis, The Graduate School of Biomedical Sciences (GSBS) of the University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Program in Genes and Development, The Graduate School of Biomedical Sciences (GSBS) of the University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
128
|
Mechanistic Differences in Transcription Initiation at TATA-Less and TATA-Containing Promoters. Mol Cell Biol 2017; 38:MCB.00448-17. [PMID: 29038161 DOI: 10.1128/mcb.00448-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/06/2017] [Indexed: 12/14/2022] Open
Abstract
A yeast in vitro system was developed that is active for transcription at both TATA-containing and TATA-less promoters. Transcription with extracts made from cells depleted of TFIID subunit Taf1 demonstrated that promoters of both classes are TFIID dependent, in agreement with recent in vivo findings. TFIID depletion can be complemented in vitro by additional recombinant TATA binding protein (TBP) at only the TATA-containing promoters. In contrast, high levels of TBP did not complement Taf1 depletion in vivo and instead repressed transcription from both promoter types. We also demonstrate the importance of the TATA-like sequence found at many TATA-less promoters and describe how the presence or absence of the TATA element is likely not the only feature that distinguishes these two types of promoters.
Collapse
|
129
|
Abstract
Recently, we reported that a major function of histone acetylation at the yeast FLO1 gene was to regulate transcription elongation. Here, we discuss possible mechanisms by which histone acetylation might regulate RNA polymerase II processivity, and comment on the contribution to transcription of chromatin remodelling at gene coding regions and promoters.
Collapse
Affiliation(s)
- Michael C Church
- a Stowers Institute for Medical Research , 1000 E 50th Street, Kansas City , MO , United States
| | - Alastair B Fleming
- b Department of Microbiology , Moyne Institute, Trinity College Dublin, University of Dublin , Dublin , Ireland
| |
Collapse
|
130
|
Watanabe K, Kokubo T. SAGA mediates transcription from the TATA-like element independently of Taf1p/TFIID but dependent on core promoter structures in Saccharomyces cerevisiae. PLoS One 2017; 12:e0188435. [PMID: 29176831 PMCID: PMC5703507 DOI: 10.1371/journal.pone.0188435] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/07/2017] [Indexed: 11/21/2022] Open
Abstract
In Saccharomyces cerevisiae, core promoters of class II genes contain a TATA element, either a TATA box (TATA[A/T]A[A/T][A/G]) or TATA-like element (1 or 2 bp mismatched version of the TATA box). The TATA element directs the assembly of the preinitiation complex (PIC) to ensure accurate transcriptional initiation. It has been proposed the PIC is assembled by two distinct pathways in which TBP is delivered by TFIID or SAGA, leading to the widely accepted model that these complexes mediate transcription mainly from TATA-like element- or TATA box-containing promoters, respectively. Although both complexes are involved in transcription of nearly all class II genes, it remains unclear how efficiently SAGA mediates transcription from TATA-like element-containing promoters independently of TFIID. We found that transcription from the TATA box-containing AGP1 promoter was greatly stimulated in a Spt3p-dependent manner after inactivation of Taf1p/TFIID. Thus, this promoter provides a novel experimental system in which to evaluate SAGA-mediated transcription from TATA-like element(s). We quantitatively measured transcription from various TATA-like elements in the Taf1p-dependent CYC1 promoter and Taf1p-independent AGP1 promoter. The results revealed that SAGA could mediate transcription from at least some TATA-like elements independently of Taf1p/TFIID, and that Taf1p-dependence or -independence is highly robust with respect to variation of the TATA sequence. Furthermore, chimeric promoter mapping revealed that Taf1p-dependence or independence was conferred by the upstream activating sequence (UAS), whereas Spt3p-dependent transcriptional stimulation after inactivation of Taf1p/TFIID was specific to the AGP1 promoter and dependent on core promoter regions other than the TATA box. These results suggest that TFIID and/or SAGA are regulated in two steps: the UAS first specifies TFIID or SAGA as the predominant factor on a given promoter, and then the core promoter structure guides the pertinent factor to conduct transcription in an appropriate manner.
Collapse
Affiliation(s)
- Kiyoshi Watanabe
- Molecular and Cellular Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Tetsuro Kokubo
- Molecular and Cellular Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, Japan
| |
Collapse
|
131
|
Joo YJ, Ficarro SB, Soares LM, Chun Y, Marto JA, Buratowski S. Downstream promoter interactions of TFIID TAFs facilitate transcription reinitiation. Genes Dev 2017; 31:2162-2174. [PMID: 29203645 PMCID: PMC5749164 DOI: 10.1101/gad.306324.117] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/09/2017] [Indexed: 11/24/2022]
Abstract
TFIID binds promoter DNA to recruit RNA polymerase II and other basal factors for transcription. Although the TATA-binding protein (TBP) subunit of TFIID is necessary and sufficient for in vitro transcription, the TBP-associated factor (TAF) subunits recognize downstream promoter elements, act as coactivators, and interact with nucleosomes. In yeast nuclear extracts, transcription induces stable TAF binding to downstream promoter DNA, promoting subsequent activator-independent transcription reinitiation. In vivo, promoter responses to TAF mutations correlate with the level of downstream, rather than overall, Taf1 cross-linking. We propose a new model in which TAFs function as reinitiation factors, accounting for the differential responses of promoters to various transcription factor mutations.
Collapse
Affiliation(s)
- Yoo Jin Joo
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Scott B Ficarro
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, Massachusetts 02115, USA
- Blais Proteomics Center, Dana Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Luis M Soares
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Yujin Chun
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jarrod A Marto
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, Massachusetts 02115, USA
- Blais Proteomics Center, Dana Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Stephen Buratowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
132
|
|
133
|
Warfield L, Ramachandran S, Baptista T, Devys D, Tora L, Hahn S. Transcription of Nearly All Yeast RNA Polymerase II-Transcribed Genes Is Dependent on Transcription Factor TFIID. Mol Cell 2017; 68:118-129.e5. [PMID: 28918900 DOI: 10.1016/j.molcel.2017.08.014] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/28/2017] [Accepted: 08/18/2017] [Indexed: 11/17/2022]
Abstract
Previous studies suggested that expression of most yeast mRNAs is dominated by either transcription factor TFIID or SAGA. We re-examined the role of TFIID by rapid depletion of S. cerevisiae TFIID subunits and measurement of changes in nascent transcription. We find that transcription of nearly all mRNAs is strongly dependent on TFIID function. Degron-dependent depletion of Taf1, Taf2, Taf7, Taf11, and Taf13 showed similar transcription decreases for genes in the Taf1-depleted, Taf1-enriched, TATA-containing, and TATA-less gene classes. The magnitude of TFIID dependence varies with growth conditions, although this variation is similar genome-wide. Many studies have suggested differences in gene-regulatory mechanisms between TATA and TATA-less genes, and these differences have been attributed in part to differential dependence on SAGA or TFIID. Our work indicates that TFIID participates in expression of nearly all yeast mRNAs and that differences in regulation between these two gene categories is due to other properties.
Collapse
Affiliation(s)
- Linda Warfield
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Srinivas Ramachandran
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Tiago Baptista
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; UMR7104, Centre National de la Recherche Scientifique, 67404 Illkirch, France; U964, Institut National de la Santé et de la Recherche Médicale, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, Cedex, France
| | - Didier Devys
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; UMR7104, Centre National de la Recherche Scientifique, 67404 Illkirch, France; U964, Institut National de la Santé et de la Recherche Médicale, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, Cedex, France
| | - Laszlo Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; UMR7104, Centre National de la Recherche Scientifique, 67404 Illkirch, France; U964, Institut National de la Santé et de la Recherche Médicale, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, Cedex, France
| | - Steven Hahn
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| |
Collapse
|