101
|
Ryder L, Arendrup FS, Martínez JF, Snieckute G, Pecorari C, Shah RA, Lund AH, Blasius M, Bekker-Jensen S. Nitric oxide-induced ribosome collision activates ribosomal surveillance mechanisms. Cell Death Dis 2023; 14:467. [PMID: 37495584 PMCID: PMC10372077 DOI: 10.1038/s41419-023-05997-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/23/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
Impairment of protein translation can cause stalling and collision of ribosomes and is a signal for the activation of ribosomal surveillance and rescue pathways. Despite clear evidence that ribosome collision occurs stochastically at a cellular and organismal level, physiologically relevant sources of such aberrations are poorly understood. Here we show that a burst of the cellular signaling molecule nitric oxide (NO) reduces translational activity and causes ribosome collision in human cell lines. This is accompanied by activation of the ribotoxic stress response, resulting in ZAKα-mediated activation of p38 and JNK kinases. In addition, NO production is associated with ZNF598-mediated ubiquitination of the ribosomal protein RPS10 and GCN2-mediated activation of the integrated stress response, which are well-described responses to the collision of ribosomes. In sum, our work implicates a novel role of NO as an inducer of ribosome collision and activation of ribosomal surveillance mechanisms in human cells.
Collapse
Affiliation(s)
- Laura Ryder
- Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
| | - Frederic Schrøder Arendrup
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen, Denmark
| | - José Francisco Martínez
- Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
| | - Goda Snieckute
- Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
| | - Chiara Pecorari
- Danish Cancer Society Research Center, Strandboulevarden 49, DK-2100, Copenhagen, Denmark
| | - Riyaz Ahmad Shah
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
| | - Anders H Lund
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen, Denmark
| | - Melanie Blasius
- Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
| | - Simon Bekker-Jensen
- Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark.
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark.
| |
Collapse
|
102
|
Barros GC, Guerrero S, Silva GM. The central role of translation elongation in response to stress. Biochem Soc Trans 2023; 51:959-969. [PMID: 37318088 PMCID: PMC11160351 DOI: 10.1042/bst20220584] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
Protein synthesis is essential to support homeostasis, and thus, must be highly regulated during cellular response to harmful environments. All stages of translation are susceptible to regulation under stress, however, the mechanisms involved in translation regulation beyond initiation have only begun to be elucidated. Methodological advances enabled critical discoveries on the control of translation elongation, highlighting its important role in translation repression and the synthesis of stress-response proteins. In this article, we discuss recent findings on mechanisms of elongation control mediated by ribosome pausing and collisions and the availability of tRNAs and elongation factors. We also discuss how elongation intersects with distinct modes of translation control, further supporting cellular viability and gene expression reprogramming. Finally, we highlight how several of these pathways are reversibly regulated, emphasizing the dynamics of translation control during stress-response progression. A comprehensive understanding of translation regulation under stress will produce fundamental knowledge of protein dynamics while opening new avenues and strategies to overcome dysregulated protein production and cellular sensitivity to stress.
Collapse
Affiliation(s)
| | | | - Gustavo M. Silva
- Department of Biology, Duke University, Durham, NC, USA
- Lead contact
| |
Collapse
|
103
|
Müller MBD, Kasturi P, Jayaraj GG, Hartl FU. Mechanisms of readthrough mitigation reveal principles of GCN1-mediated translational quality control. Cell 2023:S0092-8674(23)00587-1. [PMID: 37339632 PMCID: PMC10364623 DOI: 10.1016/j.cell.2023.05.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/22/2023]
Abstract
Readthrough into the 3' untranslated region (3' UTR) of the mRNA results in the production of aberrant proteins. Metazoans efficiently clear readthrough proteins, but the underlying mechanisms remain unknown. Here, we show in Caenorhabditis elegans and mammalian cells that readthrough proteins are targeted by a coupled, two-level quality control pathway involving the BAG6 chaperone complex and the ribosome-collision-sensing protein GCN1. Readthrough proteins with hydrophobic C-terminal extensions (CTEs) are recognized by SGTA-BAG6 and ubiquitylated by RNF126 for proteasomal degradation. Additionally, cotranslational mRNA decay initiated by GCN1 and CCR4/NOT limits the accumulation of readthrough products. Unexpectedly, selective ribosome profiling uncovered a general role of GCN1 in regulating translation dynamics when ribosomes collide at nonoptimal codons, enriched in 3' UTRs, transmembrane proteins, and collagens. GCN1 dysfunction increasingly perturbs these protein classes during aging, resulting in mRNA and proteome imbalance. Our results define GCN1 as a key factor acting during translation in maintaining protein homeostasis.
Collapse
Affiliation(s)
- Martin B D Müller
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Prasad Kasturi
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Gopal G Jayaraj
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
104
|
Chen S, Allen G, Panasenko OO, Collart MA. Not4-dependent targeting of MMF1 mRNA to mitochondria limits its expression via ribosome pausing, Egd1 ubiquitination, Caf130, no-go-decay and autophagy. Nucleic Acids Res 2023; 51:5022-5039. [PMID: 37094076 PMCID: PMC10250226 DOI: 10.1093/nar/gkad299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 04/11/2023] [Indexed: 04/26/2023] Open
Abstract
The Ccr4-Not complex is a conserved multi protein complex with diverse roles in the mRNA life cycle. Recently we determined that the Not1 and Not4 subunits of Ccr4-Not inversely regulate mRNA solubility and thereby impact dynamics of co-translation events. One mRNA whose solubility is limited by Not4 is MMF1 encoding a mitochondrial matrix protein. In this work we uncover a mechanism that limits MMF1 overexpression and depends upon its co-translational targeting to the mitochondria. We have named this mechanism Mito-ENCay. This mechanism relies on Not4 promoting ribosome pausing during MMF1 translation, and hence the co-translational docking of the MMF1 mRNA to mitochondria via the mitochondrial targeting sequence of the Mmf1 nascent chain, the Egd1 chaperone, the Om14 mitochondrial outer membrane protein and the co-translational import machinery. Besides co-translational Mitochondrial targeting, Mito-ENCay depends upon Egd1 ubiquitination by Not4, the Caf130 subunit of the Ccr4-Not complex, the mitochondrial outer membrane protein Cis1, autophagy and no-go-decay.
Collapse
Affiliation(s)
- Siyu Chen
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Institute of Genetics and Genomics of Geneva, Geneva, Switzerland
| | - George Allen
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Institute of Genetics and Genomics of Geneva, Geneva, Switzerland
| | - Olesya O Panasenko
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Institute of Genetics and Genomics of Geneva, Geneva, Switzerland
| | - Martine A Collart
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Institute of Genetics and Genomics of Geneva, Geneva, Switzerland
| |
Collapse
|
105
|
Chowdhury MN, Chen X, Jin H. An intrinsically Disordered RNA Binding Protein Modulates mRNA Translation and Storage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541713. [PMID: 37293096 PMCID: PMC10245857 DOI: 10.1101/2023.05.22.541713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Many proteins with intrinsically disordered regions interact with cytoplasmic ribosomes. However, many of the molecular functions related to these interactions are unclear. In this study, using an abundant RNA-binding protein with a structurally well-defined RNA recognition motif and an intrinsically disordered RGG domain as a model system, we investigated how this protein modulates mRNA storage and translation. Using genomic and molecular approaches, we show that the presence of Sbp1 slows ribosome movement on cellular mRNAs and promotes polysome stalling. Sbp1-associated polysomes display a ring-shaped structure in addition to a beads-on-string morphology visualized under electron microscope. Moreover, post-translational modifications at the RGG motif play important roles in directing cellular mRNAs to either translation or storage. Finally, binding of Sbp1 to the 5'UTRs of mRNAs represses both cap-dependent and cap-independent translation initiation of proteins functionally important for general protein synthesis in the cell. Taken together, our study demonstrates an intrinsically disordered RNA binding protein regulates mRNA translation and storage via distinctive mechanisms under physiological conditions and establishes a framework with which functions of important RGG-proteins can be investigated and defined.
Collapse
Affiliation(s)
- Mashiat N. Chowdhury
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801
| | - Xin Chen
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801
| | - Hong Jin
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801
- Carl R. Woese Institute for Genomic Biology, 1206 West Gregory Drive, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801
| |
Collapse
|
106
|
Ikeuchi K, Ivic N, Buschauer R, Cheng J, Fröhlich T, Matsuo Y, Berninghausen O, Inada T, Becker T, Beckmann R. Molecular basis for recognition and deubiquitination of 40S ribosomes by Otu2. Nat Commun 2023; 14:2730. [PMID: 37169754 PMCID: PMC10175282 DOI: 10.1038/s41467-023-38161-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/19/2023] [Indexed: 05/13/2023] Open
Abstract
In actively translating 80S ribosomes the ribosomal protein eS7 of the 40S subunit is monoubiquitinated by the E3 ligase Not4 and deubiquitinated by Otu2 upon ribosomal subunit recycling. Despite its importance for translation efficiency the exact role and structural basis for this translational reset is poorly understood. Here, structural analysis by cryo-electron microscopy of native and reconstituted Otu2-bound ribosomal complexes reveals that Otu2 engages 40S subunits mainly between ribosome recycling and initiation stages. Otu2 binds to several sites on the intersubunit surface of the 40S that are not occupied by any other 40S-binding factors. This binding mode explains the discrimination against 80S ribosomes via the largely helical N-terminal domain of Otu2 as well as the specificity for mono-ubiquitinated eS7 on 40S. Collectively, this study reveals mechanistic insights into the Otu2-driven deubiquitination steps for translational reset during ribosome recycling/(re)initiation.
Collapse
Affiliation(s)
- Ken Ikeuchi
- Department of Biochemistry, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany
| | - Nives Ivic
- Division of Physical Chemistry, Rudjer Boskovic Institute, Bijenicka cesta 54, 10000, Zagreb, Croatia
| | - Robert Buschauer
- Department of Biochemistry, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany
| | - Jingdong Cheng
- Department of Biochemistry, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany
- Institutes of biomedical science, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Fudan university, Dong'an Road 131, 200032, Shanghai, China
| | - Thomas Fröhlich
- LAFUGA, Laboratory for Functional Genome Analysis, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany
| | - Yoshitaka Matsuo
- Division of RNA and Gene Regulation, Institute of Medical Science, The University of Tokyo, Minato-ku, 108-8639, Japan
| | - Otto Berninghausen
- Department of Biochemistry, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany
| | - Toshifumi Inada
- Division of RNA and Gene Regulation, Institute of Medical Science, The University of Tokyo, Minato-ku, 108-8639, Japan
| | - Thomas Becker
- Department of Biochemistry, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany.
| | - Roland Beckmann
- Department of Biochemistry, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany.
| |
Collapse
|
107
|
Park E, Mackens-Kiani T, Berhane R, Esser H, Erdenebat C, Burroughs AM, Berninghausen O, Aravind L, Beckmann R, Green R, Buskirk AR. B. subtilis MutS2 splits stalled ribosomes into subunits without mRNA cleavage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.05.539626. [PMID: 37205477 PMCID: PMC10187299 DOI: 10.1101/2023.05.05.539626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Stalled ribosomes are rescued by pathways that recycle the ribosome and target the nascent polypeptide for degradation. In E. coli, these pathways are triggered by ribosome collisions through recruitment of SmrB, a nuclease that cleaves the mRNA. In B. subtilis, the related protein MutS2 was recently implicated in ribosome rescue. Here we show that MutS2 is recruited to collisions by its SMR and KOW domains and reveal the interaction of these domains with collided ribosomes by cryo-EM. Using a combination of in vivo and in vitro approaches, we show that MutS2 uses its ABC ATPase activity to split ribosomes, targeting the nascent peptide for degradation by the ribosome quality control pathway. Notably, we see no evidence of mRNA cleavage by MutS2, nor does it promote ribosome rescue by tmRNA as SmrB cleavage does in E. coli. These findings clarify the biochemical and cellular roles of MutS2 in ribosome rescue in B. subtilis and raise questions about how these pathways function differently in various bacteria.
Collapse
Affiliation(s)
- Esther Park
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Timur Mackens-Kiani
- Gene Center and Department of Biochemistry, University of Munich, Munich, Germany
| | - Rebekah Berhane
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Hanna Esser
- Gene Center and Department of Biochemistry, University of Munich, Munich, Germany
| | - Chimeg Erdenebat
- Gene Center and Department of Biochemistry, University of Munich, Munich, Germany
| | - A. Maxwell Burroughs
- Computational Biology Branch, Intramural Research Program, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - Otto Berninghausen
- Gene Center and Department of Biochemistry, University of Munich, Munich, Germany
| | - L. Aravind
- Computational Biology Branch, Intramural Research Program, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - Roland Beckmann
- Gene Center and Department of Biochemistry, University of Munich, Munich, Germany
| | - Rachel Green
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Allen R. Buskirk
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
108
|
Zhang D, Zhu L, Wang F, Li P, Wang Y, Gao Y. Molecular mechanisms of eukaryotic translation fidelity and their associations with diseases. Int J Biol Macromol 2023; 242:124680. [PMID: 37141965 DOI: 10.1016/j.ijbiomac.2023.124680] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
Converting genetic information into functional proteins is a complex, multi-step process, with each step being tightly regulated to ensure the accuracy of translation, which is critical to cellular health. In recent years, advances in modern biotechnology, especially the development of cryo-electron microscopy and single-molecule techniques, have enabled a clearer understanding of the mechanisms of protein translation fidelity. Although there are many studies on the regulation of protein translation in prokaryotes, and the basic elements of translation are highly conserved in prokaryotes and eukaryotes, there are still great differences in the specific regulatory mechanisms. This review describes how eukaryotic ribosomes and translation factors regulate protein translation and ensure translation accuracy. However, a certain frequency of translation errors does occur in translation, so we describe diseases that arise when the rate of translation errors reaches or exceeds a threshold of cellular tolerance.
Collapse
Affiliation(s)
- Dejiu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Lei Zhu
- College of Basic Medical, Qingdao Binhai University, Qingdao, China
| | - Fei Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.
| | - Yanyan Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
109
|
Wang X, Li Y, Yan X, Yang Q, Zhang B, Zhang Y, Yuan X, Jiang C, Chen D, Liu Q, Liu T, Mi W, Yu Y, Dong C. Recognition of an Ala-rich C-degron by the E3 ligase Pirh2. Nat Commun 2023; 14:2474. [PMID: 37120596 PMCID: PMC10148881 DOI: 10.1038/s41467-023-38173-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 04/18/2023] [Indexed: 05/01/2023] Open
Abstract
The ribosome-associated quality-control (RQC) pathway degrades aberrant nascent polypeptides arising from ribosome stalling during translation. In mammals, the E3 ligase Pirh2 mediates the degradation of aberrant nascent polypeptides by targeting the C-terminal polyalanine degrons (polyAla/C-degrons). Here, we present the crystal structure of Pirh2 bound to the polyAla/C-degron, which shows that the N-terminal domain and the RING domain of Pirh2 form a narrow groove encapsulating the alanine residues of the polyAla/C-degron. Affinity measurements in vitro and global protein stability assays in cells further demonstrate that Pirh2 recognizes a C-terminal A/S-X-A-A motif for substrate degradation. Taken together, our study provides the molecular basis underlying polyAla/C-degron recognition by Pirh2 and expands the substrate recognition spectrum of Pirh2.
Collapse
Affiliation(s)
- Xiaolu Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Haihe Laboratory of Cell Ecosystem, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Tianjin Medical University, 300070, Tianjin, China
| | - Yao Li
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Haihe Laboratory of Cell Ecosystem, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
- Department of Biochemistry and Molecular Biology, Tianjin Medical University, 300070, Tianjin, China
| | - Xiaojie Yan
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Haihe Laboratory of Cell Ecosystem, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
- Department of Biochemistry and Molecular Biology, Tianjin Medical University, 300070, Tianjin, China
| | - Qing Yang
- Department of Biochemistry and Molecular Biology, Tianjin Medical University, 300070, Tianjin, China
| | - Bing Zhang
- Department of Biochemistry and Molecular Biology, Tianjin Medical University, 300070, Tianjin, China
| | - Ying Zhang
- Department of Immunology, Tianjin Institute of Immunology, Tianjin Medical University, 300070, Tianjin, China
| | - Xinxin Yuan
- Department of Biochemistry and Molecular Biology, Tianjin Medical University, 300070, Tianjin, China
| | - Chenhao Jiang
- Department of Immunology, Tianjin Institute of Immunology, Tianjin Medical University, 300070, Tianjin, China
| | - Dongxing Chen
- Department of Medicinal Chemistry, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China
| | - Quanyan Liu
- Department of Hepatobiliary Surgery, Tianjin Medical University General Hospital, 300052, Tianjin, China
| | - Tong Liu
- Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Wenyi Mi
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Haihe Laboratory of Cell Ecosystem, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
- Department of Immunology, Tianjin Institute of Immunology, Tianjin Medical University, 300070, Tianjin, China
| | - Ying Yu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Haihe Laboratory of Cell Ecosystem, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China.
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Tianjin Medical University, 300070, Tianjin, China.
| | - Cheng Dong
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Haihe Laboratory of Cell Ecosystem, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China.
- Department of Biochemistry and Molecular Biology, Tianjin Medical University, 300070, Tianjin, China.
- Department of Hepatobiliary Surgery, Tianjin Medical University General Hospital, 300052, Tianjin, China.
- Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, 300211, Tianjin, China.
| |
Collapse
|
110
|
Shao B, Yan J, Zhang J, Buskirk AR. Riboformer: A Deep Learning Framework for Predicting Context-Dependent Translation Dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.538053. [PMID: 37163112 PMCID: PMC10168224 DOI: 10.1101/2023.04.24.538053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Translation elongation is essential for maintaining cellular proteostasis, and alterations in the translational landscape are associated with a range of diseases. Ribosome profiling allows detailed measurement of translation at genome scale. However, it remains unclear how to disentangle biological variations from technical artifacts and identify sequence determinant of translation dysregulation. Here we present Riboformer, a deep learning-based framework for modeling context-dependent changes in translation dynamics. Riboformer leverages the transformer architecture to accurately predict ribosome densities at codon resolution. It corrects experimental artifacts in previously unseen datasets, reveals subtle differences in synonymous codon translation and uncovers a bottleneck in protein synthesis. Further, we show that Riboformer can be combined with in silico mutagenesis analysis to identify sequence motifs that contribute to ribosome stalling across various biological contexts, including aging and viral infection. Our tool offers a context-aware and interpretable approach for standardizing ribosome profiling datasets and elucidating the regulatory basis of translation kinetics.
Collapse
Affiliation(s)
- Bin Shao
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Present address: Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jiawei Yan
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Jing Zhang
- Biological Design Center, Boston University, Boston, MA, USA
| | - Allen R. Buskirk
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, USA
| |
Collapse
|
111
|
Gasparski AN, Moissoglu K, Pallikkuth S, Meydan S, Guydosh NR, Mili S. mRNA Location and Translation Rate Determine Protein Targeting to Dual Destinations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.538105. [PMID: 37163129 PMCID: PMC10168211 DOI: 10.1101/2023.04.24.538105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Numerous proteins are targeted to two or multiple subcellular destinations where they exert distinct functional consequences. The balance between such differential targeting is thought to be determined post-translationally, relying on protein sorting mechanisms. Here, we show that protein targeting can additionally be determined by mRNA location and translation rate, through modulating protein binding to specific interacting partners. Peripheral localization of the NET1 mRNA and fast translation lead to higher cytosolic retention of the NET1 protein, through promoting its binding to the membrane-associated scaffold protein CASK. By contrast, perinuclear mRNA location and/or slower translation rate favor nuclear targeting, through promoting binding to importins. This mRNA location-dependent mechanism is modulated by physiological stimuli and profoundly impacts NET1 function in cell motility. These results reveal that the location of protein synthesis and the rate of translation elongation act in coordination as a 'partner-selection' mechanism that robustly influences protein distribution and function.
Collapse
Affiliation(s)
- Alexander N Gasparski
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, NIH, Bethesda, 20892, MD, USA
| | - Konstadinos Moissoglu
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, NIH, Bethesda, 20892, MD, USA
| | - Sandeep Pallikkuth
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, NIH, Bethesda, 20892, MD, USA
| | - Sezen Meydan
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, 20892, MD, USA
- National Institute of General Medical Sciences, NIH, Bethesda, 20892, MD, USA
| | - Nicholas R Guydosh
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, 20892, MD, USA
| | - Stavroula Mili
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, NIH, Bethesda, 20892, MD, USA
| |
Collapse
|
112
|
Knowles CM, Goich D, Bloom ALM, Kalem MC, Panepinto JC. Contributions of Ccr4 and Gcn2 to the Translational Response of C. neoformans to Host-Relevant Stressors and Integrated Stress Response Induction. mBio 2023; 14:e0019623. [PMID: 37017529 PMCID: PMC10127693 DOI: 10.1128/mbio.00196-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/06/2023] [Indexed: 04/06/2023] Open
Abstract
In response to the host environment, the human pathogen Cryptococcus neoformans must rapidly reprogram its translatome from one which promotes growth to one which is responsive to host stress. In this study, we investigate the two events which comprise translatome reprogramming: the removal of abundant, pro-growth mRNAs from the translating pool, and the regulated entry of stress-responsive mRNAs into the translating pool. Removal of pro-growth mRNAs from the translating pool is controlled primarily by two regulatory mechanisms, repression of translation initiation via Gcn2, and decay mediated by Ccr4. We determined that translatome reprogramming in response to oxidative stress requires both Gcn2 and Ccr4, whereas the response to temperature requires only Ccr4. Additionally, we assessed ribosome collision in response to host-relevant stress and found that collided ribosomes accumulated during temperature stress but not during oxidative stress. The phosphorylation of eIF2α that occurred as a result of translational stress led us to investigate the induction of the integrated stress response (ISR). We found that eIF2α phosphorylation varied in response to the type and magnitude of stress, yet all tested conditions induced translation of the ISR transcription factor Gcn4. However, Gcn4 translation did not necessarily result in canonical Gcn4-dependent transcription. Finally, we define the ISR regulon in response to oxidative stress. In conclusion, this study begins to reveal the translational regulation in response to host-relevant stressors in an environmental fungus which is capable of adapting to the environment inside the human host. IMPORTANCE Cryptococcus neoformans is a human pathogen capable of causing devastating infections. It must rapidly adapt to changing environments as it leaves its niche in the soil and enters the human lung. Previous work has demonstrated a need to reprogram gene expression at the level of translation to promote stress adaptation. In this work, we investigate the contributions and interplay of the major mechanisms that regulate entry of new mRNAs into the pool (translation initiation) and the clearance of unneeded mRNAs from the pool (mRNA decay). One result of this reprogramming is the induction of the integrated stress response (ISR) regulon. Surprisingly, all stresses tested led to the production of the ISR transcription factor Gcn4, but not necessarily to transcription of ISR target genes. Furthermore, stresses result in differential levels of ribosome collisions, but these are not necessarily predictive of initiation repression as has been suggested in the model yeast.
Collapse
Affiliation(s)
- Corey M. Knowles
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - David Goich
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Amanda L. M. Bloom
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Murat C. Kalem
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - John C. Panepinto
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
113
|
Scavone F, Gumbin S, Da Rosa P, Kopito R. RPL26/uL24 UFMylation is essential for ribosome-associated quality control at the endoplasmic reticulum. Proc Natl Acad Sci U S A 2023; 120:e2220340120. [PMID: 37036982 PMCID: PMC10120006 DOI: 10.1073/pnas.2220340120] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/14/2023] [Indexed: 04/12/2023] Open
Abstract
Ribosomes that stall while translating cytosolic proteins are incapacitated by incomplete nascent chains, termed "arrest peptides" (APs) that are destroyed by the ubiquitin proteasome system (UPS) via a process known as the ribosome-associated quality control (RQC) pathway. By contrast, APs on ribosomes that stall while translocating secretory proteins into the endoplasmic reticulum (ER-APs) are shielded from cytosol by the ER membrane and the tightly sealed ribosome-translocon junction (RTJ). How this junction is breached to enable access of cytosolic UPS machinery and 26S proteasomes to translocon- and ribosome-obstructing ER-APs is not known. Here, we show that UPS and RQC-dependent degradation of ER-APs strictly requires conjugation of the ubiquitin-like (Ubl) protein UFM1 to 60S ribosomal subunits at the RTJ. Therefore, UFMylation of translocon-bound 60S subunits modulates the RTJ to promote access of proteasomes and RQC machinery to ER-APs.
Collapse
Affiliation(s)
| | - Samantha C. Gumbin
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA94305
| | - Paul A. Da Rosa
- Department of Biology, Stanford University, Stanford, CA94305
| | - Ron R. Kopito
- Department of Biology, Stanford University, Stanford, CA94305
| |
Collapse
|
114
|
Yalçin Z, Koot D, Bezstarosti K, Salas-Lloret D, Bleijerveld OB, Boersma V, Falcone M, González-Prieto R, Altelaar M, Demmers JAA, Jacobs JJL. Ubiquitinome profiling reveals in vivo UBE2D3 targets and implicates UBE2D3 in protein quality control. Mol Cell Proteomics 2023; 22:100548. [PMID: 37059365 DOI: 10.1016/j.mcpro.2023.100548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 04/16/2023] Open
Abstract
Ubiquitination has crucial roles in many cellular processes and dysregulation of ubiquitin machinery enzymes can result in various forms of pathogenesis. Cells only have a limited set of ubiquitin-conjugating (E2) enzymes to support the ubiquitination of many cellular targets. As individual E2 enzymes have many different substrates and interactions between E2 enzymes and their substrates can be transient, it is challenging to define all in vivo substrates of an individual E2 and the cellular processes it affects. Particularly challenging in this respect is UBE2D3, an E2 enzyme with promiscuous activity in vitro but less defined roles in vivo. Here, we set out to identify in vivo targets of UBE2D3 by using SILAC-based and label-free quantitative ubiquitin diGly proteomics to study global proteome and ubiquitinome changes associated with UBE2D3 depletion. UBE2D3 depletion changed the global proteome, with the levels of proteins from metabolic pathways, in particular retinol metabolism, being the most affected. However, the impact of UBE2D3 depletion on the ubiquitinome was much more prominent. Interestingly, molecular pathways related to mRNA translation were the most affected. Indeed, we find that ubiquitination of the ribosomal proteins RPS10 and RPS20, critical for ribosome-associated protein quality control (RQC), is dependent on UBE2D3. We show by TULIP2 methodology that RPS10 and RPS20 are direct targets of UBE2D3 and demonstrate that UBE2D3's catalytic activity is required to ubiquitinate RPS10 in vivo. In addition, our data suggest that UBE2D3 acts at multiple levels in autophagic protein quality control (PQC). Collectively, our findings show that depletion of an E2 enzyme in combination with quantitative diGly-based ubiquitinome profiling is a powerful tool to identify new in vivo E2 substrates, as we have done here for UBE2D3. Our work provides an important resource for further studies on the in vivo functions of UBE2D3.
Collapse
Affiliation(s)
- Zeliha Yalçin
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Daniëlle Koot
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Karel Bezstarosti
- Proteomics Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Daniel Salas-Lloret
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Onno B Bleijerveld
- Proteomics Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Vera Boersma
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Mattia Falcone
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Román González-Prieto
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands; Genome Proteomics Laboratory, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Seville, Seville, Spain; Department of Cell Biology, University of Seville, Seville, Spain
| | - Maarten Altelaar
- Proteomics Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, and Netherlands Proteomics Center, Utrecht, The Netherlands
| | | | - Jacqueline J L Jacobs
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
115
|
Anadolu MN, Sun J, Kailasam S, Chalkiadaki K, Krimbacher K, Li JTY, Markova T, Jafarnejad SM, Lefebvre F, Ortega J, Gkogkas CG, Sossin WS. Ribosomes in RNA Granules Are Stalled on mRNA Sequences That Are Consensus Sites for FMRP Association. J Neurosci 2023; 43:2440-2459. [PMID: 36849416 PMCID: PMC10082463 DOI: 10.1523/jneurosci.1002-22.2023] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
Local translation in neurons is partly mediated by the reactivation of stalled polysomes. Stalled polysomes may be enriched within the granule fraction, defined as the pellet of sucrose gradients used to separate polysomes from monosomes. The mechanism of how elongating ribosomes are reversibly stalled and unstalled on mRNAs is still unclear. In the present study, we characterize the ribosomes in the granule fraction using immunoblotting, cryogenic electron microscopy (cryo-EM), and ribosome profiling. We find that this fraction, isolated from 5-d-old rat brains of both sexes, is enriched in proteins implicated in stalled polysome function, such as the fragile X mental retardation protein (FMRP) and Up-frameshift mutation 1 homologue. Cryo-EM analysis of ribosomes in this fraction indicates they are stalled, mainly in the hybrid state. Ribosome profiling of this fraction reveals (1) an enrichment for footprint reads of mRNAs that interact with FMRPs and are associated with stalled polysomes, (2) an abundance of footprint reads derived from mRNAs of cytoskeletal proteins implicated in neuronal development, and (3) increased ribosome occupancy on mRNAs encoding RNA binding proteins. Compared with those usually found in ribosome profiling studies, the footprint reads were longer and were mapped to reproducible peaks in the mRNAs. These peaks were enriched in motifs previously associated with mRNAs cross-linked to FMRP in vivo, independently linking the ribosomes in the granule fraction to the ribosomes associated with FMRP in the cell. The data supports a model in which specific sequences in mRNAs act to stall ribosomes during translation elongation in neurons.SIGNIFICANCE STATEMENT Neurons send mRNAs to synapses in RNA granules, where they are not translated until an appropriate stimulus is given. Here, we characterize a granule fraction obtained from sucrose gradients and show that polysomes in this fraction are stalled on consensus sequences in a specific state of translational arrest with extended ribosome-protected fragments. This finding greatly increases our understanding of how neurons use specialized mechanisms to regulate translation and suggests that many studies on neuronal translation may need to be re-evaluated to include the large fraction of neuronal polysomes found in the pellet of sucrose gradients used to isolate polysomes.
Collapse
Affiliation(s)
- Mina N Anadolu
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Jingyu Sun
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
- Centre for Structural Biology, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Senthilkumar Kailasam
- Canadian Centre for Computational Genomics, McGill University, Montreal, Quebec H3A 0G1, Canada
| | - Kleanthi Chalkiadaki
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, 45110 Ioannina, Greece
| | - Konstanze Krimbacher
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck Austria Division of Biomedical Research, A-6020 Innsbruck, Austria
| | - Jewel T-Y Li
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Teodora Markova
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Seyed M Jafarnejad
- Patrick G, Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland BT9 7AE, United Kingdom
| | - Francois Lefebvre
- Canadian Centre for Computational Genomics, McGill University, Montreal, Quebec H3A 0G1, Canada
| | - Joaquin Ortega
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
- Centre for Structural Biology, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Christos G Gkogkas
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, 45110 Ioannina, Greece
| | - Wayne S Sossin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| |
Collapse
|
116
|
Fedry J, Silva J, Vanevic M, Fronik S, Mechulam Y, Schmitt E, des Georges A, Faller W, Förster F. Visualization of translation reorganization upon persistent collision stress in mammalian cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.533914. [PMID: 36993420 PMCID: PMC10055323 DOI: 10.1101/2023.03.23.533914] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Aberrantly slow mRNA translation leads to ribosome stalling and subsequent collision with the trailing neighbor. Ribosome collisions have recently been shown to act as stress sensors in the cell, with the ability to trigger stress responses balancing survival and apoptotic cell-fate decisions depending on the stress level. However, we lack a molecular understanding of the reorganization of translation processes over time in mammalian cells exposed to an unresolved collision stress. Here we visualize the effect of a persistent collision stress on translation using in situ cryo electron tomography. We observe that low dose anisomycin collision stress leads to the stabilization of Z-site bound tRNA on elongating 80S ribosomes, as well as to the accumulation of an off-pathway 80S complex possibly resulting from collision splitting events. We visualize collided disomes in situ, occurring on compressed polysomes and revealing a stabilized geometry involving the Z-tRNA and L1 stalk on the stalled ribosome, and eEF2 bound to its collided rotated-2 neighbor. In addition, non-functional post-splitting 60S complexes accumulate in the stressed cells, indicating a limiting Ribosome associated Quality Control clearing rate. Finally, we observe the apparition of tRNA-bound aberrant 40S complexes shifting with the stress timepoint, suggesting a succession of different initiation inhibition mechanisms over time. Altogether, our work visualizes the changes of translation complexes under persistent collision stress in mammalian cells, indicating how perturbations in initiation, elongation and quality control processes contribute to an overall reduced protein synthesis.
Collapse
Affiliation(s)
- Juliette Fedry
- Structural Biochemistry, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Joana Silva
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Mihajlo Vanevic
- Structural Biochemistry, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Stanley Fronik
- Structural Biochemistry, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Yves Mechulam
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau cedex, France
| | - Emmanuelle Schmitt
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau cedex, France
| | - Amédée des Georges
- Structural Biology Initiative, CUNY Advanced Science Research Center, City University of New York, New York, NY, USA
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY, USA
- Ph.D. Programs in Chemistry and Biochemistry, The Graduate Center, City University of New York, New York, NY, USA
| | - William Faller
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Friedrich Förster
- Structural Biochemistry, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
117
|
Scavone F, Gumbin SC, DaRosa PA, Kopito RR. RPL26/uL24 UFMylation is essential for ribosome-associated quality control at the endoplasmic reticulum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.08.531792. [PMID: 36945571 PMCID: PMC10028864 DOI: 10.1101/2023.03.08.531792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Ribosomes that stall while translating cytosolic proteins are incapacitated by incomplete nascent chains, termed "arrest peptides" (APs) that are destroyed by the ubiquitin proteasome system (UPS) via a process known as the ribosome-associated quality control (RQC) pathway. By contrast, APs on ribosomes that stall while translocating secretory proteins into the endoplasmic reticulum (ER-APs) are shielded from cytosol by the ER membrane and the tightly sealed ribosome-translocon junction (RTJ). How this junction is breached to enable access of cytosolic UPS machinery and 26S proteasomes to translocon- and ribosome-obstructing ER-APs is not known. Here, we show that UPS and RQC-dependent degradation of ER-APs strictly requires conjugation of the ubiquitin-like (Ubl) protein UFM1 to 60S ribosomal subunits at the RTJ. Therefore, UFMylation of translocon-bound 60S subunits modulates the RTJ to promote access of proteasomes and RQC machinery to ER-APs. Significance Statement UFM1 is a ubiquitin-like protein that is selectively conjugated to the large (60S) subunit of ribosomes bound to the endoplasmic reticulum (ER), but the specific biological function of this modification is unclear. Here, we show that UFMylation facilitates proteasome-mediated degradation of arrest polypeptides (APs) which are generated following splitting of ribosomes that stall during co-translational translocation of secretory proteins into the ER. We propose that UFMylation weakens the tightly sealed ribosome-translocon junction, thereby allowing the cytosolic ubiquitin-proteasome and ribosome-associated quality control machineries to access ER-APs.
Collapse
Affiliation(s)
| | - Samantha C Gumbin
- Department of Molecular and Cellular Physiology, Stanford School of Medicine, Stanford CA, 94305
| | - Paul A DaRosa
- Department of Biology, Stanford University, Stanford CA, 94305
| | - Ron R Kopito
- Department of Biology, Stanford University, Stanford CA, 94305
| |
Collapse
|
118
|
Gao Y, Zhu Y, Sun Q, Chen D. Argonaute-dependent ribosome-associated protein quality control. Trends Cell Biol 2023; 33:260-272. [PMID: 35981909 DOI: 10.1016/j.tcb.2022.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022]
Abstract
Ribosome-associated protein quality control (RQC) is a protein surveillance mechanism that eliminates defective nascent polypeptides. The E3 ubiquitin ligase, Ltn1, is a key regulator of RQC that targets substrates for ubiquitination. Argonaute proteins (AGOs) are central players in miRNA-mediated gene silencing and have recently been shown to also regulate RQC by facilitating Ltn1. Therefore, AGOs directly coordinate post-transcriptional gene silencing and RQC, ensuring efficient gene silencing. We summarize the principles of RQC and the functions of AGOs in miRNA-mediated gene silencing, and discuss how AGOs associate with the endoplasmic reticulum (ER) to assist Ltn1 in controlling RQC. We highlight that RQC not only eliminates defective nascent polypeptides but also removes unwanted protein products when AGOs participate.
Collapse
Affiliation(s)
- Yajie Gao
- Institute of Biomedical Research, Yunnan University, Kunming 650500, China
| | - Yuanxiang Zhu
- Institute of Biomedical Research, Yunnan University, Kunming 650500, China
| | - Qinmiao Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| | - Dahua Chen
- Institute of Biomedical Research, Yunnan University, Kunming 650500, China.
| |
Collapse
|
119
|
Li Y, Geng J, Rimal S, Wang H, Liu X, Lu B, Li S. The mTORC2/AKT/VCP axis is associated with quality control of the stalled translation of poly(GR) dipeptide repeats in C9-ALS/FTD. J Biol Chem 2023; 299:102995. [PMID: 36764521 PMCID: PMC10011831 DOI: 10.1016/j.jbc.2023.102995] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
Expansion of G4C2 hexanucleotide repeats in the chromosome 9 ORF 72 (C9ORF72) gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) with frontotemporal dementia (C9-ALS/FTD). Dipeptide repeats generated by unconventional translation, especially the R-containing poly(GR), have been implicated in C9-ALS/FTD pathogenesis. Mutations in other genes, including TAR DNA-binding protein 43 KD (TDP-43), fused in sarcoma (FUS), and valosin-containing protein, have also been linked to ALS/FTD, and upregulation of amyloid precursor protein (APP) is observed at the early stage of ALS and FTD. Fundamental questions remain as to the relationships between these ALS/FTD genes and whether they converge on similar cellular pathways. Here, using biochemical, cell biological, and genetic analyses in Drosophila disease models, patient-derived fibroblasts, and mammalian cell culture, we show that mechanistic target of rapamycin complex 2 (mTORC2)/AKT signaling is activated by APP, TDP-43, and FUS and that mTORC2/AKT and its downstream target valosin-containing protein mediate the effect of APP, TDP-43, and FUS on the quality control of C9-ALS/FTD-associated poly(GR) translation. We also find that poly(GR) expression results in reduction of global translation and that the coexpression of APP, TDP-43, and FUS results in further reduction of global translation, presumably through the GCN2/eIF2α-integrated stress response pathway. Together, our results implicate mTORC2/AKT signaling and GCN2/eIF2α-integrated stress response as common signaling pathways underlying ALS/FTD pathogenesis.
Collapse
Affiliation(s)
- Yu Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Ji Geng
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China; Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Suman Rimal
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Haochuan Wang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Xiangguo Liu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Bingwei Lu
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.
| | - Shuangxi Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China.
| |
Collapse
|
120
|
Best K, Ikeuchi K, Kater L, Best D, Musial J, Matsuo Y, Berninghausen O, Becker T, Inada T, Beckmann R. Structural basis for clearing of ribosome collisions by the RQT complex. Nat Commun 2023; 14:921. [PMID: 36801861 PMCID: PMC9938168 DOI: 10.1038/s41467-023-36230-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 01/18/2023] [Indexed: 02/19/2023] Open
Abstract
Translation of aberrant messenger RNAs can cause stalling of ribosomes resulting in ribosomal collisions. Collided ribosomes are specifically recognized to initiate stress responses and quality control pathways. Ribosome-associated quality control facilitates the degradation of incomplete translation products and requires dissociation of the stalled ribosomes. A central event is therefore the splitting of collided ribosomes by the ribosome quality control trigger complex, RQT, by an unknown mechanism. Here we show that RQT requires accessible mRNA and the presence of a neighboring ribosome. Cryogenic electron microscopy of RQT-ribosome complexes reveals that RQT engages the 40S subunit of the lead ribosome and can switch between two conformations. We propose that the Ski2-like helicase 1 (Slh1) subunit of RQT applies a pulling force on the mRNA, causing destabilizing conformational changes of the small ribosomal subunit, ultimately resulting in subunit dissociation. Our findings provide conceptual framework for a helicase-driven ribosomal splitting mechanism.
Collapse
Affiliation(s)
- Katharina Best
- Department of Biochemistry, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany
| | - Ken Ikeuchi
- Department of Biochemistry, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany
| | - Lukas Kater
- Department of Biochemistry, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Daniel Best
- Department of Biochemistry, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany
| | - Joanna Musial
- Department of Biochemistry, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany
| | - Yoshitaka Matsuo
- Division of RNA and gene regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku, 108-8639, Japan
| | - Otto Berninghausen
- Department of Biochemistry, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany
| | - Thomas Becker
- Department of Biochemistry, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany
| | - Toshifumi Inada
- Division of RNA and gene regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku, 108-8639, Japan.
| | - Roland Beckmann
- Department of Biochemistry, Gene Center, Feodor-Lynen-Str. 25, University of Munich, 81377, Munich, Germany.
| |
Collapse
|
121
|
Tesina P, Ebine S, Buschauer R, Thoms M, Matsuo Y, Inada T, Beckmann R. Molecular basis of eIF5A-dependent CAT tailing in eukaryotic ribosome-associated quality control. Mol Cell 2023; 83:607-621.e4. [PMID: 36804914 DOI: 10.1016/j.molcel.2023.01.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/29/2022] [Accepted: 01/23/2023] [Indexed: 02/18/2023]
Abstract
Ribosome-associated quality control (RQC) is a conserved process degrading potentially toxic truncated nascent peptides whose malfunction underlies neurodegeneration and proteostasis decline in aging. During RQC, dissociation of stalled ribosomes is followed by elongation of the nascent peptide with alanine and threonine residues, driven by Rqc2 independently of mRNA, the small ribosomal subunit and guanosine triphosphate (GTP)-hydrolyzing factors. The resulting CAT tails (carboxy-terminal tails) and ubiquitination by Ltn1 mark nascent peptides for proteasomal degradation. Here we present ten cryogenic electron microscopy (cryo-EM) structures, revealing the mechanistic basis of individual steps of the CAT tailing cycle covering initiation, decoding, peptidyl transfer, and tRNA translocation. We discovered eIF5A as a crucial eukaryotic RQC factor enabling peptidyl transfer. Moreover, we observed dynamic behavior of RQC factors and tRNAs allowing for processivity of the CAT tailing cycle without additional energy input. Together, these results elucidate key differences as well as common principles between CAT tailing and canonical translation.
Collapse
Affiliation(s)
- Petr Tesina
- Gene Center and Department of Biochemistry, Feodor-Lynen-Str. 25, University of Munich, 81377 Munich, Germany.
| | - Shuhei Ebine
- Division of RNA and gene regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku 108-8639, Japan
| | - Robert Buschauer
- Gene Center and Department of Biochemistry, Feodor-Lynen-Str. 25, University of Munich, 81377 Munich, Germany
| | - Matthias Thoms
- Gene Center and Department of Biochemistry, Feodor-Lynen-Str. 25, University of Munich, 81377 Munich, Germany
| | - Yoshitaka Matsuo
- Division of RNA and gene regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku 108-8639, Japan
| | - Toshifumi Inada
- Division of RNA and gene regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku 108-8639, Japan.
| | - Roland Beckmann
- Gene Center and Department of Biochemistry, Feodor-Lynen-Str. 25, University of Munich, 81377 Munich, Germany.
| |
Collapse
|
122
|
Dave P, Roth G, Griesbach E, Mateju D, Hochstoeger T, Chao JA. Single-molecule imaging reveals translation-dependent destabilization of mRNAs. Mol Cell 2023; 83:589-606.e6. [PMID: 36731471 PMCID: PMC9957601 DOI: 10.1016/j.molcel.2023.01.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/07/2022] [Accepted: 01/06/2023] [Indexed: 02/04/2023]
Abstract
The relationship between mRNA translation and decay is incompletely understood, with conflicting reports suggesting that translation can either promote decay or stabilize mRNAs. The effect of translation on mRNA decay has mainly been studied using ensemble measurements and global transcription and translation inhibitors, which can have pleiotropic effects. We developed a single-molecule imaging approach to control the translation of a specific transcript that enabled simultaneous measurement of translation and mRNA decay. Our results demonstrate that mRNA translation reduces mRNA stability, and mathematical modeling suggests that this process is dependent on ribosome flux. Furthermore, our results indicate that miRNAs mediate efficient degradation of both translating and non-translating target mRNAs and reveal a predominant role for mRNA degradation in miRNA-mediated regulation. Simultaneous observation of translation and decay of single mRNAs provides a framework to directly study how these processes are interconnected in cells.
Collapse
Affiliation(s)
- Pratik Dave
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Gregory Roth
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Esther Griesbach
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Daniel Mateju
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Tobias Hochstoeger
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; University of Basel, 4003 Basel, Switzerland
| | - Jeffrey A Chao
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.
| |
Collapse
|
123
|
Matsuo Y, Inada T. Co-Translational Quality Control Induced by Translational Arrest. Biomolecules 2023; 13:biom13020317. [PMID: 36830686 PMCID: PMC9953336 DOI: 10.3390/biom13020317] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Genetic mutations, mRNA processing errors, and lack of availability of charged tRNAs sometimes slow down or completely stall translating ribosomes. Since an incomplete nascent chain derived from stalled ribosomes may function anomalously, such as by forming toxic aggregates, surveillance systems monitor every step of translation and dispose of such products to prevent their accumulation. Over the past decade, yeast models with powerful genetics and biochemical techniques have contributed to uncovering the mechanism of the co-translational quality control system, which eliminates the harmful products generated from aberrant translation. We here summarize the current knowledge of the molecular mechanism of the co-translational quality control systems in yeast, which eliminate the incomplete nascent chain, improper mRNAs, and faulty ribosomes to maintain cellular protein homeostasis.
Collapse
|
124
|
Rozman B, Fisher T, Stern-Ginossar N. Translation-A tug of war during viral infection. Mol Cell 2023; 83:481-495. [PMID: 36334591 DOI: 10.1016/j.molcel.2022.10.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/15/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
Viral reproduction is contingent on viral protein synthesis that relies on the host ribosomes. As such, viruses have evolved remarkable strategies to hijack the host translational apparatus in order to favor viral protein production and to interfere with cellular innate defenses. Here, we describe the approaches viruses use to exploit the translation machinery, focusing on commonalities across diverse viral families, and discuss the functional relevance of this process. We illustrate the complementary strategies host cells utilize to block viral protein production and consider how cells ensure an efficient antiviral response that relies on translation during this tug of war over the ribosome. Finally, we highlight potential roles mRNA modifications and ribosome quality control play in translational regulation and innate immunity. We address these topics in the context of the COVID-19 pandemic and focus on the gaps in our current knowledge of these mechanisms, specifically in viruses with pandemic potential.
Collapse
Affiliation(s)
- Batsheva Rozman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tal Fisher
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Noam Stern-Ginossar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
125
|
Oltion K, Carelli JD, Yang T, See SK, Wang HY, Kampmann M, Taunton J. An E3 ligase network engages GCN1 to promote the degradation of translation factors on stalled ribosomes. Cell 2023; 186:346-362.e17. [PMID: 36638793 PMCID: PMC9994462 DOI: 10.1016/j.cell.2022.12.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 11/29/2022] [Accepted: 12/13/2022] [Indexed: 01/14/2023]
Abstract
Ribosomes frequently stall during mRNA translation, resulting in the context-dependent activation of quality control pathways to maintain proteostasis. However, surveillance mechanisms that specifically respond to stalled ribosomes with an occluded A site have not been identified. We discovered that the elongation factor-1α (eEF1A) inhibitor, ternatin-4, triggers the ubiquitination and degradation of eEF1A on stalled ribosomes. Using a chemical genetic approach, we unveiled a signaling network comprising two E3 ligases, RNF14 and RNF25, which are required for eEF1A degradation. Quantitative proteomics revealed the RNF14 and RNF25-dependent ubiquitination of eEF1A and a discrete set of ribosomal proteins. The ribosome collision sensor GCN1 plays an essential role by engaging RNF14, which directly ubiquitinates eEF1A. The site-specific, RNF25-dependent ubiquitination of the ribosomal protein RPS27A/eS31 provides a second essential signaling input. Our findings illuminate a ubiquitin signaling network that monitors the ribosomal A site and promotes the degradation of stalled translation factors, including eEF1A and the termination factor eRF1.
Collapse
Affiliation(s)
- Keely Oltion
- Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jordan D Carelli
- Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Tangpo Yang
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Stephanie K See
- Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hao-Yuan Wang
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Jack Taunton
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
126
|
Tomomatsu S, Watanabe A, Tesina P, Hashimoto S, Ikeuchi K, Li S, Matsuo Y, Beckmann R, Inada T. Two modes of Cue2-mediated mRNA cleavage with distinct substrate recognition initiate no-go decay. Nucleic Acids Res 2023; 51:253-270. [PMID: 36583309 PMCID: PMC9841427 DOI: 10.1093/nar/gkac1172] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/17/2022] [Accepted: 11/25/2022] [Indexed: 12/31/2022] Open
Abstract
Ribosome collisions are recognized by E3 ubiquitin ligase Hel2/ZNF598, leading to RQC (ribosome-associated quality control) and to endonucleolytic cleavage and degradation of the mRNA termed NGD (no-go decay). NGD in yeast requires the Cue2 endonuclease and occurs in two modes, either coupled to RQC (NGDRQC+) or RQC uncoupled (NGDRQC-). This is mediated by an unknown mechanism of substrate recognition by Cue2. Here, we show that the ubiquitin binding activity of Cue2 is required for NGDRQC- but not for NGDRQC+, and that it involves the first two N-terminal Cue domains. In contrast, Trp122 of Cue2 is crucial for NGDRQC+. Moreover, Mbf1 is required for quality controls by preventing +1 ribosome frameshifting induced by a rare codon staller. We propose that in Cue2-dependent cleavage upstream of the collided ribosomes (NGDRQC-), polyubiquitination of eS7 is recognized by two N-terminal Cue domains of Cue2. In contrast, for the cleavage within collided ribosomes (NGDRQC+), the UBA domain, Trp122 and the interaction between Mbf1 and uS3 are critical.
Collapse
Affiliation(s)
- Shota Tomomatsu
- Division of RNA and Gene Regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku 108-8639, Japan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo, Japan
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Atsuya Watanabe
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Petr Tesina
- Gene Center and Department of Biochemistry, Feodor-Lynen-Strasse 25, University of Munich, D-81377 Munich, Germany
| | - Satoshi Hashimoto
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Ken Ikeuchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
- Gene Center and Department of Biochemistry, Feodor-Lynen-Strasse 25, University of Munich, D-81377 Munich, Germany
| | - Sihan Li
- Division of RNA and Gene Regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku 108-8639, Japan
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Yoshitaka Matsuo
- Division of RNA and Gene Regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku 108-8639, Japan
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Roland Beckmann
- Gene Center and Department of Biochemistry, Feodor-Lynen-Strasse 25, University of Munich, D-81377 Munich, Germany
| | - Toshifumi Inada
- Division of RNA and Gene Regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku 108-8639, Japan
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
127
|
Decoding of the ubiquitin code for clearance of colliding ribosomes by the RQT complex. Nat Commun 2023; 14:79. [PMID: 36627279 PMCID: PMC9831982 DOI: 10.1038/s41467-022-35608-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
The collision sensor Hel2 specifically recognizes colliding ribosomes and ubiquitinates the ribosomal protein uS10, leading to noncanonical subunit dissociation by the ribosome-associated quality control trigger (RQT) complex. Although uS10 ubiquitination is essential for rescuing stalled ribosomes, its function and recognition steps are not fully understood. Here, we show that the RQT complex components Cue3 and Rqt4 interact with the K63-linked ubiquitin chain and accelerate the recruitment of the RQT complex to the ubiquitinated colliding ribosome. The CUE domain of Cue3 and the N-terminal domain of Rqt4 bind independently to the K63-linked ubiquitin chain. Their deletion abolishes ribosomal dissociation mediated by the RQT complex. High-speed atomic force microscopy (HS-AFM) reveals that the intrinsically disordered regions of Rqt4 enable the expansion of the searchable area for interaction with the ubiquitin chain. These findings provide mechanistic insight into the decoding of the ubiquitin code for clearance of colliding ribosomes by the RQT complex.
Collapse
|
128
|
Eisenack TJ, Trentini DB. Ending a bad start: Triggers and mechanisms of co-translational protein degradation. Front Mol Biosci 2023; 9:1089825. [PMID: 36660423 PMCID: PMC9846516 DOI: 10.3389/fmolb.2022.1089825] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/15/2022] [Indexed: 01/05/2023] Open
Abstract
Proteins are versatile molecular machines that control and execute virtually all cellular processes. They are synthesized in a multilayered process requiring transfer of information from DNA to RNA and finally into polypeptide, with many opportunities for error. In addition, nascent proteins must successfully navigate a complex folding-energy landscape, in which their functional native state represents one of many possible outcomes. Consequently, newly synthesized proteins are at increased risk of misfolding and toxic aggregation. To maintain proteostasis-the state of proteome balance-cells employ a plethora of molecular chaperones that guide proteins along a productive folding pathway and quality control factors that direct misfolded species for degradation. Achieving the correct balance between folding and degradation therefore represents a fundamental task for the proteostasis network. While many chaperones act co-translationally, protein quality control is generally considered to be a post-translational process, as the majority of proteins will only achieve their final native state once translation is completed. Nevertheless, it has been observed that proteins can be ubiquitinated during synthesis. The extent and the relevance of co-translational protein degradation, as well as the underlying molecular mechanisms, remain areas of open investigation. Recent studies made seminal advances in elucidating ribosome-associated quality control processes, and how their loss of function can lead to proteostasis failure and disease. Here, we discuss current understanding of the situations leading to the marking of nascent proteins for degradation before synthesis is completed, and the emerging quality controls pathways engaged in this task in eukaryotic cells. We also highlight the methods used to study co-translational quality control.
Collapse
Affiliation(s)
- Tom Joshua Eisenack
- University of Cologne, Faculty of Medicine, University Hospital of Cologne, Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Débora Broch Trentini
- University of Cologne, Faculty of Medicine, University Hospital of Cologne, Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
129
|
Leesch F, Lorenzo-Orts L, Pribitzer C, Grishkovskaya I, Roehsner J, Chugunova A, Matzinger M, Roitinger E, Belačić K, Kandolf S, Lin TY, Mechtler K, Meinhart A, Haselbach D, Pauli A. A molecular network of conserved factors keeps ribosomes dormant in the egg. Nature 2023; 613:712-720. [PMID: 36653451 PMCID: PMC7614339 DOI: 10.1038/s41586-022-05623-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/02/2022] [Indexed: 01/20/2023]
Abstract
Ribosomes are produced in large quantities during oogenesis and are stored in the egg. However, the egg and early embryo are translationally repressed1-4. Here, using mass spectrometry and cryo-electron microscopy analyses of ribosomes isolated from zebrafish (Danio rerio) and Xenopus laevis eggs and embryos, we provide molecular evidence that ribosomes transition from a dormant state to an active state during the first hours of embryogenesis. Dormant ribosomes are associated with four conserved factors that form two modules, consisting of Habp4-eEF2 and death associated protein 1b (Dap1b) or Dap in complex with eIF5a. Both modules occupy functionally important sites and act together to stabilize ribosomes and repress translation. Dap1b (also known as Dapl1 in mammals) is a newly discovered translational inhibitor that stably inserts into the polypeptide exit tunnel. Addition of recombinant zebrafish Dap1b protein is sufficient to block translation and reconstitute the dormant egg ribosome state in a mammalian translation extract in vitro. Thus, a developmentally programmed, conserved ribosome state has a key role in ribosome storage and translational repression in the egg.
Collapse
Affiliation(s)
- Friederike Leesch
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Laura Lorenzo-Orts
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria.
| | - Carina Pribitzer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Irina Grishkovskaya
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Josef Roehsner
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Anastasia Chugunova
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Manuel Matzinger
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Elisabeth Roitinger
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Katarina Belačić
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Susanne Kandolf
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Tzi-Yang Lin
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Karl Mechtler
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Anton Meinhart
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - David Haselbach
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria.
| | - Andrea Pauli
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria.
| |
Collapse
|
130
|
Monem PC, Vidyasagar N, Piatt AL, Sehgal E, Arribere JA. Ubiquitination of stalled ribosomes enables mRNA decay via HBS-1 and NONU-1 in vivo. PLoS Genet 2023; 19:e1010577. [PMID: 36626369 PMCID: PMC9870110 DOI: 10.1371/journal.pgen.1010577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/23/2023] [Accepted: 12/18/2022] [Indexed: 01/11/2023] Open
Abstract
As ribosomes translate the genetic code, they can encounter a variety of obstacles that hinder their progress. If ribosomes stall for prolonged times, cells suffer due to the loss of translating ribosomes and the accumulation of aberrant protein products. Thus to protect cells, stalled ribosomes experience a series of reactions to relieve the stall and degrade the offending mRNA, a process known as No-Go mRNA Decay (NGD). While much of the machinery for NGD is known, the precise ordering of events and factors along this pathway has not been tested. Here, we deploy C. elegans to unravel the coordinated events comprising NGD. Utilizing a novel reporter and forward and reverse genetics, we identify the machinery required for NGD. Our subsequent molecular analyses define a functional requirement for ubiquitination on at least two ribosomal proteins (eS10 and uS10), and we show that ribosomes lacking ubiquitination sites on eS10 and uS10 fail to perform NGD in vivo. We show that the nuclease NONU-1 acts after the ubiquitin ligase ZNF-598, and discover a novel requirement for the ribosome rescue factors HBS-1/PELO-1 in mRNA decay via NONU-1. Taken together, our work demonstrates mechanisms by which ribosomes signal to effectors of mRNA repression, and we delineate links between repressive factors working toward a well-defined NGD pathway.
Collapse
Affiliation(s)
- Parissa C. Monem
- Department of Molecular, Cell, and Developmental Biology, University of California at Santa Cruz, Santa Cruz, California, United States of America
| | - Nitin Vidyasagar
- Department of Molecular, Cell, and Developmental Biology, University of California at Santa Cruz, Santa Cruz, California, United States of America
| | - Audrey L. Piatt
- Department of Molecular, Cell, and Developmental Biology, University of California at Santa Cruz, Santa Cruz, California, United States of America
| | - Enisha Sehgal
- Department of Molecular, Cell, and Developmental Biology, University of California at Santa Cruz, Santa Cruz, California, United States of America
| | - Joshua A. Arribere
- Department of Molecular, Cell, and Developmental Biology, University of California at Santa Cruz, Santa Cruz, California, United States of America
| |
Collapse
|
131
|
Christie M, Igreja C. eIF4E-homologous protein (4EHP): a multifarious cap-binding protein. FEBS J 2023; 290:266-285. [PMID: 34758096 DOI: 10.1111/febs.16275] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/29/2021] [Accepted: 11/09/2021] [Indexed: 02/05/2023]
Abstract
The cap-binding protein 4EHP/eIF4E2 has been a recent object of interest in the field of post-transcriptional gene regulation and translational control. From ribosome-associated quality control, to RNA decay and microRNA-mediated gene silencing, this member of the eIF4E protein family regulates gene expression through numerous pathways. Low in abundance but ubiquitously expressed, 4EHP interacts with different binding partners to form multiple protein complexes that regulate translation in a variety of biological contexts. Documented functions of 4EHP primarily relate to its role as a translational repressor, but recent findings indicate that it might also participate in the activation of translation in specific settings. In this review, we discuss the known functions, properties and mechanisms that involve 4EHP in the control of gene expression. We also discuss our current understanding of how 4EHP processes are regulated in eukaryotic cells, and the diseases implicated with dysregulation of 4EHP-mediated translational control.
Collapse
Affiliation(s)
- Mary Christie
- School of Life and Environmental Sciences, The University of Sydney, NSW, Australia
| | - Cátia Igreja
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
132
|
Helton NS, Moon SL. Is bRaQCing bad? New roles for ribosome associated quality control factors in stress granule regulation. Biochem Soc Trans 2022; 50:1715-1724. [PMID: 36484689 PMCID: PMC11368206 DOI: 10.1042/bst20220549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/01/2022] [Accepted: 11/21/2022] [Indexed: 09/04/2024]
Abstract
Maintenance of proteostasis is of utmost importance to cellular viability and relies on the coordination of many post-transcriptional processes to respond to stressful stimuli. Stress granules (SGs) are RNA-protein condensates that form after translation initiation is inhibited, such as during the integrated stress response (ISR), and may facilitate cellular adaptation to stress. The ribosome-associated quality control (RQC) pathway is a critical translation monitoring system that recognizes aberrant mRNAs encoding potentially toxic nascent peptides to target them for degradation. Both SG regulation and the RQC pathway are directly associated with translation regulation, thus it is of no surprise recent developments have demonstrated a connection between them. VCP's function in the stress activated RQC pathway, ribosome collisions activating the ISR, and the regulation of the 40S ribosomal subunit by canonical SG proteins during the RQC all connect SGs to the RQC pathway. Because mutations in genes that are involved in both SG and RQC regulation are associated with degenerative and neurological diseases, understanding the coordination and interregulation of SGs and RQC may shed light on disease mechanisms. This minireview will highlight recent advances in understanding how SGs and the RQC pathway interact in health and disease contexts.
Collapse
Affiliation(s)
- Noah S Helton
- The Center for RNA Biomedicine and the Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, U.S.A
| | - Stephanie L Moon
- The Center for RNA Biomedicine and the Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, U.S.A
| |
Collapse
|
133
|
Deubiquitinase OTUD1 Resolves Stalled Translation on polyA and Rare Codon Rich mRNAs. Mol Cell Biol 2022; 42:e0026522. [PMID: 36445135 PMCID: PMC9753717 DOI: 10.1128/mcb.00265-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
OTUD1 is a deubiquitinating enzyme involved in many cellular processes including cancer and innate, immune signaling pathways. Here, we perform a proximity labeling-based interactome study that identifies OTUD1 largely present in the translation and RNA metabolism protein complexes. Biochemical analysis validates OTUD1 association with ribosome subunits, elongation factors and the E3 ubiquitin ligase ZNF598 but not with the translation initiation machinery. OTUD1 catalytic activity suppresses polyA triggered ribosome stalling through inhibition of ZNF598-mediated RPS10 ubiquitination and stimulates formation of polysomes. Finally, analysis of gene expression suggests that OTUD1 regulates the stability of rare codon rich mRNAs by antagonizing ZNF598.
Collapse
|
134
|
Kriachkov V, Ormsby AR, Kusnadi EP, McWilliam HE, Mintern JD, Amarasinghe SL, Ritchie ME, Furic L, Hatters DM. Arginine-rich C9ORF72 ALS proteins stall ribosomes in a manner distinct from a canonical ribosome-associated quality control substrate. J Biol Chem 2022; 299:102774. [PMID: 36481270 PMCID: PMC9830226 DOI: 10.1016/j.jbc.2022.102774] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Hexanucleotide expansion mutations in C9ORF72 are a frequent cause of amyotrophic lateral sclerosis. We previously reported that long arginine-rich dipeptide repeats (DPRs), mimicking abnormal proteins expressed from the hexanucleotide expansion, caused translation stalling when expressed in cell culture models. Whether this stalling provides a mechanism of pathogenicity remains to be determined. Here, we explored the molecular features of DPR-induced stalling and examined whether known mechanisms such as ribosome quality control (RQC) regulate translation elongation on sequences that encode arginine-rich DPRs. We demonstrate that arginine-rich DPRs lead to stalling in a length-dependent manner, with lengths longer than 40 repeats invoking severe translation arrest. Mutational screening of 40×Gly-Xxx DPRs shows that stalling is most pronounced when Xxx is a charged amino acid (Arg, Lys, Glu, or Asp). Through a genome-wide knockout screen, we find that genes regulating stalling on polyadenosine mRNA coding for poly-Lys, a canonical RQC substrate, act differently in the case of arginine-rich DPRs. Indeed, these findings point to a limited scope for natural regulatory responses to resolve the arginine-rich DPR stalls, even though the stalls may be sensed, as evidenced by an upregulation of RQC gene expression. These findings therefore implicate arginine-rich DPR-mediated stalled ribosomes as a source of stress and toxicity and may be a crucial component in pathomechanisms.
Collapse
Affiliation(s)
- Viacheslav Kriachkov
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Angelique R. Ormsby
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Eric P. Kusnadi
- Translational Prostate Cancer Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Hamish E.G. McWilliam
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia,Department of Microbiology and Immunology, Peter Doherty Institute of Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Justine D. Mintern
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - Matthew E. Ritchie
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Luc Furic
- Translational Prostate Cancer Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia,Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, Victoria, Australia
| | - Danny M. Hatters
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia,For correspondence: Danny M. Hatters
| |
Collapse
|
135
|
Dhaliwal JS, Panozzo C, Benard L, Zerges W. An RNA granule for translation quality control in Saccharomyces cerevisiae. J Cell Sci 2022; 135:285862. [PMID: 36373798 DOI: 10.1242/jcs.260388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022] Open
Abstract
Cytoplasmic RNA granules compartmentalize phases of the translation cycle in eukaryotes. We previously reported the localization of oxidized RNA to cytoplasmic foci called oxidized RNA bodies (ORBs) in human cells. We show here that ORBs are RNA granules in Saccharomyces cerevisiae. Several lines of evidence support a role for ORBs in the compartmentalization of no-go decay and ribosome quality control, the translation quality control pathways that recognize and clear aberrant mRNAs, including those with oxidized bases. Translation is required by these pathways and ORBs. Translation quality control factors localize to ORBs. A substrate of translation quality control, a stalled mRNA-ribosome-nascent-chain complex, localizes to ORBs. Translation quality control mutants have altered ORB numbers, sizes or both. In addition, we identify 68 ORB proteins by immunofluorescence staining directed by proteomics, which further support their role in translation quality control and reveal candidate new factors for these pathways.
Collapse
Affiliation(s)
- James S Dhaliwal
- Department of Biology, Concordia University, 7141 Sherbrooke W, Montreal, Quebec, Canada, H4B 1R6
| | - Cristina Panozzo
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Université, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Lionel Benard
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Université, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - William Zerges
- Department of Biology, Concordia University, 7141 Sherbrooke W, Montreal, Quebec, Canada, H4B 1R6
| |
Collapse
|
136
|
Martínez-Férriz A, Ferrando A, Fathinajafabadi A, Farràs R. Ubiquitin-mediated mechanisms of translational control. Semin Cell Dev Biol 2022; 132:146-154. [PMID: 34952788 DOI: 10.1016/j.semcdb.2021.12.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/15/2022]
Abstract
mRNAs translation to proteins constitutes an important step of cellular gene expression that is highly regulated in response to different extracellular stimuli and stress situations. The fine control of protein synthesis is carried out both qualitatively and quantitatively, depending on the cellular demand at each moment. Post-translational modifications, in turn regulated by intracellular signaling pathways, play a key role in translation regulation. Among them, ubiquitination, whose role is becoming increasingly important in the control of translation, determines a correct balance between protein synthesis and degradation. In this review we focus on the role of ubiquitination (both degradative K48-linkage type and non-degradative K63-linkage type and monoubiquitination) in eukaryotic translation, both at the pre-translational level during the biogenesis/degradation of the components of translational machinery as well as at the co-translational level under stressful conditions. We also discuss other ubiquitin-dependent regulatory mechanisms of mRNA protection and resumption of translation after stress removal, where the ubiquitination of ribosomal proteins and associated regulatory proteins play an important role in the global rhythm of translation.
Collapse
Affiliation(s)
- Arantxa Martínez-Férriz
- Oncogenic Signalling Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Alejandro Ferrando
- Instituto de Biología Molecular y Celular de Plantas CSIC-Universidad Politécnica de Valencia, Valencia, Spain
| | - Alihamze Fathinajafabadi
- Oncogenic Signalling Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain.
| | - Rosa Farràs
- Oncogenic Signalling Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain.
| |
Collapse
|
137
|
Tikhonova EB, Gutierrez Guarnizo SA, Kellogg MK, Karamyshev A, Dozmorov IM, Karamysheva ZN, Karamyshev AL. Defective Human SRP Induces Protein Quality Control and Triggers Stress Response. J Mol Biol 2022; 434:167832. [PMID: 36210597 PMCID: PMC10024925 DOI: 10.1016/j.jmb.2022.167832] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 08/27/2022] [Accepted: 09/13/2022] [Indexed: 12/15/2022]
Abstract
Regulation of Aberrant Protein Production (RAPP) is a protein quality control in mammalian cells. RAPP degrades mRNAs of nascent proteins not able to associate with their natural interacting partners during synthesis at the ribosome. However, little is known about the molecular mechanism of the pathway, its substrates, or its specificity. The Signal Recognition Particle (SRP) is the first interacting partner for secretory proteins. It recognizes signal sequences of the nascent polypeptides when they are exposed from the ribosomal exit tunnel. Here, we reveal the generality of the RAPP pathway on the whole transcriptome level through depletion of human SRP54, an SRP subunit. This depletion triggers RAPP and leads to decreased expression of the mRNAs encoding a number of secretory and membrane proteins. The loss of SRP54 also leads to the dramatic upregulation of a specific network of HSP70/40/90 chaperones (HSPA1A, DNAJB1, HSP90AA1, and others), increased ribosome associated ubiquitination, and change in expression of RPS27 and RPS27L suggesting ribosome rearrangement. These results demonstrate the complex nature of defects in protein trafficking, mRNA and protein quality control, and provide better understanding of their mechanisms at the ribosome.
Collapse
Affiliation(s)
- Elena B Tikhonova
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | | - Morgana K Kellogg
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Alexander Karamyshev
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Igor M Dozmorov
- University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Andrey L Karamyshev
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
138
|
Yu J, Ma H, He J, Wang M, Yu B, Ge S, Dai Z. A pan-cancer analysis of the oncogenic role of ATP binding cassette subfamily E member 1 (ABCE1) in human tumors: An observational study. Medicine (Baltimore) 2022; 101:e31849. [PMID: 36401432 PMCID: PMC9678580 DOI: 10.1097/md.0000000000031849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
ATP-binding-cassette subfamily E member 1 (ABCE1) has been identified as an essential component of RNA translation and cell proliferation. However, studies on its role in pan-cancer are limited. Here, we aimed to characterize ABCE1 expression and its potential biological functions in cancer. ABCE1 expression was analyzed using RNA-seq data from The Cancer Genome Atlas (TCGA), the Genotype-Tissue Expression (GTEx) database, and the Clinical Proteomic Tumor Analysis Consortium database. The prognostic value of ABCE1 was analyzed using clinical survival data from TCGA. We downloaded the immune cell infiltration score of TCGA samples from published articles and online databases and performed a correlation analysis between immune cell infiltration levels, chemokines/chemokine receptors, and ABCE1 expression. We further assessed the association between ABCE1-correlated genes and their functions in pancreatic adenocarcinoma (PAAD). In general, ABCE1 gene expression was upregulated in most tumors. There were significant strong correlations between ABCE1 expression and tumor-infiltrating cells in cancers. Furthermore, RNA transport and ribosome biogenesis were significantly related to ABCE1 expression in PAAD. Our study revealed that ABCE1 may serve as a potential prognostic and immunological pan-cancer biomarker. Moreover, ABCE1 may be used in the development of a novel target for PAAD.
Collapse
Affiliation(s)
- Jihong Yu
- Beilun People’s Hospital, Beilun Branch of The First Affiliated Hospital, School of Medicine, Zhejiang University, Ningbo, Zhejiang, People’s Republic of China
- *Correspondence: Beilun People’s Hospital, Beilun Branch of The First Affiliated Hospital, School of Medicine, Zhejiang University, Ningbo 315826, Zhejiang, People’s Republic of China (e-mail: )
| | - Haifen Ma
- Beilun People’s Hospital, Beilun Branch of The First Affiliated Hospital, School of Medicine, Zhejiang University, Ningbo, Zhejiang, People’s Republic of China
| | - Ji He
- Beilun People’s Hospital, Beilun Branch of The First Affiliated Hospital, School of Medicine, Zhejiang University, Ningbo, Zhejiang, People’s Republic of China
| | - Min Wang
- Beilun People’s Hospital, Beilun Branch of The First Affiliated Hospital, School of Medicine, Zhejiang University, Ningbo, Zhejiang, People’s Republic of China
| | - Bo Yu
- Beilun People’s Hospital, Beilun Branch of The First Affiliated Hospital, School of Medicine, Zhejiang University, Ningbo, Zhejiang, People’s Republic of China
| | - Shaonan Ge
- Beilun People’s Hospital, Beilun Branch of The First Affiliated Hospital, School of Medicine, Zhejiang University, Ningbo, Zhejiang, People’s Republic of China
| | - Zhibo Dai
- Beilun People’s Hospital, Beilun Branch of The First Affiliated Hospital, School of Medicine, Zhejiang University, Ningbo, Zhejiang, People’s Republic of China
| |
Collapse
|
139
|
Burke PC, Park H, Subramaniam AR. A nascent peptide code for translational control of mRNA stability in human cells. Nat Commun 2022; 13:6829. [PMID: 36369503 PMCID: PMC9652226 DOI: 10.1038/s41467-022-34664-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 11/02/2022] [Indexed: 11/13/2022] Open
Abstract
Stability of eukaryotic mRNAs is associated with their codon, amino acid, and GC content. Yet, coding sequence motifs that predictably alter mRNA stability in human cells remain poorly defined. Here, we develop a massively parallel assay to measure mRNA effects of thousands of synthetic and endogenous coding sequence motifs in human cells. We identify several families of simple dipeptide repeats whose translation triggers mRNA destabilization. Rather than individual amino acids, specific combinations of bulky and positively charged amino acids are critical for the destabilizing effects of dipeptide repeats. Remarkably, dipeptide sequences that form extended β strands in silico and in vitro slowdown ribosomes and reduce mRNA levels in vivo. The resulting nascent peptide code underlies the mRNA effects of hundreds of endogenous peptide sequences in the human proteome. Our work suggests an intrinsic role for the ribosome as a selectivity filter against the synthesis of bulky and aggregation-prone peptides.
Collapse
Affiliation(s)
- Phillip C Burke
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Department of Microbiology, University of Washington, Seattle, WA, 98195, USA
| | - Heungwon Park
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Arvind Rasi Subramaniam
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA.
- Department of Microbiology, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
140
|
Embree CM, Abu-Alhasan R, Singh G. Features and factors that dictate if terminating ribosomes cause or counteract nonsense-mediated mRNA decay. J Biol Chem 2022; 298:102592. [PMID: 36244451 PMCID: PMC9661723 DOI: 10.1016/j.jbc.2022.102592] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a quality control pathway in eukaryotes that continuously monitors mRNA transcripts to ensure truncated polypeptides are not produced. The expression of many normal mRNAs that encode full-length polypeptides is also regulated by this pathway. Such transcript surveillance by NMD is intimately linked to translation termination. When a ribosome terminates translation at a normal termination codon, NMD is not activated, and mRNA can undergo repeated rounds of translation. On the other hand, when translation termination is deemed abnormal, such as that on a premature termination codon, it leads to a series of poorly understood events involving the NMD pathway, which destabilizes the transcript. In this review, we summarize our current understanding of how the NMD machinery interfaces with the translation termination factors to initiate NMD. We also discuss a variety of cis-acting sequence contexts and trans-acting factors that can cause readthrough, ribosome reinitiation, or ribosome frameshifting at stop codons predicted to induce NMD. These alternative outcomes can lead to the ribosome translating downstream of such stop codons and hence the transcript escaping NMD. NMD escape via these mechanisms can have wide-ranging implications on human health, from being exploited by viruses to hijack host cell systems to being harnessed as potential therapeutic possibilities to treat genetic diseases.
Collapse
Affiliation(s)
- Caleb M Embree
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, USA; Center for RNA Biology, The Ohio State University, Columbus, Ohio USA
| | - Rabab Abu-Alhasan
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, USA; Center for RNA Biology, The Ohio State University, Columbus, Ohio USA
| | - Guramrit Singh
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, USA; Center for RNA Biology, The Ohio State University, Columbus, Ohio USA.
| |
Collapse
|
141
|
Champagne J, Mordente K, Nagel R, Agami R. Slippy-Sloppy translation: a tale of programmed and induced-ribosomal frameshifting. Trends Genet 2022; 38:1123-1133. [PMID: 35641342 DOI: 10.1016/j.tig.2022.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 01/24/2023]
Abstract
Programmed ribosomal frameshifting (PRF) is a key mechanism that viruses use to generate essential proteins for replication, and as a means of regulating gene expression. PRF generally involves recoding signals or frameshift stimulators to elevate the occurrence of frameshifting at shift-prone 'slippery' sequences. Given its essential role in viral replication, targeting PRF was envisioned as an attractive tool to block viral infection. However, in contrast to controlled-PRF mechanisms, recent studies have shown that ribosomes of many human cancer cell types are prone to frameshifting upon amino acid shortage; thus, these cells are deemed to be sloppy. The resulting products of a sloppy frameshift at the 'hungry' codons are aberrant proteins the degradation and display of which at the cell surface can trigger T cell activation. In this review, we address recent discoveries in ribosomal frameshifting and their functional consequences for the proteome in human cancer cells.
Collapse
Affiliation(s)
- Julien Champagne
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Kelly Mordente
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Remco Nagel
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Reuven Agami
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands; Erasmus MC, Rotterdam University, Rotterdam, The Netherlands.
| |
Collapse
|
142
|
A distinct mammalian disome collision interface harbors K63-linked polyubiquitination of uS10 to trigger hRQT-mediated subunit dissociation. Nat Commun 2022; 13:6411. [PMID: 36302773 PMCID: PMC9613687 DOI: 10.1038/s41467-022-34097-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/13/2022] [Indexed: 12/25/2022] Open
Abstract
Translational stalling events that result in ribosome collisions induce Ribosome-associated Quality Control (RQC) in order to degrade potentially toxic truncated nascent proteins. For RQC induction, the collided ribosomes are first marked by the Hel2/ZNF598 E3 ubiquitin ligase to recruit the RQT complex for subunit dissociation. In yeast, uS10 is polyubiquitinated by Hel2, whereas eS10 is preferentially monoubiquitinated by ZNF598 in human cells for an unknown reason. Here, we characterize the ubiquitination activity of ZNF598 and its importance for human RQT-mediated subunit dissociation using the endogenous XBP1u and poly(A) translation stallers. Cryo-EM analysis of a human collided disome reveals a distinct composite interface, with substantial differences to yeast collided disomes. Biochemical analysis of collided ribosomes shows that ZNF598 forms K63-linked polyubiquitin chains on uS10, which are decisive for mammalian RQC initiation. The human RQT (hRQT) complex composed only of ASCC3, ASCC2 and TRIP4 dissociates collided ribosomes dependent on the ATPase activity of ASCC3 and the ubiquitin-binding capacity of ASCC2. The hRQT-mediated subunit dissociation requires the K63-linked polyubiquitination of uS10, while monoubiquitination of eS10 or uS10 is not sufficient. Therefore, we conclude that ZNF598 functionally marks collided mammalian ribosomes by K63-linked polyubiquitination of uS10 for the trimeric hRQT complex-mediated subunit dissociation.
Collapse
|
143
|
Wang X, Rimal S, Tantray I, Geng J, Bhurtel S, Khaket TP, Li W, Han Z, Lu B. Prevention of ribosome collision-induced neuromuscular degeneration by SARS CoV-2-encoded Nsp1. Proc Natl Acad Sci U S A 2022; 119:e2202322119. [PMID: 36170200 PMCID: PMC9586304 DOI: 10.1073/pnas.2202322119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 07/13/2022] [Indexed: 11/18/2022] Open
Abstract
An overarching goal of aging and age-related neurodegenerative disease research is to discover effective therapeutic strategies applicable to a broad spectrum of neurodegenerative diseases. Little is known about the extent to which targetable pathogenic mechanisms are shared among these seemingly diverse diseases. Translational control is critical for maintaining proteostasis during aging. Gaining control of the translation machinery is also crucial in the battle between viruses and their hosts. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the ongoing COVID-19 pandemic. Here, we show that overexpression of SARS-CoV-2-encoded nonstructural protein 1 (Nsp1) robustly rescued neuromuscular degeneration and behavioral phenotypes in Drosophila models of Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. These diseases share a common mechanism: the accumulation of aberrant protein species due to the stalling and collision of translating ribosomes, leading to proteostasis failure. Our genetic and biochemical analyses revealed that Nsp1 acted in a multipronged manner to resolve collided ribosomes, abort stalled translation, and remove faulty translation products causative of disease in these models, at least in part through the ribosome recycling factor ABCE1, ribosome-associated quality-control factors, autophagy, and AKT signaling. Nsp1 exhibited exquisite specificity in its action, as it did not modify other neurodegenerative conditions not known to be associated with ribosome stalling. These findings uncover a previously unrecognized mechanism of Nsp1 in manipulating host translation, which can be leveraged for combating age-related neurodegenerative diseases that are affecting millions of people worldwide and currently without effective treatment.
Collapse
Affiliation(s)
- Xingjun Wang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94350
| | - Suman Rimal
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94350
| | - Ishaq Tantray
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94350
| | - Ji Geng
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94350
| | - Sunil Bhurtel
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94350
| | - Tejinder Pal Khaket
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94350
| | - Wen Li
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94350
| | - Zhe Han
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Bingwei Lu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94350
- Programs of Neuroscience and Cancer Biology, Stanford University School of Medicine, Stanford, CA 94350
| |
Collapse
|
144
|
RACK1 Regulates Poxvirus Protein Synthesis Independently of Its Role in Ribosome-Based Stress Signaling. J Virol 2022; 96:e0109322. [PMID: 36098514 PMCID: PMC9517738 DOI: 10.1128/jvi.01093-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Receptor for activated C kinase 1 (RACK1) is a small ribosomal subunit protein that is phosphorylated by vaccinia virus (VacV) to maximize translation of postreplicative (PR) mRNAs that harbor 5' polyA leaders. However, RACK1 is a multifunctional protein that both controls translation directly and acts as a scaffold for signaling to and from the ribosome. This includes stress signaling that is activated by ribosome-associated quality control (RQC) and ribotoxic stress response (RSR) pathways. As VacV infection activates RQC and stress signaling, whether RACK1 influences viral protein synthesis through its effects on translation, signaling, or both remains unclear. Examining the effects of genetic knockout of RACK1 on the phosphorylation of key mitogenic and stress-related kinases, we reveal that loss of RACK1 specifically blunts the activation of c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) at late stages of infection. However, RACK1 was not required for JNK recruitment to ribosomes, and unlike RACK1 knockout, JNK inhibitors had no effect on viral protein synthesis. Moreover, reduced JNK activity during infection in RACK1 knockout cells contrasted with the absolute requirement for RACK1 in RSR-induced JNK phosphorylation. Comparing the effects of RACK1 knockout alongside inhibitors of late stage replication, our data suggest that JNK activation is only indirectly affected by the absence of RACK1 due to reduced viral protein accumulation. Cumulatively, our findings in the context of infection add further support for a model whereby RACK1 plays a specific and direct role in controlling translation of PR viral mRNAs that is independent of its role in ribosome-based stress signaling. IMPORTANCE Receptor for activated C kinase 1 (RACK1) is a multifunctional ribosomal protein that regulates translation directly and mediates signaling to and from the ribosome. While recent work has shown that RACK1 is phosphorylated by vaccinia virus (VacV) to stimulate translation of postreplicative viral mRNAs, whether RACK1 also contributes to VacV replication through its roles in ribosome-based stress signaling remains unclear. Here, we characterize the role of RACK1 in infected cells. In doing so, we find that RACK1 is essential for stress signal activation by ribotoxic stress responses but not by VacV infection. Moreover, although the loss of RACK1 reduces the level of stress-associated JNK activation in infected cells, this is an indirect consequence of RACK1's specific requirement for the synthesis of postreplicative viral proteins, the accumulation of which determines the level of cellular stress. Our findings reveal both the specific role of RACK1 and the complex downstream effects of its control of viral protein synthesis in the context of infection.
Collapse
|
145
|
Sensing of individual stalled 80S ribosomes by Fap1 for nonfunctional rRNA turnover. Mol Cell 2022; 82:3424-3437.e8. [PMID: 36113412 DOI: 10.1016/j.molcel.2022.08.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/29/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022]
Abstract
Cells can respond to stalled ribosomes by sensing ribosome collisions and employing quality control pathways. How ribosome stalling is resolved without collisions, however, has remained elusive. Here, focusing on noncolliding stalling exhibited by decoding-defective ribosomes, we identified Fap1 as a stalling sensor triggering 18S nonfunctional rRNA decay via polyubiquitination of uS3. Ribosome profiling revealed an enrichment of Fap1 at the translation initiation site but also an association with elongating individual ribosomes. Cryo-EM structures of Fap1-bound ribosomes elucidated Fap1 probing the mRNA simultaneously at both the entry and exit channels suggesting an mRNA stasis sensing activity, and Fap1 sterically hinders the formation of canonical collided di-ribosomes. Our findings indicate that individual stalled ribosomes are the potential signal for ribosome dysfunction, leading to accelerated turnover of the ribosome itself.
Collapse
|
146
|
Durmaz YT, Shatadal A, Friend K. Geneticin reduces mRNA stability. PLoS One 2022; 17:e0272058. [PMID: 35901009 PMCID: PMC9333311 DOI: 10.1371/journal.pone.0272058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022] Open
Abstract
Messenger RNA (mRNA) translation can lead to higher rates of mRNA decay, suggesting the ribosome plays a role in mRNA destruction. Furthermore, mRNA features, such as codon identities, which are directly probed by the ribosome, correlate with mRNA decay rates. Many amino acids are encoded by synonymous codons, some of which are decoded by more abundant tRNAs leading to more optimal translation and increased mRNA stability. Variable translation rates for synonymous codons can lead to ribosomal collisions as ribosomes transit regions with suboptimal codons, and ribosomal collisions can promote mRNA decay. In addition to different translation rates, the presence of certain codons can also lead to higher or lower rates of amino acid misincorporation which could potentially lead to protein misfolding if a substituted amino acid fails to make critical contacts in a structure. Here, we test whether Geneticin—G418, an aminoglycoside antibiotic known to promote amino acid misincorporation—affects mRNA stability. We observe that G418 decreases firefly luciferase mRNA stability in an in vitro translation system and also reduces mRNA stability in mouse embryonic stem cells (mESCs). G418-sensitive mRNAs are enriched for certain optimal codons that contain G or C in the wobble position, arguing that G418 blunts the stabilizing effects of codon optimality.
Collapse
Affiliation(s)
- Yavuz T. Durmaz
- Department of Chemistry and Biochemistry, Washington and Lee University, Lexington, Virginia, United States of America
| | - Alankrit Shatadal
- Department of Chemistry and Biochemistry, Washington and Lee University, Lexington, Virginia, United States of America
| | - Kyle Friend
- Department of Chemistry and Biochemistry, Washington and Lee University, Lexington, Virginia, United States of America
- * E-mail:
| |
Collapse
|
147
|
Veltri AJ, D'Orazio KN, Lessen LN, Loll-Krippleber R, Brown GW, Green R. Distinct elongation stalls during translation are linked with distinct pathways for mRNA degradation. eLife 2022; 11:e76038. [PMID: 35894211 PMCID: PMC9352352 DOI: 10.7554/elife.76038] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Key protein adapters couple translation to mRNA decay on specific classes of problematic mRNAs in eukaryotes. Slow decoding on non-optimal codons leads to codon-optimality-mediated decay (COMD) and prolonged arrest at stall sites leads to no-go decay (NGD). The identities of the decay factors underlying these processes and the mechanisms by which they respond to translational distress remain open areas of investigation. We use carefully designed reporter mRNAs to perform genetic screens and functional assays in Saccharomyces cerevisiae. We characterize the roles of Hel2, Syh1, and Smy2 in coordinating translational repression and mRNA decay on NGD reporter mRNAs, finding that Syh1 and, to a lesser extent its paralog Smy2, act in a distinct pathway from Hel2. This Syh1/Smy2-mediated pathway acts as a redundant, compensatory pathway to elicit NGD when Hel2-dependent NGD is impaired. Importantly, we observe that these NGD factors are not involved in the degradation of mRNAs enriched in non-optimal codons. Further, we establish that a key factor previously implicated in COMD, Not5, contributes modestly to the degradation of an NGD-targeted mRNA. Finally, we use ribosome profiling to reveal distinct ribosomal states associated with each reporter mRNA that readily rationalize the contributions of NGD and COMD factors to degradation of these reporters. Taken together, these results provide new insight into the role of Syh1 and Smy2 in NGD and into the ribosomal states that correlate with the activation of distinct pathways targeting mRNAs for degradation in yeast.
Collapse
Affiliation(s)
- Anthony J Veltri
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Karole N D'Orazio
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Laura N Lessen
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| | | | - Grant W Brown
- Department of Biochemistry and Donnelly Centre, University of Toronto, Toronto, Canada
| | - Rachel Green
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
148
|
Li Z, Ferguson L, Deol KK, Roberts MA, Magtanong L, Hendricks JM, Mousa GA, Kilinc S, Schaefer K, Wells JA, Bassik MC, Goga A, Dixon SJ, Ingolia NT, Olzmann JA. Ribosome stalling during selenoprotein translation exposes a ferroptosis vulnerability. Nat Chem Biol 2022; 18:751-761. [PMID: 35637349 PMCID: PMC9469796 DOI: 10.1038/s41589-022-01033-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/06/2022] [Indexed: 01/23/2023]
Abstract
The selenoprotein glutathione peroxidase 4 (GPX4) prevents ferroptosis by converting lipid peroxides into nontoxic lipid alcohols. GPX4 has emerged as a promising therapeutic target for cancer treatment, but some cancer cells are resistant to ferroptosis triggered by GPX4 inhibition. Using a chemical-genetic screen, we identify LRP8 (also known as ApoER2) as a ferroptosis resistance factor that is upregulated in cancer. Loss of LRP8 decreases cellular selenium levels and the expression of a subset of selenoproteins. Counter to the canonical hierarchical selenoprotein regulatory program, GPX4 levels are strongly reduced due to impaired translation. Mechanistically, low selenium levels result in ribosome stalling at the inefficiently decoded GPX4 selenocysteine UGA codon, leading to ribosome collisions, early translation termination and proteasomal clearance of the N-terminal GPX4 fragment. These findings reveal rewiring of the selenoprotein hierarchy in cancer cells and identify ribosome stalling and collisions during GPX4 translation as ferroptosis vulnerabilities in cancer.
Collapse
Affiliation(s)
- Zhipeng Li
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | - Lucas Ferguson
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Kirandeep K Deol
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | - Melissa A Roberts
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | | | - Joseph M Hendricks
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | - Gergey Alzaem Mousa
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Seda Kilinc
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Kaitlin Schaefer
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | | | - Andrei Goga
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Nicholas T Ingolia
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - James A Olzmann
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
- Miller Institute for Basic Research in Science, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
149
|
Structural remodeling of ribosome associated Hsp40-Hsp70 chaperones during co-translational folding. Nat Commun 2022; 13:3410. [PMID: 35701497 PMCID: PMC9197937 DOI: 10.1038/s41467-022-31127-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 06/02/2022] [Indexed: 11/16/2022] Open
Abstract
Ribosome associated complex (RAC), an obligate heterodimer of HSP40 and HSP70 (Zuo1 and Ssz1 in yeast), is conserved in eukaryotes and functions as co-chaperone for another HSP70 (Ssb1/2 in yeast) to facilitate co-translational folding of nascent polypeptides. Many mechanistic details, such as the coordination of one HSP40 with two HSP70s and the dynamic interplay between RAC-Ssb and growing nascent chains, remain unclear. Here, we report three sets of structures of RAC-containing ribosomal complexes isolated from Saccharomyces cerevisiae. Structural analyses indicate that RAC on the nascent-chain-free ribosome is in an autoinhibited conformation, and in the presence of a nascent chain at the peptide tunnel exit (PTE), RAC undergoes large-scale structural remodeling to make Zuo1 J-Domain more accessible to Ssb. Our data also suggest a role of Zuo1 in orienting Ssb-SBD proximal to the PTE for easy capture of the substrate. Altogether, in accordance with previous data, our work suggests a sequence of structural remodeling events for RAC-Ssb during co-translational folding, triggered by the binding and passage of growing nascent chain from one to another. Ribosome associated complex (RAC)- HSP70 (Ssb in yeast) is a eukaryotic chaperone system involved in co-translational folding. Here, authors report structures of RAC-containing ribosomal complexes, which suggest a working model for the dynamic actions of RAC-Ssb during the process.
Collapse
|
150
|
Loveland AB, Svidritskiy E, Susorov D, Lee S, Park A, Zvornicanin S, Demo G, Gao FB, Korostelev AA. Ribosome inhibition by C9ORF72-ALS/FTD-associated poly-PR and poly-GR proteins revealed by cryo-EM. Nat Commun 2022; 13:2776. [PMID: 35589706 PMCID: PMC9120013 DOI: 10.1038/s41467-022-30418-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 04/29/2022] [Indexed: 12/15/2022] Open
Abstract
Toxic dipeptide-repeat (DPR) proteins are produced from expanded G4C2 repeats in the C9ORF72 gene, the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Two DPR proteins, poly-PR and poly-GR, repress cellular translation but the molecular mechanism remains unknown. Here we show that poly-PR and poly-GR of ≥20 repeats inhibit the ribosome's peptidyl-transferase activity at nanomolar concentrations, comparable to specific translation inhibitors. High-resolution cryogenic electron microscopy (cryo-EM) reveals that poly-PR and poly-GR block the polypeptide tunnel of the ribosome, extending into the peptidyl-transferase center (PTC). Consistent with these findings, the macrolide erythromycin, which binds in the tunnel, competes with poly-PR and restores peptidyl-transferase activity. Our results demonstrate that strong and specific binding of poly-PR and poly-GR in the ribosomal tunnel blocks translation, revealing the structural basis of their toxicity in C9ORF72-ALS/FTD.
Collapse
Affiliation(s)
- Anna B Loveland
- RNA Therapeutics Institute, UMass Chan Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| | - Egor Svidritskiy
- RNA Therapeutics Institute, UMass Chan Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| | - Denis Susorov
- RNA Therapeutics Institute, UMass Chan Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| | - Soojin Lee
- Department of Neurology, UMass Chan Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| | - Alexander Park
- RNA Therapeutics Institute, UMass Chan Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| | - Sarah Zvornicanin
- RNA Therapeutics Institute, UMass Chan Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| | - Gabriel Demo
- RNA Therapeutics Institute, UMass Chan Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Fen-Biao Gao
- Department of Neurology, UMass Chan Medical School, 368 Plantation Street, Worcester, MA, 01605, USA.
| | - Andrei A Korostelev
- RNA Therapeutics Institute, UMass Chan Medical School, 368 Plantation Street, Worcester, MA, 01605, USA.
| |
Collapse
|