101
|
Perea-Resa C, Wattendorf L, Marzouk S, Blower MD. Cohesin: behind dynamic genome topology and gene expression reprogramming. Trends Cell Biol 2021; 31:760-773. [PMID: 33766521 PMCID: PMC8364472 DOI: 10.1016/j.tcb.2021.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/23/2021] [Accepted: 03/04/2021] [Indexed: 01/01/2023]
Abstract
Beyond its originally discovered role tethering replicated sister chromatids, cohesin has emerged as a master regulator of gene expression. Recent advances in chromatin topology resolution and single-cell studies have revealed that cohesin has a pivotal role regulating highly dynamic chromatin interactions linked to transcription control. The dynamic association of cohesin with chromatin and its capacity to perform loop extrusion contribute to the heterogeneity of chromatin contacts. Additionally, different cohesin subcomplexes, with specific properties and regulation, control gene expression across the cell cycle and during developmental cell commitment. Here, we discuss the most recent literature in the field to highlight the role of cohesin in gene expression regulation during transcriptional shifts and its relationship with human diseases.
Collapse
Affiliation(s)
- Carlos Perea-Resa
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA.
| | - Lauren Wattendorf
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Sammer Marzouk
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Michael D Blower
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
102
|
Liu Y, Zhao N, Kanemaki MT, Yamamoto Y, Sadamura Y, Ito Y, Tokunaga M, Stasevich TJ, Kimura H. Visualizing looping of two endogenous genomic loci using synthetic zinc-finger proteins with anti-FLAG and anti-HA frankenbodies in living cells. Genes Cells 2021; 26:905-926. [PMID: 34465007 PMCID: PMC8893316 DOI: 10.1111/gtc.12893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 12/17/2022]
Abstract
In eukaryotic nuclei, chromatin loops mediated through cohesin are critical structures that regulate gene expression and DNA replication. Here, we demonstrate a new method to see endogenous genomic loci using synthetic zinc-finger proteins harboring repeat epitope tags (ZF probes) for signal amplification via binding of tag-specific intracellular antibodies, or frankenbodies, fused with fluorescent proteins. We achieve this in two steps: First, we develop an anti-FLAG frankenbody that can bind FLAG-tagged proteins in diverse live-cell environments. The anti-FLAG frankenbody complements the anti-HA frankenbody, enabling two-color signal amplification from FLAG- and HA-tagged proteins. Second, we develop a pair of cell-permeable ZF probes that specifically bind two endogenous chromatin loci predicted to be involved in chromatin looping. By coupling our anti-FLAG and anti-HA frankenbodies with FLAG- and HA-tagged ZF probes, we simultaneously see the dynamics of the two loci in single living cells. This shows a close association between the two loci in the majority of cells, but the loci markedly separate from the triggered degradation of the cohesin subunit RAD21. Our ability to image two endogenous genomic loci simultaneously in single living cells provides a proof of principle that ZF probes coupled with frankenbodies are useful new tools for exploring genome dynamics in multiple colors.
Collapse
Affiliation(s)
- Yang Liu
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Ning Zhao
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Masato T Kanemaki
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Japan.,Department of Genetics, SOKENDAI, Mishima, Japan
| | - Yotaro Yamamoto
- Life Science Research Laboratories, Fujifilm Wako Pure Chemical, Amagasaki, Japan
| | - Yoshifusa Sadamura
- Life Science Research Laboratories, Fujifilm Wako Pure Chemical, Amagasaki, Japan
| | - Yuma Ito
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Makio Tokunaga
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Timothy J Stasevich
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA.,Cell Biology Center and World Research Hub Initiative, Tokyo Institute of Technology, Yokohama, Japan
| | - Hiroshi Kimura
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan.,Cell Biology Center and World Research Hub Initiative, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
103
|
Esposito A, Bianco S, Fiorillo L, Conte M, Abraham A, Musella F, Nicodemi M, Prisco A, Chiariello AM. Polymer models are a versatile tool to study chromatin 3D organization. Biochem Soc Trans 2021; 49:1675-1684. [PMID: 34282837 DOI: 10.1042/bst20201004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/21/2021] [Accepted: 06/25/2021] [Indexed: 11/17/2022]
Abstract
The development of new experimental technologies is opening the way to a deeper investigation of the three-dimensional organization of chromosomes inside the cell nucleus. Genome architecture is linked to vital functional purposes, yet a full comprehension of the mechanisms behind DNA folding is still far from being accomplished. Theoretical approaches based on polymer physics have been employed to understand the complexity of chromatin architecture data and to unveil the basic mechanisms shaping its structure. Here, we review some recent advances in the field to discuss how Polymer Physics, combined with numerical Molecular Dynamics simulation and Machine Learning based inference, can capture important aspects of genome organization, including the description of tissue-specific structural rearrangements, the detection of novel, regulatory-linked architectural elements and the structural variability of chromatin at the single-cell level.
Collapse
Affiliation(s)
- Andrea Esposito
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| | - Simona Bianco
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
- Berlin Institute for Medical Systems Biology, Max-Delbrück Centre (MDC) for Molecular Medicine, Berlin, Germany
| | - Luca Fiorillo
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| | - Mattia Conte
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| | - Alex Abraham
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| | - Francesco Musella
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| | - Mario Nicodemi
- Berlin Institute for Medical Systems Biology, Max-Delbrück Centre (MDC) for Molecular Medicine, Berlin, Germany
- Dipartimento di Fisica, Università di Napoli Federico II, INFN Napoli, CNR-SPIN, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
- Berlin Institute of Health (BIH), MDC-Berlin, Germany
| | | | - Andrea M Chiariello
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| |
Collapse
|
104
|
Neguembor MV, Martin L, Castells-García Á, Gómez-García PA, Vicario C, Carnevali D, AlHaj Abed J, Granados A, Sebastian-Perez R, Sottile F, Solon J, Wu CT, Lakadamyali M, Cosma MP. Transcription-mediated supercoiling regulates genome folding and loop formation. Mol Cell 2021; 81:3065-3081.e12. [PMID: 34297911 PMCID: PMC9482096 DOI: 10.1016/j.molcel.2021.06.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 03/27/2021] [Accepted: 06/08/2021] [Indexed: 12/21/2022]
Abstract
The chromatin fiber folds into loops, but the mechanisms controlling loop extrusion are still poorly understood. Using super-resolution microscopy, we visualize that loops in intact nuclei are formed by a scaffold of cohesin complexes from which the DNA protrudes. RNA polymerase II decorates the top of the loops and is physically segregated from cohesin. Augmented looping upon increased loading of cohesin on chromosomes causes disruption of Lamin at the nuclear rim and chromatin blending, a homogeneous distribution of chromatin within the nucleus. Altering supercoiling via either transcription or topoisomerase inhibition counteracts chromatin blending, increases chromatin condensation, disrupts loop formation, and leads to altered cohesin distribution and mobility on chromatin. Overall, negative supercoiling generated by transcription is an important regulator of loop formation in vivo.
Collapse
Affiliation(s)
- Maria Victoria Neguembor
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Laura Martin
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Álvaro Castells-García
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
| | - Pablo Aurelio Gómez-García
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Chiara Vicario
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Davide Carnevali
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | | | - Alba Granados
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Ruben Sebastian-Perez
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Francesco Sottile
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Jérôme Solon
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Dr Aiguader 88, 08003 Barcelona, Spain; Instituto Biofisika (CSIC, UPV/EHU), Basque Excellence Research Centre, Barrio Sarriena, 48940, Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Chao-Ting Wu
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Melike Lakadamyali
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China; Universitat Pompeu Fabra (UPF), Dr Aiguader 88, 08003 Barcelona, Spain; ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain; CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| |
Collapse
|
105
|
Jerkovic I, Cavalli G. Understanding 3D genome organization by multidisciplinary methods. Nat Rev Mol Cell Biol 2021; 22:511-528. [PMID: 33953379 DOI: 10.1038/s41580-021-00362-w] [Citation(s) in RCA: 197] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2021] [Indexed: 02/03/2023]
Abstract
Understanding how chromatin is folded in the nucleus is fundamental to understanding its function. Although 3D genome organization has been historically difficult to study owing to a lack of relevant methodologies, major technological breakthroughs in genome-wide mapping of chromatin contacts and advances in imaging technologies in the twenty-first century considerably improved our understanding of chromosome conformation and nuclear architecture. In this Review, we discuss methods of 3D genome organization analysis, including sequencing-based techniques, such as Hi-C and its derivatives, Micro-C, DamID and others; microscopy-based techniques, such as super-resolution imaging coupled with fluorescence in situ hybridization (FISH), multiplex FISH, in situ genome sequencing and live microscopy methods; and computational and modelling approaches. We describe the most commonly used techniques and their contribution to our current knowledge of nuclear architecture and, finally, we provide a perspective on up-and-coming methods that open possibilities for future major discoveries.
Collapse
Affiliation(s)
- Ivana Jerkovic
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, France
| | - Giacomo Cavalli
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, France.
| |
Collapse
|
106
|
Abstract
The spatial organization of the genome in the cell nucleus is pivotal to cell function. However, how the 3D genome organization and its dynamics influence cellular phenotypes remains poorly understood. The very recent development of single-cell technologies for probing the 3D genome, especially single-cell Hi-C (scHi-C), has ushered in a new era of unveiling cell-to-cell variability of 3D genome features at an unprecedented resolution. Here, we review recent developments in computational approaches to the analysis of scHi-C, including data processing, dimensionality reduction, imputation for enhancing data quality, and the revealing of 3D genome features at single-cell resolution. While much progress has been made in computational method development to analyze single-cell 3D genomes, substantial future work is needed to improve data interpretation and multimodal data integration, which are critical to reveal fundamental connections between genome structure and function among heterogeneous cell populations in various biological contexts.
Collapse
Affiliation(s)
- Tianming Zhou
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA;
| | - Ruochi Zhang
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA;
| | - Jian Ma
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA;
| |
Collapse
|
107
|
Moretti C, Stévant I, Ghavi-Helm Y. 3D genome organisation in Drosophila. Brief Funct Genomics 2021; 19:92-100. [PMID: 31796947 DOI: 10.1093/bfgp/elz029] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/02/2019] [Accepted: 09/20/2019] [Indexed: 12/17/2022] Open
Abstract
Ever since Thomas Hunt Morgan's discovery of the chromosomal basis of inheritance by using Drosophila melanogaster as a model organism, the fruit fly has remained an essential model system in studies of genome biology, including chromatin organisation. Very much as in vertebrates, in Drosophila, the genome is organised in territories, compartments and topologically associating domains (TADs). However, these domains might be formed through a slightly different mechanism than in vertebrates due to the presence of a large and potentially redundant set of insulator proteins and the minor role of dCTCF in TAD boundary formation. Here, we review the different levels of chromatin organisation in Drosophila and discuss mechanisms and factors that might be involved in TAD formation. The dynamics of TADs and enhancer-promoter interactions in the context of transcription are covered in the light of currently conflicting results. Finally, we illustrate the value of polymer modelling approaches to infer the principles governing the three-dimensional organisation of the Drosophila genome.
Collapse
Affiliation(s)
- Charlotte Moretti
- Institut de Génomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 46 allée d'Italie F-69364 Lyon, France
| | - Isabelle Stévant
- Institut de Génomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 46 allée d'Italie F-69364 Lyon, France
| | - Yad Ghavi-Helm
- Institut de Génomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 46 allée d'Italie F-69364 Lyon, France
| |
Collapse
|
108
|
Li Y, Xue B, Zhang M, Zhang L, Hou Y, Qin Y, Long H, Su QP, Wang Y, Guan X, Jin Y, Cao Y, Li G, Sun Y. Transcription-coupled structural dynamics of topologically associating domains regulate replication origin efficiency. Genome Biol 2021; 22:206. [PMID: 34253239 PMCID: PMC8276456 DOI: 10.1186/s13059-021-02424-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/30/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Metazoan cells only utilize a small subset of the potential DNA replication origins to duplicate the whole genome in each cell cycle. Origin choice is linked to cell growth, differentiation, and replication stress. Although various genetic and epigenetic signatures have been linked to the replication efficiency of origins, there is no consensus on how the selection of origins is determined. RESULTS We apply dual-color stochastic optical reconstruction microscopy (STORM) super-resolution imaging to map the spatial distribution of origins within individual topologically associating domains (TADs). We find that multiple replication origins initiate separately at the spatial boundary of a TAD at the beginning of the S phase. Intriguingly, while both high-efficiency and low-efficiency origins are distributed homogeneously in the TAD during the G1 phase, high-efficiency origins relocate to the TAD periphery before the S phase. Origin relocalization is dependent on both transcription and CTCF-mediated chromatin structure. Further, we observe that the replication machinery protein PCNA forms immobile clusters around TADs at the G1/S transition, explaining why origins at the TAD periphery are preferentially fired. CONCLUSION Our work reveals a new origin selection mechanism that the replication efficiency of origins is determined by their physical distribution in the chromatin domain, which undergoes a transcription-dependent structural re-organization process. Our model explains the complex links between replication origin efficiency and many genetic and epigenetic signatures that mark active transcription. The coordination between DNA replication, transcription, and chromatin organization inside individual TADs also provides new insights into the biological functions of sub-domain chromatin structural dynamics.
Collapse
Affiliation(s)
- Yongzheng Li
- State Key Laboratory of Membrane Biology, Biomedical Pioneer Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Boxin Xue
- State Key Laboratory of Membrane Biology, Biomedical Pioneer Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Mengling Zhang
- State Key Laboratory of Membrane Biology, Biomedical Pioneer Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China
| | - Liwei Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yingping Hou
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Yizhi Qin
- State Key Laboratory of Membrane Biology, Biomedical Pioneer Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China
| | - Haizhen Long
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qian Peter Su
- State Key Laboratory of Membrane Biology, Biomedical Pioneer Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Yao Wang
- State Key Laboratory of Membrane Biology, Biomedical Pioneer Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China
| | - Xiaodong Guan
- State Key Laboratory of Membrane Biology, Biomedical Pioneer Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yanyan Jin
- Department of Neurobiology, Beijing Centre of Neural Regeneration and Repair, Capital Medical University, Beijing, 100101, China
| | - Yuan Cao
- State Key Laboratory of Membrane Biology, Biomedical Pioneer Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yujie Sun
- State Key Laboratory of Membrane Biology, Biomedical Pioneer Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China.
- College of Future Technology, Peking University, Beijing, 100871, China.
| |
Collapse
|
109
|
PaintSHOP enables the interactive design of transcriptome- and genome-scale oligonucleotide FISH experiments. Nat Methods 2021; 18:937-944. [PMID: 34226720 PMCID: PMC8349872 DOI: 10.1038/s41592-021-01187-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 05/18/2021] [Indexed: 12/31/2022]
Abstract
Fluorescence in situ hybridization (FISH) allows researchers to visualize the spatial position and quantity of nucleic acids in fixed samples. Recently, considerable progress has been made in developing oligonucleotide (oligo)-based FISH methods that have enabled researchers to study the three-dimensional organization of the genome at super-resolution and visualize the spatial patterns of gene expression for thousands of genes in individual cells. However, there are few existing computational tools to support the bioinformatics workflows necessary to carry out these experiments utilizing oligo FISH probes. Here, we introduce Paint Server and Homology Optimization Pipeline (PaintSHOP), an interactive platform for the design of oligo FISH experiments. PaintSHOP enables researchers to identify probes for their experimental targets efficiently, to incorporate additional necessary sequences such as primer pairs, and to easily generate files documenting library design. PaintSHOP democratizes and standardizes the process of designing complex probe sets for the oligo FISH community. Paint Server and Homology Optimization Pipeline (PaintSHOP), an interactive platform for the design of oligo FISH experiments, democratizes and standardizes the process of designing complex probe sets for the oligo FISH community.
Collapse
|
110
|
Xie L, Liu Z. Single-cell imaging of genome organization and dynamics. Mol Syst Biol 2021; 17:e9653. [PMID: 34232558 PMCID: PMC8262488 DOI: 10.15252/msb.20209653] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/13/2021] [Accepted: 04/23/2021] [Indexed: 12/28/2022] Open
Abstract
Probing the architecture, mechanism, and dynamics of genome folding is fundamental to our understanding of genome function in homeostasis and disease. Most chromosome conformation capture studies dissect the genome architecture with population- and time-averaged snapshots and thus have limited capabilities to reveal 3D nuclear organization and dynamics at the single-cell level. Here, we discuss emerging imaging techniques ranging from light microscopy to electron microscopy that enable investigation of genome folding and dynamics at high spatial and temporal resolution. Results from these studies complement genomic data, unveiling principles underlying the spatial arrangement of the genome and its potential functional links to diverse biological activities in the nucleus.
Collapse
Affiliation(s)
- Liangqi Xie
- Janelia Research CampusHoward Hughes Medical InstituteAshburnVAUSA
| | - Zhe Liu
- Janelia Research CampusHoward Hughes Medical InstituteAshburnVAUSA
| |
Collapse
|
111
|
Rajpurkar AR, Mateo LJ, Murphy SE, Boettiger AN. Deep learning connects DNA traces to transcription to reveal predictive features beyond enhancer-promoter contact. Nat Commun 2021; 12:3423. [PMID: 34103507 PMCID: PMC8187657 DOI: 10.1038/s41467-021-23831-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/19/2021] [Indexed: 11/27/2022] Open
Abstract
Chromatin architecture plays an important role in gene regulation. Recent advances in super-resolution microscopy have made it possible to measure chromatin 3D structure and transcription in thousands of single cells. However, leveraging these complex data sets with a computationally unbiased method has been challenging. Here, we present a deep learning-based approach to better understand to what degree chromatin structure relates to transcriptional state of individual cells. Furthermore, we explore methods to "unpack the black box" to determine in an unbiased manner which structural features of chromatin regulation are most important for gene expression state. We apply this approach to an Optical Reconstruction of Chromatin Architecture dataset of the Bithorax gene cluster in Drosophila and show it outperforms previous contact-focused methods in predicting expression state from 3D structure. We find the structural information is distributed across the domain, overlapping and extending beyond domains identified by prior genetic analyses. Individual enhancer-promoter interactions are a minor contributor to predictions of activity.
Collapse
Affiliation(s)
- Aparna R Rajpurkar
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Leslie J Mateo
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Sedona E Murphy
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
112
|
Wagh K, Ishikawa M, Garcia DA, Stavreva DA, Upadhyaya A, Hager GL. Mechanical Regulation of Transcription: Recent Advances. Trends Cell Biol 2021; 31:457-472. [PMID: 33712293 PMCID: PMC8221528 DOI: 10.1016/j.tcb.2021.02.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 01/01/2023]
Abstract
Mechanotransduction is the ability of a cell to sense mechanical cues from its microenvironment and convert them into biochemical signals to elicit adaptive transcriptional and other cellular responses. Here, we describe recent advances in the field of mechanical regulation of transcription, highlight mechanical regulation of the epigenome as a key novel aspect of mechanotransduction, and describe recent technological advances that could further elucidate the link between mechanical stimuli and gene expression. In this review, we emphasize the importance of mechanotransduction as one of the governing principles of cancer progression, underscoring the need to conduct further studies of the molecular mechanisms involved in sensing mechanical cues and coordinating transcriptional responses.
Collapse
Affiliation(s)
- Kaustubh Wagh
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Department of Physics, University of Maryland, College Park, MD 20742, USA
| | - Momoko Ishikawa
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David A Garcia
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Department of Physics, University of Maryland, College Park, MD 20742, USA
| | - Diana A Stavreva
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Arpita Upadhyaya
- Department of Physics, University of Maryland, College Park, MD 20742, USA; Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA.
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
113
|
Peterson SC, Samuelson KB, Hanlon SL. Multi-Scale Organization of the Drosophila melanogaster Genome. Genes (Basel) 2021; 12:817. [PMID: 34071789 PMCID: PMC8228293 DOI: 10.3390/genes12060817] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 12/16/2022] Open
Abstract
Interphase chromatin, despite its appearance, is a highly organized framework of loops and bends. Chromosomes are folded into topologically associating domains, or TADs, and each chromosome and its homolog occupy a distinct territory within the nucleus. In Drosophila, genome organization is exceptional because homologous chromosome pairing is in both germline and somatic tissues, which promote interhomolog interactions such as transvection that can affect gene expression in trans. In this review, we focus on what is known about genome organization in Drosophila and discuss it from TADs to territory. We start by examining intrachromosomal organization at the sub-chromosome level into TADs, followed by a comprehensive analysis of the known proteins that play a key role in TAD formation and boundary establishment. We then zoom out to examine interhomolog interactions such as pairing and transvection that are abundant in Drosophila but rare in other model systems. Finally, we discuss chromosome territories that form within the nucleus, resulting in a complete picture of the multi-scale organization of the Drosophila genome.
Collapse
Affiliation(s)
| | | | - Stacey L. Hanlon
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; (S.C.P.); (K.B.S.)
| |
Collapse
|
114
|
Ulianov SV, Razin SV. The two waves in single-cell 3D genomics. Semin Cell Dev Biol 2021; 121:143-152. [PMID: 34030950 DOI: 10.1016/j.semcdb.2021.05.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/11/2021] [Accepted: 05/16/2021] [Indexed: 02/07/2023]
Abstract
For decades, biochemical methods for the analysis of genome structure and function provided cell-population-averaged data that allowed general principles and tendencies to be disclosed. Microscopy-based studies, which immanently involve single-cell analysis, did not provide sufficient spatial resolution to investigate the particularly small details of 3D genome folding. Nevertheless, these studies demonstrated that mutual positions of chromosome territories within cell nuclei and individual genomic loci within chromosomal territories can vary significantly in individual cells. The development of new technologies in biochemistry and the advent of super-resolution microscopy in the last decade have made possible the full-scale study of 3D genome organization in individual cells. Maps of the 3D genome build based on C-data and super-resolution microscopy are highly consistent and, therefore, biologically relevant. The internal structures of individual chromosomes, loci, and topologically associating domains (TADs) are resolved as well as cell-cycle dynamics. 3D modeling allows one to investigate the physical mechanisms underlying genome folding. Finally, joint profiling of genome topology and epigenetic features will allow 3D genomics to handle complex cell-to-cell heterogeneity. In this review, we summarize the present state of studies into 3D genome organization in individual cells, analyze the technical problems of single-cell studies, and outline perspectives of 3D genomics.
Collapse
Affiliation(s)
- Sergey V Ulianov
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia.
| | - Sergey V Razin
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia.
| |
Collapse
|
115
|
Hao X, Parmar JJ, Lelandais B, Aristov A, Ouyang W, Weber C, Zimmer C. Super-resolution visualization and modeling of human chromosomal regions reveals cohesin-dependent loop structures. Genome Biol 2021; 22:150. [PMID: 33975635 PMCID: PMC8111965 DOI: 10.1186/s13059-021-02343-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 04/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The 3D organization of the chromatin fiber in cell nuclei plays a key role in the regulation of gene expression. Genome-wide techniques to score DNA-DNA contacts, such as Hi-C, reveal the partitioning of chromosomes into epigenetically defined active and repressed compartments and smaller "topologically associated" domains. These domains are often associated with chromatin loops, which largely disappear upon removal of cohesin. Because most Hi-C implementations average contact frequencies over millions of cells and do not provide direct spatial information, it remains unclear whether and how frequently chromatin domains and loops exist in single cells. RESULTS We combine 3D single-molecule localization microscopy with a low-cost fluorescence labeling strategy that does not denature the DNA, to visualize large portions of single human chromosomes in situ at high resolution. In parallel, we develop multi-scale, whole nucleus polymer simulations, that predict chromatin structures at scales ranging from 5 kb up to entire chromosomes. We image chromosomes in G1 and M phase and examine the effect of cohesin on interphase chromatin structure. Depletion of cohesin leads to increased prevalence of loose chromatin stretches, increased gyration radii, and reduced smoothness of imaged chromatin regions. By comparison to model predictions, we estimate that 6-25 or more purely cohesin-dependent chromatin loops coexist per megabase of DNA in single cells, suggesting that the vast majority of the genome is enclosed in loops. CONCLUSION Our results provide new constraints on chromatin structure and showcase an affordable non-invasive approach to study genome organization in single cells.
Collapse
Affiliation(s)
- Xian Hao
- Institut Pasteur, Imaging and Modeling Unit, UMR 3691, CNRS, Paris, France
- School of Public Health & Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, China
| | - Jyotsana J Parmar
- Institut Pasteur, Imaging and Modeling Unit, UMR 3691, CNRS, Paris, France
- Simons Center for the Study of Living Machines, National Center for Biological Sciences (TIFR), Bangalore, Karnataka, 560065, India
| | - Benoît Lelandais
- Institut Pasteur, Imaging and Modeling Unit, UMR 3691, CNRS, Paris, France
| | - Andrey Aristov
- Institut Pasteur, Imaging and Modeling Unit, UMR 3691, CNRS, Paris, France
| | - Wei Ouyang
- Institut Pasteur, Imaging and Modeling Unit, UMR 3691, CNRS, Paris, France
- Université de Paris, F-75013, Paris, France
| | - Christian Weber
- Institut Pasteur, Imaging and Modeling Unit, UMR 3691, CNRS, Paris, France
| | - Christophe Zimmer
- Institut Pasteur, Imaging and Modeling Unit, UMR 3691, CNRS, Paris, France.
| |
Collapse
|
116
|
Noa A, Kuan HS, Aschmann V, Zaburdaev V, Hilbert L. The hierarchical packing of euchromatin domains can be described as multiplicative cascades. PLoS Comput Biol 2021; 17:e1008974. [PMID: 33951053 PMCID: PMC8128263 DOI: 10.1371/journal.pcbi.1008974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 05/17/2021] [Accepted: 04/16/2021] [Indexed: 01/24/2023] Open
Abstract
The genome is packed into the cell nucleus in the form of chromatin. Biochemical approaches have revealed that chromatin is packed within domains, which group into larger domains, and so forth. Such hierarchical packing is equally visible in super-resolution microscopy images of large-scale chromatin organization. While previous work has suggested that chromatin is partitioned into distinct domains via microphase separation, it is unclear how these domains organize into this hierarchical packing. A particular challenge is to find an image analysis approach that fully incorporates such hierarchical packing, so that hypothetical governing mechanisms of euchromatin packing can be compared against the results of such an analysis. Here, we obtain 3D STED super-resolution images from pluripotent zebrafish embryos labeled with improved DNA fluorescence stains, and demonstrate how the hierarchical packing of euchromatin in these images can be described as multiplicative cascades. Multiplicative cascades are an established theoretical concept to describe the placement of ever-smaller structures within bigger structures. Importantly, these cascades can generate artificial image data by applying a single rule again and again, and can be fully specified using only four parameters. Here, we show how the typical patterns of euchromatin organization are reflected in the values of these four parameters. Specifically, we can pinpoint the values required to mimic a microphase-separated state of euchromatin. We suggest that the concept of multiplicative cascades can also be applied to images of other types of chromatin. Here, cascade parameters could serve as test quantities to assess whether microphase separation or other theoretical models accurately reproduce the hierarchical packing of chromatin.
Collapse
Affiliation(s)
- Amra Noa
- Institute of Biological and Chemical Systems, Dept. Biological Information Processing, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Hui-Shun Kuan
- Chair of Mathematics in Life Sciences, Dept. Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Vera Aschmann
- Master’s Program Biology, Faculty for Chemistry and Biosciences, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Vasily Zaburdaev
- Chair of Mathematics in Life Sciences, Dept. Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Lennart Hilbert
- Institute of Biological and Chemical Systems, Dept. Biological Information Processing, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
- Zoological Institute, Dept. Systems Biology and Bioinformatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
- * E-mail:
| |
Collapse
|
117
|
Fiorillo L, Musella F, Conte M, Kempfer R, Chiariello AM, Bianco S, Kukalev A, Irastorza-Azcarate I, Esposito A, Abraham A, Prisco A, Pombo A, Nicodemi M. Comparison of the Hi-C, GAM and SPRITE methods using polymer models of chromatin. Nat Methods 2021; 18:482-490. [PMID: 33963348 PMCID: PMC8416658 DOI: 10.1038/s41592-021-01135-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 03/31/2021] [Indexed: 12/11/2022]
Abstract
Hi-C, split-pool recognition of interactions by tag extension (SPRITE) and genome architecture mapping (GAM) are powerful technologies utilized to probe chromatin interactions genome wide, but how faithfully they capture three-dimensional (3D) contacts and how they perform relative to each other is unclear, as no benchmark exists. Here, we compare these methods in silico in a simplified, yet controlled, framework against known 3D structures of polymer models of murine and human loci, which can recapitulate Hi-C, GAM and SPRITE experiments and multiplexed fluorescence in situ hybridization (FISH) single-molecule conformations. We find that in silico Hi-C, GAM and SPRITE bulk data are faithful to the reference 3D structures whereas single-cell data reflect strong variability among single molecules. The minimal number of cells required in replicate experiments to return statistically similar contacts is different across the technologies, being lowest in SPRITE and highest in GAM under the same conditions. Noise-to-signal levels follow an inverse power law with detection efficiency and grow with genomic distance differently among the three methods, being lowest in GAM for genomic separations >1 Mb.
Collapse
Affiliation(s)
- Luca Fiorillo
- Dipartimento di Fisica, Università di Napoli Federico II and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Francesco Musella
- Dipartimento di Fisica, Università di Napoli Federico II and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Mattia Conte
- Dipartimento di Fisica, Università di Napoli Federico II and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Rieke Kempfer
- Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Berlin, Germany
- Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andrea M Chiariello
- Dipartimento di Fisica, Università di Napoli Federico II and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Simona Bianco
- Dipartimento di Fisica, Università di Napoli Federico II and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
- Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Berlin, Germany
| | - Alexander Kukalev
- Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Berlin, Germany
| | - Ibai Irastorza-Azcarate
- Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Berlin, Germany
| | - Andrea Esposito
- Dipartimento di Fisica, Università di Napoli Federico II and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Alex Abraham
- Dipartimento di Fisica, Università di Napoli Federico II and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | | | - Ana Pombo
- Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Berlin, Germany
- Humboldt-Universität zu Berlin, Berlin, Germany
| | - Mario Nicodemi
- Dipartimento di Fisica, Università di Napoli Federico II and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy.
- Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Berlin, Germany.
- Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
118
|
Liu M, Yang B, Hu M, Radda JS, Chen Y, Jin S, Cheng Y, Wang S. Chromatin tracing and multiplexed imaging of nucleome architectures (MINA) and RNAs in single mammalian cells and tissue. Nat Protoc 2021; 16:2667-2697. [PMID: 33903756 PMCID: PMC9007104 DOI: 10.1038/s41596-021-00518-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/05/2021] [Indexed: 02/02/2023]
Abstract
The genome is hierarchically organized into several 3D architectures, including chromatin loops, domains, compartments and regions associated with nuclear lamina and nucleoli. Changes in these architectures have been associated with normal development, aging and a wide range of diseases. Despite its critical importance, understanding how the genome is spatially organized in single cells, how organization varies in different cell types in mammalian tissue and how organization affects gene expression remains a major challenge. Previous approaches have been limited by a lack of capacity to directly trace chromatin folding in 3D and to simultaneously measure genomic organization in relation to other nuclear components and gene expression in the same single cells. We have developed an image-based 3D genomics technique termed 'chromatin tracing', which enables direct 3D tracing of chromatin folding along individual chromosomes in single cells. More recently, we also developed multiplexed imaging of nucleome architectures (MINA), which enables simultaneous measurements of multiscale chromatin folding, associations of genomic regions with nuclear lamina and nucleoli and copy numbers of numerous RNA species in the same single cells in mammalian tissue. Here, we provide detailed protocols for chromatin tracing in cell lines and MINA in mammalian tissue, which take 3-4 d for experimental work and 2-3 d for data analysis. We expect these developments to be broadly applicable and to affect many lines of research on 3D genomics by depicting multiscale genomic architectures associated with gene expression, in different types of cells and tissue undergoing different biological processes.
Collapse
Affiliation(s)
- Miao Liu
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Bing Yang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Mengwei Hu
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Jonathan S.D. Radda
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Yanbo Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Shengyan Jin
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Yubao Cheng
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Siyuan Wang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA,Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA,Yale Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA,Molecular Cell Biology, Genetics and Development Program, Yale University, New Haven, CT, USA,Biochemistry, Quantitative Biology, Biophysics and Structural Biology Program, Yale University, New Haven, CT, USA,M.D.-Ph.D. Program, Yale University, New Haven, CT, USA,Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT, USA,Yale Liver Center, Yale University School of Medicine, New Haven, CT, USA,Correspondence:
| |
Collapse
|
119
|
Espinola SM, Götz M, Bellec M, Messina O, Fiche JB, Houbron C, Dejean M, Reim I, Cardozo Gizzi AM, Lagha M, Nollmann M. Cis-regulatory chromatin loops arise before TADs and gene activation, and are independent of cell fate during early Drosophila development. Nat Genet 2021; 53:477-486. [PMID: 33795867 DOI: 10.1038/s41588-021-00816-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 02/09/2021] [Indexed: 12/15/2022]
Abstract
Acquisition of cell fate is thought to rely on the specific interaction of remote cis-regulatory modules (CRMs), for example, enhancers and target promoters. However, the precise interplay between chromatin structure and gene expression is still unclear, particularly within multicellular developing organisms. In the present study, we employ Hi-M, a single-cell spatial genomics approach, to detect CRM-promoter looping interactions within topologically associating domains (TADs) during early Drosophila development. By comparing cis-regulatory loops in alternate cell types, we show that physical proximity does not necessarily instruct transcriptional states. Moreover, multi-way analyses reveal that multiple CRMs spatially coalesce to form hubs. Loops and CRM hubs are established early during development, before the emergence of TADs. Moreover, CRM hubs are formed, in part, via the action of the pioneer transcription factor Zelda and precede transcriptional activation. Our approach provides insight into the role of CRM-promoter interactions in defining transcriptional states, as well as distinct cell types.
Collapse
Affiliation(s)
- Sergio Martin Espinola
- Centre de Biologie Structurale, CNRS UMR 5048, INSERM U1054, Univ Montpellier, Montpellier, France
| | - Markus Götz
- Centre de Biologie Structurale, CNRS UMR 5048, INSERM U1054, Univ Montpellier, Montpellier, France
| | | | - Olivier Messina
- Centre de Biologie Structurale, CNRS UMR 5048, INSERM U1054, Univ Montpellier, Montpellier, France.,IGMM, CNRS, Univ Montpellier, Montpellier, France
| | - Jean-Bernard Fiche
- Centre de Biologie Structurale, CNRS UMR 5048, INSERM U1054, Univ Montpellier, Montpellier, France
| | - Christophe Houbron
- Centre de Biologie Structurale, CNRS UMR 5048, INSERM U1054, Univ Montpellier, Montpellier, France
| | | | - Ingolf Reim
- Department of Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Andrés M Cardozo Gizzi
- Centro de Investigación en Medicina Traslacional Severo Amuchastegui, Instituto Universitario de Ciencias Biomédicas de Córdoba, Consejo Nacional de Investigaciones Científicas y Técnicas, Córdoba, Argentina
| | - Mounia Lagha
- IGMM, CNRS, Univ Montpellier, Montpellier, France.
| | - Marcelo Nollmann
- Centre de Biologie Structurale, CNRS UMR 5048, INSERM U1054, Univ Montpellier, Montpellier, France.
| |
Collapse
|
120
|
Abstract
Single-cell sequencing-based methods for profiling gene transcript levels have revealed substantial heterogeneity in expression levels among morphologically indistinguishable cells. This variability has important functional implications for tissue biology and disease states such as cancer. Mapping of epigenomic information such as chromatin accessibility, nucleosome positioning, histone tail modifications and enhancer-promoter interactions in both bulk-cell and single-cell samples has shown that these characteristics of chromatin state contribute to expression or repression of associated genes. Advances in single-cell epigenomic profiling methods are enabling high-resolution mapping of chromatin states in individual cells. Recent studies using these techniques provide evidence that variations in different aspects of chromatin organization collectively define gene expression heterogeneity among otherwise highly similar cells.
Collapse
Affiliation(s)
- Benjamin Carter
- Laboratory of Epigenome Biology, Systems Biology Center, NHLBI, NIH, Bethesda, MD, USA.
| | - Keji Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, NHLBI, NIH, Bethesda, MD, USA.
| |
Collapse
|
121
|
Understanding transcription across scales: From base pairs to chromosomes. Mol Cell 2021; 81:1601-1616. [PMID: 33770487 DOI: 10.1016/j.molcel.2021.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023]
Abstract
The influence of genome organization on transcription is central to our understanding of cell type specification. Higher-order genome organization is established through short- and long-range DNA interactions. Coordination of these interactions, from single atoms to entire chromosomes, plays a fundamental role in transcriptional control of gene expression. Loss of this coupling can result in disease. Analysis of transcriptional regulation typically involves disparate experimental approaches, from structural studies that define angstrom-level interactions to cell-biological and genomic approaches that assess mesoscale relationships. Thus, to fully understand the mechanisms that regulate gene expression, it is critical to integrate the findings gained across these distinct size scales. In this review, I illustrate fundamental ways in which cells regulate transcription in the context of genome organization.
Collapse
|
122
|
Tracing DNA paths and RNA profiles in cultured cells and tissues with ORCA. Nat Protoc 2021; 16:1647-1713. [PMID: 33619390 PMCID: PMC8525907 DOI: 10.1038/s41596-020-00478-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 11/26/2020] [Indexed: 01/31/2023]
Abstract
Chromatin conformation capture (3C) methods and fluorescent in situ hybridization (FISH) microscopy have been used to investigate the spatial organization of the genome. Although powerful, both techniques have limitations. Hi-C is challenging for low cell numbers and requires very deep sequencing to achieve its high resolution. In contrast, FISH can be done on small cell numbers and capture rare cell populations, but typically targets pairs of loci at a lower resolution. Here we detail a protocol for optical reconstruction of chromatin architecture (ORCA), a microscopy approach to trace the 3D DNA path within the nuclei of fixed tissues and cultured cells with a genomic resolution as fine as 2 kb and a throughput of ~10,000 cells per experiment. ORCA can identify structural features with comparable resolution to Hi-C while providing single-cell resolution and multimodal measurements characteristic of microscopy. We describe how to use this DNA labeling in parallel with multiplexed labeling of dozens of RNAs to relate chromatin structure and gene expression in the same cells. Oligopaint probe design, primary probe making, sample collection, cryosectioning and RNA/DNA primary probe hybridization can be completed in 1.5 weeks, while automated RNA/DNA barcode hybridization and RNA/DNA imaging typically takes 2-6 d for data collection and 2-7 d for the automated steps of image analysis.
Collapse
|
123
|
Payne AC, Chiang ZD, Reginato PL, Mangiameli SM, Murray EM, Yao CC, Markoulaki S, Earl AS, Labade AS, Jaenisch R, Church GM, Boyden ES, Buenrostro JD, Chen F. In situ genome sequencing resolves DNA sequence and structure in intact biological samples. Science 2021; 371:eaay3446. [PMID: 33384301 PMCID: PMC7962746 DOI: 10.1126/science.aay3446] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/17/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022]
Abstract
Understanding genome organization requires integration of DNA sequence and three-dimensional spatial context; however, existing genome-wide methods lack either base pair sequence resolution or direct spatial localization. Here, we describe in situ genome sequencing (IGS), a method for simultaneously sequencing and imaging genomes within intact biological samples. We applied IGS to human fibroblasts and early mouse embryos, spatially localizing thousands of genomic loci in individual nuclei. Using these data, we characterized parent-specific changes in genome structure across embryonic stages, revealed single-cell chromatin domains in zygotes, and uncovered epigenetic memory of global chromosome positioning within individual embryos. These results demonstrate how IGS can directly connect sequence and structure across length scales from single base pairs to whole organisms.
Collapse
Affiliation(s)
- Andrew C Payne
- Media Arts and Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Zachary D Chiang
- Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Paul L Reginato
- Media Arts and Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
- Department of Biological Engineering, MIT, Cambridge, MA, 02139, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | | | - Evan M Murray
- Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Chun-Chen Yao
- Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | | | - Andrew S Earl
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Ajay S Labade
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA 02139, USA
- Department of Biology, MIT, Cambridge, MA 02139, USA
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Edward S Boyden
- Media Arts and Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.
- Department of Biological Engineering, MIT, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
- McGovern Institute, MIT, Cambridge, MA 02139, USA
- Koch Institute, MIT, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Cambridge, MA 02139, USA
- Centers for Neurobiological Engineering and Extreme Bionics, MIT, Cambridge, MA 02139, USA
| | - Jason D Buenrostro
- Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Fei Chen
- Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
124
|
Liu L, Hyeon C. Revisiting the organization of Polycomb-repressed domains: 3D chromatin models from Hi-C compared with super-resolution imaging. Nucleic Acids Res 2021; 48:11486-11494. [PMID: 33095877 PMCID: PMC7672452 DOI: 10.1093/nar/gkaa932] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 09/22/2020] [Accepted: 10/06/2020] [Indexed: 01/07/2023] Open
Abstract
The accessibility of target gene, a factor critical for gene regulation, is controlled by epigenetic fine-tuning of chromatin organization. While there are multiple experimental techniques to study change of chromatin architecture with its epigenetic state, measurements from them are not always complementary. A qualitative discrepancy is noted between recent super-resolution imaging studies, particularly on Polycomb-group protein repressed domains in Drosophila cell. One of the studies shows that Polycomb-repressed domains are more compact than inactive domains and are segregated from neighboring active domains, whereas Hi-C and chromatin accessibility assay as well as the other super-resolution imaging studies paint a different picture. To examine this issue in detail, we analyzed Hi-C libraries of Drosophila chromosomes as well as distance constraints from one of the imaging studies, and modeled different epigenetic domains by employing a polymer-based approach. According to our chromosome models, both Polycomb-repressed and inactive domains are featured with a similar degree of intra-domain packaging and significant intermixing with adjacent active domains. The epigenetic domains explicitly visualized by our polymer model call for extra attention to the discrepancy of the super-resolution imaging with other measurements, although its precise physicochemical origin still remains to be elucidated.
Collapse
Affiliation(s)
- Lei Liu
- Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Changbong Hyeon
- Korea Institute for Advanced Study, Seoul 02455, Republic of Korea
| |
Collapse
|
125
|
Takei Y, Yun J, Zheng S, Ollikainen N, Pierson N, White J, Shah S, Thomassie J, Suo S, Eng CHL, Guttman M, Yuan GC, Cai L. Integrated spatial genomics reveals global architecture of single nuclei. Nature 2021; 590:344-350. [PMID: 33505024 PMCID: PMC7878433 DOI: 10.1038/s41586-020-03126-2] [Citation(s) in RCA: 250] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022]
Abstract
Identifying the relationships between chromosome structures, nuclear bodies, chromatin states, and gene expression is an overarching goal of nuclear organization studies1–4. Because individual cells appear to be highly variable at all these levels5, it is essential to map different modalities in the same cells. Here, we report the imaging of 3,660 chromosomal loci in single mouse embryonic stem cells (mESCs) by DNA seqFISH+, along with 17 chromatin marks and subnuclear structures by sequential immunofluorescence (IF) and the expression profile of 70 RNAs. We found many loci were invariantly associated with IF marks in single mESCs. These loci form “fixed points” in the nuclear organizations in single cells and often appear on the surfaces of nuclear bodies and zones defined by combinatorial chromatin marks. Furthermore, highly expressed genes appear to be pre-positioned to active nuclear zones, independent of bursting dynamics in single cells. Our analysis also uncovered several distinct mESCs subpopulations with characteristic combinatorial chromatin states. Using clonal analysis, we show that the global levels of some chromatin marks, such as H3K27me3 and macroH2A1 (mH2A1), are heritable over at least 3–4 generations, whereas other marks fluctuate on a faster time scale. This seqFISH+ based spatial multimodal approach can be used to explore nuclear organization and cell states in diverse biological systems.
Collapse
Affiliation(s)
- Yodai Takei
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Jina Yun
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Shiwei Zheng
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard T.H.Chan School of Public Health, Boston, MA, USA.,Department of Genetics and Genomic Sciences and Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Noah Ollikainen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Nico Pierson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Jonathan White
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Sheel Shah
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Julian Thomassie
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Shengbao Suo
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard T.H.Chan School of Public Health, Boston, MA, USA.,Department of Genetics and Genomic Sciences and Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chee-Huat Linus Eng
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Guo-Cheng Yuan
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard T.H.Chan School of Public Health, Boston, MA, USA.,Department of Genetics and Genomic Sciences and Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Long Cai
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
126
|
Birnie A, Dekker C. Genome-in-a-Box: Building a Chromosome from the Bottom Up. ACS NANO 2021; 15:111-124. [PMID: 33347266 PMCID: PMC7844827 DOI: 10.1021/acsnano.0c07397] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/16/2020] [Indexed: 05/24/2023]
Abstract
Chromosome structure and dynamics are essential for life, as the way that our genomes are spatially organized within cells is crucial for gene expression, differentiation, and genome transfer to daughter cells. There is a wide variety of methods available to study chromosomes, ranging from live-cell studies to single-molecule biophysics, which we briefly review. While these technologies have yielded a wealth of data, such studies still leave a significant gap between top-down experiments on live cells and bottom-up in vitro single-molecule studies of DNA-protein interactions. Here, we introduce "genome-in-a-box" (GenBox) as an alternative in vitro approach to build and study chromosomes, which bridges this gap. The concept is to assemble a chromosome from the bottom up by taking deproteinated genome-sized DNA isolated from live cells and subsequently add purified DNA-organizing elements, followed by encapsulation in cell-sized containers using microfluidics. Grounded in the rationale of synthetic cell research, the approach would enable to experimentally study emergent effects at the global genome level that arise from the collective action of local DNA-structuring elements. We review the various DNA-structuring elements present in nature, from nucleoid-associated proteins and SMC complexes to phase separation and macromolecular crowders. Finally, we discuss how GenBox can contribute to several open questions on chromosome structure and dynamics.
Collapse
Affiliation(s)
- Anthony Birnie
- Department of Bionanoscience, Kavli
Institute of Nanoscience Delft, Delft University
of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli
Institute of Nanoscience Delft, Delft University
of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
127
|
Order and stochasticity in the folding of individual Drosophila genomes. Nat Commun 2021; 12:41. [PMID: 33397980 PMCID: PMC7782554 DOI: 10.1038/s41467-020-20292-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Mammalian and Drosophila genomes are partitioned into topologically associating domains (TADs). Although this partitioning has been reported to be functionally relevant, it is unclear whether TADs represent true physical units located at the same genomic positions in each cell nucleus or emerge as an average of numerous alternative chromatin folding patterns in a cell population. Here, we use a single-nucleus Hi-C technique to construct high-resolution Hi-C maps in individual Drosophila genomes. These maps demonstrate chromatin compartmentalization at the megabase scale and partitioning of the genome into non-hierarchical TADs at the scale of 100 kb, which closely resembles the TAD profile in the bulk in situ Hi-C data. Over 40% of TAD boundaries are conserved between individual nuclei and possess a high level of active epigenetic marks. Polymer simulations demonstrate that chromatin folding is best described by the random walk model within TADs and is most suitably approximated by a crumpled globule build of Gaussian blobs at longer distances. We observe prominent cell-to-cell variability in the long-range contacts between either active genome loci or between Polycomb-bound regions, suggesting an important contribution of stochastic processes to the formation of the Drosophila 3D genome. Genomes are partitioned into topologically associating domains (TADs). Here the authors present single-nucleus Hi-C maps in Drosophila at 10 kb resolution, demonstrating the presence of chromatin compartments in individual nuclei, and partitioning of the genome into non-hierarchical TADs at the scale of 100 kb, which resembles population TAD profiles.
Collapse
|
128
|
Lelek M, Gyparaki MT, Beliu G, Schueder F, Griffié J, Manley S, Jungmann R, Sauer M, Lakadamyali M, Zimmer C. Single-molecule localization microscopy. NATURE REVIEWS. METHODS PRIMERS 2021; 1:39. [PMID: 35663461 PMCID: PMC9160414 DOI: 10.1038/s43586-021-00038-x] [Citation(s) in RCA: 394] [Impact Index Per Article: 98.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Single-molecule localization microscopy (SMLM) describes a family of powerful imaging techniques that dramatically improve spatial resolution over standard, diffraction-limited microscopy techniques and can image biological structures at the molecular scale. In SMLM, individual fluorescent molecules are computationally localized from diffraction-limited image sequences and the localizations are used to generate a super-resolution image or a time course of super-resolution images, or to define molecular trajectories. In this Primer, we introduce the basic principles of SMLM techniques before describing the main experimental considerations when performing SMLM, including fluorescent labelling, sample preparation, hardware requirements and image acquisition in fixed and live cells. We then explain how low-resolution image sequences are computationally processed to reconstruct super-resolution images and/or extract quantitative information, and highlight a selection of biological discoveries enabled by SMLM and closely related methods. We discuss some of the main limitations and potential artefacts of SMLM, as well as ways to alleviate them. Finally, we present an outlook on advanced techniques and promising new developments in the fast-evolving field of SMLM. We hope that this Primer will be a useful reference for both newcomers and practitioners of SMLM.
Collapse
Affiliation(s)
- Mickaël Lelek
- Imaging and Modeling Unit, Department of Computational
Biology, Institut Pasteur, Paris, France
- CNRS, UMR 3691, Paris, France
| | - Melina T. Gyparaki
- Department of Biology, University of Pennsylvania,
Philadelphia, PA, USA
| | - Gerti Beliu
- Department of Biotechnology and Biophysics Biocenter,
University of Würzburg, Würzburg, Germany
| | - Florian Schueder
- Faculty of Physics and Center for Nanoscience, Ludwig
Maximilian University, Munich, Germany
- Max Planck Institute of Biochemistry, Martinsried,
Germany
| | - Juliette Griffié
- Laboratory of Experimental Biophysics, Institute of
Physics, École Polytechnique Fédérale de Lausanne (EPFL),
Lausanne, Switzerland
| | - Suliana Manley
- Laboratory of Experimental Biophysics, Institute of
Physics, École Polytechnique Fédérale de Lausanne (EPFL),
Lausanne, Switzerland
- ;
;
;
;
| | - Ralf Jungmann
- Faculty of Physics and Center for Nanoscience, Ludwig
Maximilian University, Munich, Germany
- Max Planck Institute of Biochemistry, Martinsried,
Germany
- ;
;
;
;
| | - Markus Sauer
- Department of Biotechnology and Biophysics Biocenter,
University of Würzburg, Würzburg, Germany
- ;
;
;
;
| | - Melike Lakadamyali
- Department of Physiology, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman
School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, PA, USA
- ;
;
;
;
| | - Christophe Zimmer
- Imaging and Modeling Unit, Department of Computational
Biology, Institut Pasteur, Paris, France
- CNRS, UMR 3691, Paris, France
- ;
;
;
;
| |
Collapse
|
129
|
Abstract
The recent advent of genome-scale imaging has enabled single-cell omics analysis in a spatially resolved manner in intact cells and tissues. These advances allow gene expression profiling of individual cells, and hence in situ identification and spatial mapping of cell types, in complex tissues. The high spatial resolution of these approaches further allows determination of the spatial organizations of the genome and transcriptome inside cells, both of which are key regulatory mechanisms for gene expression.
Collapse
Affiliation(s)
- Xiaowei Zhuang
- Howard Hughes Medical Institute, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Department of Physics, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
130
|
Niu J, Zhang X, Li G, Yan P, Yan Q, Dai Q, Jin D, Shen X, Wang J, Zhang MQ, Gao J. A novel cytogenetic method to image chromatin interactions at subkilobase resolution: Tn5 transposase-based fluorescence in situ hybridization. J Genet Genomics 2020; 47:727-735. [PMID: 33750643 DOI: 10.1016/j.jgg.2020.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/18/2020] [Accepted: 04/17/2020] [Indexed: 01/02/2023]
Abstract
There is an increasing interest in understanding how three-dimensional organization of the genome is regulated. Different strategies have been used to identify genome-wide chromatin interactions. However, owing to current limitations in resolving genomic contacts, visualization and validation of these genomic loci at subkilobase resolution remain unsolved to date. Here, we describe Tn5 transposase-based fluorescence in situ hybridization (Tn5-FISH), a polymerase chain reaction-based, cost-effective imaging method, which can colocalize the genomic loci at subkilobase resolution, dissect genome architecture, and verify chromatin interactions detected by chromatin configuration capture-derived methods. To validate this method, short-range interactions in the keratin-encoding gene (KRT) locus in the topologically associated domain were imaged by triple-color Tn5-FISH, indicating that Tn5-FISH is very useful to verify short-range chromatin interactions inside the contact domain and TAD. Therefore, Tn5-FISH can be a powerful molecular tool for clinical detection of cytogenetic changes in numerous genetic diseases such as cancers.
Collapse
Affiliation(s)
- Jing Niu
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Xu Zhang
- Department of Automation, Tsinghua University, Beijing, 100084, China; Beijing Institute of Collaborative Innovation, Beijing 100094, China
| | - Guipeng Li
- Medi-X Institute, SUSTech Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China; Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Pixi Yan
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Qing Yan
- Department of Automation, Tsinghua University, Beijing, 100084, China; MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRist, Center for Synthetic & Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Qionghai Dai
- Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Dayong Jin
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology, Sydney, NSW, 2007, Australia; UTS-SUStech Joint Research Centre for Biomedical Materials and Devices, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xiaohua Shen
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Jichang Wang
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Michael Q Zhang
- School of Medicine, Tsinghua University, Beijing, 100084, China; Department of Automation, Tsinghua University, Beijing, 100084, China; MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRist, Center for Synthetic & Systems Biology, Tsinghua University, Beijing, 100084, China; Department of Biological Sciences, Center for Systems Biology, The University of Texas, Dallas, 800 West Campbell Road, RL11, Richardson, TX, 75080-3021, USA
| | - Juntao Gao
- Department of Automation, Tsinghua University, Beijing, 100084, China; MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRist, Center for Synthetic & Systems Biology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
131
|
Abstract
This protocol describes a high-throughput and multiplexed DNA fluorescence in situ hybridization method to trace chromosome conformation in Caenorhabditis elegans embryos. This approach generates single-cell and single-chromosome localization data that can be used to determine chromosome conformation and assess the heterogeneity of structures that exist in vivo. This strategy is flexible through modifications to the probe design steps to interrogate chromosome structure at the desired genomic scale (small-scale loops to whole-chromosome organization). For complete details on the use and execution of this protocol, please refer to Sawh et al. (2020).
Collapse
Affiliation(s)
- Ahilya N. Sawh
- Biozentrum, University of Basel, 4056 Basel-Stadt, Switzerland
| | - Susan E. Mango
- Biozentrum, University of Basel, 4056 Basel-Stadt, Switzerland
| |
Collapse
|
132
|
Hu M, Yang B, Cheng Y, Radda JSD, Chen Y, Liu M, Wang S. ProbeDealer is a convenient tool for designing probes for highly multiplexed fluorescence in situ hybridization. Sci Rep 2020; 10:22031. [PMID: 33328483 PMCID: PMC7745008 DOI: 10.1038/s41598-020-76439-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/28/2020] [Indexed: 11/25/2022] Open
Abstract
Fluorescence in situ hybridization (FISH) is a powerful method to visualize the spatial positions of specific genomic loci and RNA species. Recent technological advances have leveraged FISH to visualize these features in a highly multiplexed manner. Notable examples include chromatin tracing, RNA multiplexed error-robust FISH (MERFISH), multiplexed imaging of nucleome architectures (MINA), and sequential single-molecule RNA FISH. However, one obstacle to the broad adoption of these methods is the complexity of the multiplexed FISH probe design. In this paper, we introduce an easy-to-use, versatile, and all-in-one application called ProbeDealer to design probes for a variety of multiplexed FISH techniques and their combinations. ProbeDealer offers a one-stop shop for multiplexed FISH design needs of the research community.
Collapse
Affiliation(s)
- Mengwei Hu
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, 06510, USA
| | - Bing Yang
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, 06510, USA
| | - Yubao Cheng
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, 06510, USA
| | - Jonathan S D Radda
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, 06510, USA
| | - Yanbo Chen
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, 06510, USA
| | - Miao Liu
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, 06510, USA
| | - Siyuan Wang
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, 06510, USA. .,Department of Cell Biology, Yale School of Medicine, Yale University, New Haven, CT, 06510, USA. .,Yale Combined Program in the Biological and Biomedical Sciences, Yale University School of Medicine, New Haven, CT, USA. .,Molecular Cell Biology, Genetics and Development Program, Yale University School of Medicine, New Haven, CT, USA. .,Biochemistry, Quantitative Biology, Biophysics and Structural Biology Program, Yale University School of Medicine, New Haven, CT, USA. .,M.D.-Ph.D. Program, Yale University School of Medicine, New Haven, CT, USA. .,Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT, USA. .,Yale Liver Center, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
133
|
Feng Y, Wang Y, Wang X, He X, Yang C, Naseri A, Pederson T, Zheng J, Zhang S, Xiao X, Xie W, Ma H. Simultaneous epigenetic perturbation and genome imaging reveal distinct roles of H3K9me3 in chromatin architecture and transcription. Genome Biol 2020; 21:296. [PMID: 33292531 PMCID: PMC7722448 DOI: 10.1186/s13059-020-02201-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Despite the long-observed correlation between H3K9me3, chromatin architecture, and transcriptional repression, how H3K9me3 regulates genome higher-order organization and transcriptional activity in living cells remains unclear. RESULT Here, we develop EpiGo (Epigenetic perturbation induced Genome organization)-KRAB to introduce H3K9me3 at hundreds of loci spanning megabases on human chromosome 19 and simultaneously track genome organization. EpiGo-KRAB is sufficient to induce genomic clustering and de novo heterochromatin-like domain formation, which requires SETDB1, a methyltransferase of H3K9me3. Unexpectedly, EpiGo-KRAB-induced heterochromatin-like domain does not result in widespread gene repression except a small set of genes with concurrent loss of H3K4me3 and H3K27ac. Ectopic H3K9me3 appears to spread in inactive regions but is largely restricted from transcriptional initiation sites in active regions. Finally, Hi-C analysis showed that EpiGo-KRAB reshapes existing compartments mainly at compartment boundaries. CONCLUSIONS These results reveal the role of H3K9me3 in genome organization could be partially separated from its function in gene repression.
Collapse
Affiliation(s)
- Ying Feng
- School of Biotechnology, East China University of Science and Technology, Shanghai, China; School of Life Science and Technology, ShanghaiTech University,, Shanghai, China
| | - Yao Wang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Xiangnan Wang
- School of Life Science and Technology, ShanghaiTech University,, Beijing, China
| | - Xiaohui He
- School of Life Science and Technology, ShanghaiTech University,, Beijing, China
| | - Chen Yang
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Ardalan Naseri
- Department of Computer Science, University of Central Florida, Orlando, FL, USA
| | - Thoru Pederson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jing Zheng
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Shaojie Zhang
- Department of Computer Science, University of Central Florida, Orlando, FL, USA
| | - Xiao Xiao
- School of Biotechnology, East China University of Science and Technology,, Shanghai, China
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| | - Hanhui Ma
- School of Life Science and Technology, ShanghaiTech University,, Beijing, China.
| |
Collapse
|
134
|
Oudelaar AM, Higgs DR. The relationship between genome structure and function. Nat Rev Genet 2020; 22:154-168. [PMID: 33235358 DOI: 10.1038/s41576-020-00303-x] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2020] [Indexed: 02/06/2023]
Abstract
Precise patterns of gene expression in metazoans are controlled by three classes of regulatory elements: promoters, enhancers and boundary elements. During differentiation and development, these elements form specific interactions in dynamic higher-order chromatin structures. However, the relationship between genome structure and its function in gene regulation is not completely understood. Here we review recent progress in this field and discuss whether genome structure plays an instructive role in regulating gene expression or is a reflection of the activity of the regulatory elements of the genome.
Collapse
Affiliation(s)
| | - Douglas R Higgs
- Laboratory of Gene Regulation, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
135
|
Tjalsma SJ, de Laat W. Novel orthogonal methods to uncover the complexity and diversity of nuclear architecture. Curr Opin Genet Dev 2020; 67:10-17. [PMID: 33220512 DOI: 10.1016/j.gde.2020.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/29/2020] [Accepted: 10/08/2020] [Indexed: 12/22/2022]
Abstract
Recent years have seen a vast expansion of knowledge on three-dimensional (3D) genome organization. The majority of studies on chromosome topology consists of pairwise interaction data of bulk populations of cells and therefore conceals heterogenic and more complex folding patterns. Here, we discuss novel methodologies to study the variation in genome topologies between different cells and techniques that allow analysis of complex, multi-way interactions. These technologies will aid the interpretation of genome-wide chromosome conformation data and provide strategies to further dissect the interplay between genome architecture and transcription regulation.
Collapse
Affiliation(s)
- Sjoerd Jd Tjalsma
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Wouter de Laat
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands.
| |
Collapse
|
136
|
Shaban HA, Barth R, Bystricky K. Navigating the crowd: visualizing coordination between genome dynamics, structure, and transcription. Genome Biol 2020; 21:278. [PMID: 33203432 PMCID: PMC7670612 DOI: 10.1186/s13059-020-02185-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
The eukaryotic genome is hierarchically structured yet highly dynamic. Regulating transcription in this environment demands a high level of coordination to permit many proteins to interact with chromatin fiber at appropriate sites in a timely manner. We describe how recent advances in quantitative imaging techniques overcome caveats of sequencing-based methods (Hi-C and related) by enabling direct visualization of transcription factors and chromatin at high resolution, from single genes to the whole nucleus. We discuss the contribution of fluorescence imaging to deciphering the principles underlying this coordination within the crowded nuclear space in living cells and discuss challenges ahead.
Collapse
Affiliation(s)
- Haitham A Shaban
- Spectroscopy Department, Physics Division, National Research Centre, Dokki, Cairo, 12622, Egypt.
- Current Address: Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Roman Barth
- Department of Bionanoscience, Delft University of Technology, 2628 CJ, Delft, The Netherlands
| | - Kerstin Bystricky
- Laboratoire de Biologie Moléculaire Eucaryote (LBME), Centre de Biologie Intégrative (CBI), CNRS, UPS, University of Toulouse, 31062, Toulouse, France.
- Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
137
|
Hu M, Wang S. Chromatin Tracing: Imaging 3D Genome and Nucleome. Trends Cell Biol 2020; 31:5-8. [PMID: 33191055 DOI: 10.1016/j.tcb.2020.10.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022]
Abstract
Correct 3D genome organization is essential for the proper functioning of the genome. Recent advances in image-based 3D genomics techniques have enabled direct tracing of chromatin folding and multiplexed imaging of nucleome architectures in single cells of several important biological systems. Here, we discuss these advances and the future directions of image-based 3D genomics.
Collapse
Affiliation(s)
- Mengwei Hu
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Siyuan Wang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA; Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA; Yale Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA; Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA; Biochemistry, Quantitative Biology, Biophysics, and Structural Biology Program, Yale University, New Haven, CT, USA; MD-PhD Program, Yale University, New Haven, CT, USA; Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT, USA; Yale Liver Center, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
138
|
Galan S, Machnik N, Kruse K, Díaz N, Marti-Renom MA, Vaquerizas JM. CHESS enables quantitative comparison of chromatin contact data and automatic feature extraction. Nat Genet 2020; 52:1247-1255. [PMID: 33077914 PMCID: PMC7610641 DOI: 10.1038/s41588-020-00712-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/04/2020] [Indexed: 12/11/2022]
Abstract
Dynamic changes in the three-dimensional (3D) organization of chromatin are associated with central biological processes, such as transcription, replication and development. Therefore, the comprehensive identification and quantification of these changes is fundamental to understanding of evolutionary and regulatory mechanisms. Here, we present Comparison of Hi-C Experiments using Structural Similarity (CHESS), an algorithm for the comparison of chromatin contact maps and automatic differential feature extraction. We demonstrate the robustness of CHESS to experimental variability and showcase its biological applications on (1) interspecies comparisons of syntenic regions in human and mouse models; (2) intraspecies identification of conformational changes in Zelda-depleted Drosophila embryos; (3) patient-specific aberrant chromatin conformation in a diffuse large B-cell lymphoma sample; and (4) the systematic identification of chromatin contact differences in high-resolution Capture-C data. In summary, CHESS is a computationally efficient method for the comparison and classification of changes in chromatin contact data.
Collapse
Affiliation(s)
- Silvia Galan
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
- National Centre for Genomic Analysis, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Nick Machnik
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Kai Kruse
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Noelia Díaz
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Marc A Marti-Renom
- National Centre for Genomic Analysis, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | - Juan M Vaquerizas
- Max Planck Institute for Molecular Biomedicine, Münster, Germany.
- Medical Research Council London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
139
|
Rajewsky N, Almouzni G, Gorski SA, Aerts S, Amit I, Bertero MG, Bock C, Bredenoord AL, Cavalli G, Chiocca S, Clevers H, De Strooper B, Eggert A, Ellenberg J, Fernández XM, Figlerowicz M, Gasser SM, Hubner N, Kjems J, Knoblich JA, Krabbe G, Lichter P, Linnarsson S, Marine JC, Marioni JC, Marti-Renom MA, Netea MG, Nickel D, Nollmann M, Novak HR, Parkinson H, Piccolo S, Pinheiro I, Pombo A, Popp C, Reik W, Roman-Roman S, Rosenstiel P, Schultze JL, Stegle O, Tanay A, Testa G, Thanos D, Theis FJ, Torres-Padilla ME, Valencia A, Vallot C, van Oudenaarden A, Vidal M, Voet T. LifeTime and improving European healthcare through cell-based interceptive medicine. Nature 2020; 587:377-386. [PMID: 32894860 PMCID: PMC7656507 DOI: 10.1038/s41586-020-2715-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/25/2020] [Indexed: 01/14/2023]
Abstract
Here we describe the LifeTime Initiative, which aims to track, understand and target human cells during the onset and progression of complex diseases, and to analyse their response to therapy at single-cell resolution. This mission will be implemented through the development, integration and application of single-cell multi-omics and imaging, artificial intelligence and patient-derived experimental disease models during the progression from health to disease. The analysis of large molecular and clinical datasets will identify molecular mechanisms, create predictive computational models of disease progression, and reveal new drug targets and therapies. The timely detection and interception of disease embedded in an ethical and patient-centred vision will be achieved through interactions across academia, hospitals, patient associations, health data management systems and industry. The application of this strategy to key medical challenges in cancer, neurological and neuropsychiatric disorders, and infectious, chronic inflammatory and cardiovascular diseases at the single-cell level will usher in cell-based interceptive medicine in Europe over the next decade.
Collapse
Affiliation(s)
- Nikolaus Rajewsky
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
- Charité-Universitätsmedizin, Berlin, Germany.
- Berlin Institute of Health (BIH), Berlin, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany.
| | - Geneviève Almouzni
- Institut Curie, CNRS, PSL Research University, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue contre le cancer, Paris, France.
| | - Stanislaw A Gorski
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
| | - Stein Aerts
- VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Michela G Bertero
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Annelien L Bredenoord
- Department of Medical Humanities, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Giacomo Cavalli
- Institute of Human Genetics, UMR 9002, CNRS and University of Montpellier, Montpellier, France
| | - Susanna Chiocca
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, The Netherlands
- University Medical Center Utrecht, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
- The Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Bart De Strooper
- VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
- UK Dementia Research Institute at UCL, University College London, London, UK
| | - Angelika Eggert
- Berlin Institute of Health (BIH), Berlin, Germany
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jan Ellenberg
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Marek Figlerowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Faculty of Natural Sciences, University of Basel, Basel, Switzerland
| | - Norbert Hubner
- Charité-Universitätsmedizin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Jørgen Kjems
- Department of Molecular Biology and Genetics (MBG), Aarhus University, Aarhus, Denmark
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus, Denmark
| | - Jürgen A Knoblich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
- Medical University of Vienna, Vienna, Austria
| | - Grietje Krabbe
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sten Linnarsson
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Stockholm, Sweden
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - John C Marioni
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Marc A Marti-Renom
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- ICREA, Barcelona, Spain
| | - Mihai G Netea
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Dörthe Nickel
- Institut Curie, PSL Research University, Paris, France
| | - Marcelo Nollmann
- Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, Université de Montpellier, Montpellier, France
| | | | - Helen Parkinson
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK
| | - Stefano Piccolo
- Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy
- IFOM, The FIRC Institute of Molecular Oncology, Padua, Italy
| | - Inês Pinheiro
- Institut Curie, CNRS, PSL Research University, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue contre le cancer, Paris, France
| | - Ana Pombo
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Institute for Biology, Humboldt University of Berlin, Berlin, Germany
| | - Christian Popp
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Wolf Reik
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Epigenetics Programme, Babraham Institute, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Sergio Roman-Roman
- Department of Translational Research, Institut Curie, PSL Research University, Paris, France
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
- University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Joachim L Schultze
- Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- PRECISE, Platform for Single Cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases and the University of Bonn, Bonn, Germany
| | - Oliver Stegle
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Amos Tanay
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Giuseppe Testa
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
- Human Technopole, Milan, Italy
| | - Dimitris Thanos
- Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Department of Mathematics, Technical University of Munich, Munich, Germany
| | - Maria-Elena Torres-Padilla
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München - German Research Center for Environmental Health, Munich, Germany
- Faculty of Biology, Ludwig-Maximilians Universität, Munich, Germany
| | - Alfonso Valencia
- ICREA, Barcelona, Spain
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Céline Vallot
- Department of Translational Research, Institut Curie, PSL Research University, Paris, France
- CNRS UMR3244, Institut Curie, PSL University, Paris, France
| | - Alexander van Oudenaarden
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, The Netherlands
- University Medical Center Utrecht, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Marie Vidal
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Thierry Voet
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| |
Collapse
|
140
|
Huang Y, Neijts R, de Laat W. How chromosome topologies get their shape: views from proximity ligation and microscopy methods. FEBS Lett 2020; 594:3439-3449. [PMID: 33073863 DOI: 10.1002/1873-3468.13961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/08/2020] [Accepted: 10/11/2020] [Indexed: 11/09/2022]
Abstract
The 3D organization of our genome is an important determinant for the transcriptional output of a gene in (patho)physiological contexts. The spatial organization of linear chromosomes within nucleus is dominantly inferred using two distinct approaches, chromosome conformation capture (3C) and DNA fluorescent in situ hybridization (DNA-FISH). While 3C and its derivatives score genomic interaction frequencies based on proximity ligation events, DNA-FISH methods measure physical distances between genomic loci. Despite these approaches probe different characteristics of chromosomal topologies, they provide a coherent picture of how chromosomes are organized in higher-order structures encompassing chromosome territories, compartments, and topologically associating domains. Yet, at the finer topological level of promoter-enhancer communication, the imaging-centered and the 3C methods give more divergent and sometimes seemingly paradoxical results. Here, we compare and contrast observations made applying visual DNA-FISH and molecular 3C approaches. We emphasize that the 3C approach, due to its inherently competitive ligation step, measures only 'relative' proximities. A 3C interaction enriched between loci, therefore does not necessarily translates into a decrease in absolute spatial distance. Hence, we advocate caution when modeling chromosome conformations.
Collapse
Affiliation(s)
- Yike Huang
- Oncode Institute, Hubrecht Institute-KNAW, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Roel Neijts
- Oncode Institute, Hubrecht Institute-KNAW, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Wouter de Laat
- Oncode Institute, Hubrecht Institute-KNAW, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
141
|
Tsai A, Galupa R, Crocker J. Robust and efficient gene regulation through localized nuclear microenvironments. Development 2020; 147:147/19/dev161430. [PMID: 33020073 DOI: 10.1242/dev.161430] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Developmental enhancers drive gene expression in specific cell types during animal development. They integrate signals from many different sources mediated through the binding of transcription factors, producing specific responses in gene expression. Transcription factors often bind low-affinity sequences for only short durations. How brief, low-affinity interactions drive efficient transcription and robust gene expression is a central question in developmental biology. Localized high concentrations of transcription factors have been suggested as a possible mechanism by which to use these enhancer sites effectively. Here, we discuss the evidence for such transcriptional microenvironments, mechanisms for their formation and the biological consequences of such sub-nuclear compartmentalization for developmental decisions and evolution.
Collapse
Affiliation(s)
- Albert Tsai
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Rafael Galupa
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Justin Crocker
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| |
Collapse
|
142
|
Misteli T. The Self-Organizing Genome: Principles of Genome Architecture and Function. Cell 2020; 183:28-45. [PMID: 32976797 PMCID: PMC7541718 DOI: 10.1016/j.cell.2020.09.014] [Citation(s) in RCA: 384] [Impact Index Per Article: 76.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/03/2020] [Accepted: 09/02/2020] [Indexed: 01/17/2023]
Abstract
Genomes have complex three-dimensional architectures. The recent convergence of genetic, biochemical, biophysical, and cell biological methods has uncovered several fundamental principles of genome organization. They highlight that genome function is a major driver of genome architecture and that structural features of chromatin act as modulators, rather than binary determinants, of genome activity. The interplay of these principles in the context of self-organization can account for the emergence of structural chromatin features, the diversity and single-cell heterogeneity of nuclear architecture in cell types and tissues, and explains evolutionarily conserved functional features of genomes, including plasticity and robustness.
Collapse
Affiliation(s)
- Tom Misteli
- National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
143
|
Editorial overview: Diving into the Genome. Curr Opin Genet Dev 2020; 61:iii-vi. [PMID: 32950132 DOI: 10.1016/j.gde.2020.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
144
|
Su JH, Zheng P, Kinrot SS, Bintu B, Zhuang X. Genome-Scale Imaging of the 3D Organization and Transcriptional Activity of Chromatin. Cell 2020; 182:1641-1659.e26. [PMID: 32822575 PMCID: PMC7851072 DOI: 10.1016/j.cell.2020.07.032] [Citation(s) in RCA: 335] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/19/2020] [Accepted: 07/21/2020] [Indexed: 12/30/2022]
Abstract
The 3D organization of chromatin regulates many genome functions. Our understanding of 3D genome organization requires tools to directly visualize chromatin conformation in its native context. Here we report an imaging technology for visualizing chromatin organization across multiple scales in single cells with high genomic throughput. First we demonstrate multiplexed imaging of hundreds of genomic loci by sequential hybridization, which allows high-resolution conformation tracing of whole chromosomes. Next we report a multiplexed error-robust fluorescence in situ hybridization (MERFISH)-based method for genome-scale chromatin tracing and demonstrate simultaneous imaging of more than 1,000 genomic loci and nascent transcripts of more than 1,000 genes together with landmark nuclear structures. Using this technology, we characterize chromatin domains, compartments, and trans-chromosomal interactions and their relationship to transcription in single cells. We envision broad application of this high-throughput, multi-scale, and multi-modal imaging technology, which provides an integrated view of chromatin organization in its native structural and functional context.
Collapse
Affiliation(s)
- Jun-Han Su
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, and Department of Physics, Harvard University, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Pu Zheng
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, and Department of Physics, Harvard University, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Seon S Kinrot
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, and Department of Physics, Harvard University, Cambridge, MA 02138, USA; Graduate Program in Biophysics, Harvard University, Cambridge, MA 02138, USA
| | - Bogdan Bintu
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, and Department of Physics, Harvard University, Cambridge, MA 02138, USA.
| | - Xiaowei Zhuang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, and Department of Physics, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
145
|
Kantidze OL, Razin SV. Weak interactions in higher-order chromatin organization. Nucleic Acids Res 2020; 48:4614-4626. [PMID: 32313950 PMCID: PMC7229822 DOI: 10.1093/nar/gkaa261] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 12/20/2022] Open
Abstract
The detailed principles of the hierarchical folding of eukaryotic chromosomes have been revealed during the last two decades. Along with structures composing three-dimensional (3D) genome organization (chromatin compartments, topologically associating domains, chromatin loops, etc.), the molecular mechanisms that are involved in their establishment and maintenance have been characterized. Generally, protein-protein and protein-DNA interactions underlie the spatial genome organization in eukaryotes. However, it is becoming increasingly evident that weak interactions, which exist in biological systems, also contribute to the 3D genome. Here, we provide a snapshot of our current understanding of the role of the weak interactions in the establishment and maintenance of the 3D genome organization. We discuss how weak biological forces, such as entropic forces operating in crowded solutions, electrostatic interactions of the biomolecules, liquid-liquid phase separation, DNA supercoiling, and RNA environment participate in chromosome segregation into structural and functional units and drive intranuclear functional compartmentalization.
Collapse
Affiliation(s)
- Omar L Kantidze
- Institute of Gene Biology Russian Academy of Sciences, 119334 Moscow, Russia
| | - Sergey V Razin
- Institute of Gene Biology Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
146
|
Chromatin and transcriptome changes in human myoblasts show spatio-temporal correlations and demonstrate DPP4 inhibition in differentiated myotubes. Sci Rep 2020; 10:14336. [PMID: 32868771 PMCID: PMC7459101 DOI: 10.1038/s41598-020-70756-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/03/2020] [Indexed: 12/03/2022] Open
Abstract
Although less attention was paid to understanding physical localization changes in cell nuclei recently, depicting chromatin interaction maps is a topic of high interest. Here, we focused on defining extensive physical changes in chromatin organization in the process of skeletal myoblast differentiation. Based on RNA profiling data and 3D imaging of myogenic (NCAM1, DES, MYOG, ACTN3, MYF5, MYF6, ACTN2, and MYH2) and other selected genes (HPRT1, CDH15, DPP4 and VCAM1), we observed correlations between the following: (1) expression change and localization, (2) a gene and its genomic neighbourhood expression and (3) intra-chromosome and microscopical locus-centromere distances. In particular, we demonstrated the negative regulation of DPP4 mRNA (p < 0.001) and protein (p < 0.05) in differentiated myotubes, which coincided with a localization change of the DPP4 locus towards the nuclear lamina (p < 0.001) and chromosome 2 centromere (p < 0.001). Furthermore, we discuss the possible role of DPP4 in myoblasts (supported by an inhibition assay). We also provide positive regulation examples (VCAM1 and MYH2). Overall, we describe for the first time existing mechanisms of spatial gene expression regulation in myoblasts that might explain the issue of heterogenic responses observed during muscle regenerative therapies.
Collapse
|
147
|
Luppino JM, Park DS, Nguyen SC, Lan Y, Xu Z, Yunker R, Joyce EF. Cohesin promotes stochastic domain intermingling to ensure proper regulation of boundary-proximal genes. Nat Genet 2020; 52:840-848. [PMID: 32572210 PMCID: PMC7416539 DOI: 10.1038/s41588-020-0647-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 05/18/2020] [Indexed: 01/10/2023]
Abstract
The human genome can be segmented into topologically associating domains (TADs), which have been proposed to spatially sequester genes and regulatory elements through chromatin looping. Interactions between TADs have also been suggested, presumably because of variable boundary positions across individual cells. However, the nature, extent and consequence of these dynamic boundaries remain unclear. Here, we combine high-resolution imaging with Oligopaint technology to quantify the interaction frequencies across both weak and strong boundaries. We find that chromatin intermingling across population-defined boundaries is widespread but that the extent of permissibility is locus-specific. Cohesin depletion, which abolishes domain formation at the population level, does not induce ectopic interactions but instead reduces interactions across all boundaries tested. In contrast, WAPL or CTCF depletion increases inter-domain contacts in a cohesin-dependent manner. Reduced chromatin intermingling due to cohesin loss affects the topology and transcriptional bursting frequencies of genes near boundaries. We propose that cohesin occasionally bypasses boundaries to promote incorporation of boundary-proximal genes into neighboring domains.
Collapse
Affiliation(s)
- Jennifer M Luppino
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel S Park
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Son C Nguyen
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yemin Lan
- Department of Cell and Developmental Biology, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhuxuan Xu
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rebecca Yunker
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eric F Joyce
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
148
|
Nguyen HQ, Chattoraj S, Castillo D, Nguyen SC, Nir G, Lioutas A, Hershberg EA, Martins NMC, Reginato PL, Hannan M, Beliveau BJ, Church GM, Daugharthy ER, Marti-Renom MA, Wu CT. 3D mapping and accelerated super-resolution imaging of the human genome using in situ sequencing. Nat Methods 2020; 17:822-832. [PMID: 32719531 PMCID: PMC7537785 DOI: 10.1038/s41592-020-0890-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 06/08/2020] [Indexed: 12/31/2022]
Abstract
There is a need for methods that can image chromosomes with genome-wide coverage, as well as greater genomic and optical resolution. We introduce OligoFISSEQ, a suite of three methods that leverage fluorescence in situ sequencing (FISSEQ) of barcoded Oligopaint probes to enable the rapid visualization of many targeted genomic regions. Applying OligoFISSEQ to human diploid fibroblast cells, we show how four rounds of sequencing are sufficient to produce 3D maps of 36 genomic targets across six chromosomes in hundreds to thousands of cells, implying a potential to image thousands of targets in only five to eight rounds of sequencing. We also use OligoFISSEQ to trace chromosomes at finer resolution, following the path of the X chromosome through 46 regions, with separate studies showing compatibility of OligoFISSEQ with immunocytochemistry. Finally, we combined OligoFISSEQ with OligoSTORM, laying the foundation for accelerated single-molecule super-resolution imaging of large swaths of, if not entire, human genomes.
Collapse
Affiliation(s)
- Huy Q Nguyen
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | | | - David Castillo
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Son C Nguyen
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Guy Nir
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute, Harvard Medical School, Boston, MA, USA
| | | | - Elliot A Hershberg
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Paul L Reginato
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute, Harvard Medical School, Boston, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mohammed Hannan
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Brian J Beliveau
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute, Harvard Medical School, Boston, MA, USA
| | - Evan R Daugharthy
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute, Harvard Medical School, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- ReadCoor, Cambridge, MA, USA
- ReadCoor, Cambridge, MA, USA
| | - Marc A Marti-Renom
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- CRG, BIST, Barcelona, Spain.
- Pompeu Fabra University, Barcelona, Spain.
- ICREA, Barcelona, Spain.
| | - C-Ting Wu
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Wyss Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
149
|
Conte M, Fiorillo L, Bianco S, Chiariello AM, Esposito A, Nicodemi M. Polymer physics indicates chromatin folding variability across single-cells results from state degeneracy in phase separation. Nat Commun 2020; 11:3289. [PMID: 32620890 PMCID: PMC7335158 DOI: 10.1038/s41467-020-17141-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/10/2020] [Indexed: 11/15/2022] Open
Abstract
The spatial organization of chromosomes has key functional roles, yet how chromosomes fold remains poorly understood at the single-molecule level. Here, we employ models of polymer physics to investigate DNA loci in human HCT116 and IMR90 wild-type and cohesin depleted cells. Model predictions on single-molecule structures are validated against single-cell imaging data, providing evidence that chromosomal architecture is controlled by a thermodynamics mechanism of polymer phase separation whereby chromatin self-assembles in segregated globules by combinatorial interactions of chromatin factors that include CTCF and cohesin. The thermodynamics degeneracy of single-molecule conformations results in broad structural and temporal variability of TAD-like contact patterns. Globules establish stable environments where specific contacts are highly favored over stochastic encounters. Cohesin depletion reverses phase separation into randomly folded states, erasing average interaction patterns. Overall, globule phase separation appears to be a robust yet reversible mechanism of chromatin organization where stochasticity and specificity coexist.
Collapse
Affiliation(s)
- Mattia Conte
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126, Naples, Italy
| | - Luca Fiorillo
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126, Naples, Italy
| | - Simona Bianco
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126, Naples, Italy
| | - Andrea M Chiariello
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126, Naples, Italy
| | - Andrea Esposito
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126, Naples, Italy
| | - Mario Nicodemi
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126, Naples, Italy.
- Berlin Institute for Medical Systems Biology, Max-Delbrück Centre (MDC) for Molecular Medicine, Berlin, Germany.
- Berlin Institute of Health (BIH), MDC-Berlin, Berlin, Germany.
| |
Collapse
|
150
|
Abstract
Transcription in several organisms from certain bacteria to humans has been observed to be stochastic in nature: toggling between active and inactive states. Periods of active nascent RNA synthesis known as bursts represent individual gene activation events in which multiple polymerases are initiated. Therefore, bursting is the single locus illustration of both gene activation and repression. Although transcriptional bursting was originally observed decades ago, only recently have technological advances enabled the field to begin elucidating gene regulation at the single-locus level. In this review, we focus on how biochemical, genomic, and single-cell data describe the regulatory steps of transcriptional bursts.
Collapse
Affiliation(s)
- Joseph Rodriguez
- National Institute of Environmental Health Sciences, Durham, North Carolina 27709, USA
| | - Daniel R. Larson
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| |
Collapse
|