101
|
Abdisalaam S, Mukherjee S, Bhattacharya S, Kumari S, Sinha D, Ortega J, Li GM, Sadek H, Krishnan S, Asaithamby A. NBS1-CtIP-mediated DNA end resection suppresses cGAS binding to micronuclei. Nucleic Acids Res 2022; 50:2681-2699. [PMID: 35189637 PMCID: PMC8934670 DOI: 10.1093/nar/gkac079] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 01/12/2022] [Accepted: 01/25/2022] [Indexed: 01/07/2023] Open
Abstract
Cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) is activated in cells with defective DNA damage repair and signaling (DDR) factors, but a direct role for DDR factors in regulating cGAS activation in response to micronuclear DNA is still poorly understood. Here, we provide novel evidence that Nijmegen breakage syndrome 1 (NBS1) protein, a well-studied DNA double-strand break (DSB) sensor-in coordination with Ataxia Telangiectasia Mutated (ATM), a protein kinase, and Carboxy-terminal binding protein 1 interacting protein (CtIP), a DNA end resection factor-functions as an upstream regulator that prevents cGAS from binding micronuclear DNA. When NBS1 binds to micronuclear DNA via its fork-head-associated domain, it recruits CtIP and ATM via its N- and C-terminal domains, respectively. Subsequently, ATM stabilizes NBS1's interaction with micronuclear DNA, and CtIP converts DSB ends into single-strand DNA ends; these two key events prevent cGAS from binding micronuclear DNA. Additionally, by using a cGAS tripartite system, we show that cells lacking NBS1 not only recruit cGAS to a major fraction of micronuclear DNA but also activate cGAS in response to these micronuclear DNA. Collectively, our results underscore how NBS1 and its binding partners prevent cGAS from binding micronuclear DNA, in addition to their classical functions in DDR signaling.
Collapse
Affiliation(s)
- Salim Abdisalaam
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shibani Mukherjee
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Souparno Bhattacharya
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sharda Kumari
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Debapriya Sinha
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Janice Ortega
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Guo-Min Li
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hesham A Sadek
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sunil Krishnan
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL 32082, USA
| | - Aroumougame Asaithamby
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
102
|
Long ZJ, Wang JD, Xu JQ, Lei XX, Liu Q. cGAS/STING cross-talks with cell cycle and potentiates cancer immunotherapy. Mol Ther 2022; 30:1006-1017. [PMID: 35121107 PMCID: PMC8899703 DOI: 10.1016/j.ymthe.2022.01.044] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/03/2022] [Accepted: 01/31/2022] [Indexed: 11/30/2022] Open
Abstract
The correct duplication and transfer of genetic material to daughter cells is the major event of cell division. Dysfunction of DNA replication or chromosome segregation presents challenges in cancer initiation and development as well as opportunities for cancer treatment. Cyclic GMP-AMP synthase (cGAS) of the innate immune system detects cytoplasmic DNA and mediates downstream immune responses through the molecule stimulator of interferon genes (STING). However, how cytosolic DNA sensor cGAS participates in guaranteeing accurate cell division and preventing tumorigenesis is still unclear. Recent evidence indicates malfunction of cGAS/STING pathway in cancer progression. Cell cycle-targeted therapy synergizes with immunotherapy via cGAS/STING activation, leading to promising therapeutic benefit. Here, we review the interactions between cell cycle regulation and cGAS/STING signaling, thus enabling us to understand the role of cGAS/STING in cancer initiation, development, and treatment.
Collapse
Affiliation(s)
- Zi-Jie Long
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China; Institute of Hematology, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China.
| | - Jun-Dan Wang
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China,Institute of Hematology, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China
| | - Jue-Qiong Xu
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China,Institute of Hematology, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China
| | - Xin-Xing Lei
- Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, China,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou 510060, China
| | - Quentin Liu
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China; Institute of Hematology, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China; Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou 510060, China.
| |
Collapse
|
103
|
Clancy JW, Sheehan CS, Boomgarden AC, D'Souza-Schorey C. Recruitment of DNA to tumor-derived microvesicles. Cell Rep 2022; 38:110443. [PMID: 35235806 DOI: 10.1016/j.celrep.2022.110443] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/16/2021] [Accepted: 02/04/2022] [Indexed: 02/08/2023] Open
Abstract
The shedding of extracellular vesicles (EVs) represents an important but understudied means of cell-cell communication in cancer. Among the currently described classes of EVs, tumor-derived microvesicles (TMVs) comprise a class of vesicles released directly from the cell surface. TMVs contain abundant cargo, including functional proteins and miRNA, which can be transferred to and alter the behavior of recipient cells. Here, we document that a fraction of extracellular double-stranded DNA (dsDNA) is enclosed within TMVs and protected from nuclease degradation. dsDNA inclusion in TMVs is regulated by ARF6 cycling and occurs with the cytosolic DNA sensor, cGAS, but independent of amphisome or micronuclei components. Our studies suggest that dsDNA is trafficked to TMVs via a mechanism distinct from the multivesicular body-dependent secretion reported for the extracellular release of cytosolic DNA. Furthermore, TMV dsDNA can be transferred to recipient cells with consequences to recipient cell behavior, reinforcing its relevance in mediating cell-cell communication.
Collapse
Affiliation(s)
- James W Clancy
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Colin S Sheehan
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Alex C Boomgarden
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | | |
Collapse
|
104
|
Dahiya R, Hu Q, Ly P. Mechanistic origins of diverse genome rearrangements in cancer. Semin Cell Dev Biol 2022; 123:100-109. [PMID: 33824062 PMCID: PMC8487437 DOI: 10.1016/j.semcdb.2021.03.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/08/2021] [Indexed: 12/14/2022]
Abstract
Cancer genomes frequently harbor structural chromosomal rearrangements that disrupt the linear DNA sequence order and copy number. To date, diverse classes of structural variants have been identified across multiple cancer types. These aberrations span a wide spectrum of complexity, ranging from simple translocations to intricate patterns of rearrangements involving multiple chromosomes. Although most somatic rearrangements are acquired gradually throughout tumorigenesis, recent interrogation of cancer genomes have uncovered novel categories of complex rearrangements that arises rapidly through a one-off catastrophic event, including chromothripsis and chromoplexy. Here we review the cellular and molecular mechanisms contributing to the formation of diverse structural rearrangement classes during cancer development. Genotoxic stress from a myriad of extrinsic and intrinsic sources can trigger DNA double-strand breaks that are subjected to DNA repair with potentially mutagenic outcomes. We also highlight how aberrant nuclear structures generated through mitotic cell division errors, such as rupture-prone micronuclei and chromosome bridges, can instigate massive DNA damage and the formation of complex rearrangements in cancer genomes.
Collapse
Affiliation(s)
- Rashmi Dahiya
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Qing Hu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Peter Ly
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
105
|
Cattolico C, Bailey P, Barry ST. Modulation of Type I Interferon Responses to Influence Tumor-Immune Cross Talk in PDAC. Front Cell Dev Biol 2022; 10:816517. [PMID: 35273962 PMCID: PMC8902310 DOI: 10.3389/fcell.2022.816517] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/31/2022] [Indexed: 12/13/2022] Open
Abstract
Immunotherapy has revolutionized the treatment of many cancer types. However, pancreatic ductal adenocarcinomas (PDACs) exhibit poor responses to immune checkpoint inhibitors with immunotherapy-based trials not generating convincing clinical activity. PDAC tumors often have low infiltration of tumor CD8+ T cells and a highly immunosuppressive microenvironment. These features classify PDAC as immunologically "cold." However, the presence of tumor T cells is a favorable prognostic feature in PDAC. Intrinsic tumor cell properties govern interactions with the immune system. Alterations in tumor DNA such as genomic instability, high tumor mutation burden, and/or defects in DNA damage repair are associated with responses to both immunotherapy and chemotherapy. Cytotoxic or metabolic stress produced by radiation and/or chemotherapy can act as potent immune triggers and prime immune responses. Damage- or stress-mediated activation of nucleic acid-sensing pathways triggers type I interferon (IFN-I) responses that activate innate immune cells and natural killer cells, promote maturation of dendritic cells, and stimulate adaptive immunity. While PDAC exhibits intrinsic features that have the potential to engage immune cells, particularly following chemotherapy, these immune-sensing mechanisms are ineffective. Understanding where defects in innate immune triggers render the PDAC tumor-immune interface less effective, or how T-cell function is suppressed will help develop more effective treatments and harness the immune system for durable outcomes. This review will focus on the pivotal role played by IFN-I in promoting tumor cell-immune cell cross talk in PDAC. We will discuss how PDAC tumor cells bypass IFN-I signaling pathways and explore how these pathways can be co-opted or re-engaged to enhance the therapeutic outcome.
Collapse
Affiliation(s)
- Carlotta Cattolico
- Bioscience, Early Oncology, AstraZeneca, Cambridge, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Peter Bailey
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
- Department of Surgery, University of Heidelberg, Heidelberg, Germany
- Section Surgical Research, University Clinic Heidelberg, Heidelberg, Germany
| | - Simon T. Barry
- Bioscience, Early Oncology, AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
106
|
Kamikawa Y, Imaizumi K. Advances in understanding the mechanisms of repairing damaged nuclear envelop. J Biochem 2022; 171:609-617. [PMID: 35134968 DOI: 10.1093/jb/mvac012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 01/26/2022] [Indexed: 11/12/2022] Open
Abstract
The nuclear envelope (NE) separates genomic DNA from the cytoplasm in eukaryotes. The structure of the NE is dynamically altered not only in mitotic disassembly and reassembly but also during interphase. Recent studies have shown that the NE is frequently damaged by various cellular stresses that degenerate NE components and/or disrupt their functional interactions. These stresses are referred to as "NE stress." Accumulating evidence has demonstrated that NE stress potentially causes severe cellular dysfunctions, such as cell death and genome instability. In this review, the concept of NE stress, the processes repairing damage of the NE caused by NE stress, and the molecular mechanisms by which NE stress contributes to disease pathogenesis are introduced.
Collapse
Affiliation(s)
- Yasunao Kamikawa
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Kazunori Imaizumi
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| |
Collapse
|
107
|
Guey B, Ablasser A. Emerging dimensions of cellular cGAS-STING signaling. Curr Opin Immunol 2022; 74:164-171. [DOI: 10.1016/j.coi.2022.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/11/2022] [Accepted: 01/15/2022] [Indexed: 12/14/2022]
|
108
|
Mammel AE, Huang HZ, Gunn AL, Choo E, Hatch EM. Chromosome length and gene density contribute to micronuclear membrane stability. Life Sci Alliance 2022; 5:e202101210. [PMID: 34789512 PMCID: PMC8605325 DOI: 10.26508/lsa.202101210] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 11/24/2022] Open
Abstract
Micronuclei are derived from missegregated chromosomes and frequently lose membrane integrity, leading to DNA damage, innate immune activation, and metastatic signaling. Here, we demonstrate that two characteristics of the trapped chromosome, length and gene density, are key contributors to micronuclei membrane stability and determine the timing of micronucleus rupture. We demonstrate that these results are not due to chromosome-specific differences in spindle position or initial protein recruitment during post-mitotic nuclear envelope assembly. Micronucleus size strongly correlates with lamin B1 levels and nuclear pore density in intact micronuclei, but, unexpectedly, lamin B1 levels do not completely predict nuclear lamina organization or membrane stability. Instead, small gene-dense micronuclei have decreased nuclear lamina gaps compared to large micronuclei, despite very low levels of lamin B1. Our data strongly suggest that nuclear envelope composition defects previously correlated with membrane rupture only partly explain membrane stability in micronuclei. We propose that an unknown factor linked to gene density has a separate function that inhibits the appearance of nuclear lamina gaps and delays membrane rupture until late in the cell cycle.
Collapse
Affiliation(s)
- Anna E Mammel
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Heather Z Huang
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Amanda L Gunn
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Emma Choo
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Emily M Hatch
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
109
|
When breaks get hot: inflammatory signaling in BRCA1/2-mutant cancers. Trends Cancer 2022; 8:174-189. [PMID: 35000881 DOI: 10.1016/j.trecan.2021.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022]
Abstract
Genomic instability and inflammation are intricately connected hallmark features of cancer. DNA repair defects due to BRCA1/2 mutation instigate immune signaling through the cGAS/STING pathway. The subsequent inflammatory signaling provides both tumor-suppressive as well as tumor-promoting traits. To prevent clearance by the immune system, genomically instable cancer cells need to adapt to escape immune surveillance. Currently, it is unclear how genomically unstable cancers, including BRCA1/2-mutant tumors, are rewired to escape immune clearance. Here, we summarize the mechanisms by which genomic instability triggers inflammatory signaling and describe adaptive mechanisms by which cancer cells can 'fly under the radar' of the immune system. Additionally, we discuss how therapeutic activation of the immune system may improve treatment of genomically instable cancers.
Collapse
|
110
|
Liu H, Wang F, Cao Y, Dang Y, Ge B. OUP accepted manuscript. J Mol Cell Biol 2022; 14:6583286. [PMID: 35536585 PMCID: PMC9475664 DOI: 10.1093/jmcb/mjac031] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/14/2022] [Accepted: 05/06/2022] [Indexed: 11/12/2022] Open
Abstract
Pattern recognition receptors are critical for the sensing of pathogen-associated molecular patterns or danger-associated molecular patterns and subsequent mounting of innate immunity and shaping of adaptive immunity. The identification of 2′3′-cyclic guanosine monophosphate–adenosine monophosphate (cGAMP) synthase (cGAS) as a major cytosolic DNA receptor is a milestone in the field of DNA sensing. The engagement of cGAS by double-stranded DNA from different origins, including invading pathogens, damaged mitochondria, ruptured micronuclei, and genomic DNA results in the generation of cGAMP and activation of stimulator of interferon genes, which thereby activates innate immunity mainly characterized by the activation of type I interferon response. In recent years, great progress has been made in understanding the subcellular localization and novel functions of cGAS. In this review, we particularly focus on summarizing the multifaceted roles of cGAS in regulating senescence, autophagy, cell stemness, apoptosis, angiogenesis, cell proliferation, antitumor effect, DNA replication, DNA damage repair, micronucleophagy, as well as cell metabolism.
Collapse
Affiliation(s)
| | - Fei Wang
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Yajuan Cao
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Yifang Dang
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Baoxue Ge
- Correspondence to: Baoxue Ge, E-mail:
| |
Collapse
|
111
|
Bui TM, Sumagin R. Neutrophils and micronuclei: An emerging link between genomic instability and cancer-driven inflammation. Mutat Res 2022; 824:111778. [PMID: 35334355 PMCID: PMC9756381 DOI: 10.1016/j.mrfmmm.2022.111778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/22/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Two recent studies by Bui and Butin-Israeli et al. have established the novel contribution of neutrophils to genomic instability induction and aberrant shaping of the DNA repair landscape, particularly observed in patients with inflammatory bowel diseases (IBD) and/or progressive colorectal cancer (CRC). In addition, these back-to-back studies uncovered a sharp increase in the numbers of micronuclei and lagging chromosomes in pre-cancerous and cancerous epithelium in response to prolonged PMN exposure. Given the emerging link between neutrophils and micronuclei as well as the established role of micronuclei in cGAS/STING activation, this special commentary aims to elaborate on the mechanisms by which CRC cells may adapt to neutrophil-driven genomic instability while concurrently sustain an inflamed tumor niche. We postulate that such tumor microenvironment with constant immune cell presence, inflammatory milieu, and cumulative DNA damage can drive tumor adaptation and resistance to therapeutic interventions. Finally, we discuss potential novel therapeutic approaches that can be leveraged to target this emerging neutrophil-micronuclei pathological axis, thereby preventing perpetual CRC inflammation and unwanted tumor adaptation.
Collapse
Affiliation(s)
- Triet M Bui
- Department of Pathology, Northwestern University Feinberg School of Medicine, 300 East Superior St., Chicago, IL 60611, USA
| | - Ronen Sumagin
- Department of Pathology, Northwestern University Feinberg School of Medicine, 300 East Superior St., Chicago, IL 60611, USA.
| |
Collapse
|
112
|
Agustinus AS, Bakhoum S. Biochemical, genomic, and epigenomic profiling of isolated cancer cell lines’ micronuclei. Methods Cell Biol 2022; 172:51-66. [DOI: 10.1016/bs.mcb.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
113
|
Chromatin bridges, not micronuclei, activate cGAS after drug-induced mitotic errors in human cells. Proc Natl Acad Sci U S A 2021; 118:2103585118. [PMID: 34819364 DOI: 10.1073/pnas.2103585118] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2021] [Indexed: 12/16/2022] Open
Abstract
Mitotic errors can activate cyclic GMP-AMP synthase (cGAS) and induce type I interferon (IFN) signaling. Current models propose that chromosome segregation errors generate micronuclei whose rupture activates cGAS. We used a panel of antimitotic drugs to perturb mitosis in human fibroblasts and measured abnormal nuclear morphologies, cGAS localization, and IFN signaling in the subsequent interphase. Micronuclei consistently recruited cGAS without activating it. Instead, IFN signaling correlated with formation of cGAS-coated chromatin bridges that were selectively generated by microtubule stabilizers and MPS1 inhibitors. cGAS activation by chromatin bridges was suppressed by drugs that prevented cytokinesis. We confirmed cGAS activation by chromatin bridges in cancer lines that are unable to secrete IFN by measuring paracrine transfer of 2'3'-cGAMP to fibroblasts, and in mouse cells. We propose that cGAS is selectively activated by self-chromatin when it is stretched in chromatin bridges. Immunosurveillance of cells that fail mitosis, and antitumor actions of taxanes and MPS1 inhibitors, may depend on this effect.
Collapse
|
114
|
Keuper K, Wieland A, Räschle M, Storchova Z. Processes shaping cancer genomes - From mitotic defects to chromosomal rearrangements. DNA Repair (Amst) 2021; 107:103207. [PMID: 34425515 DOI: 10.1016/j.dnarep.2021.103207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 11/19/2022]
Abstract
Sequencing of cancer genomes revealed a rich landscape of somatic single nucleotide variants, structural changes of chromosomes, as well as chromosomal copy number alterations. These chromosome changes are highly variable, and simple translocations, deletions or duplications have been identified, as well as complex events that likely arise through activity of several interconnected processes. Comparison of the cancer genome sequencing data with our knowledge about processes important for maintenance of genome stability, namely DNA replication, repair and chromosome segregation, provides insights into the mechanisms that may give rise to complex chromosomal patterns, such as chromothripsis, a complex form of multiple focal chromosome rearrangements. In addition, observations gained from model systems that recapitulate the rearrangements patterns under defined experimental conditions suggest that mitotic errors and defective DNA replication and repair contribute to their formation. Here, we review the molecular mechanisms that contribute to formation of chromosomal aberrations observed in cancer genomes.
Collapse
Affiliation(s)
- Kristina Keuper
- Department of Molecular Genetics, Paul-Ehrlich Strasse 24, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Angela Wieland
- Department of Molecular Genetics, Paul-Ehrlich Strasse 24, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Markus Räschle
- Department of Molecular Genetics, Paul-Ehrlich Strasse 24, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Zuzana Storchova
- Department of Molecular Genetics, Paul-Ehrlich Strasse 24, University of Kaiserslautern, 67663, Kaiserslautern, Germany.
| |
Collapse
|
115
|
Chang AY, Zhou YJ, Iyengar S, Pobiarzyn PW, Tishchenko P, Shah KM, Wheeler H, Wang YM, Loria PM, Loganzo F, Woo SR. Modulation of SF3B1 in the pre-mRNA spliceosome induces a RIG-I-dependent type I IFN response. J Biol Chem 2021; 297:101277. [PMID: 34619148 PMCID: PMC8559577 DOI: 10.1016/j.jbc.2021.101277] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 09/22/2021] [Accepted: 09/30/2021] [Indexed: 12/14/2022] Open
Abstract
Nucleic acid-sensing pathways play critical roles in innate immune activation through the production of type I interferon (IFN-I) and proinflammatory cytokines. These factors are required for effective antitumor immune responses. Pharmacological modulators of the pre-mRNA spliceosome splicing factor 3b subunit 1 (SF3B1) are under clinical investigation as cancer cytotoxic agents. However, potential roles of these agents in aberrant RNA generation and subsequent RNA-sensing pathway activation have not been studied. In this study, we observed that SF3B1 pharmacological modulation using pladienolide B (Plad B) induces production of aberrant RNA species and robust IFN-I responses via engagement of the dsRNA sensor retinoic acid-inducible gene I (RIG-I) and downstream interferon regulatory factor 3. We found that Plad B synergized with canonical RIG-I agonism to induce the IFN-I response. In addition, Plad B induced NF-κB responses and secretion of proinflammatory cytokines and chemokines. Finally, we showed that cancer cells bearing the hotspot SF3B1K700E mutation, which leads to global aberrant splicing, had enhanced IFN-I response to canonical RIG-I agonism. Together, these results demonstrate that pharmacological modulation of SF3B1 in cancer cells can induce an enhanced IFN-I response dependent on RIG-I expression. The study suggests that spliceosome modulation may not only induce direct cancer cell cytotoxicity but also initiate an innate immune response via activation of RNA-sensing pathways.
Collapse
Affiliation(s)
- Aaron Y Chang
- Oncology Research & Development, Pfizer Inc, Pearl River, New York, USA
| | - Yu Jerry Zhou
- Oncology Research & Development, Pfizer Inc, Pearl River, New York, USA
| | - Sharanya Iyengar
- Emerging Science & Innovation, Pfizer Inc, Pearl River, New York, USA
| | - Piotr W Pobiarzyn
- Oncology Research & Development, Pfizer Inc, Pearl River, New York, USA
| | - Pavel Tishchenko
- Oncology Research & Development, Pfizer Inc, Pearl River, New York, USA
| | - Kesha M Shah
- Oncology Research & Development, Pfizer Inc, Pearl River, New York, USA
| | - Heather Wheeler
- Medicine Design, Worldwide Research & Development, Pfizer Inc, Groton, Connecticut, USA
| | - Yue-Ming Wang
- Medicine Design, Worldwide Research & Development, Pfizer Inc, Groton, Connecticut, USA
| | - Paula M Loria
- Medicine Design, Worldwide Research & Development, Pfizer Inc, Groton, Connecticut, USA
| | - Frank Loganzo
- Oncology Research & Development, Pfizer Inc, Pearl River, New York, USA
| | - Seng-Ryong Woo
- Oncology Research & Development, Pfizer Inc, Pearl River, New York, USA.
| |
Collapse
|
116
|
Su Q, Mehta S, Zhang J. Liquid-liquid phase separation: Orchestrating cell signaling through time and space. Mol Cell 2021; 81:4137-4146. [PMID: 34619090 DOI: 10.1016/j.molcel.2021.09.010] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/16/2021] [Accepted: 09/08/2021] [Indexed: 12/19/2022]
Abstract
Cell signaling is a complex process. The faithful transduction of information into specific cellular actions depends on the synergistic effects of many regulatory molecules, nurtured by their strict spatiotemporal regulation. Over the years, we have gained copious insights into the subcellular architecture supporting this spatiotemporal control, including the roles of membrane-bound organelles and various signaling nanodomains. Recently, liquid-liquid phase separation (LLPS) has been recognized as another potentially ubiquitous framework for organizing signaling molecules with high specificity and precise spatiotemporal control in cells. Here, we review the pervasive role of LLPS in signal transduction, highlighting several key pathways that intersect with LLPS, including examples in which LLPS is controlled by signaling events. We also examine how LLPS orchestrates signaling by compartmentalizing signaling molecules, amplifying signals non-linearly, and moderating signaling dynamics. We focus on the specific molecules that drive LLPS and highlight the known functional and pathological consequences of LLPS in each pathway.
Collapse
Affiliation(s)
- Qi Su
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sohum Mehta
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
117
|
Nader GPDF, Agüera-Gonzalez S, Routet F, Gratia M, Maurin M, Cancila V, Cadart C, Palamidessi A, Ramos RN, San Roman M, Gentili M, Yamada A, Williart A, Lodillinsky C, Lagoutte E, Villard C, Viovy JL, Tripodo C, Galon J, Scita G, Manel N, Chavrier P, Piel M. Compromised nuclear envelope integrity drives TREX1-dependent DNA damage and tumor cell invasion. Cell 2021; 184:5230-5246.e22. [PMID: 34551315 DOI: 10.1016/j.cell.2021.08.035] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/07/2021] [Accepted: 08/29/2021] [Indexed: 11/18/2022]
Abstract
Although mutations leading to a compromised nuclear envelope cause diseases such as muscular dystrophies or accelerated aging, the consequences of mechanically induced nuclear envelope ruptures are less known. Here, we show that nuclear envelope ruptures induce DNA damage that promotes senescence in non-transformed cells and induces an invasive phenotype in human breast cancer cells. We find that the endoplasmic reticulum (ER)-associated exonuclease TREX1 translocates into the nucleus after nuclear envelope rupture and is required to induce DNA damage. Inside the mammary duct, cellular crowding leads to nuclear envelope ruptures that generate TREX1-dependent DNA damage, thereby driving the progression of in situ carcinoma to the invasive stage. DNA damage and nuclear envelope rupture markers were also enriched at the invasive edge of human tumors. We propose that DNA damage in mechanically challenged nuclei could affect the pathophysiology of crowded tissues by modulating proliferation and extracellular matrix degradation of normal and transformed cells.
Collapse
Affiliation(s)
| | | | - Fiona Routet
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France
| | - Matthieu Gratia
- Institut Curie, PSL Research University, INSERM, U932, Paris, France
| | - Mathieu Maurin
- Institut Curie, PSL Research University, INSERM, U932, Paris, France
| | - Valeria Cancila
- Tumor Immunology Unit, University of Palermo, Corso Tukory 211, 90234 Palermo, Italy
| | - Clotilde Cadart
- Institut Curie and Institut Pierre Gilles de Gennes, PSL Research University, CNRS, UMR 144, Paris, France
| | - Andrea Palamidessi
- FIRC Institute of Molecular Oncology, IFOM, Via Adamello 16, 20139 Milano, Italy; Department of Oncology and Hemato-Oncology, University of Milan, IFOM, Via Adamello 16, 20139 Milano, Italy
| | - Rodrigo Nalio Ramos
- INSERM, Sorbonne Université, Université de Paris, Equipe Labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Laboratory of Integrative Cancer Immunology, Paris, France
| | - Mabel San Roman
- Institut Curie, PSL Research University, INSERM, U932, Paris, France
| | - Matteo Gentili
- Institut Curie, PSL Research University, INSERM, U932, Paris, France
| | - Ayako Yamada
- Institut Curie, Université PSL, CNRS, UMR 168, Paris, France
| | - Alice Williart
- Institut Curie and Institut Pierre Gilles de Gennes, PSL Research University, CNRS, UMR 144, Paris, France
| | - Catalina Lodillinsky
- Research Area, Instituto de Oncología Ángel H. Roffo, Universidad de Buenos Aires, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Emilie Lagoutte
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France
| | | | | | - Claudio Tripodo
- Tumor Immunology Unit, University of Palermo, Corso Tukory 211, 90234 Palermo, Italy
| | - Jérôme Galon
- INSERM, Sorbonne Université, Université de Paris, Equipe Labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Laboratory of Integrative Cancer Immunology, Paris, France
| | - Giorgio Scita
- Research Area, Instituto de Oncología Ángel H. Roffo, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nicolas Manel
- Institut Curie, PSL Research University, INSERM, U932, Paris, France.
| | - Philippe Chavrier
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France.
| | - Matthieu Piel
- Institut Curie and Institut Pierre Gilles de Gennes, PSL Research University, CNRS, UMR 144, Paris, France.
| |
Collapse
|
118
|
Mayca Pozo F, Geng X, Tamagno I, Jackson MW, Heimsath EG, Hammer JA, Cheney RE, Zhang Y. MYO10 drives genomic instability and inflammation in cancer. SCIENCE ADVANCES 2021; 7:eabg6908. [PMID: 34524844 PMCID: PMC8443186 DOI: 10.1126/sciadv.abg6908] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/26/2021] [Indexed: 05/29/2023]
Abstract
Genomic instability is a hallmark of human cancer; yet the underlying mechanisms remain poorly understood. Here, we report that the cytoplasmic unconventional Myosin X (MYO10) regulates genome stability, through which it mediates inflammation in cancer. MYO10 is an unstable protein that undergoes ubiquitin-conjugating enzyme H7 (UbcH7)/β-transducin repeat containing protein 1 (β-TrCP1)–dependent degradation. MYO10 is upregulated in both human and mouse tumors and its expression level predisposes tumor progression and response to immune therapy. Overexpressing MYO10 increased genomic instability, elevated the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING)–dependent inflammatory response, and accelerated tumor growth in mice. Conversely, depletion of MYO10 ameliorated genomic instability and reduced the inflammation signaling. Further, inhibiting inflammation or disrupting Myo10 significantly suppressed the growth of both human and mouse breast tumors in mice. Our data suggest that MYO10 promotes tumor progression through inducing genomic instability, which, in turn, creates an immunogenic environment for immune checkpoint blockades.
Collapse
Affiliation(s)
- Franklin Mayca Pozo
- Department of Pharmacology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Xinran Geng
- Department of Pharmacology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ilaria Tamagno
- Department of Pathology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Mark W. Jackson
- Department of Pathology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ernest G. Heimsath
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - John A. Hammer
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA
| | - Richard E. Cheney
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Youwei Zhang
- Department of Pharmacology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
119
|
Baris AM, Fraile-Bethencourt E, Anand S. Nucleic Acid Sensing in the Tumor Vasculature. Cancers (Basel) 2021; 13:4452. [PMID: 34503262 PMCID: PMC8431390 DOI: 10.3390/cancers13174452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/28/2021] [Accepted: 08/31/2021] [Indexed: 12/27/2022] Open
Abstract
Endothelial cells form a powerful interface between tissues and immune cells. In fact, one of the underappreciated roles of endothelial cells is to orchestrate immune attention to specific sites. Tumor endothelial cells have a unique ability to dampen immune responses and thereby maintain an immunosuppressive microenvironment. Recent approaches to trigger immune responses in cancers have focused on activating nucleic acid sensors, such as cGAS-STING, in combination with immunotherapies. In this review, we present a case for targeting nucleic acid-sensing pathways within the tumor vasculature to invigorate tumor-immune responses. We introduce two specific nucleic acid sensors-the DNA sensor TREX1 and the RNA sensor RIG-I-and discuss their functional roles in the vasculature. Finally, we present perspectives on how these nucleic acid sensors in the tumor endothelium can be targeted in an antiangiogenic and immune activation context. We believe understanding the role of nucleic acid-sensing in the tumor vasculature can enhance our ability to design more effective therapies targeting the tumor microenvironment by co-opting both vascular and immune cell types.
Collapse
Affiliation(s)
- Adrian M. Baris
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA; (A.M.B.); (E.F.-B.)
| | - Eugenia Fraile-Bethencourt
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA; (A.M.B.); (E.F.-B.)
| | - Sudarshan Anand
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA; (A.M.B.); (E.F.-B.)
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| |
Collapse
|
120
|
Juricic P, Ablasser A. The spatial organization of cGAS-TREX1 interactions. Dev Cell 2021; 56:876-877. [PMID: 33823133 DOI: 10.1016/j.devcel.2021.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Coupling DNA sensing to the initiation of immune responses necessitates auxiliary control mechanisms to avoid autoimmunity. A key factor is the exonuclease TREX1, which antagonizes DNA-mediated activation of cGAS. Two studies, by Mohr et al. (2021) and Zhou et al. (2021), uncover new aspects of this important control mechanism.
Collapse
Affiliation(s)
- Paula Juricic
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Andrea Ablasser
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
121
|
de Oliveira Mann CC, Hopfner K. Nuclear cGAS: guard or prisoner? EMBO J 2021; 40:e108293. [PMID: 34250619 PMCID: PMC8365253 DOI: 10.15252/embj.2021108293] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/17/2021] [Accepted: 06/18/2021] [Indexed: 12/24/2022] Open
Abstract
cGAS, an innate immune sensor of cellular stress, recognizes double-stranded DNA mislocalized in the cytosol upon infection, mitochondrial stress, DNA damage, or malignancy. Early models suggested that cytosolic localization of cGAS prevents autoreactivity to nuclear and mitochondrial self-DNA, but this paradigm has shifted in light of recent findings of cGAS as a predominantly nuclear protein tightly bound to chromatin. This has raised the question how nuclear cGAS is kept inactive while being surrounded by chromatin, and what function nuclear localization of cGAS may serve in the first place? Cryo-EM structures have revealed that cGAS interacts with nucleosomes, the minimal units of chromatin, mainly via histones H2A/H2B, and that these protein-protein interactions block cGAS from DNA binding and thus prevent autoreactivity. Here, we discuss the biological implications of nuclear cGAS and its interaction with chromatin, including various mechanisms for nuclear cGAS inhibition, release of chromatin-bound cGAS, regulation of different cGAS pools in the cell, and chromatin structure/chromatin protein effects on cGAS activation leading to cGAS-induced autoimmunity.
Collapse
Affiliation(s)
- Carina C de Oliveira Mann
- Gene CenterLudwig‐Maximilians‐UniversitätMunichGermany
- Department of BiochemistryLudwig‐Maximilians‐UniversitätMunichGermany
| | - Karl‐Peter Hopfner
- Gene CenterLudwig‐Maximilians‐UniversitätMunichGermany
- Department of BiochemistryLudwig‐Maximilians‐UniversitätMunichGermany
| |
Collapse
|
122
|
Genotoxic stress and viral infection induce transient expression of APOBEC3A and pro-inflammatory genes through two distinct pathways. Nat Commun 2021; 12:4917. [PMID: 34389714 PMCID: PMC8363607 DOI: 10.1038/s41467-021-25203-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023] Open
Abstract
APOBEC3A is a cytidine deaminase driving mutagenesis in tumors. While APOBEC3A-induced mutations are common, APOBEC3A expression is rarely detected in cancer cells. This discrepancy suggests a tightly controlled process to regulate episodic APOBEC3A expression in tumors. In this study, we find that both viral infection and genotoxic stress transiently up-regulate APOBEC3A and pro-inflammatory genes using two distinct mechanisms. First, we demonstrate that STAT2 promotes APOBEC3A expression in response to foreign nucleic acid via a RIG-I, MAVS, IRF3, and IFN-mediated signaling pathway. Second, we show that DNA damage and DNA replication stress trigger a NF-κB (p65/IkBα)-dependent response to induce expression of APOBEC3A and other innate immune genes, independently of DNA or RNA sensing pattern recognition receptors and the IFN-signaling response. These results not only reveal the mechanisms by which tumors could episodically up-regulate APOBEC3A but also highlight an alternative route to stimulate the immune response after DNA damage independently of cGAS/STING or RIG-I/MAVS.
Collapse
|
123
|
Wischnewski M, Ablasser A. Interplay of cGAS with chromatin. Trends Biochem Sci 2021; 46:822-831. [PMID: 34215510 DOI: 10.1016/j.tibs.2021.05.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/21/2021] [Accepted: 05/31/2021] [Indexed: 01/07/2023]
Abstract
Recognition of DNA is an evolutionarily highly conserved mechanism of immunity. In mammals, the cGAS-STING pathway plays a central role in coupling DNA sensing to the execution of innate immune mechanisms, both in contexts of infection as well as in noninfectious settings of cellular stress and injury. The indiscriminate ability of double-stranded DNA (dsDNA) to activate cGAS challenges our understanding on how engagement of this pathway is prevented on genomic self-DNA under homeostatic conditions. Here, we review recent discoveries on the regulation of cGAS on chromatin and we discuss implications for cGAS-dependent inflammatory phenotypes. We close by highlighting emerging developments on the role of nuclear cGAS and related open questions for future research.
Collapse
Affiliation(s)
- Marilena Wischnewski
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Andrea Ablasser
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
124
|
Uchihara Y, Permata TBM, Sato H, Shibata A. Modulation of immune responses by DNA damage signaling. DNA Repair (Amst) 2021; 104:103135. [PMID: 34029876 DOI: 10.1016/j.dnarep.2021.103135] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/15/2022]
Abstract
An accumulation of evidence indicates the importance of DNA damage signaling in modulating immune responses. Indeed, understanding the mechanism that underlies signal transduction originating from DNA damage is vital to overcoming refractory cancer, particularly when cancer immune therapy is applied in combination with DNA damage-dependent radio/chemotherapy. In addition, immune-associated responses to such signals can aggravate the symptoms of infections, allergies, autoimmune disease, and aging. In this review, we discuss how cells transduce signals, triggered by DNA damage, from their origins to neighboring cells and how this affects immune and inflammatory responses.
Collapse
Affiliation(s)
- Yuki Uchihara
- Signal Transduction Program, Gunma University Initiative for Advanced Research (GIAR), Gunma University, Gunma, Japan
| | - Tiara Bunga Mayang Permata
- Department of Radiation Oncology, Faculty of Medicine Universitas Indonesia, Dr. Cipto Mangunkusumo Hospital, Jakarta, 10430, Indonesia
| | - Hiro Sato
- Department of Radiation Oncology, Gunma University, Gunma, Japan
| | - Atsushi Shibata
- Signal Transduction Program, Gunma University Initiative for Advanced Research (GIAR), Gunma University, Gunma, Japan.
| |
Collapse
|
125
|
Abstract
Micronuclei are aberrant nuclear compartments that form when chromosomes or chromosome fragments fail to incorporate into a primary nucleus during mitotic exit. Ruptures at the micronuclear envelope are associated with DNA damage and activation of immune sensing pathways. To gain insights into these processes, we have developed a method to purify ruptured micronuclei. This method paves the way toward understanding the consequences of micronuclear envelope rupture. For complete details on the use and execution of this protocol, please refer to Mohr et al. (2021). An optimized protocol for purifying micronuclei with ruptured nuclear envelopes Use of fluorescent markers enables flow sorting of distinct populations of micronuclei Preservation of micronuclear protein and DNA content for functional characterization
Collapse
Affiliation(s)
| | - John Maciejowski
- Molecular Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| |
Collapse
|
126
|
Zhou W, Mohr L, Maciejowski J, Kranzusch PJ. cGAS phase separation inhibits TREX1-mediated DNA degradation and enhances cytosolic DNA sensing. Mol Cell 2021; 81:739-755.e7. [PMID: 33606975 DOI: 10.1016/j.molcel.2021.01.024] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 12/30/2020] [Accepted: 01/19/2021] [Indexed: 12/17/2022]
Abstract
Cyclic GMP-AMP synthase (cGAS) recognition of cytosolic DNA is critical for the immune response to cancer and pathogen infection. Here, we discover that cGAS-DNA phase separation is required to resist negative regulation and allow efficient sensing of immunostimulatory DNA. We map the molecular determinants of cGAS condensate formation and demonstrate that phase separation functions to limit activity of the cytosolic exonuclease TREX1. Mechanistically, phase separation forms a selective environment that suppresses TREX1 catalytic function and restricts DNA degradation to an outer shell at the droplet periphery. We identify a TREX1 mutation associated with the severe autoimmune disease Aicardi-Goutières syndrome that increases penetration of TREX1 into the repressive droplet interior and specifically impairs degradation of phase-separated DNA. Our results define a critical function of cGAS-DNA phase separation and reveal a molecular mechanism that balances cytosolic DNA degradation and innate immune activation.
Collapse
Affiliation(s)
- Wen Zhou
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Lisa Mohr
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - John Maciejowski
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Philip J Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Parker Institute for Cancer Immunotherapy at Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| |
Collapse
|
127
|
Santa P, Garreau A, Serpas L, Ferriere A, Blanco P, Soni C, Sisirak V. The Role of Nucleases and Nucleic Acid Editing Enzymes in the Regulation of Self-Nucleic Acid Sensing. Front Immunol 2021; 12:629922. [PMID: 33717156 PMCID: PMC7952454 DOI: 10.3389/fimmu.2021.629922] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/21/2021] [Indexed: 12/24/2022] Open
Abstract
Detection of microbial nucleic acids by the innate immune system is mediated by numerous intracellular nucleic acids sensors. Upon the detection of nucleic acids these sensors induce the production of inflammatory cytokines, and thus play a crucial role in the activation of anti-microbial immunity. In addition to microbial genetic material, nucleic acid sensors can also recognize self-nucleic acids exposed extracellularly during turn-over of cells, inefficient efferocytosis, or intracellularly upon mislocalization. Safeguard mechanisms have evolved to dispose of such self-nucleic acids to impede the development of autoinflammatory and autoimmune responses. These safeguard mechanisms involve nucleases that are either specific to DNA (DNases) or RNA (RNases) as well as nucleic acid editing enzymes, whose biochemical properties, expression profiles, functions and mechanisms of action will be detailed in this review. Fully elucidating the role of these enzymes in degrading and/or processing of self-nucleic acids to thwart their immunostimulatory potential is of utmost importance to develop novel therapeutic strategies for patients affected by inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Pauline Santa
- CNRS-UMR 5164, ImmunoConcEpT, Bordeaux University, Bordeaux, France
| | - Anne Garreau
- CNRS-UMR 5164, ImmunoConcEpT, Bordeaux University, Bordeaux, France
| | - Lee Serpas
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, United States
| | | | - Patrick Blanco
- CNRS-UMR 5164, ImmunoConcEpT, Bordeaux University, Bordeaux, France
- Immunology and Immunogenetic Department, Bordeaux University Hospital, Bordeaux, France
| | - Chetna Soni
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, United States
| | - Vanja Sisirak
- CNRS-UMR 5164, ImmunoConcEpT, Bordeaux University, Bordeaux, France
| |
Collapse
|
128
|
Abstract
The nuclear envelope is often depicted as a static barrier that regulates access between the nucleus and the cytosol. However, recent research has identified many conditions in cultured cells and in vivo in which nuclear membrane ruptures cause the loss of nuclear compartmentalization. These conditions include some that are commonly associated with human disease, such as migration of cancer cells through small spaces and expression of nuclear lamin disease mutations in both cultured cells and tissues undergoing nuclear migration. Nuclear membrane ruptures are rapidly repaired in the nucleus but persist in nuclear compartments that form around missegregated chromosomes called micronuclei. This review summarizes what is known about the mechanisms of nuclear membrane rupture and repair in both the main nucleus and micronuclei, and highlights recent work connecting the loss of nuclear integrity to genome instability and innate immune signaling. These connections link nuclear membrane rupture to complex chromosome alterations, tumorigenesis, and laminopathy etiologies.
Collapse
Affiliation(s)
- John Maciejowski
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Emily M Hatch
- Division of Basic Sciences and Human Biology, The Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA;
| |
Collapse
|