101
|
Saraev DD, Wu Z, Kim HYH, Porter NA, Pratt DA. Intramolecular H-Atom Transfers in Alkoxyl Radical Intermediates Underlie the Apparent Oxidation of Lipid Hydroperoxides by Fe(II). ACS Chem Biol 2023; 18:2073-2081. [PMID: 37639355 DOI: 10.1021/acschembio.3c00412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The one-electron reduction of lipid hydroperoxides by low-valent iron species is believed to be a driver of cellular lipid peroxidation and associated ferroptotic cell death. We investigated reactions of cholesterol 7α-OOH, the primary cholesterol autoxidation product, with Fe2+ to find that 7-ketocholesterol (7-KC, an oxidation product) is the major product under these (reducing) conditions. Mechanistic studies reveal the intervention of a 1,2-H-atom shift upon formation of the 7-alkoxyl radical to yield a ketyl radical that can be oxidized by either Fe3+ or O2 to give 7-KC, the most abundant oxysterol in vivo. We also investigated the corresponding reduction of the isomeric cholesterol 5α-OOH and again found that an oxidation product (5-hydroxycholesten-3-one) predominates under reducing conditions. An intramolecular H-atom shift (this time 1,4-) in the initially formed 5-alkoxyl radical is suggested to yield a ketyl radical that is oxidized to give the observed product. It would appear that a 1,2-H shift also accounts for the predominance of ketones over alcohols when unsaturated fatty acid hydroperoxides are exposed to iron-based reductants, which had previously been reported with hematin and demonstrated here with Fe2+. The predominance of 7-KC over the corresponding alcohol is maintained when cholesterol 7α-OOH embedded in phospholipid liposomes is treated with Fe2+ or when ferroptosis is induced in mouse embryonic fibroblasts. Our observation that 7-KC accumulates in ferroptotic cells suggests that it may be a good biomarker for ferroptosis.
Collapse
Affiliation(s)
- Dmitry D Saraev
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt., Ottawa, ON K1N 6N5, Canada
| | - Zijun Wu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt., Ottawa, ON K1N 6N5, Canada
| | - Hye-Young H Kim
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Ned A Porter
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Derek A Pratt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt., Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
102
|
Zhang P, Rong K, Guo J, Cui L, Kong K, Zhao C, Yang H, Xu H, Qin A, Ma P, Yang X, Zhao J. Cynarin alleviates intervertebral disc degeneration via protecting nucleus pulposus cells from ferroptosis. Biomed Pharmacother 2023; 165:115252. [PMID: 37536034 DOI: 10.1016/j.biopha.2023.115252] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023] Open
Abstract
Intervertebral disc degeneration (IVDD) leads to a series of degenerative spine diseases. Clinical treatment of IVDD is mainly surgery, lacking effective drugs to alleviate intervertebral disc degeneration. In this study, we analysed the mRNA sequencing dataset of human degenerative intervertebral disc tissues and revealed the participation of ferroptosis in IVDD. Furthermore, we confirmed that TNF-α, an important cytokine in IVDD, induces ferroptosis in nucleus pulposus cells. Subsequently, a ferroptosis inhibitors screening strategy using multiple ferroptosis indicators was developed. Through the screen of various natural compounds, cynarin, a natural product enriched in Artichoke, was discovered to inhibit ferroptosis of nucleus pulposus cells. Cynarin can dose-dependently inhibit the catabolism of nucleus pulposus cells, increase the expression of key ferroptosis-inhibiting genes (GPX4 and NRF2), inhibit the increment of cellular Fe2+, lipid peroxides, and reactive oxygen species. It can also prevent mitochondria shrinkage, reduce mitochondria cristae density in ferroptosis, and prevent IVDD in the rat model. In conclusion, cynarin is a potential candidate for the drug development for IVDD.
Collapse
Affiliation(s)
- Pu Zhang
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Kewei Rong
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Jiadong Guo
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Lei Cui
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning 530000, China
| | - Keyu Kong
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Chen Zhao
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Huan Yang
- The Second Clinical Medical College of Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - An Qin
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Peixiang Ma
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Xiao Yang
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Jie Zhao
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
103
|
Wang H, Zhang Z, Ruan S, Yan Q, Chen Y, Cui J, Wang X, Huang S, Hou B. Regulation of iron metabolism and ferroptosis in cancer stem cells. Front Oncol 2023; 13:1251561. [PMID: 37736551 PMCID: PMC10509481 DOI: 10.3389/fonc.2023.1251561] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/16/2023] [Indexed: 09/23/2023] Open
Abstract
The ability of cancer stem cells (CSCs) to self-renew, differentiate, and generate new tumors is a significant contributor to drug resistance, relapse, and metastasis. Therefore, the targeting of CSCs for treatment is particularly important. Recent studies have demonstrated that CSCs are more susceptible to ferroptosis than non-CSCs, indicating that this could be an effective strategy for treating tumors. Ferroptosis is a type of programmed cell death that results from the accumulation of lipid peroxides caused by intracellular iron-mediated processes. CSCs exhibit different molecular characteristics related to iron and lipid metabolism. This study reviews the alterations in iron metabolism, lipid peroxidation, and lipid peroxide scavenging in CSCs, their impact on ferroptosis, and the regulatory mechanisms underlying iron metabolism and ferroptosis. Potential treatment strategies and novel compounds targeting CSC by inducing ferroptosis are also discussed.
Collapse
Affiliation(s)
- Hailiang Wang
- Department of Hepatobiliary Surgery, Weihai Central Hospital Affiliated to Qingdao University, Weihai, China
- Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zhongyan Zhang
- Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of General Surgery, Heyuan People’s Hospital, Heyuan, China
| | - Shiye Ruan
- Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of General Surgery, Heyuan People’s Hospital, Heyuan, China
| | - Qian Yan
- Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of General Surgery, Heyuan People’s Hospital, Heyuan, China
| | - Yubin Chen
- Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of General Surgery, Heyuan People’s Hospital, Heyuan, China
| | - Jinwei Cui
- Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of General Surgery, Heyuan People’s Hospital, Heyuan, China
| | - Xinjian Wang
- Department of Hepatobiliary Surgery, Weihai Central Hospital Affiliated to Qingdao University, Weihai, China
| | - Shanzhou Huang
- Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of General Surgery, Heyuan People’s Hospital, Heyuan, China
- Department of General Surgery, South China University of Technology School of Medicine, Guangzhou, China
| | - Baohua Hou
- Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of General Surgery, Heyuan People’s Hospital, Heyuan, China
- Department of General Surgery, South China University of Technology School of Medicine, Guangzhou, China
| |
Collapse
|
104
|
Setayeshpour Y, Lee Y, Chi JT. Environmental Determinants of Ferroptosis in Cancer. Cancers (Basel) 2023; 15:3861. [PMID: 37568677 PMCID: PMC10417744 DOI: 10.3390/cancers15153861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Given the enormous suffering and death associated with human cancers, there is an urgent need for novel therapeutic approaches to target tumor growth and metastasis. While initial efforts have focused on the dysregulated oncogenic program of cancer cells, recent focus has been on the modulation and targeting of many "cancer-friendly," non-genetic tumor microenvironmental factors, which support and enable tumor progression and metastasis. Two prominent examples are anti-angiogenesis and immunotherapy that target tumor-supporting vascularization and the immune-suppressive tumor microenvironment (TME), respectively. Lately, there has been significant interest in the therapeutic potential of ferroptosis, a natural tumor suppression mechanism that normally occurs as a result of oxidative stress, iron imbalance, and accumulation of lipid peroxides. While numerous studies have identified various cell intrinsic mechanisms to protect or promote ferroptosis, the role of various TME stress factors are also recently recognized to modulate the tumor cells' susceptibility to ferroptosis. This review aims to compile and highlight evidence of these factors, how various TME stresses affect ferroptosis, and their implications in various stages of tumor development and expected response to ferroptosis-triggering therapeutics under development. Consequently, understanding ways to enhance ferroptosis sensitivity both intracellularly and in the TME may optimize therapeutic sensitivity to minimize or prevent tumor growth and metastasis.
Collapse
Affiliation(s)
- Yasaman Setayeshpour
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27708, USA
- Department of Cell and Molecular Biology, Duke University Medical Center, Durham, NC 27708, USA
| | - Yunji Lee
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan 215316, China
| | - Jen-Tsan Chi
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27708, USA
- Department of Cell and Molecular Biology, Duke University Medical Center, Durham, NC 27708, USA
- Center for Advanced Genomic Technology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
105
|
Rodencal J, Kim N, Li VL, He A, Lange M, He J, Tarangelo A, Schafer ZT, Olzmann JA, Sage J, Long JZ, Dixon SJ. A Cell Cycle-Dependent Ferroptosis Sensitivity Switch Governed by EMP2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.19.549715. [PMID: 37502927 PMCID: PMC10370086 DOI: 10.1101/2023.07.19.549715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Ferroptosis is a non-apoptotic form of cell death characterized by iron-dependent lipid peroxidation. Ferroptosis can be induced by system xc- cystine/glutamate antiporter inhibition or by direct inhibition of the phospholipid hydroperoxidase glutathione peroxidase 4 (GPX4). The regulation of ferroptosis in response to system xc- inhibition versus direct GPX4 inhibition may be distinct. Here, we show that cell cycle arrest enhances sensitivity to ferroptosis triggered by GPX4 inhibition but not system xc- inhibition. Arrested cells have increased levels of oxidizable polyunsaturated fatty acid-containing phospholipids, which drives sensitivity to GPX4 inhibition. Epithelial membrane protein 2 (EMP2) expression is reduced upon cell cycle arrest and is sufficient to enhance ferroptosis in response to direct GPX4 inhibition. An orally bioavailable GPX4 inhibitor increased markers of ferroptotic lipid peroxidation in vivo in combination with a cell cycle arresting agent. Thus, responses to different ferroptosis-inducing stimuli can be regulated by cell cycle state.
Collapse
Affiliation(s)
- Jason Rodencal
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Nathan Kim
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Veronica L. Li
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andrew He
- Departments of Pediatrics and Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mike Lange
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jianping He
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Amy Tarangelo
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Zachary T. Schafer
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - James A. Olzmann
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Julien Sage
- Departments of Pediatrics and Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jonathan Z. Long
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Scott J. Dixon
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Lead contact
| |
Collapse
|
106
|
Liu P, Chen W, Kang Y, Wang C, Wang X, Liu W, Hayashi T, Qiu Z, Mizuno K, Hattori S, Fujisaki H, Ikejima T. Silibinin ameliorates STING-mediated neuroinflammation via downregulation of ferroptotic damage in a sporadic Alzheimer's disease model. Arch Biochem Biophys 2023:109691. [PMID: 37473980 DOI: 10.1016/j.abb.2023.109691] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/22/2023] [Accepted: 07/08/2023] [Indexed: 07/22/2023]
Abstract
Ferroptosis, an iron-dependent cell death, is caused by lipid peroxidation. Noteworthily, accumulation of iron and lipid peroxidation are found in the proximity of the neuritic plaque, a hallmark of Alzheimer's disease (AD), but the relationship between ferroptosis and neuroinflammation in AD is unclear. Silibinin, extracted from the Silybum marianum, is possibly developed as an agent for AD treatment from its neuroprotective effect, but the effect of silibinin on sporadic AD that accounts for more than 95% of AD remains unclear. To determine whether silibinin alleviates the pathogenesis of sporadic AD and investigate the underlying mechanisms, STZ-treated HT22 murine hippocampal neurons and intracerebroventricular injection of streptozotocin (ICV-STZ) rats, a sporadic AD model, were used in this study. Results show that silibinin not only promotes survival of STZ-treated HT22 cells, but also ameliorates the cognitive impairment and anxiety/depression-like behavior of ICV-STZ rats. We here demonstrate that silibinin evidently inhibits the protein level of p53 as well as upregulates the protein level of cystine/glutamate antiporter SLC7A11 and ferroptosis inhibitor GPX4, but not p21, leading to the protection against STZ-induced ferroptotic damage. Immunofluorescent staining also shows that accumulation of lipid peroxidation induced by ferroptotic damage leads to increased fluorescence of 8-oxo-deoxyguanosine (8-OHDG), a maker of oxidized DNA. The oxidized DNA then leaks to the cytoplasm and upregulates the expression of the stimulator of interferon gene (STING), which triggers the production of IFN-β and other inflammatory cascades including NF-κB/TNFα and NLRP3/caspase 1/IL-1β. However, the treatment with silibinin blocks the above pathological changes. Moreover, in HT22 cells with/without STZ treatment, GPX4-knockdown increases the protein level of STING, indicating that the ferroptotic damage leads to the activation of STING signaling pathway. These results imply that silibinin exerts neuroprotective effect on an STZ-induced sporadic AD model by downregulating ferroptotic damage and thus the downstream STING-mediated neuroinflammation.
Collapse
Affiliation(s)
- Panwen Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Wenhui Chen
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Yu Kang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Chenkang Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Xiaoling Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Weiwei Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Toshihiko Hayashi
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China; Nippi Research Institute of Biomatrix, Toride, Ibaraki, 302-0017, Japan
| | - Zhiyue Qiu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Kazunori Mizuno
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, 302-0017, Japan
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, 302-0017, Japan
| | - Hitomi Fujisaki
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, 302-0017, Japan
| | - Takashi Ikejima
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China; Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China.
| |
Collapse
|
107
|
Pratt DA. Targeting lipoxygenases to suppress ferroptotic cell death. Proc Natl Acad Sci U S A 2023; 120:e2309317120. [PMID: 37406088 PMCID: PMC10629513 DOI: 10.1073/pnas.2309317120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023] Open
Affiliation(s)
- Derek A. Pratt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ONK1N 6N5, Canada
| |
Collapse
|
108
|
Wang E, Zhou S, Zeng D, Wang R. Molecular regulation and therapeutic implications of cell death in pulmonary hypertension. Cell Death Discov 2023; 9:239. [PMID: 37438344 DOI: 10.1038/s41420-023-01535-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/21/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023] Open
Abstract
Pulmonary hypertension (PH) is a clinical and pathophysiological syndrome caused by changes in pulmonary vascular structure or function that results in increased pulmonary vascular resistance and pulmonary arterial pressure, and it is characterized by pulmonary endothelial dysfunction, pulmonary artery media thickening, pulmonary vascular remodeling, and right ventricular hypertrophy, all of which are driven by an imbalance between the growth and death of pulmonary vascular cells. Programmed cell death (PCD), different from cell necrosis, is an active cellular death mechanism that is activated in response to both internal and external factors and is precisely regulated by cells. More than a dozen PCD modes have been identified, among which apoptosis, autophagy, pyroptosis, ferroptosis, necroptosis, and cuproptosis have been proven to be involved in the pathophysiology of PH to varying degrees. This article provides a summary of the regulatory patterns of different PCD modes and their potential effects on PH. Additionally, it describes the current understanding of this complex and interconnected process and analyzes the therapeutic potential of targeting specific PCD modes as molecular targets.
Collapse
Affiliation(s)
- Enze Wang
- Department of respiratory and critical care medicine, the first affiliated hospital of Anhui medical university, Hefei, 230022, China
| | - Sijing Zhou
- Department of Occupational Disease, Hefei third clinical college of Anhui Medical University, Hefei, 230022, China
| | - Daxiong Zeng
- Department of pulmonary and critical care medicine, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou, 215006, China.
| | - Ran Wang
- Department of respiratory and critical care medicine, the first affiliated hospital of Anhui medical university, Hefei, 230022, China.
| |
Collapse
|
109
|
Gartzke LP, Hendriks KDW, Hoogstra-Berends F, Joschko CP, Strandmoe AL, Vogelaar PC, Krenning G, Henning RH. Inhibition of Ferroptosis Enables Safe Rewarming of HEK293 Cells following Cooling in University of Wisconsin Cold Storage Solution. Int J Mol Sci 2023; 24:10939. [PMID: 37446116 DOI: 10.3390/ijms241310939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
The prolonged cooling of cells results in cell death, in which both apoptosis and ferroptosis have been implicated. Preservation solutions such as the University of Wisconsin Cold Storage Solution (UW) encompass approaches addressing both. The use of UW improves survival and thus extends preservation limits, yet it remains unclear how exactly organ preservation solutions exert their cold protection. Thus, we explored cooling effects on lipid peroxidation and adenosine triphosphate (ATP) levels and the actions of blockers of apoptosis and ferroptosis, and of compounds enhancing mitochondrial function. Cooling and rewarming experiments were performed in a cellular transplantation model using Human Embryonic Kidney (HEK) 293 cells. Cell viability was assessed by neutral red assay. Lipid peroxidation levels were measured by Western blot against 4-Hydroxy-Nonenal (4HNE) and the determination of Malondialdehyde (MDA). ATP was measured by luciferase assay. Cooling beyond 5 h in Dulbecco's Modified Eagle Medium (DMEM) induced complete cell death in HEK293, whereas cooling in UW preserved ~60% of the cells, with a gradual decline afterwards. Cooling-induced cell death was not precluded by inhibiting apoptosis. In contrast, the blocking of ferroptosis by Ferrostatin-1 or maintaining of mitochondrial function by the 6-chromanol SUL150 completely inhibited cell death both in DMEM- and UW-cooled cells. Cooling for 24 h in UW followed by rewarming for 15 min induced a ~50% increase in MDA, while concomitantly lowering ATP by >90%. Treatment with SUL150 of cooled and rewarmed HEK293 effectively precluded the increase in MDA and preserved normal ATP in both DMEM- and UW-cooled cells. Likewise, treatment with Ferrostatin-1 blocked the MDA increase and preserved the ATP of rewarmed UW HEK293 cells. Cooling-induced HEK293 cell death from hypothermia and/or rewarming was caused by ferroptosis rather than apoptosis. UW slowed down ferroptosis during hypothermia, but lipid peroxidation and ATP depletion rapidly ensued upon rewarming, ultimately resulting in complete cell death. Treatment throughout UW cooling with small-molecule Ferrostatin-1 or the 6-chromanol SUL150 effectively prevented ferroptosis, maintained ATP, and limited lipid peroxidation in UW-cooled cells. Counteracting ferroptosis during cooling in UW-based preservation solutions may provide a simple method to improve graft survival following cold static cooling.
Collapse
Affiliation(s)
- Lucas P Gartzke
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Koen D W Hendriks
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Femke Hoogstra-Berends
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Christian P Joschko
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Anne-Lise Strandmoe
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Pieter C Vogelaar
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
- Sulfateq B.V. Admiraal de Ruyterlaan 5, 9726 GN Groningen, The Netherlands
| | - Guido Krenning
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
- Sulfateq B.V. Admiraal de Ruyterlaan 5, 9726 GN Groningen, The Netherlands
| | - Robert H Henning
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
110
|
Nikmah UA, Hidayat S, Situmorang JH. Taking Precautions When Targeting Ferroptosis in Cancer Patients [Letter]. Cancer Manag Res 2023; 15:461-462. [PMID: 37287499 PMCID: PMC10243604 DOI: 10.2147/cmar.s423396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/09/2023] Open
Affiliation(s)
- Uly Alfi Nikmah
- Center for Biomedical Research, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | - Syarif Hidayat
- Center for Biomedical Research, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | - Jiro Hasegawa Situmorang
- Center for Biomedical Research, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
- Cardiovascular and Mitochondrial Related Disease Research Center, Buddhist Tzu Chi General Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| |
Collapse
|