101
|
Brawer J, Amir O. Mapping the "Funny Bone": Neuroanatomical Correlates of Humor Creativity in Professional Comedians. Soc Cogn Affect Neurosci 2021; 16:915-925. [PMID: 33908608 PMCID: PMC8421700 DOI: 10.1093/scan/nsab049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/25/2021] [Accepted: 04/27/2021] [Indexed: 11/25/2022] Open
Abstract
What are the neuroanatomical correlates of expertise in a specific creative domain? Professional comedians, amateurs and controls underwent a T1 MRI anatomical scan. Measures of cortical surface area (gyrification and sulcal depth) and thickness were extracted for each participant. Compared to controls, professional comedians had a greater cortical surface area in the left inferior temporal gyrus, angular gyrus, precuneus and right medial prefrontal cortex. These regions have been previously implicated in abstract, divergent thinking and the default-mode network. The high degree of overlap between the regions of greater surface area in professional comedians with the regions showing greater activation in the same group during comedy improvisation in our previous work (particularly the temporal regions and angular gyrus) suggests that these regions may be specifically involved in humor creativity.
Collapse
Affiliation(s)
- Jacob Brawer
- Neuroscience, Pomona College, Claremont, California, USA
| | - Ori Amir
- Psychological Science, Pomona College, Claremont, California, USA
| |
Collapse
|
102
|
Yu S, Feng F, Zhang Q, Shen Z, Wang Z, Hu Y, Gong L. Gray matter hypertrophy in primary insomnia: a surface-based morphometric study. Brain Imaging Behav 2021; 14:1309-1317. [PMID: 30511119 DOI: 10.1007/s11682-018-9992-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Studies have explored brain structural abnormalities in patients with primary insomnia (PI). However, most of them are based on volumetric measures, in a specific region of interest, and have small sample sizes. Here, we investigated changes in cortical morphology (thickness and volume) in PI using an advanced surface-based morphometric method. Sixty-seven patients with PI and 55 matched healthy controls were recruited for this study and underwent a structural magnetic resonance imaging scan. The reconstructed cortical surface was processed by Freesurfer 6.0. A general linear model was used to explore group differences in surface-based morphometric features. Furthermore, the association between these cortical features and clinical characteristics were assessed in the PI group. Compared to controls, PI patients showed cortical thickening in the left orbital frontal cortex (OFC), right rostral anterior cingulate cortex (rACC), left middle cingulate cortex (MCC), bilateral insula, left superior parietal lobule (SPL), and right fusiform area (FFA), and showed increased cortical volume in the left OFC, right rACC, bilateral rostral middle frontal gyrus, and right FFA. Cortical thickness in the right OFC and FFA was positively correlated with the severity of insomnia in the PI group, suggesting a right-lateralized relationship. This study was the first to explore multiple-scale cortical morphometric changes in a relatively large sample of PI patients. Our results suggest that hypertrophic cortical morphology may underlie the neuropathology of primary insomnia.
Collapse
Affiliation(s)
- Siyi Yu
- Department of Acupuncture & Tuina, Chengdu University of Traditional Chinese Medicine, No. 37 Shierqiao Road, Chengdu, 610075, Sichuan, China
| | - Fen Feng
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Qi Zhang
- Department of Acupuncture & Tuina, Chengdu University of Traditional Chinese Medicine, No. 37 Shierqiao Road, Chengdu, 610075, Sichuan, China
| | - Zhifu Shen
- Department of Acupuncture & Tuina, Chengdu University of Traditional Chinese Medicine, No. 37 Shierqiao Road, Chengdu, 610075, Sichuan, China
| | - Zhengyan Wang
- Department of Pain Management, Sichuan Integrative Medicine Hospital, Chengdu, 610041, Sichuan, China
| | - Youping Hu
- Department of Acupuncture & Tuina, Chengdu University of Traditional Chinese Medicine, No. 37 Shierqiao Road, Chengdu, 610075, Sichuan, China.
| | - Liang Gong
- Department of Neurology, Chengdu Second People's Hospital, No. 10 Qingyunnan Road, Chengdu, 610017, Sichuan, China. .,Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
103
|
LV YUTING, ZHAO WENSHUO, YAO XUFENG, XU SONG, TANG ZHIXIAN, FAN YIFENG, HUANG GANG. ANALYSES OF BRAIN CORTICAL CHANGES OF ALZHEIMER’S DISEASE. J MECH MED BIOL 2021. [DOI: 10.1142/s021951942140025x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Alzheimer’s disease (AD) produces complicated cortical changes in gray matter (GM) of the human brain. However, alterations in the brain cortex have not been clearly addressed. In our study, a cohort of 236 cases MR data enrolled from the ADNI database was categorized into three groups of normal controls (NCs), mild cognitive impairment (MCI) and AD. The GM morphological differences were investigated among the three groups using the magnetic resonance (MR) GM characteristics of gray matter volume (GMV), cortical thickness (CT), cortical surface area (CSA) and local gyrification index (LGI) at the three levels of whole brain, bilateral hemispheres and critical brain regions. Totally, there were six critical brain regions for GMV, 11 for CT, 2 for CSA and 59 for LGI among the three groups for the no-division groups. Also, there were 11 critical brain regions for GMV, 15 for CT, 8 for CSA, 3 for LGI for female sub-groups and 4 critical brain regions for GMV, 11 for CT, 1 for CSA, 3 for LGI for male sub-groups. The four measured cortical characteristics showed reliable capability in the morphological description of GM changes of AD. In conclusion, the cortical characteristics of GMV, CT, CSA and LGI of critical brain regions showed valuable indications for GM changes of AD, and those characteristics could be used as imaging markers for AD prediction.
Collapse
Affiliation(s)
- YUTING LV
- College of Medical Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P. R. China
| | - WENSHUO ZHAO
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - XUFENG YAO
- College of Medical Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P. R. China
| | - SONG XU
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - ZHIXIAN TANG
- College of Medical Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P. R. China
| | - YIFENG FAN
- School of Medical Imaging, Hangzhou Medical College, Hangzhou 310053, P. R. China
| | - GANG HUANG
- College of Medical Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P. R. China
| |
Collapse
|
104
|
Besteher B, Gaser C, Nenadić I. Brain Structure and Subclinical Symptoms: A Dimensional Perspective of Psychopathology in the Depression and Anxiety Spectrum. Neuropsychobiology 2021; 79:270-283. [PMID: 31340207 DOI: 10.1159/000501024] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 05/18/2019] [Indexed: 11/19/2022]
Abstract
Human psychopathology is the result of complex and subtle neurobiological alterations. Categorial DSM or ICD diagnoses do not allow a biologically founded and differentiated description of these diverse processes across a spectrum or continuum, emphasising the need for a scientific and clinical paradigm shift towards a dimensional psychiatric nosology. The subclinical part of the spectrum is, however, of special interest for early detection of mental disorders. We review the current evidence of brain structural correlates (grey matter volume, cortical thickness, and gyrification) in non-clinical (psychiatrically healthy) subjects with minor depressive and anxiety symptoms. We identified 16 studies in the depressive spectrum and 20 studies in the anxiety spectrum. These studies show effects associated with subclinical symptoms in the hippocampus, anterior cingulate cortex, and anterior insula similar to major depression and changes in amygdala similar to anxiety disorders. Precuneus and temporal areas as parts of the default mode network were affected specifically in the subclinical studies. We derive several methodical considerations crucial to investigations of brain structural correlates of minor psycho(patho)logical symptoms in healthy participants. And we discuss neurobiological overlaps with findings in patients as well as distinct findings, e.g. in areas involved in the default mode network. These results might lead to more insight into the early pathogenesis of clinical significant depression or anxiety and need to be enhanced by multi-centre and longitudinal studies.
Collapse
Affiliation(s)
- Bianca Besteher
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany,
| | - Christian Gaser
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.,Department of Neurology, Jena University Hospital, Jena, Germany
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, Philipps University Marburg/Marburg University Hospital - UKGM, Marburg, Germany
| |
Collapse
|
105
|
Zhu L, Yu Q, Herold F, Cheval B, Dong X, Cui L, Xiong X, Chen A, Yin H, Kong Z, Mueller N, Kramer AF, Zou L. Brain Structure, Cardiorespiratory Fitness, and Executive Control Changes after a 9-Week Exercise Intervention in Young Adults: A Randomized Controlled Trial. Life (Basel) 2021; 11:292. [PMID: 33808225 PMCID: PMC8066797 DOI: 10.3390/life11040292] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/27/2021] [Accepted: 03/28/2021] [Indexed: 12/15/2022] Open
Abstract
Cardiorespiratory fitness (CRF) is assumed to exert beneficial effects on brain structure and executive control (EC) performance. However, empirical evidence of exercise-induced cognitive enhancement is not conclusive, and the role of CRF in younger adults is not fully understood. Here, we conducted a study in which healthy young adults took part in a moderate aerobic exercise intervention program for 9 weeks (exercise group; n = 48), or control condition of non-aerobic exercise intervention (waitlist control group; n = 72). Before and after the intervention period maximal oxygen uptake (VO2max) as an indicator of CRF, the Flanker task as a measure of EC performance and grey matter volume (GMV), as well as cortical thickness via structural magnetic resonance imaging (MRI), were assessed. Compared to the control group, the CRF (heart rate, p < 0.001; VO2max, p < 0.001) and EC performance (congruent and incongruent reaction time, p = 0.011, p < 0.001) of the exercise group were significantly improved after the 9-week aerobic exercise intervention. Furthermore, GMV changes in the left medial frontal gyrus increased in the exercise group, whereas they were significantly reduced in the control group. Likewise, analysis of cortical morphology revealed that the left lateral occipital cortex (LOC.L) and the left precuneus (PCUN.L) thickness were considerably increased in the exercise group, which was not observed in the control group. The exploration analysis confirmed that CRF improvements are linked to EC improvement and frontal grey matter changes. In summary, our results support the idea that regular endurance exercises are an important determinant for brain health and cognitive performance even in a cohort of younger adults.
Collapse
Affiliation(s)
- Lina Zhu
- School of Physical Education and Sports Science, Beijing Normal University, Beijing 100875, China; (L.Z.); (L.C.)
| | - Qian Yu
- Exercise & Mental Health Laboratory, Institute of Collaborative Innovation (Sport-Psychology-Education), School of Psychology, Shenzhen University, Shenzhen 518060, China;
| | - Fabian Herold
- Research Group Neuroprotection, German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, 39120 Magdeburg, Germany; (F.H.); (N.M.)
| | - Boris Cheval
- Swiss Center for Affective Sciences, University of Geneva, 1205 Geneva, Switzerland;
- Laboratory for the Study of Emotion Elicitation and Expression (E3Lab), Department of Psychology, FPSE, University of Geneva, 1205 Geneva, Switzerland
| | - Xiaoxiao Dong
- College of Physical Education, Yangzhou University, Yangzhou 225127, China; (X.D.); (X.X.)
| | - Lei Cui
- School of Physical Education and Sports Science, Beijing Normal University, Beijing 100875, China; (L.Z.); (L.C.)
| | - Xuan Xiong
- College of Physical Education, Yangzhou University, Yangzhou 225127, China; (X.D.); (X.X.)
| | - Aiguo Chen
- College of Physical Education, Yangzhou University, Yangzhou 225127, China; (X.D.); (X.X.)
| | - Hengchan Yin
- School of Physical Education and Sports Science, Beijing Normal University, Beijing 100875, China; (L.Z.); (L.C.)
| | - Zhaowei Kong
- Faculty of Education, University of Macau, Macao, China;
| | - Notger Mueller
- Research Group Neuroprotection, German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, 39120 Magdeburg, Germany; (F.H.); (N.M.)
| | - Arthur F. Kramer
- Center for Cognitive and Brain Health, Department of Psychology, Northeastern University, Boston, MA 02115, USA;
- Beckman Institute, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA
| | - Liye Zou
- Exercise & Mental Health Laboratory, Institute of Collaborative Innovation (Sport-Psychology-Education), School of Psychology, Shenzhen University, Shenzhen 518060, China;
| |
Collapse
|
106
|
Maidan I, Mirelman A, Hausdorff JM, Stern Y, Habeck CG. Distinct cortical thickness patterns link disparate cerebral cortex regions to select mobility domains. Sci Rep 2021; 11:6600. [PMID: 33758214 PMCID: PMC7988162 DOI: 10.1038/s41598-021-85058-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 02/19/2021] [Indexed: 01/03/2023] Open
Abstract
The cortical control of gait and mobility involves multiple brain regions. Therefore, one could speculate that the association between specific spatial patterns of cortical thickness may be differentially associated with different mobility domains. To test this possibility, 115 healthy participants aged 27–82 (mean 60.5 ± 13.8) underwent a mobility assessment (usual-walk, dual-task walk, Timed Up and Go) and MRI scan. Ten mobility domains of relatively simple (e.g., usual-walking) and complex tasks (i.e., dual task walking, turns, transitions) and cortical thickness of 68 ROIs were extracted. All associations between mobility and cortical thickness were controlled for age and gender. Scaled Subprofile Modelling (SSM), a PCA-regression, identified thickness patterns that were correlated with the individual mobility domains, controlling for multiple comparisons. We found that lower mean global cortical thickness was correlated with worse general mobility (r = − 0.296, p = 0.003), as measured by the time to complete the Timed Up and Go test. Three distinct patterns of cortical thickness were associated with three different gait domains during simple, usual-walking: pace, rhythm, and symmetry. In contrast, cortical thickness patterns were not related to the more complex mobility domains. These findings demonstrate that robust and topographically distinct cortical thickness patterns are linked to select mobility domains during relatively simple walking, but not to more complex aspects of mobility. Functional connectivity may play a larger role in the more complex aspects of mobility.
Collapse
Affiliation(s)
- Inbal Maidan
- Laboratory of Early Markers of Neurodegeneration, Center for the Study of Movement, Cognition, and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, 6 Weizmann Street, 64239, Tel Aviv, Israel. .,Department of Neurology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel. .,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| | - Anat Mirelman
- Laboratory of Early Markers of Neurodegeneration, Center for the Study of Movement, Cognition, and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, 6 Weizmann Street, 64239, Tel Aviv, Israel.,Department of Neurology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Jeffrey M Hausdorff
- Laboratory of Early Markers of Neurodegeneration, Center for the Study of Movement, Cognition, and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, 6 Weizmann Street, 64239, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Department of Physical Therapy, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Orthopaedic Surgery, Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Yaakov Stern
- Cognitive Neuroscience Division of the Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain and G.H. Sergievsky Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Christian G Habeck
- Cognitive Neuroscience Division of the Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain and G.H. Sergievsky Center, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
107
|
Distaso E, Milella G, Mezzapesa DM, Introna A, D'Errico E, Fraddosio A, Zoccolella S, Dicuonzo F, Simone IL. Magnetic resonance metrics to evaluate the effect of therapy in amyotrophic lateral sclerosis: the experience with edaravone. J Neurol 2021; 268:3307-3315. [PMID: 33655342 PMCID: PMC8357666 DOI: 10.1007/s00415-021-10495-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Edaravone was approved as a new treatment for amyotrophic lateral sclerosis (ALS), although there are different opinions on its effectiveness. Magnetic resonance (MRI) measures appear promising as diagnostic and prognostic indicators of disease. However, published studies on MRI using to monitor treatment efficacy in ALS are lacking. PURPOSE The objective of this study was to investigate changes in brain MRI measures in patients treated with edaravone. METHODS Thirteen ALS patients assuming edaravone (ALS-EDA) underwent MRI at baseline (T0) and after 6 months (T6) to measure cortical thickness (CT) and fractional anisotropy (FA) of white matter (WM) tracts. MRI data of ALS-EDA were compared at T0 with those of 12 control subjects (CS), and at T6 with those of 11 ALS patients assuming only riluzole (ALS-RIL), extracted from our ALS cohort using a propensity-score-matching. A longitudinal MRI analysis was performed in ALS-EDA between T6 and T0. RESULTS At T0, ALS-EDA showed a cortical widespread thinning in both hemispheres, particularly in the bilateral precentral gyrus, and a reduction of FA in bilateral corticospinal tracts, in comparison to CS. Thinning in bilateral precentral cortex and significant widespread reduction of FA in several WM tracts were observed in ALS-EDA at T6 compared to T0. At T6, no significant differences in MRI measures of ALS-EDA versus ALS-RIL were found. CONCLUSIONS Patients treated with edaravone showed progression of damage in the motor cortex and several WM tracts, at a six-month follow-up. Moreover, this study showed no evidence of a difference between edaravone and riluzole.
Collapse
Affiliation(s)
- Eugenio Distaso
- Neurology Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Giammarco Milella
- Neurology Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Domenico Maria Mezzapesa
- Neurology Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Alessandro Introna
- Neurology Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Eustachio D'Errico
- Neurology Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Angela Fraddosio
- Neurology Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy
| | | | - Franca Dicuonzo
- Neuroradiology Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70100, Bari, Italy
| | - Isabella Laura Simone
- Neurology Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy.
| |
Collapse
|
108
|
Pimontel MA, Solomonov N, Oberlin L, Kanellopoulos T, Bress JN, Hoptman MJ, Alexopoulos GS, Gunning FM. Cortical Thickness of the Salience Network and Change in Apathy Following Antidepressant Treatment for Late-Life Depression. Am J Geriatr Psychiatry 2021; 29:241-248. [PMID: 32680763 PMCID: PMC7738363 DOI: 10.1016/j.jagp.2020.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/05/2020] [Accepted: 06/10/2020] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Apathy is common in late-life depression and is associated with poor response to antidepressant drugs. In depressed older adults, apathy may be characterized by neuroanatomical abnormalities of the salience network. The current study examined whether cortical thickness of select salience network structures predicted change in apathy following a 12-week treatment with escitalopram. METHODS A sample of 46 older adults with major depressive disorder received 12 weeks of escitalopram treatment at a daily target dose of 20 mg. All participants underwent a structural brain MRI scan at baseline, and cortical thickness was estimated in key cortical nodes of the salience network: the caudal anterior cingulate cortex and the insula. We measured baseline and post-treatment symptoms using the Apathy Evaluation Scale and the Hamilton Depression Rating Scale. RESULTS A thicker insula at baseline predicted reduction in apathy symptoms following 12 weeks of treatment with escitalopram, even when controlling for age, baseline depression severity and change in depressive symptoms. CONCLUSION Reduced insular thickness predicted residual apathetic symptoms following escitalopram treatment. These results converge with our previous findings of abnormal functional connectivity of the insular cortex in older depressed individuals with apathy. Older depressed adults with apathy may benefit from alternative treatment approaches or augmentative interventions that target abnormalities of the salience network.
Collapse
Affiliation(s)
- Monique A Pimontel
- Weill Cornell Institute of Geriatric Psychiatry, Weill Cornell Medicine (MAP, NS, LO, TK, JNB, GSA, FMG), White Plains, NY
| | - Nili Solomonov
- Weill Cornell Institute of Geriatric Psychiatry, Weill Cornell Medicine (MAP, NS, LO, TK, JNB, GSA, FMG), White Plains, NY
| | - Lauren Oberlin
- Weill Cornell Institute of Geriatric Psychiatry, Weill Cornell Medicine (MAP, NS, LO, TK, JNB, GSA, FMG), White Plains, NY
| | - Theodora Kanellopoulos
- Weill Cornell Institute of Geriatric Psychiatry, Weill Cornell Medicine (MAP, NS, LO, TK, JNB, GSA, FMG), White Plains, NY
| | - Jennifer N Bress
- Weill Cornell Institute of Geriatric Psychiatry, Weill Cornell Medicine (MAP, NS, LO, TK, JNB, GSA, FMG), White Plains, NY
| | - Matthew J Hoptman
- The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY; New York University School of Medicine, New York, NY
| | - George S Alexopoulos
- Weill Cornell Institute of Geriatric Psychiatry, Weill Cornell Medicine (MAP, NS, LO, TK, JNB, GSA, FMG), White Plains, NY
| | - Faith M Gunning
- Weill Cornell Institute of Geriatric Psychiatry, Weill Cornell Medicine (MAP, NS, LO, TK, JNB, GSA, FMG), White Plains, NY.
| |
Collapse
|
109
|
Tremblay C, Abbasi N, Zeighami Y, Yau Y, Dadar M, Rahayel S, Dagher A. Sex effects on brain structure in de novo Parkinson's disease: a multimodal neuroimaging study. Brain 2021; 143:3052-3066. [PMID: 32980872 DOI: 10.1093/brain/awaa234] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 05/06/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease varies in severity and age of onset. One source of this variability is sex. Males are twice as likely as females to develop Parkinson's disease, and tend to have more severe symptoms and greater speed of progression. However, to date, there is little information in large cohorts on sex differences in the patterns of neurodegeneration. Here we used MRI and clinical information from the Parkinson Progression Markers Initiative to measure structural brain differences between sexes in Parkinson's disease after regressing out the expected effect of age and sex. We derived atrophy maps from deformation-based morphometry of T1-weighted MRI and connectivity from diffusion-weighted MRI in de novo Parkinson's disease patients (149 males: 83 females) with comparable clinical severity, and healthy control participants (78 males: 39 females). Overall, even though the two patient groups were matched for disease duration and severity, males demonstrated generally greater brain atrophy and disrupted connectivity. Males with Parkinson's disease had significantly greater tissue loss than females in 11 cortical regions including bilateral frontal and left insular lobe, right postcentral gyrus, left inferior temporal and cingulate gyrus and left thalamus, while females had greater atrophy in six cortical regions, including regions in the left frontal lobe, right parietal lobe, left insular gyrus and right occipital cortex. Local efficiency of white matter connectivity showed greater disruption in males in multiple regions such as basal ganglia, hippocampus, amygdala and thalamus. These findings support the idea that development of Parkinson's disease may involve different pathological mechanisms and yield distinct prognosis in males and females, which may have implications for research into neuroprotection, and stratification for clinical trials.
Collapse
Affiliation(s)
- Christina Tremblay
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Nooshin Abbasi
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Yashar Zeighami
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Yvonne Yau
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Mahsa Dadar
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Shady Rahayel
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, Canada
| | - Alain Dagher
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
110
|
Wang Y, Leiberg K, Ludwig T, Little B, Necus JH, Winston G, Vos SB, Tisi JD, Duncan JS, Taylor PN, Mota B. Independent components of human brain morphology. Neuroimage 2021; 226:117546. [PMID: 33186714 PMCID: PMC7836233 DOI: 10.1016/j.neuroimage.2020.117546] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/16/2020] [Accepted: 11/05/2020] [Indexed: 01/12/2023] Open
Abstract
Quantification of brain morphology has become an important cornerstone in understanding brain structure. Measures of cortical morphology such as thickness and surface area are frequently used to compare groups of subjects or characterise longitudinal changes. However, such measures are often treated as independent from each other. A recently described scaling law, derived from a statistical physics model of cortical folding, demonstrates that there is a tight covariance between three commonly used cortical morphology measures: cortical thickness, total surface area, and exposed surface area. We show that assuming the independence of cortical morphology measures can hide features and potentially lead to misinterpretations. Using the scaling law, we account for the covariance between cortical morphology measures and derive novel independent measures of cortical morphology. By applying these new measures, we show that new information can be gained; in our example we show that distinct morphological alterations underlie healthy ageing compared to temporal lobe epilepsy, even on the coarse level of a whole hemisphere. We thus provide a conceptual framework for characterising cortical morphology in a statistically valid and interpretable manner, based on theoretical reasoning about the shape of the cortex.
Collapse
Affiliation(s)
- Yujiang Wang
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Complex Systems Group, School of Computing, Newcastle University, Newcastle upon Tyne, UK; Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; UCL Queen Square Institute of Neurology, London, UK.
| | - Karoline Leiberg
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Complex Systems Group, School of Computing, Newcastle University, Newcastle upon Tyne, UK
| | - Tobias Ludwig
- Graduate Training Center of Neuroscience, University of Tübingen, Tübingen, Germany
| | - Bethany Little
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Complex Systems Group, School of Computing, Newcastle University, Newcastle upon Tyne, UK; Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Joe H Necus
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Complex Systems Group, School of Computing, Newcastle University, Newcastle upon Tyne, UK; Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Gavin Winston
- UCL Queen Square Institute of Neurology, London, UK; Department of Medicine, Division of Neurology, Queen's University, Kingston, Canada; Epilepsy Society MRI Unit, Chalfont St Peter, UK
| | - Sjoerd B Vos
- UCL Queen Square Institute of Neurology, London, UK; Centre for Medical Image Computing (CMIC), University College London, London, UK; Epilepsy Society MRI Unit, Chalfont St Peter, UK
| | - Jane de Tisi
- UCL Queen Square Institute of Neurology, London, UK
| | - John S Duncan
- UCL Queen Square Institute of Neurology, London, UK; Epilepsy Society MRI Unit, Chalfont St Peter, UK
| | - Peter N Taylor
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Complex Systems Group, School of Computing, Newcastle University, Newcastle upon Tyne, UK; Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; UCL Queen Square Institute of Neurology, London, UK
| | - Bruno Mota
- Institute of Physics, Federal University of Rio de Janeiro, Brazil
| |
Collapse
|
111
|
Lv Y, Wei W, Han X, Song Y, Han Y, Zhou C, Zhou D, Zhang F, Wu X, Liu J, Zhao L, Zhang C, Wang N, Wang J. Multiparametric and multilevel characterization of morphological alterations in patients with transient ischemic attack. Hum Brain Mapp 2021; 42:2045-2060. [PMID: 33463862 PMCID: PMC8046078 DOI: 10.1002/hbm.25344] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/25/2020] [Accepted: 01/07/2021] [Indexed: 11/07/2022] Open
Abstract
Transient ischemic attack (TIA), an important risk factor for stroke, is associated with widespread disruptions of functional brain architecture. However, TIA-related structural alterations are not well established. By analyzing structural MRI data from 50 TIA patients versus 40 healthy controls (HCs), here we systematically investigated TIA-related morphological alterations in multiple cortical surface-based indices (cortical thickness [CT], fractal dimension [FD], gyrification index [GI], and sulcal depth [SD]) at multiple levels (local topography, interregional connectivity and whole-brain network topology). For the observed alterations, their associations with clinical risk factors and abilities as diagnostic and prognostic biomarkers were further examined. We found that compared with the HCs, the TIA patients showed widespread morphological alterations and the alterations depended on choices of morphological index and analytical level. Specifically, the patients exhibited: (a) regional CT decreases in the transverse temporal gyrus and lateral sulcus; (b) impaired FD- and GI-based connectivity mainly involving visual, somatomotor and ventral attention networks and interhemispheric connections; and (c) altered GI-based whole-brain network efficiency and decreased FD-based nodal centrality in the middle frontal gyrus. Moreover, the impaired morphological connectivity showed high sensitivities and specificities for distinguishing the patients from HCs. Altogether, these findings demonstrate the emergence of morphological index-dependent and analytical level-specific alterations in TIA, which provide novel insights into neurobiological mechanisms underlying TIA and may serve as potential biomarkers to help diagnosis of the disease. Meanwhile, our findings highlight the necessity of using multiparametric and multilevel approaches for a complete mapping of cerebral morphology in health and disease.
Collapse
Affiliation(s)
- Yating Lv
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Zhejiang, Hangzhou, China.,Institute of Psychological Science, Hangzhou Normal University, Zhejiang, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang, Hangzhou, China.,Department of Neurology, Anshan Changda Hospital, Anshan, Liaoning, China
| | - Wei Wei
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Zhejiang, Hangzhou, China.,Institute of Psychological Science, Hangzhou Normal University, Zhejiang, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang, Hangzhou, China.,Department of Neurology, Anshan Changda Hospital, Anshan, Liaoning, China
| | - Xiujie Han
- Department of Neurology, Anshan Changda Hospital, Anshan, Liaoning, China
| | - Yulin Song
- Department of Neurology, Anshan Changda Hospital, Anshan, Liaoning, China
| | - Yu Han
- Department of Neurology, The First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Chengshu Zhou
- Department of Neurology, Anshan Changda Hospital, Anshan, Liaoning, China
| | - Dan Zhou
- Department of Neurology, Anshan Changda Hospital, Anshan, Liaoning, China
| | - Fuding Zhang
- Department of Neurology, Anshan Changda Hospital, Anshan, Liaoning, China
| | - Xiaoyan Wu
- Department of Image, Anshan Changda Hospital, Anshan, Liaoning, China
| | - Jinling Liu
- Department of Ultrasonics, Anshan Changda Hospital, Anshan, Liaoning, China
| | - Lijuan Zhao
- Department of Neurology, Anshan Changda Hospital, Anshan, Liaoning, China
| | - Cairong Zhang
- Department of Neurology, Anshan Changda Hospital, Anshan, Liaoning, China
| | - Ningkai Wang
- Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, South China Normal University, Guangzhou, China.,Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, China
| | - Jinhui Wang
- Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, South China Normal University, Guangzhou, China.,Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, China
| |
Collapse
|
112
|
Sheng L, Zhao P, Ma H, Radua J, Yi Z, Shi Y, Zhong J, Dai Z, Pan P. Cortical thickness in Parkinson's disease: a coordinate-based meta-analysis. Aging (Albany NY) 2021; 13:4007-4023. [PMID: 33461168 PMCID: PMC7906199 DOI: 10.18632/aging.202368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/30/2020] [Indexed: 12/24/2022]
Abstract
Parkinson's disease (PD) is a common age-related neurodegenerative disease that affects the structural architecture of the cerebral cortex. Cortical thickness (CTh) via surface-based morphometry (SBM) analysis is a popular measure to assess brain structural alterations in the gray matter in PD. However, the results of CTh analysis in PD lack consistency and have not been systematically reviewed. We conducted a comprehensive coordinate-based meta-analysis (CBMA) of 38 CTh studies (57 comparison datasets) in 1,843 patients with PD using the latest seed-based d mapping software. Compared with 1,172 healthy controls, no significantly consistent CTh alterations were found in patients with PD, suggesting CTh as an unreliable neuroimaging marker for PD. The lack of consistent CTh alterations in PD could be ascribed to the heterogeneity in clinical populations, variations in imaging methods, and underpowered small sample sizes. These results highlight the need to control for potential confounding factors to produce robust and reproducible CTh results in PD.
Collapse
Affiliation(s)
- LiQin Sheng
- Department of Neurology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, PR China
| | - PanWen Zhao
- Department of Central Laboratory, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, PR China
| | - HaiRong Ma
- Department of Neurology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, PR China
| | - Joaquim Radua
- Imaging of Mood- and Anxiety-Related Disorders (IMARD) Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBERSAM, Barcelona, Spain
- Early Psychosis: Interventions and Clinical-Detection (EPIC) Laboratory, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Centre for Psychiatric Research and Education, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - ZhongQuan Yi
- Department of Central Laboratory, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, PR China
| | - YuanYuan Shi
- Department of Central Laboratory, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, PR China
| | - JianGuo Zhong
- Department of Neurology, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, PR China
| | - ZhenYu Dai
- Department of Radiology, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, PR China
| | - PingLei Pan
- Department of Neurology, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, PR China
| |
Collapse
|
113
|
Sheng L, Ma H, Shi Y, Dai Z, Zhong J, Chen F, Pan P. Cortical Thickness in Migraine: A Coordinate-Based Meta-Analysis. Front Neurosci 2021; 14:600423. [PMID: 33488349 PMCID: PMC7815689 DOI: 10.3389/fnins.2020.600423] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 11/25/2020] [Indexed: 11/13/2022] Open
Abstract
Cortical thickness (CTh) via surface-based morphometry analysis is a popular method to characterize brain morphometry. Many studies have been performed to investigate CTh abnormalities in migraine. However, the results from these studies were not consistent and even conflicting. These divergent results hinder us to obtain a clear picture of brain morphometry regarding CTh alterations in migraine. Coordinate-based meta-analysis (CBMA) is a promising technique to quantitatively pool individual neuroimaging studies to identify consistent brain areas involved. Electronic databases (PubMed, EMBASE, Web of Science, China National Knowledge Infrastructure, WanFang, and SinoMed) and other sources (bioRxiv and reference lists of relevant articles and reviews) were systematically searched for studies that compared regional CTh differences between patients with migraine and healthy controls (HCs) up to May 15, 2020. A CBMA was performed using the Seed-based d Mapping with Permutation of Subject Images approach. In total, we identified 16 studies with 17 datasets reported that were eligible for the CBMA. The 17 datasets included 872 patients with migraine (average sample size 51.3, mean age 39.6 years, 721 females) and 949 HCs (average sample size 59.3, mean age 44.2 years, 680 females). The CBMA detected no statistically significant consistency of CTh alterations in patients with migraine relative to HCs. Sensitivity analysis and subgroup analysis verified this result to be robust. Metaregression analyses revealed that this CBMA result was not confounded by age, gender, aura, attack frequency per month, and illness duration. Our CBMA adds to the evidence of the replication crisis in neuroimaging research that is increasingly recognized. Many potential confounders, such as underpowered sample size, heterogeneous patient selection criteria, and differences in imaging collection and methodology, may contribute to the inconsistencies of CTh alterations in migraine, which merit attention before planning future research on this topic.
Collapse
Affiliation(s)
- LiQin Sheng
- Department of Neurology, Kunshan Hospital of Traditional Chinese Medicine, Suzhou, China
| | - HaiRong Ma
- Department of Neurology, Kunshan Hospital of Traditional Chinese Medicine, Suzhou, China
| | - YuanYuan Shi
- Department of Central Laboratory, School of Medicine, Affiliated Yancheng Hospital, Southeast University, Yancheng, China
| | - ZhenYu Dai
- Department of Radiology, School of Medicine, Affiliated Yancheng Hospital, Southeast University, Yancheng, China
| | - JianGuo Zhong
- Department of Neurology, School of Medicine, Affiliated Yancheng Hospital, Southeast University, Yancheng, China
| | - Fei Chen
- Department of Radiology, School of Medicine, Affiliated Yancheng Hospital, Southeast University, Yancheng, China
| | - PingLei Pan
- Department of Central Laboratory, School of Medicine, Affiliated Yancheng Hospital, Southeast University, Yancheng, China
- Department of Neurology, School of Medicine, Affiliated Yancheng Hospital, Southeast University, Yancheng, China
| |
Collapse
|
114
|
Zhong J, Wu H, Wu F, He H, Zhang Z, Huang J, Cao P, Fan N. Cortical Thickness Changes in Chronic Ketamine Users. Front Psychiatry 2021; 12:645471. [PMID: 33841212 PMCID: PMC8026883 DOI: 10.3389/fpsyt.2021.645471] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/09/2021] [Indexed: 01/10/2023] Open
Abstract
Background: Previous studies have examined the effects of long-term ketamine use on gray matter volume. But it is unclear whether chronic ketamine use alters cortical thickness and whether cortical thickness changes in chronic ketamine users are associated with cognitive deficits observed in chronic ketamine users. Methods: Here, 28 chronic ketamine users and 30 healthy controls (HCs) were recruited. Cortical morphometry based on Computational Anatomy Toolbox (CAT12) was used to measure cortical thickness. Cognitive performance was measured by MATRICS Consensus Cognitive Battery (MCCB). Two-sample t-test was used to assess differences in cortical thickness and cognitive performance between the two groups. Partial correlation analysis was used for assessing correlations between cortical thickness changes and clinical characteristics, cognitive performance in chronic ketamine users. Results: Chronic ketamine users exhibited significantly reduced cortical thickness in frontal, parietal, temporal, and occipital lobes compared to HC [false discovery rate (FDR) corrected at p < 0.05]. In chronic ketamine users, the average quantity (g) of ketamine use/day was negatively correlated with cortical thickness in the left superior frontal gyrus (SFG), right caudal middle frontal gyrus (MFG), and right paracentral lobule. The frequency of ketamine use (days per week) was negatively correlated with cortical thickness in the left isthmus cingulate cortex. Duration of ketamine use (month) was negatively correlated with cortical thickness in the left precentral gyrus. The chronic ketamine users showed significantly poorer cognitive performance on the working memory (P = 0.009), visual learning (P = 0.009), speed of processing (P < 0.000), and Matrics composite (P = 0.01). There was no correlation between scores of domains of MCCB and reduced cortical thickness. Conclusion: The present study observed reduced cortical thickness in multiple brain areas, especially in the prefrontal cortex (PFC) in chronic ketamine users. Dose, frequency, and duration of ketamine use was negatively correlated with cortical thickness of some brain areas. Our results suggest that chronic ketamine use may lead to a decrease of cortical thickness. But the present study did not observe any correlation between reduced cortical thickness and decreased cognitive performance in chronic ketamine users.
Collapse
Affiliation(s)
- Jun Zhong
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, China
| | - Huawang Wu
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, China
| | - Fengchun Wu
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, China
| | - Hongbo He
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, China
| | - Zhaohua Zhang
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, China
| | - Jiaxin Huang
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, China
| | - Penghui Cao
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, China
| | - Ni Fan
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, China
| |
Collapse
|
115
|
Blumen HM, Schwartz E, Allali G, Beauchet O, Callisaya M, Doi T, Shimada H, Srikanth V, Verghese J. Cortical Thickness, Volume, and Surface Area in the Motoric Cognitive Risk Syndrome. J Alzheimers Dis 2021; 81:651-665. [PMID: 33867359 PMCID: PMC8768501 DOI: 10.3233/jad-201576] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The motoric cognitive risk (MCR) syndrome is a pre-clinical stage of dementia characterized by slow gait and cognitive complaint. Yet, the brain substrates of MCR are not well established. OBJECTIVE To examine cortical thickness, volume, and surface area associated with MCR in the MCR-Neuroimaging Consortium, which harmonizes image processing/analysis of multiple cohorts. METHODS Two-hundred MRIs (M age 72.62 years; 47.74%female; 33.17%MCR) from four different cohorts (50 each) were first processed with FreeSurfer 6.0, and then analyzed using multivariate and univariate general linear models with 1,000 bootstrapped samples (n-1; with resampling). All models adjusted for age, sex, education, white matter lesions, total intracranial volume, and study site. RESULTS Overall, cortical thickness was lower in individuals with MCR than in those without MCR. There was a trend in the same direction for cortical volume (p = 0.051). Regional cortical thickness was also lower among individuals with MCR than individuals without MCR in prefrontal, insular, temporal, and parietal regions. CONCLUSION Cortical atrophy in MCR is pervasive, and include regions previously associated with human locomotion, but also social, cognitive, affective, and motor functions. Cortical atrophy in MCR is easier to detect in cortical thickness than volume and surface area because thickness is more affected by healthy and pathological aging.
Collapse
Affiliation(s)
- Helena M. Blumen
- Department of Medicine Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Emily Schwartz
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Gilles Allali
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Clinical Neurosciences, Geneva University Hospitals and University of Geneva, Switzerland
| | - Olivier Beauchet
- Division of Geriatric Medicine, Sir Mortimer B. Davis Jewish General Hospital & Dr. Joseph Kaufmann Chair in Geriatric Medicine, Faculty of Medicine McGill University, Montreal, Quebec, Canada
| | - Michele Callisaya
- Peninsula Clinical School, Central Clinical School, Monash University, Victoria, Australia
- Menzies Institute for Medical Research, University of Tasmania, Tasmania, Australia
| | - Takehiko Doi
- Section for Health Promotion, Department of Preventive Gerontology
| | - Hiroyuki Shimada
- National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Velandai Srikanth
- Peninsula Clinical School, Central Clinical School, Monash University, Victoria, Australia
- Menzies Institute for Medical Research, University of Tasmania, Tasmania, Australia
| | - Joe Verghese
- Department of Medicine Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
116
|
Bhat A, Biagi L, Cioni G, Tinelli F, Morrone MC. Cortical thickness of primary visual cortex correlates with motion deficits in periventricular leukomalacia. Neuropsychologia 2020; 151:107717. [PMID: 33333138 DOI: 10.1016/j.neuropsychologia.2020.107717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 11/27/2020] [Accepted: 12/04/2020] [Indexed: 11/30/2022]
Abstract
Impairments of visual motion perception and, in particular, of flow motion have been consistently observed in premature and very low birth weight subjects during infancy. Flow motion information is analyzed at various cortical levels along the dorsal pathways, with information mainly provided by primary and early visual cortex (V1, V2 and V3). We investigated the cortical stage of the visual processing that underlies these motion impairments, measuring Grey Matter Volume and Cortical Thickness in 13 children with Periventricular Leukomalacia (PVL). The cortical thickness, but not the grey matter volume of area V1, correlates negatively with motion coherence sensitivity, indicating that the thinner the cortex, the better the performance among the patients. However, we did not find any such association with either the thickness or volume of area MT, MST and areas of the IPS, suggesting damage at the level of primary visual cortex or along the optic radiation.
Collapse
Affiliation(s)
- Akshatha Bhat
- Department of Developmental Neuroscience, Laboratory of Vision, IRCCS Fondazione Stella Maris, Pisa, Italy; Department of Neuroscience, University of Florence, Italy
| | - Laura Biagi
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Giovanni Cioni
- Department of Developmental Neuroscience, Laboratory of Vision, IRCCS Fondazione Stella Maris, Pisa, Italy; Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Francesca Tinelli
- Department of Developmental Neuroscience, Laboratory of Vision, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - M Concetta Morrone
- Department of Developmental Neuroscience, Laboratory of Vision, IRCCS Fondazione Stella Maris, Pisa, Italy; Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Italy.
| |
Collapse
|
117
|
Koops EA, de Kleine E, van Dijk P. Gray matter declines with age and hearing loss, but is partially maintained in tinnitus. Sci Rep 2020; 10:21801. [PMID: 33311548 PMCID: PMC7732822 DOI: 10.1038/s41598-020-78571-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 11/26/2020] [Indexed: 12/23/2022] Open
Abstract
The impact of age-related hearing loss extends beyond the auditory pathway and impacts brain areas related to cognitive impairment and even dementia. The presence of tinnitus, a sensation of sound that frequently co-occurs with hearing loss, is additionally linked to cognitive decline. Interestingly, structural neuroimaging studies have reported that hearing loss may precede or modulate the onset of cognitive impairment. In this study, we aimed to disentangle the effects of age, hearing loss, and tinnitus on gray matter structure. In total, 39 participants with hearing loss and tinnitus, 21 with hearing loss but without tinnitus, and 39 controls were included in this voxel- and surface-based morphometry MRI study. Whole brain volume and surface thickness measures were compared between the groups. Age-related gray matter volume decline was observed in all groups. Several brain areas showed smaller gray matter volume and cortical surface thickness in hearing loss without tinnitus, relative to controls. This reduction was observed both within and outside of the auditory pathway. Interestingly, these reductions were not observed in participants with tinnitus, who had similar hearing loss and were of similar age. Since we have tools to improve hearing loss, hearing screening may aid in the battle against cognitive decline.
Collapse
Affiliation(s)
- Elouise A Koops
- Department of Otorhinolaryngology/Head and Neck Surgery, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands. .,Graduate School of Medical Sciences (Research School of Behavioural and Cognitive Neurosciences), University of Groningen, Groningen, The Netherlands. .,Cognitive Neuroscience Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Emile de Kleine
- Department of Otorhinolaryngology/Head and Neck Surgery, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands.,Graduate School of Medical Sciences (Research School of Behavioural and Cognitive Neurosciences), University of Groningen, Groningen, The Netherlands
| | - Pim van Dijk
- Department of Otorhinolaryngology/Head and Neck Surgery, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands.,Graduate School of Medical Sciences (Research School of Behavioural and Cognitive Neurosciences), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
118
|
Kang DW, Wang SM, Na HR, Park SY, Kim NY, Lee CU, Kim D, Son SJ, Lim HK. Differences in cortical structure between cognitively normal East Asian and Caucasian older adults: a surface-based morphometry study. Sci Rep 2020; 10:20905. [PMID: 33262399 PMCID: PMC7708477 DOI: 10.1038/s41598-020-77848-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 10/19/2020] [Indexed: 11/30/2022] Open
Abstract
There is a growing literature on the impact of ethnicity on brain structure and function. Despite the regional heterogeneity in age-related changes and non-uniformity across brain morphometry measurements in the aging process, paucity of studies investigated the difference in cortical anatomy between the East Asian and Caucasian older adults. The present study aimed to compare cortical anatomy measurements, including cortical thickness, volume and surface area, between cognitively normal East Asian (n = 171) and Caucasian (n = 178) older adults, using surface-based morphometry and vertex-wise group analysis of high-dimensional structural magnetic resonance imaging (MRI) data. The East Asian group showed greater cortical thickness and larger cortical volume in the right superior temporal gyrus, postcentral gyrus, bilateral inferior temporal gyrus, and inferior parietal cortex. The Caucasian group showed thicker and larger cortex in the left transverse temporal cortex, lingual gyrus, right lateral occipital cortex, and precentral gyrus. Additionally, the difference in surface area was discordant with that in cortical thickness. Differences in brain structure between the East Asian and Caucasian might reflect differences in language and information processing, but further studies using standardized methods for assessing racial characteristics are needed. The research results represent a further step towards developing a comprehensive understanding of differences in brain structure between ethnicities of older adults, and this would enrich clinical research on aging and neurodegenerative diseases.
Collapse
Affiliation(s)
- Dong Woo Kang
- Department of Psychiatry, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sheng-Min Wang
- Department of Psychiatry, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hae-Ran Na
- Department of Psychiatry, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sonya Youngju Park
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Nak Young Kim
- Department of Psychiatry, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chang Uk Lee
- Department of Psychiatry, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | | | | | - Hyun Kook Lim
- Department of Psychiatry, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
119
|
Zhou L, Zhen Z, Liu J, Zhou K. Brain Structure and Functional Connectivity Associated with Individual Differences in the Attentional Blink. Cereb Cortex 2020; 30:6224-6237. [PMID: 32662504 DOI: 10.1093/cercor/bhaa180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 01/24/2023] Open
Abstract
The attentional blink (AB) has been central in characterizing the limit of temporal attention and consciousness. The neural mechanism of the AB is still in hot debate. With a large sample size, we combined multiple behavioral tests, multimodal MRI measures, and transcranial magnetic stimulation to investigate the neural basis underlying the individual differences in the AB. We found that AB magnitude correlated with the executive control functioning of working memory (WM) in behavior, which was fully mediated by T1 performance. Structural variations in the right temporoparietal junction (rTPJ) and its intrinsic functional connectivity with the left inferior frontal junction (lIFJ) accounted for the individual differences in the AB, which was moderated by the executive control of working memory. Disrupting the function of the lIFJ attenuated the AB deficit. Our findings clarified the neural correlates of the individual differences in the AB and elucidated its relationship with the consolidation-driven inhibitory control process.
Collapse
Affiliation(s)
- Liqin Zhou
- College of Psychology and Sociology, Shenzhen University, Shenzhen 518061, China.,Shenzhen Institute of Neuroscience, Shenzhen 518061, China.,Beijing Key Laboratory of Applied Experimental Psychology, School of Psychology, Beijing Normal University, Beijing 100875, China
| | - Zonglei Zhen
- Beijing Key Laboratory of Applied Experimental Psychology, School of Psychology, Beijing Normal University, Beijing 100875, China
| | - Jia Liu
- Beijing Key Laboratory of Applied Experimental Psychology, School of Psychology, Beijing Normal University, Beijing 100875, China
| | - Ke Zhou
- Beijing Key Laboratory of Applied Experimental Psychology, School of Psychology, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
120
|
Zhou F, Zhu Y, Zhu Y, Huang M, Jiang J, He L, Huang S, Zeng X, Gong H. Altered long- and short-range functional connectivity density associated with poor sleep quality in patients with chronic insomnia disorder: A resting-state fMRI study. Brain Behav 2020; 10:e01844. [PMID: 32935924 PMCID: PMC7667361 DOI: 10.1002/brb3.1844] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/22/2020] [Accepted: 08/30/2020] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Previous neuroimaging studies have suggested that brain functional impairment and hyperarousal occur during the daytime among patients with chronic insomnia disorder (CID); however, alterations to the brain's intrinsic functional architecture and their association with sleep quality have not yet been documented. METHODS In this study, our aim was to investigate the insomnia-related alterations to the intrinsic connectome in patients with CID (n = 27) at resting state, with a data-driven approach based on graph theory assessment and functional connectivity density (FCD), which can be interpreted as short-range (intraregional) or long-range (interregional) mapping. RESULTS Compared with healthy controls with good sleep, CID patients showed significantly decreased long-range FCD in the dorsolateral prefrontal cortices and the putamen. These patients also showed decreased short-range FCD in their multimodal-processing regions, executive control network, and supplementary motor-related areas. Furthermore, several regions showed increased short-range FCD in patients with CID, implying hyper-homogeneity of local activity. CONCLUSIONS Together, these findings suggest that insufficient sleep during chronic insomnia widely affects cortical functional activities, including disrupted FCD and increased short-range FCD, which is associated with poor sleep quality.
Collapse
Affiliation(s)
- Fuqing Zhou
- Department of RadiologyThe First Affiliated HospitalNanchang UniversityNanchangChina
- Neuroimaging LaboratoryJiangxi Province Medical Imaging Research InstituteNanchangChina
| | - Yanyan Zhu
- Department of RadiologyThe First Affiliated HospitalNanchang UniversityNanchangChina
- Neuroimaging LaboratoryJiangxi Province Medical Imaging Research InstituteNanchangChina
| | - Yujun Zhu
- Department of RespiratoryThe People’s Hospital of Yichun CityYichunChina
| | - Muhua Huang
- Department of RadiologyThe First Affiliated HospitalNanchang UniversityNanchangChina
- Neuroimaging LaboratoryJiangxi Province Medical Imaging Research InstituteNanchangChina
| | - Jian Jiang
- Department of RadiologyThe First Affiliated HospitalNanchang UniversityNanchangChina
- Neuroimaging LaboratoryJiangxi Province Medical Imaging Research InstituteNanchangChina
| | - Laichang He
- Department of RadiologyThe First Affiliated HospitalNanchang UniversityNanchangChina
- Neuroimaging LaboratoryJiangxi Province Medical Imaging Research InstituteNanchangChina
| | - Suhua Huang
- Department of RadiologyJiangxi Province Children's HospitalNanchangChina
| | - Xianjun Zeng
- Department of RadiologyThe First Affiliated HospitalNanchang UniversityNanchangChina
- Neuroimaging LaboratoryJiangxi Province Medical Imaging Research InstituteNanchangChina
| | - Honghan Gong
- Department of RadiologyThe First Affiliated HospitalNanchang UniversityNanchangChina
- Neuroimaging LaboratoryJiangxi Province Medical Imaging Research InstituteNanchangChina
| |
Collapse
|
121
|
Brain structural correlates of functional capacity in first-episode psychosis. Sci Rep 2020; 10:17229. [PMID: 33056996 PMCID: PMC7560620 DOI: 10.1038/s41598-020-73553-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
Impaired functional capacity is a core feature of schizophrenia and presents even in first-episode psychosis (FEP) patients. Impairments in daily functioning tend to persist despite antipsychotic therapy but their neural basis is less clear. Previous studies suggest that volume loss in frontal cortex might be an important contributor, but findings are inconsistent. We aimed to comprehensively investigate the brain structural correlates of functional capacity in FEP using MRI and a reliable objective measure of functioning [University of California, San Diego Performance-Based Skills Assessment (UPSA)]. In a sample of FEP (n = 39) and a well-matched control group (n = 21), we measured cortical thickness, gray matter volume, and white matter tract integrity (fractional anisotropy, FA) within brain regions implicated by previous work. The FEP group had thinner cortex in various frontal regions and fusiform, and reduced FA in inferior longitudinal fasciculus (ILF). In FEP, poorer functional capacity correlated with reduced superior frontal volume and lower FA in left ILF. Importantly, frontal brain volumes and integrity of the ILF were identified as the structural correlates of functional capacity in FEP, controlling for other relevant factors. These findings enhance mechanistic understanding of functional capacity deficits in schizophrenia by specifying the underlying neural correlates. In future, this could help inform intervention strategies.
Collapse
|
122
|
Wang C, Wang S, Shen Z, Qian W, Jiaerken Y, Luo X, Li K, Zeng Q, Gu Q, Yang Y, Huang P, Zhang M. Increased thalamic volume and decreased thalamo-precuneus functional connectivity are associated with smoking relapse. Neuroimage Clin 2020; 28:102451. [PMID: 33022581 PMCID: PMC7548987 DOI: 10.1016/j.nicl.2020.102451] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 11/03/2022]
Abstract
The thalamus, with the highest density of nicotinic acetylcholine receptor (nAChR) in the brain, plays a central role in thalamo-cortical circuits that are implicated in nicotine addiction. However, little is known about whether the thalamo-cortical circuits are potentially predictive of smoking relapse. In the current study, a total of 125 participants (84 treatment-seeking male smokers and 41 age-matched male nonsmokers) were recruited. Structural and functional magnetic resonance images (MRI) were acquired from all participants. After a 12-week smoking cessation treatment with varenicline, the smokers were then divided into relapsers (n = 54) and nonrelapsers (n = 30). Then, we compared thalamic volume and seed-based thalamo-cortical resting state functional connectivity (rsFC) prior to the cessation treatment among relapsers, nonrelapsers and nonsmokers to investigate the associations between thalamic structure/function and smoking relapse. Increased thalamic volume was detected in smokers relative to nonsmokers, and in relapsers relative to nonrelapsers, especially on the left side. Moreover, decreased left thalamo-precuneus rsFC was detected in relapsers relative to nonrelapsers. Additionally, a logistic regression analysis showed that the thalamic volume and thalamo-precuneus rsFC predicted smoking relapse with an accuracy of 75.7%. These novel findings indicate that increased thalamic volume and decreased thalamo-precuneus rsFC are associated with smoking relapse, and these thalamic measures may be used to predict treatment efficacy of nicotine addiction and serve as a potential biomarker for personalized medicine.
Collapse
Affiliation(s)
- Chao Wang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Shuyue Wang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhujing Shen
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Qian
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yeerfan Jiaerken
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Luo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kaicheng Li
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingze Zeng
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Quanquan Gu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
123
|
Proskovec AL, Rezich MT, O’Neill J, Morsey B, Wang T, Ideker T, Swindells S, Fox HS, Wilson TW. Association of Epigenetic Metrics of Biological Age With Cortical Thickness. JAMA Netw Open 2020; 3:e2015428. [PMID: 32926115 PMCID: PMC7490648 DOI: 10.1001/jamanetworkopen.2020.15428] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
IMPORTANCE Magnetic resonance imaging (MRI) studies of aging adults have shown substantial intersubject variability across various brain metrics, and some of this variability is likely attributable to chronological age being an imprecise measure of age-related change. Accurately quantifying one's biological age could allow better quantification of healthy and pathological changes in the aging brain. OBJECTIVE To investigate the association of DNA methylation (DNAm)-based biological age with cortical thickness and to assess whether biological age acceleration compared with chronological age captures unique variance in cortical thinning. DESIGN, SETTING, AND PARTICIPANTS This cross-sectional study used high-resolution structural brain MRI data collected from a sample of healthy aging adults who were participating in a larger ongoing neuroimaging study that began in May 2014. This population-based study accrued participants from the greater Omaha, Nebraska, metropolitan area. One hundred sixty healthy adults were contacted for the MRI component, 82 of whom participated in both DNAm and MRI study components. Data analysis was performed from March to June 2019. MAIN OUTCOMES AND MEASURES Vertexwise cortical thickness, DNAm-based biological age, and biological age acceleration compared with chronological age were measured. A pair of multivariable regression models were computed in which cortical thickness was regressed on DNAm-based biological age, controlling for sex in the first model and also controlling for chronological age in the second model. RESULTS Seventy-nine adult participants (38 women; mean [SD] age, 43.82 [14.50] years; age range, 22-72 years) were included in all final analyses. Advancing biological age was correlated with cortical thinning across frontal, superior temporal, inferior parietal, and medial occipital regions. In addition, biological age acceleration relative to chronological age was associated with cortical thinning in orbitofrontal, superior and inferior temporal, somatosensory, parahippocampal, and fusiform regions. Specifically, for every 1 year of biological age acceleration, cortical thickness would be expected to decrease by 0.024 mm (95% CI, -0.04 to -0.01 mm) in the left orbitofrontal cortex (partial r, -0.34; P = .002), 0.014 mm (95% CI, -0.02 to -0.01 mm) in the left superior temporal gyrus (partial r, -0.36; P = .001), 0.015 mm (95% CI, -0.02 to -0.01 mm) in the left fusiform gyrus (partial r, -0.38; P = .001), 0.015 mm (95% CI, -0.02 to -0.01 mm) in the right fusiform gyrus (partial r, -0.43; P < .001), 0.019 mm (95% CI, -0.03 to -0.01 mm) in the right inferior temporal sulcus (partial r, -0.34; P = .002), and 0.011 mm (95% CI, -0.02 to -0.01 mm) in the right primary somatosensory cortex (partial r, -0.37; P = .001). CONCLUSIONS AND RELEVANCE To our knowledge, this is the first study to investigate vertexwise cortical thickness in relation to DNAm-based biological age, and the findings suggest that this metric of biological age may yield additional insight on healthy and pathological cortical aging compared with standard measures of chronological age alone.
Collapse
Affiliation(s)
- Amy L. Proskovec
- Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha
- Department of Psychology, University of Nebraska Omaha, Omaha
- Magnetoencephalography Center of Excellence, University of Texas Southwestern Medical Center, Dallas
| | - Michael T. Rezich
- Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha
| | - Jennifer O’Neill
- Department of Internal Medicine, Division of Infectious Diseases, University of Nebraska Medical Center, Omaha
| | - Brenda Morsey
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha
| | - Tina Wang
- Department of Medicine, University of California San Diego, La Jolla
| | - Trey Ideker
- Department of Medicine, University of California San Diego, La Jolla
| | - Susan Swindells
- Department of Internal Medicine, Division of Infectious Diseases, University of Nebraska Medical Center, Omaha
| | - Howard S. Fox
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha
| | - Tony W. Wilson
- Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha
- Department of Psychology, University of Nebraska Omaha, Omaha
- Cognitive Neuroscience of Development & Aging Center, University of Nebraska Medical Center, Omaha
| |
Collapse
|
124
|
Christova P, James LM, Carpenter AF, Lewis SM, Engdahl BE, Georgopoulos AP. Human Leukocyte Antigen (HLA) Alleles Prevent Metabolically-Induced Inflammation and Cerebrocortical Thinning in Gulf War Illness. JOURNAL OF NEUROLOGY & NEUROMEDICINE 2020; 5:16-27. [PMID: 40371004 PMCID: PMC12077253 DOI: 10.29245/2572.942x/2020/3.1273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Independent lines of research have demonstrated that GWI is associated with elevated inflammatory markers, metabolic disruptions, and alterations in brain morphometry. Possessing specific Class II human leukocyte antigen (HLA) alleles, on the other hand, has been shown to protect against GWI and to be inversely associated with symptom severity in a dose-dependent manner. The aim of the present study was to evaluate the association between C-reactive protein (CRP), a marker of inflammation, body mass index (BMI), and brain morphometry in GWI veterans with and without a protective HLA allele. Sixty-three veterans with GWI provided blood samples for evaluation of CRP and HLA, height and weight for calculating BMI, and underwent a 3T magnetic resonance imaging scan from which the volume, surface area, and cortical thickness of 68 cortical regions of interest (ROI) were determined. Results demonstrated that the CRP was highly significantly associated with BMI and cortical thinning in veterans lacking protective HLA alleles but not in those possessing a protective HLA allele. Given the role of HLA in antibody production against foreign antigens, the findings suggest that persistent foreign antigens stemming from lack of immunogenetic protection against them contribute to inflammation, metabolic disruption, and cortical thinning in GWI. The findings are discussed in terms of GW-related exposures that are known to result in inflammation.
Collapse
Affiliation(s)
- Peka Christova
- Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis, MN, 55417, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Lisa M. James
- Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis, MN, 55417, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN 55455, US
| | - Adam F. Carpenter
- Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis, MN, 55417, USA
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Scott M. Lewis
- Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis, MN, 55417, USA
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Brian E. Engdahl
- Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis, MN, 55417, USA
- Department of Psychology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Apostolos P. Georgopoulos
- Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis, MN, 55417, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN 55455, US
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
125
|
Li C, Zuo Z, Liu D, Jiang R, Li Y, Li H, Yin X, Lai Y, Wang J, Xiong K. Type 2 Diabetes Mellitus May Exacerbate Gray Matter Atrophy in Patients With Early-Onset Mild Cognitive Impairment. Front Neurosci 2020; 14:856. [PMID: 32848591 PMCID: PMC7432296 DOI: 10.3389/fnins.2020.00856] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/22/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The precise physiopathological association between the courses of neurodegeneration and cognitive decline in type 2 diabetes mellitus (T2DM) remains unclear. This study sought to comprehensively investigate the distribution characteristics of gray matter atrophy in middle-aged T2DM patients with newly diagnosed mild cognitive impairment (MCI). METHODS Four groups, including 28 patients with early-onset MCI, 28 patients with T2DM, 28 T2DM patients with early-onset MCI (T2DM-MCI), and 28 age-, sex-, and education-matched healthy controls underwent three-dimensional high-resolution structural magnetic resonance imaging. Cortical and subcortical gray matter volumes were calculated, and a structural covariance method was used to evaluate the morphological relationships within the default mode network (DMN). RESULTS Overlapped and unique cortical/subcortical gray matter atrophy was found in patients with MCI, T2DM and T2DM-MCI in our study, and patients with T2DM-MCI showed lower volumes in several areas than patients with MCI or T2DM. Volume loss in subcortical areas (including the thalamus, putamen, and hippocampus), but not in cortical areas, was related to cognitive impairment in patients with MCI and T2DM-MCI. No associations between biochemical measurements and volumetric reductions were found. Furthermore, patients with MCI and those with T2DM-MCI showed disrupted structural connectivity within the DMN. CONCLUSION These findings provide further evidence that T2DM may exacerbate atrophy of specific gray matter regions, which may be primarily associated with MCI. Impairments in gray matter volume related to T2DM or MCI are independent of cardiovascular risk factors, and subcortical atrophy may play a more pivotal role in cognitive impairment than cortical alterations in patients with MCI and T2DM-MCI. The enhanced structural connectivity within the DMN in patients with T2DM-MCI may suggest a compensatory mechanism for the chronic neurodegeneration.
Collapse
Affiliation(s)
- Chang Li
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China
- Department of Radiology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Zhiwei Zuo
- Department of Radiology, General Hospital of Western Theater Command, Chengdu, China
| | - Daihong Liu
- Department of Radiology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Rui Jiang
- Department of Radiology, General Hospital of Western Theater Command, Chengdu, China
| | - Yang Li
- Department of Radiology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Haitao Li
- Department of Radiology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xuntao Yin
- Department of Medical Imaging, Guizhou Provincial People’s Hospital, Guizhou, China
| | - Yuqi Lai
- School of Foreign Languages and Cultures, Chongqing University, Chongqing, China
| | - Jian Wang
- Department of Radiology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Kunlin Xiong
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
126
|
Bach P, Koopmann A, Bumb JM, Vollstädt-Klein S, Reinhard I, Rietschel M, Witt SH, Wiedemann K, Kiefer F. Leptin predicts cortical and subcortical gray matter volume recovery in alcohol dependent patients: A longitudinal structural magnetic resonance imaging study. Horm Behav 2020; 124:104749. [PMID: 32387173 DOI: 10.1016/j.yhbeh.2020.104749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 11/25/2022]
Abstract
The neuroprotective effects of leptin and its role in addictive disorders has been highlighted by several recent studies. However, its potential effects on morphological alterations in alcohol dependence are yet to be investigated. Associations between leptin and the longitudinal courses of gray matter volume (GMV) and cortical thickness (CT) were investigated in N = 62 alcohol-dependent patients that underwent structural magnetic resonance imaging after a mean abstinence of 12 (baseline) and 27 days (follow-up) respectively. Blood samples were collected at baseline to determine leptin levels. A cohort of N = 74 healthy individuals served as a reference sample. At baseline, alcohol-dependent patients compared to healthy controls displayed smaller GMV in the insula, parts of the superior, middle and inferior frontal gyri and hippocampal regions and thinner CT in the insula, parts of the superior and middle frontal cortices, the lateral orbitofrontal cortex and parts of the occipital and lingual cortices that partially recovered during abstinence (pFWE < 0.05). In alcohol-dependent patients, leptin was a significant predictor of GMV and CT recovery in the areas that showed the strongest whole-brain effects, specifically GMV in the right insula (R2 = 0.070, pFDR = 0.040) and left inferior frontal triangular gyrus (R2 = 0.076, pFDR = 0.040), as well as CT in the left insula (R2 = 0.158, pFDR = 0.004) and right superior frontal cortex (R2 = 0.180, pFDR = 0.004). Present results support the role of leptin in predicting GMV and CT recovery during the first month of abstinence in alcohol-dependent patients.
Collapse
Affiliation(s)
- Patrick Bach
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Germany; Feuerlein Center on Translational Addiction Medicine (FCTS), University of Heidelberg, Germany.
| | - Anne Koopmann
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Germany; Feuerlein Center on Translational Addiction Medicine (FCTS), University of Heidelberg, Germany
| | - J Malte Bumb
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Germany; Feuerlein Center on Translational Addiction Medicine (FCTS), University of Heidelberg, Germany
| | - Sabine Vollstädt-Klein
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Germany; Feuerlein Center on Translational Addiction Medicine (FCTS), University of Heidelberg, Germany
| | - Iris Reinhard
- Department of Biostatistics, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Germany
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Germany
| | - Klaus Wiedemann
- Department of Psychiatry & Psychotherapy, University Medical Center, Hamburg, Martinistr. 52, 20246 Hamburg, Germany
| | - Falk Kiefer
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Germany; Feuerlein Center on Translational Addiction Medicine (FCTS), University of Heidelberg, Germany
| |
Collapse
|
127
|
Ma H, Sheng L, Chen F, Yuan C, Dai Z, Pan P. Cortical thickness in chronic pain: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e21499. [PMID: 32756184 PMCID: PMC7402897 DOI: 10.1097/md.0000000000021499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Numerous studies using a variety of non-invasive neuroimaging techniques in vivo have demonstrated that chronic pain (CP) is associated with brain alterations. Cortical thickness (CTh) via surface-based morphometry (SBM) analysis of magnetic resonance imaging data is a valid and sensitive method to investigate the structure of brain gray matter. Many studies have employed SBM to measure CTh difference between patients with CP and pain-free controls and provided important insights into the brain basis of CP. However, the findings from these studies were inconsistent and have not been quantitatively reviewed. METHODS Three major electronic medical databases: PubMed, Web of Science, and Embase were searched for eligible studies published in English on April 3, 2020. This protocol was prepared based on the Preferred Reporting Items for Systematic review and Meta-Analysis Protocols. The Seed-based d Mapping with Permutation of Subject Images software package will be employed to conducted a coordinate-based meta-analysis (CBMA) to identify consistent CTh differences between patients with CP and pain-free controls. Several complementary analyses, including sensitivity analysis, heterogeneity analysis, publication bias, subgroup analysis, and meta-regression analysis, will be further conducted to test the robustness of the results. RESULTS This CBMA will tell us whether CP with different subtypes shares common CTh alterations and what the pattern of its characterized alterations is. CONCLUSIONS To the best of our knowledge, this will be the first CBMA of SBM studies that characterizes brain CTh alterations in CP. The CBMA will provide the quantitative evidence of common brain cortical morphometry of CP. The findings will help us to understand the neural basis underlying CP. TRIAL REGISTRATION NUMBER INPLASY202050069.
Collapse
Affiliation(s)
- HaiRong Ma
- Department of Neurology, Kunshan Hospital of Traditional Chinese Medicine, Jiangsu
| | - LiQin Sheng
- Department of Neurology, Kunshan Hospital of Traditional Chinese Medicine, Jiangsu
| | | | - CongHu Yuan
- Department of Anesthesia and Pain Management
| | | | - PingLei Pan
- Department of Neurology
- Department of Central Laboratory, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, PR China
| |
Collapse
|
128
|
van Aalst J, Ceccarini J, Demyttenaere K, Sunaert S, Van Laere K. What Has Neuroimaging Taught Us on the Neurobiology of Yoga? A Review. Front Integr Neurosci 2020; 14:34. [PMID: 32733213 PMCID: PMC7362763 DOI: 10.3389/fnint.2020.00034] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022] Open
Abstract
Yoga is becoming increasingly popular worldwide, with several implicated physical and mental benefits. Here we provide a comprehensive and critical review of the research generated from the existing neuroimaging literature in studies of yoga practitioners. We reviewed 34 international peer-reviewed neuroimaging studies of yoga using magnetic resonance imaging (MRI), positron emission tomography (PET), or single-photon emission computed tomography (SPECT): 11 morphological and 26 functional studies, including three studies that were classified as both morphological and functional. Consistent findings include increased gray matter volume in the insula and hippocampus, increased activation of prefrontal cortical regions, and functional connectivity changes mainly within the default mode network. There is quite some variability in the neuroimaging findings that partially reflects different yoga styles and approaches, as well as sample size limitations. Direct comparator groups such as physical activity are scarcely used so far. Finally, hypotheses on the underlying neurobiology derived from the imaging findings are discussed in the light of the potential beneficial effects of yoga.
Collapse
Affiliation(s)
- June van Aalst
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, UZ/KU Leuven, Leuven, Belgium
| | - Jenny Ceccarini
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, UZ/KU Leuven, Leuven, Belgium
| | - Koen Demyttenaere
- Research Group Psychiatry, Department of Neuroscience, University Psychiatry Center KU Leuven, Leuven, Belgium.,Adult Psychiatry, UZ Leuven, Leuven, Belgium
| | - Stefan Sunaert
- Translational MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.,Department of Radiology, UZ Leuven, Leuven, Belgium
| | - Koen Van Laere
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, UZ/KU Leuven, Leuven, Belgium.,Division of Nuclear Medicine, UZ Leuven, Leuven, Belgium
| |
Collapse
|
129
|
Van Rheenen TE, Cropley V, Fagerlund B, Wannan C, Bruggemann J, Lenroot RK, Sundram S, Weickert CS, Weickert TW, Zalesky A, Bousman CA, Pantelis C. Cognitive reserve attenuates age-related cognitive decline in the context of putatively accelerated brain ageing in schizophrenia-spectrum disorders. Psychol Med 2020; 50:1475-1489. [PMID: 31274065 DOI: 10.1017/s0033291719001417] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND In schizophrenia, relative stability in the magnitude of cognitive deficits across age and illness duration is inconsistent with the evidence of accelerated deterioration in brain regions known to support these functions. These discrepant brain-cognition outcomes may be explained by variability in cognitive reserve (CR), which in neurological disorders has been shown to buffer against brain pathology and minimize its impact on cognitive or clinical indicators of illness. METHODS Age-related change in fluid reasoning, working memory and frontal brain volume, area and thickness were mapped using regression analysis in 214 individuals with schizophrenia or schizoaffective disorder and 168 healthy controls. In patients, these changes were modelled as a function of CR. RESULTS Patients showed exaggerated age-related decline in brain structure, but not fluid reasoning compared to controls. In the patient group, no moderation of age-related brain structural change by CR was evident. However, age-related cognitive change was moderated by CR, such that only patients with low CR showed evidence of exaggerated fluid reasoning decline that paralleled the exaggerated age-related deterioration of underpinning brain structures seen in all patients. CONCLUSIONS In schizophrenia-spectrum illness, CR may negate ageing effects on fluid reasoning by buffering against pathologically exaggerated structural brain deterioration through some form of compensation. CR may represent an important modifier that could explain inconsistencies in brain structure - cognition outcomes in the extant literature.
Collapse
Affiliation(s)
- Tamsyn E Van Rheenen
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Melbourne, Australia
- Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia
| | - Vanessa Cropley
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Melbourne, Australia
- Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia
| | - Birgitte Fagerlund
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center, Glostrup, Denmark
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Cassandra Wannan
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Melbourne, Australia
| | - Jason Bruggemann
- School of Psychiatry, University of New South Wales, New South Wales, Australia
- Neuroscience Research Australia, New South Wales, Australia
| | - Rhoshel K Lenroot
- School of Psychiatry, University of New South Wales, New South Wales, Australia
- Neuroscience Research Australia, New South Wales, Australia
| | - Suresh Sundram
- Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, Australia
- Mental Health Program, Monash Health, Clayton, Victoria, Australia
| | - Cynthia Shannon Weickert
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Melbourne, Australia
- School of Psychiatry, University of New South Wales, New South Wales, Australia
- Neuroscience Research Australia, New South Wales, Australia
- Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, New York13210, USA
| | - Thomas W Weickert
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Melbourne, Australia
- School of Psychiatry, University of New South Wales, New South Wales, Australia
- Neuroscience Research Australia, New South Wales, Australia
| | - Andrew Zalesky
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Melbourne, Australia
- Department of Electrical and Electronic Engineering, University of Melbourne, VIC, Australia
| | - Chad A Bousman
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Melbourne, Australia
- Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
- Departments of Medical Genetics, Psychiatry, and Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Christos Pantelis
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Melbourne, Australia
- Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
- Department of Electrical and Electronic Engineering, University of Melbourne, VIC, Australia
| |
Collapse
|
130
|
Machizawa MG, Lisi G, Kanayama N, Mizuochi R, Makita K, Sasaoka T, Yamawaki S. Quantification of anticipation of excitement with a three-axial model of emotion with EEG. J Neural Eng 2020; 17:036011. [PMID: 32416601 DOI: 10.1088/1741-2552/ab93b4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Multiple facets of human emotion underlie diverse and sparse neural mechanisms. Among the many existing models of emotion, the two-dimensional circumplex model of emotion is an important theory. The use of the circumplex model allows us to model variable aspects of emotion; however, such momentary expressions of one's internal mental state still lacks a notion of the third dimension of time. Here, we report an exploratory attempt to build a three-axis model of human emotion to model our sense of anticipatory excitement, 'Waku-Waku' (in Japanese), in which people predictively code upcoming emotional events. APPROACH Electroencephalography (EEG) data were recorded from 28 young adult participants while they mentalized upcoming emotional pictures. Three auditory tones were used as indicative cues, predicting the likelihood of the valence of an upcoming picture: positive, negative, or unknown. While seeing an image, the participants judged its emotional valence during the task and subsequently rated their subjective experiences on valence, arousal, expectation, and Waku-Waku immediately after the experiment. The collected EEG data were then analyzed to identify contributory neural signatures for each of the three axes. MAIN RESULTS A three-axis model was built to quantify Waku-Waku. As expected, this model revealed the considerable contribution of the third dimension over the classical two-dimensional model. Distinctive EEG components were identified. Furthermore, a novel brain-emotion interface was proposed and validated within the scope of limitations. SIGNIFICANCE The proposed notion may shed new light on the theories of emotion and support multiplex dimensions of emotion. With the introduction of the cognitive domain for a brain-computer interface, we propose a novel brain-emotion interface. Limitations of the study and potential applications of this interface are discussed.
Collapse
Affiliation(s)
- Maro G Machizawa
- Center for Brain, Mind and KANSEI Sciences Research, Hiroshima University, Hiroshima, Japan. Author to whom any correspondence should be addressed
| | | | | | | | | | | | | |
Collapse
|
131
|
Durazzo TC, Nguyen LC, Meyerhoff DJ. Medical Conditions Linked to Atherosclerosis Are Associated With Magnified Cortical Thinning in Individuals With Alcohol Use Disorders. Alcohol Alcohol 2020; 55:382-390. [PMID: 32445335 PMCID: PMC7307314 DOI: 10.1093/alcalc/agaa034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/19/2020] [Accepted: 04/09/2020] [Indexed: 01/21/2023] Open
Abstract
AIMS Magnetic resonance imaging (MRI) studies report widespread cortical thinning in individuals with alcohol use disorder (AUD), but did not consider potential effects of pro-atherogenic conditions such as hypertension, type 2 diabetes mellitus, hepatitis C seropositivity and hyperlipidemia on cortical thickness. The conditions are associated with regional cortical thinning in those without AUD. We predicted that individuals with concurrent AUD and pro-atherogenic conditions demonstrate the greatest regional cortical thinning in areas most vulnerable to decreased perfusion. METHODS Treatment-seeking individuals with AUD (n = 126) and healthy controls (CON; n = 49) completed a 1.5 T MRI study. Regional cortical thickness was quantitated via FreeSurfer. Individuals with AUD and pro-atherogenic conditions (Atherogenic+), AUD without pro-atherogenic conditions (Atherogenic-) and CON were compared on regional cortical thickness. RESULTS Individuals with AUD showed significant bilateral cortical thinning compared to CON, but Atherogenic+ demonstrated the most widespread and greatest magnitude of regional thinning, while Atherogenic- had reduced thickness primarily in anterior frontal and posterior parietal lobes. Atherogenic+ also showed a thinner cortex than Atherogenic- in lateral orbitofrontal and dorso/dorsolateral frontal cortex, mesial and lateral temporal and inferior parietal regions. CONCLUSIONS Our results demonstrate significant bilateral cortical thinning in individuals with AUD relative to CON, but the distribution and magnitude were influenced by comorbid pro-atherogenic conditions. The magnitude of cortical thinning in Atherogenic+ strongly corresponded to cortical watershed areas susceptible to decreased perfusion, which may result in morphometric abnormalities. The findings indicate that pro-atherogenic conditions may contribute to cortical thinning in those seeking treatment for AUD.
Collapse
Affiliation(s)
- Timothy C Durazzo
- Mental Illness Research and Education Clinical Centers, VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Linh-Chi Nguyen
- Mental Illness Research and Education Clinical Centers, VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Dieter J Meyerhoff
- Center for Imaging of Neurodegenerative Diseases (CIND), San Francisco VA Medical Center, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| |
Collapse
|
132
|
Yuan T, Ying J, Zuo Z, Gui S, Gao Z, Li G, Zhang Y, Li C. Structural plasticity of the bilateral hippocampus in glioma patients. Aging (Albany NY) 2020; 12:10259-10274. [PMID: 32507763 PMCID: PMC7346025 DOI: 10.18632/aging.103212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/17/2020] [Indexed: 01/26/2023]
Abstract
This study investigates the structural plasticity and neuronal reaction of the hippocampus in glioma patient pre-surgery. Ninety-nine glioma patients without bilateral hippocampus involvement (low-grade, n=52; high-grade, n=47) and 80 healthy controls with 3D T1 images and resting-fMRI were included. Hippocampal volume and dynamic amplitude of low-frequency fluctuation (dALFF) were analyzed among groups. Relationships between hippocampal volume and clinical characteristics were assessed. We observed remote hippocampal volume increases in low- and high-grade glioma and a greater response of the ipsilateral hippocampus than the contralesional hippocampus. The bilateral hippocampal dALFF was significantly increased in high-grade glioma. Tumor-associated epilepsy and the IDH-1 mutation did not affect hippocampal volume in glioma patients. No significant relationship between hippocampal volume and age was observed in high-grade glioma. The Kaplan-Meier curve and log-rank test revealed that large hippocampal volume was associated with shorter overall survival (OS) compared with small hippocampal volume (p=0.007). Multivariate Cox regression analysis revealed that large hippocampal volume was an independent predictor of unfavorable OS (HR=3.597, 95% CI: 1.160-11.153, p=0.027) in high-grade glioma. Our findings suggest that the hippocampus has a remarkable degree of plasticity in response to pathological stimulation of glioma and that the hippocampal reaction to glioma may be related to tumor malignancy.
Collapse
Affiliation(s)
- Taoyang Yuan
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jianyou Ying
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Zhentao Zuo
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Songbai Gui
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhixian Gao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guilin Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yazhuo Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders Brain Tumor Center, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Chuzhong Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders Brain Tumor Center, Beijing, China
| |
Collapse
|
133
|
A Systematic Characterization of Structural Brain Changes in Schizophrenia. Neurosci Bull 2020; 36:1107-1122. [PMID: 32495122 DOI: 10.1007/s12264-020-00520-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/13/2020] [Indexed: 01/10/2023] Open
Abstract
A systematic characterization of the similarities and differences among different methods for detecting structural brain abnormalities in schizophrenia, such as voxel-based morphometry (VBM), tensor-based morphometry (TBM), and projection-based thickness (PBT), is important for understanding the brain pathology in schizophrenia and for developing effective biomarkers for a diagnosis of schizophrenia. However, such studies are still lacking. Here, we performed VBM, TBM, and PBT analyses on T1-weighted brain MR images acquired from 116 patients with schizophrenia and 116 healthy controls. We found that, although all methods detected wide-spread structural changes, different methods captured different information - only 10.35% of the grey matter changes in cortex were detected by all three methods, and VBM only detected 11.36% of the white matter changes detected by TBM. Further, pattern classification between patients and controls revealed that combining different measures improved the classification accuracy (81.9%), indicating that fusion of different structural measures serves as a better neuroimaging marker for the objective diagnosis of schizophrenia.
Collapse
|
134
|
Nußbaum R, Lucht S, Jockwitz C, Moebus S, Engel M, Jöckel KH, Caspers S, Hoffmann B. Associations of Air Pollution and Noise with Local Brain Structure in a Cohort of Older Adults. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:67012. [PMID: 32539589 PMCID: PMC7295241 DOI: 10.1289/ehp5859] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
BACKGROUND Despite the importance of understanding associations of air pollution and noise exposure with loss of neurocognitive performance, studies investigating these exposures and local brain structure are limited. OBJECTIVE We estimated associations of residential air pollution and noise exposures with neurocognitive test performance and the local gyrification index (lGI), a marker for local brain atrophy, among older adults. METHODS For n=615 participants from the population-based 1000BRAINS study, based on the German Heinz Nixdorf Recall study, we assessed residential exposures to particulate matter (PM10, PM2.5, PM2.5abs), accumulation mode particle number (PNAM), and nitrogen oxides (NOx, NO2), using land-use regression and chemistry transport models. Weighted 24-h and nighttime noise were modeled according to the European noise directive. We evaluated associations of air pollution and noise exposure at the participants' 2006-2008 residential addresses with neurocognitive test performance and region-specific lGI values (n=590) from magnetic resonance imaging, both assessed in 2011-2015, using linear regression and adjusting for demographic and personal characteristics. RESULTS Air pollution and noise were associated with language and short-term/working memory and with local atrophy of the fronto-parietal network (FPN), a functional resting-state network associated with these cognitive processes. For example, per 2-μg/m3 PM10, local brain atrophy was more pronounced in the posterior brain regions of the FPN, with a -0.02 [95% confidence interval (CI): -0.04, 0.00] lower lGI. In contrast, in the anterior regions of the FPN, weighted 24-h and nighttime noise were associated with less local brain atrophy [e.g., 0.02 (95% CI: 0.00, 0.04) for 10 dB(A) 24-h noise]. CONCLUSIONS Air pollution and noise exposures were associated in opposite directions with markers of local atrophy of the FPN in the right brain hemisphere in older adults, suggesting that both chronic air pollution and noise exposure may influence the physiological aging process of the brain. https://doi.org/10.1289/EHP5859.
Collapse
Affiliation(s)
- René Nußbaum
- Institute for Anatomy I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Research Centre Jülich, Jülich, Germany
- Environmental Epidemiology Group, Institute of Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sarah Lucht
- Environmental Epidemiology Group, Institute of Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute for Medical Statistics, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christiane Jockwitz
- Institute of Neuroscience and Medicine, Research Centre Jülich, Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | - Susanne Moebus
- Centre for Urban Epidemiology, Institute of Medical Informatics, Biometry and Epidemiology, University of Duisburg-Essen, Essen, Germany
| | - Miriam Engel
- Centre for Urban Epidemiology, Institute of Medical Informatics, Biometry and Epidemiology, University of Duisburg-Essen, Essen, Germany
| | - Karl-Heinz Jöckel
- Institute of Medical Informatics, Biometry and Epidemiology, University of Duisburg-Essen, Essen, Germany
| | - Svenja Caspers
- Institute for Anatomy I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Research Centre Jülich, Jülich, Germany
- Jülich-Aachen Research Alliance (JARA)-BRAIN, JARA, Jülich, Germany
| | - Barbara Hoffmann
- Environmental Epidemiology Group, Institute of Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
135
|
Zacharopoulos G, Klingberg T, Cohen Kadosh R. Cortical surface area of the left frontal pole is associated with visuospatial working memory capacity. Neuropsychologia 2020; 143:107486. [DOI: 10.1016/j.neuropsychologia.2020.107486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/22/2020] [Accepted: 05/03/2020] [Indexed: 01/29/2023]
|
136
|
Schmaal L, Pozzi E, C Ho T, van Velzen LS, Veer IM, Opel N, Van Someren EJW, Han LKM, Aftanas L, Aleman A, Baune BT, Berger K, Blanken TF, Capitão L, Couvy-Duchesne B, R Cullen K, Dannlowski U, Davey C, Erwin-Grabner T, Evans J, Frodl T, Fu CHY, Godlewska B, Gotlib IH, Goya-Maldonado R, Grabe HJ, Groenewold NA, Grotegerd D, Gruber O, Gutman BA, Hall GB, Harrison BJ, Hatton SN, Hermesdorf M, Hickie IB, Hilland E, Irungu B, Jonassen R, Kelly S, Kircher T, Klimes-Dougan B, Krug A, Landrø NI, Lagopoulos J, Leerssen J, Li M, Linden DEJ, MacMaster FP, M McIntosh A, Mehler DMA, Nenadić I, Penninx BWJH, Portella MJ, Reneman L, Rentería ME, Sacchet MD, G Sämann P, Schrantee A, Sim K, Soares JC, Stein DJ, Tozzi L, van Der Wee NJA, van Tol MJ, Vermeiren R, Vives-Gilabert Y, Walter H, Walter M, Whalley HC, Wittfeld K, Whittle S, Wright MJ, Yang TT, Zarate C, Thomopoulos SI, Jahanshad N, Thompson PM, Veltman DJ. ENIGMA MDD: seven years of global neuroimaging studies of major depression through worldwide data sharing. Transl Psychiatry 2020; 10:172. [PMID: 32472038 PMCID: PMC7260219 DOI: 10.1038/s41398-020-0842-6] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 04/09/2020] [Accepted: 05/07/2020] [Indexed: 02/06/2023] Open
Abstract
A key objective in the field of translational psychiatry over the past few decades has been to identify the brain correlates of major depressive disorder (MDD). Identifying measurable indicators of brain processes associated with MDD could facilitate the detection of individuals at risk, and the development of novel treatments, the monitoring of treatment effects, and predicting who might benefit most from treatments that target specific brain mechanisms. However, despite intensive neuroimaging research towards this effort, underpowered studies and a lack of reproducible findings have hindered progress. Here, we discuss the work of the ENIGMA Major Depressive Disorder (MDD) Consortium, which was established to address issues of poor replication, unreliable results, and overestimation of effect sizes in previous studies. The ENIGMA MDD Consortium currently includes data from 45 MDD study cohorts from 14 countries across six continents. The primary aim of ENIGMA MDD is to identify structural and functional brain alterations associated with MDD that can be reliably detected and replicated across cohorts worldwide. A secondary goal is to investigate how demographic, genetic, clinical, psychological, and environmental factors affect these associations. In this review, we summarize findings of the ENIGMA MDD disease working group to date and discuss future directions. We also highlight the challenges and benefits of large-scale data sharing for mental health research.
Collapse
Affiliation(s)
- Lianne Schmaal
- Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia.
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia.
| | - Elena Pozzi
- Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Tiffany C Ho
- Department of Psychology, Stanford University, Stanford, CA, USA
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA, USA
- Department of Psychiatry & Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Laura S van Velzen
- Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Ilya M Veer
- Division of Mind and Brain Research, Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Nils Opel
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Eus J W Van Someren
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience (NIN), an institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, The Netherlands
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Laura K M Han
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Lybomir Aftanas
- FSSBI Scientific Research Institute of Physiology & Basic Medicine, Laboratory of Affective, Cognitive & Translational Neuroscience, Novosibirsk, Russia
- Department of Neuroscience, Novosibirsk State University, Novosibirsk, Russia
| | - André Aleman
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bernhard T Baune
- Department of Psychiatry, University of Münster, Münster, Germany
- Department of Psychiatry, University of Melbourne, Melbourne, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Klaus Berger
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Tessa F Blanken
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience (NIN), an institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, The Netherlands
| | - Liliana Capitão
- Department of Psychiatry, Oxford University, Oxford, UK
- Oxford Health NHS Foundation Trust, Oxford, UK
| | | | - Kathryn R Cullen
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Udo Dannlowski
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Christopher Davey
- Department of Psychiatry, University of Melbourne, Melbourne, VIC, Australia
| | - Tracy Erwin-Grabner
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), University Medical Center Göttingen, Göttingen, Germany
| | - Jennifer Evans
- Experimental Therapeutics Branch, NIMH, NIH, Bethesda, MD, USA
| | - Thomas Frodl
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Cynthia H Y Fu
- School of Psychology, University of East London, London, UK
- Centre for Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | | | - Ian H Gotlib
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Roberto Goya-Maldonado
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), University Medical Center Göttingen, Göttingen, Germany
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Germany
| | - Nynke A Groenewold
- Department of Psychiatry & Mental Health, University of Cape Town, Cape Town, South Africa
| | | | - Oliver Gruber
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Geoffrey B Hall
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Ben J Harrison
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Melbourne, VIC, Australia
| | - Sean N Hatton
- Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Marco Hermesdorf
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Ian B Hickie
- Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Eva Hilland
- Clinical Neuroscience Research Group, Department of Psychology, University of Oslo, Oslo, Norway
- Department of Psychiatry, Diakonhjemmet Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Benson Irungu
- Department of Psychiatry & Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Rune Jonassen
- Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| | - Sinead Kelly
- Beth Israel Deaconess Medical Centre, Harvard Medical School, Boston, MA, USA
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | | | - Axel Krug
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Nils Inge Landrø
- Clinical Neuroscience Research Group, Department of Psychology, University of Oslo, Oslo, Norway
- Department of Psychiatry, Diakonhjemmet Hospital, Oslo, Norway
| | - Jim Lagopoulos
- Sunshine Coast Mind and Neuroscience Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia
| | - Jeanne Leerssen
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience (NIN), an institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, The Netherlands
| | - Meng Li
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - David E J Linden
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
- MRC Center for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- Cardiff University Brain Research Imaging Center, Cardiff University, Cardiff, UK
| | - Frank P MacMaster
- Psychiatry and Pediatrics, University of Calgary, Addictions and Mental Health Strategic Clinical Network, Calgary, AB, Canada
| | - Andrew M McIntosh
- Centre for Clinical Brain Science, University of Edinburgh, Edinburgh, UK
| | - David M A Mehler
- Department of Psychiatry, University of Münster, Münster, Germany
- MRC Center for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- Cardiff University Brain Research Imaging Center, Cardiff University, Cardiff, UK
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Marburg University Hospital UKGM, Marburg, Germany
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Maria J Portella
- Institut d'Investigació Biomèdica-Sant Pau, Barcelona, Spain
- CIBERSAM, Madrid, Spain
- Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Liesbeth Reneman
- Department of Radiology and Nuclear Medicine, location AMC, Amsterdam UMC, Amsterdam, The Netherlands
| | - Miguel E Rentería
- Department of Genetics & Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Matthew D Sacchet
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | | | - Anouk Schrantee
- Department of Radiology and Nuclear Medicine, location AMC, Amsterdam UMC, Amsterdam, The Netherlands
| | - Kang Sim
- West Region/Institute of Mental Health, Singapore, Singapore
- Yong Loo Lin School of Medicine/National University of Singapore, Singapore, Singapore
| | - Jair C Soares
- Department of Psychiatry & Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dan J Stein
- SA MRC Research Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry & Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Leonardo Tozzi
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Nic J A van Der Wee
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, Leiden University Medical Center, Leiden, The Netherlands
| | - Marie-José van Tol
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Robert Vermeiren
- Curium-LUMC, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Henrik Walter
- Division of Mind and Brain Research, Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, Jena, Germany
- Clinical Affective Neuroimaging Laboratory, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Heather C Whalley
- Centre for Clinical Brain Science, University of Edinburgh, Edinburgh, UK
| | - Katharina Wittfeld
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Germany
| | - Sarah Whittle
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Melbourne, VIC, Australia
| | - Margaret J Wright
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Tony T Yang
- Department of Psychiatry & Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Carlos Zarate
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, Bethesda, MD, USA
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Dick J Veltman
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| |
Collapse
|
137
|
Sivera R, Capet N, Manera V, Fabre R, Lorenzi M, Delingette H, Pennec X, Ayache N, Robert P. Voxel-based assessments of treatment effects on longitudinal brain changes in the Multidomain Alzheimer Preventive Trial cohort. Neurobiol Aging 2020; 94:50-59. [PMID: 32574818 DOI: 10.1016/j.neurobiolaging.2019.11.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/26/2019] [Accepted: 11/17/2019] [Indexed: 10/24/2022]
Abstract
The Multidomain Alzheimer Preventive Trial was designed to assess the effect of omega-3 supplementation and multidomain intervention on cognitive decline of subjects with subjective memory complaint. In terms of cognitive testing, no significant effect was found. In this paper, we evaluate the effect of the interventions on the brain morphological changes. Subjects with magnetic resonance imaging acquisitions at baseline and at 36 months were included (N = 376). Morphological changes were characterized by volume measurements and nonlinear deformation. The multidomain intervention was associated with a significant effect on the 3-year brain morphological changes in the deformation-based approach. Differences were mainly located in the left periventricular area next to the temporoparietal junction. These changes were associated with better cognitive performance and mood/behavior stabilization. No effect of the omega-3 supplementation was observed. This result suggests a possible effect on cognition, not yet observable after 3 years. We argue that neuroimaging could help define whether early intervention strategies are effective to delay cognitive decline and dementia.
Collapse
Affiliation(s)
- Raphaël Sivera
- Université Côte d'Azur, Inria Sophia Antipolis, Epione Research Project, Sophia Antipolis, France.
| | - Nicolas Capet
- Centre Hospitalier Universitaire (CHU) de Nice, CMRR, Nice, France
| | - Valeria Manera
- Université Côte d'Azur, CoBTeK Lab, Nice, France; Association Innovation Alzheimer, Nice, France
| | - Roxane Fabre
- Université Côte d'Azur, CoBTeK Lab, Nice, France; Centre Hospitalier Universitaire (CHU) de Nice, Département de Santé Publique, Nice, France
| | - Marco Lorenzi
- Université Côte d'Azur, Inria Sophia Antipolis, Epione Research Project, Sophia Antipolis, France
| | - Hervé Delingette
- Université Côte d'Azur, Inria Sophia Antipolis, Epione Research Project, Sophia Antipolis, France
| | - Xavier Pennec
- Université Côte d'Azur, Inria Sophia Antipolis, Epione Research Project, Sophia Antipolis, France
| | - Nicholas Ayache
- Université Côte d'Azur, Inria Sophia Antipolis, Epione Research Project, Sophia Antipolis, France
| | - Philippe Robert
- Centre Hospitalier Universitaire (CHU) de Nice, CMRR, Nice, France; Université Côte d'Azur, CoBTeK Lab, Nice, France; Association Innovation Alzheimer, Nice, France
| | | |
Collapse
|
138
|
van der Meulen M, Wierenga LM, Achterberg M, Drenth N, van IJzendoorn MH, Crone EA. Genetic and environmental influences on structure of the social brain in childhood. Dev Cogn Neurosci 2020; 44:100782. [PMID: 32716847 PMCID: PMC7374548 DOI: 10.1016/j.dcn.2020.100782] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 03/30/2020] [Accepted: 04/08/2020] [Indexed: 11/17/2022] Open
Abstract
Prosocial behavior and empathy are important aspects of developing social relations in childhood. Prior studies showed protracted structural development of social brain regions associated with prosocial behavior. However, it remains unknown how structure of the social brain is influenced by genetic or environmental factors, and whether overlapping heritability factors explain covariance in structure of the social brain and behavior. The current study examined this hypothesis in a twin sample (aged 7–9-year; N = 512). Bilateral measures of surface area and cortical thickness of the medial prefrontal cortex (mPFC), temporo-parietal junction (TPJ), posterior superior temporal sulcus (pSTS), and precuneus were analyzed. Results showed genetic contributions to surface area and cortical thickness for all brain regions. We found additional shared environmental influences for TPJ, suggesting that this region might be relatively more sensitive to social experiences. Genetic factors also influenced parent-reported prosocial behavior (A = 45%) and empathy (A = 59%). We provided initial evidence that the precuneus shares genetically determined variance with empathy, suggesting a possible small genetic overlap (9%) in brain structure and empathy. These findings show that structure of the social brain and empathy are driven by a combination of genetic and environmental factors, with some factors overlapping for brain structure and behavior.
Collapse
Affiliation(s)
- Mara van der Meulen
- Leiden Consortium on Individual Development, Leiden University, the Netherlands; Institute of Psychology, Leiden University, the Netherlands; Leiden Institute for Brain and Cognition, Leiden University, the Netherlands.
| | - Lara M Wierenga
- Leiden Consortium on Individual Development, Leiden University, the Netherlands; Institute of Psychology, Leiden University, the Netherlands; Leiden Institute for Brain and Cognition, Leiden University, the Netherlands
| | - Michelle Achterberg
- Leiden Consortium on Individual Development, Leiden University, the Netherlands; Institute of Psychology, Leiden University, the Netherlands; Leiden Institute for Brain and Cognition, Leiden University, the Netherlands
| | - Nadieh Drenth
- Leiden Consortium on Individual Development, Leiden University, the Netherlands; Department of Radiology, Leiden University Medical Center, the Netherlands
| | - Marinus H van IJzendoorn
- Leiden Consortium on Individual Development, Leiden University, the Netherlands; Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, the Netherlands; School of Clinical Medicine, University of Cambridge, UK
| | - Eveline A Crone
- Leiden Consortium on Individual Development, Leiden University, the Netherlands; Institute of Psychology, Leiden University, the Netherlands; Leiden Institute for Brain and Cognition, Leiden University, the Netherlands
| |
Collapse
|
139
|
Beynel L, Davis SW, Crowell CA, Dannhauer M, Lim W, Palmer H, Hilbig SA, Brito A, Hile C, Luber B, Lisanby SH, Peterchev AV, Cabeza R, Appelbaum LG. Site-Specific Effects of Online rTMS during a Working Memory Task in Healthy Older Adults. Brain Sci 2020; 10:E255. [PMID: 32349366 PMCID: PMC7287855 DOI: 10.3390/brainsci10050255] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/04/2022] Open
Abstract
The process of manipulating information within working memory is central to many cognitive functions, but also declines rapidly in old age. Improving this process could markedly enhance the health-span in older adults. The current pre-registered, randomized and placebo-controlled study tested the potential of online repetitive transcranial magnetic stimulation (rTMS) applied at 5 Hz over the left lateral parietal cortex to enhance working memory manipulation in healthy elderly adults. rTMS was applied, while participants performed a delayed-response alphabetization task with two individually titrated levels of difficulty. Coil placement and stimulation amplitude were calculated from fMRI activation maps combined with electric field modeling on an individual-subject basis in order to standardize dosing at the targeted cortical location. Contrary to the a priori hypothesis, active rTMS significantly decreased accuracy relative to sham, and only in the hardest difficulty level. When compared to the results from our previous study, in which rTMS was applied over the left prefrontal cortex, we found equivalent effect sizes but opposite directionality suggesting a site-specific effect of rTMS. These results demonstrate engagement of cortical working memory processing using a novel TMS targeting approach, while also providing prescriptions for future studies seeking to enhance memory through rTMS.
Collapse
Affiliation(s)
- Lysianne Beynel
- Department of Psychiatry and Behavioral Science, Duke University School of Medicine, 200 Trent Drive, Box 3620 DUMC, Durham, NC 27710, USA; (C.A.C.); (M.D.); (W.L.); (H.P.); (S.A.H.); (A.B.); (C.H.); (S.H.L.); (A.V.P.); (L.G.A.)
| | - Simon W. Davis
- Department of Neurology, Duke University School of Medicine, 3116 N Duke Street, Durham, NC 27704, USA;
- Center for Cognitive Neuroscience, Duke University, 308 Research Drive, Durham, NC 27710, USA;
| | - Courtney A. Crowell
- Department of Psychiatry and Behavioral Science, Duke University School of Medicine, 200 Trent Drive, Box 3620 DUMC, Durham, NC 27710, USA; (C.A.C.); (M.D.); (W.L.); (H.P.); (S.A.H.); (A.B.); (C.H.); (S.H.L.); (A.V.P.); (L.G.A.)
- Center for Cognitive Neuroscience, Duke University, 308 Research Drive, Durham, NC 27710, USA;
| | - Moritz Dannhauer
- Department of Psychiatry and Behavioral Science, Duke University School of Medicine, 200 Trent Drive, Box 3620 DUMC, Durham, NC 27710, USA; (C.A.C.); (M.D.); (W.L.); (H.P.); (S.A.H.); (A.B.); (C.H.); (S.H.L.); (A.V.P.); (L.G.A.)
| | - Wesley Lim
- Department of Psychiatry and Behavioral Science, Duke University School of Medicine, 200 Trent Drive, Box 3620 DUMC, Durham, NC 27710, USA; (C.A.C.); (M.D.); (W.L.); (H.P.); (S.A.H.); (A.B.); (C.H.); (S.H.L.); (A.V.P.); (L.G.A.)
| | - Hannah Palmer
- Department of Psychiatry and Behavioral Science, Duke University School of Medicine, 200 Trent Drive, Box 3620 DUMC, Durham, NC 27710, USA; (C.A.C.); (M.D.); (W.L.); (H.P.); (S.A.H.); (A.B.); (C.H.); (S.H.L.); (A.V.P.); (L.G.A.)
| | - Susan A. Hilbig
- Department of Psychiatry and Behavioral Science, Duke University School of Medicine, 200 Trent Drive, Box 3620 DUMC, Durham, NC 27710, USA; (C.A.C.); (M.D.); (W.L.); (H.P.); (S.A.H.); (A.B.); (C.H.); (S.H.L.); (A.V.P.); (L.G.A.)
| | - Alexandra Brito
- Department of Psychiatry and Behavioral Science, Duke University School of Medicine, 200 Trent Drive, Box 3620 DUMC, Durham, NC 27710, USA; (C.A.C.); (M.D.); (W.L.); (H.P.); (S.A.H.); (A.B.); (C.H.); (S.H.L.); (A.V.P.); (L.G.A.)
| | - Connor Hile
- Department of Psychiatry and Behavioral Science, Duke University School of Medicine, 200 Trent Drive, Box 3620 DUMC, Durham, NC 27710, USA; (C.A.C.); (M.D.); (W.L.); (H.P.); (S.A.H.); (A.B.); (C.H.); (S.H.L.); (A.V.P.); (L.G.A.)
| | - Bruce Luber
- National Institute of Mental Health, 6001 Executive Boulevard, Bethesda, MD 20852, USA;
| | - Sarah H. Lisanby
- Department of Psychiatry and Behavioral Science, Duke University School of Medicine, 200 Trent Drive, Box 3620 DUMC, Durham, NC 27710, USA; (C.A.C.); (M.D.); (W.L.); (H.P.); (S.A.H.); (A.B.); (C.H.); (S.H.L.); (A.V.P.); (L.G.A.)
- National Institute of Mental Health, 6001 Executive Boulevard, Bethesda, MD 20852, USA;
| | - Angel V. Peterchev
- Department of Psychiatry and Behavioral Science, Duke University School of Medicine, 200 Trent Drive, Box 3620 DUMC, Durham, NC 27710, USA; (C.A.C.); (M.D.); (W.L.); (H.P.); (S.A.H.); (A.B.); (C.H.); (S.H.L.); (A.V.P.); (L.G.A.)
- Department of Biomedical Engineering, Duke University, 305 Teer Engineering Building, Box 90271, Durham, NC 27708, USA
- Department of Electrical and Computer Engineering, Duke University, 305 Teer Engineering Building, Box 90271, Durham, NC 27708, USA
- Department of Neurosurgery, Duke University School of Medicine, 200 Trent Drive, Box 3807 DUMC, Durham, NC 27710, USA
| | - Roberto Cabeza
- Center for Cognitive Neuroscience, Duke University, 308 Research Drive, Durham, NC 27710, USA;
- Department of Psychology & Neuroscience, Duke University, 417 Chapel Drive, Durham, NC 27708, USA
| | - Lawrence G. Appelbaum
- Department of Psychiatry and Behavioral Science, Duke University School of Medicine, 200 Trent Drive, Box 3620 DUMC, Durham, NC 27710, USA; (C.A.C.); (M.D.); (W.L.); (H.P.); (S.A.H.); (A.B.); (C.H.); (S.H.L.); (A.V.P.); (L.G.A.)
| |
Collapse
|
140
|
Rahayel S, Gaubert M, Postuma RB, Montplaisir J, Carrier J, Monchi O, Rémillard-Pelchat D, Bourgouin PA, Panisset M, Chouinard S, Joubert S, Gagnon JF. Brain atrophy in Parkinson's disease with polysomnography-confirmed REM sleep behavior disorder. Sleep 2020; 42:5373066. [PMID: 30854555 DOI: 10.1093/sleep/zsz062] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/20/2019] [Indexed: 12/16/2022] Open
Abstract
We aimed to investigate cortical and subcortical brain alterations in people with Parkinson's disease with polysomnography-confirmed rapid eye movement (REM) sleep behavior disorder (RBD). Thirty people with Parkinson's disease, including 15 people with RBD, were recruited and compared with 41 healthy controls. Surface-based cortical and subcortical analyses were performed on T1-weighted images to investigate thickness and shape abnormalities between groups, and voxel-based and deformation-based morphometry were performed to investigate local volume. Correlations were performed in patients to investigate the structural correlates of motor activity during REM sleep. People with RBD showed cortical thinning in the right perisylvian and inferior temporal cortices and shape contraction in the putamen compared with people without RBD. Compared with controls, people with RBD had extensive cortical thinning and volume loss, brainstem volume was reduced, and shape contraction was found in the basal ganglia and hippocampus. In comparison to controls, people without RBD showed more restricted thinning in the sensorimotor, parietal, and occipital cortices, reduced volume in the brainstem, temporal and more posterior areas, and shape contraction in the pallidum and hippocampus. In Parkinson's disease, higher tonic and phasic REM sleep motor activity was associated with contraction of the thalamic surface, extensive cortical thinning, and subtle volume reduction in the middle temporal gyrus. In Parkinson's disease, the presence of RBD is associated with extensive cortical and subcortical abnormalities, suggesting more severe neurodegeneration in people with RBD. This provides potential neuroanatomical correlates for the more severe clinical phenotype reported in people with Parkinson's disease with RBD.
Collapse
Affiliation(s)
- Shady Rahayel
- Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, Canada.,Department of Psychology, Université du Québec à Montréal, Montreal, Canada.,Research Centre, Institut universitaire de gériatrie de Montréal, Montreal, Canada
| | - Malo Gaubert
- Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, Canada.,Department of Psychology, Université du Québec à Montréal, Montreal, Canada
| | - Ronald B Postuma
- Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, Canada.,Department of Neurology, Montreal General Hospital, Montreal, Canada
| | - Jacques Montplaisir
- Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, Canada.,Department of Psychiatry, Université de Montréal, Montreal, Canada
| | - Julie Carrier
- Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, Canada.,Research Centre, Institut universitaire de gériatrie de Montréal, Montreal, Canada.,Department of Psychology, Université de Montréal, Montreal, Canada
| | - Oury Monchi
- Research Centre, Institut universitaire de gériatrie de Montréal, Montreal, Canada.,Department of Radiology, Radio-Oncology, and Nuclear Medicine, Université de Montréal, Montreal, Canada.,Departments of Clinical Neurosciences, Radiology, and Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - David Rémillard-Pelchat
- Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, Canada.,Department of Psychology, Université du Québec à Montréal, Montreal, Canada
| | - Pierre-Alexandre Bourgouin
- Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, Canada.,Department of Psychology, Université du Québec à Montréal, Montreal, Canada
| | - Michel Panisset
- Unité des troubles du mouvement André-Barbeau, Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| | - Sylvain Chouinard
- Unité des troubles du mouvement André-Barbeau, Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| | - Sven Joubert
- Research Centre, Institut universitaire de gériatrie de Montréal, Montreal, Canada.,Department of Psychology, Université de Montréal, Montreal, Canada
| | - Jean-François Gagnon
- Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, Canada.,Research Centre, Institut universitaire de gériatrie de Montréal, Montreal, Canada
| |
Collapse
|
141
|
Cafiero R, Brauer J, Anwander A, Friederici AD. The Concurrence of Cortical Surface Area Expansion and White Matter Myelination in Human Brain Development. Cereb Cortex 2020; 29:827-837. [PMID: 30462166 PMCID: PMC6319170 DOI: 10.1093/cercor/bhy277] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/11/2018] [Indexed: 02/03/2023] Open
Abstract
The human brain undergoes dramatic structural changes during childhood that co-occur with behavioral development. These age-related changes are documented for the brain’s gray matter and white matter. However, their interrelation is largely unknown. In this study, we investigated age-related effects in cortical thickness (CT) and in cortical surface area (SA) as parts of the gray matter volume as well as age effects in T1 relaxation times in the white matter. Data from N = 170 children between the ages of 3 and 7 years contributed to the sample. We found a high spatial overlap of age-related correlations between SA and T1 relaxation times of the corresponding white matter connections, but no such relation between SA and CT. These results indicate that during childhood the developmental expansion of the cortical surface goes hand-in-hand with age-related increase of white matter fiber connections terminating in the cortical surface.
Collapse
Affiliation(s)
- Riccardo Cafiero
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Jens Brauer
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Alfred Anwander
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Angela D Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
142
|
Ofoghi Z, Dewey D, Barlow KM. A Systematic Review of Structural and Functional Imaging Correlates of Headache or Pain after Mild Traumatic Brain Injury. J Neurotrauma 2020; 37:907-923. [DOI: 10.1089/neu.2019.6750] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Zahra Ofoghi
- Department of Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Deborah Dewey
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Karen M. Barlow
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Paediatric Neurology Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| |
Collapse
|
143
|
Heidekum AE, Vogel SE, Grabner RH. Associations Between Individual Differences in Mathematical Competencies and Surface Anatomy of the Adult Brain. Front Hum Neurosci 2020; 14:116. [PMID: 32292335 PMCID: PMC7118203 DOI: 10.3389/fnhum.2020.00116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/13/2020] [Indexed: 01/18/2023] Open
Abstract
Previously conducted structural magnetic resonance imaging (MRI) studies on the neuroanatomical correlates of mathematical abilities and competencies have several methodological limitations. Besides small sample sizes, the majority of these studies have employed voxel-based morphometry (VBM)-a method that, although it is easy to implement, has some major drawbacks. Taking this into account, the current study is the first to investigate in a large sample of typically developed adults the associations between mathematical abilities and variations in brain surface structure by using surface-based morphometry (SBM). SBM is a method that also allows the investigation of brain morphometry by avoiding the pitfalls of VBM. Eighty-nine young adults were tested with a large battery of psychometric tests to measure mathematical competencies in four different areas: (1) simple arithmetic; (2) complex arithmetic; (3) higher-order mathematics; and (4) numerical intelligence. Also, we asked participants for their mathematics grades for their final school exams. Inside the MRI scanner, we collected high-resolution T1-weighted anatomical images from each subject. SBM analyses were performed with the computational anatomy toolbox (CAT12) and indices for cortical thickness, for cortical surface complexity, for gyrification, and sulcal depth were calculated. Further analyses revealed associations between: (1) the cortical surface complexity of the right superior temporal gyrus and numerical intelligence; (2) the depth of the right central sulcus and adults' ability to solve complex arithmetic problems; and (3) the depth of the left parieto-occipital sulcus and adults' higher-order mathematics competence. Interestingly, no relationships with previously reported brain regions were observed, thus, suggesting the importance of similar research to confirm the role of the brain regions found in this study.
Collapse
Affiliation(s)
- Alexander E. Heidekum
- Educational Neuroscience, Institute of Psychology, University of Graz, Graz, Austria
| | | | | |
Collapse
|
144
|
Ousdal OT, Argyelan M, Narr KL, Abbott C, Wade B, Vandenbulcke M, Urretavizcaya M, Tendolkar I, Takamiya A, Stek ML, Soriano-Mas C, Redlich R, Paulson OB, Oudega ML, Opel N, Nordanskog P, Kishimoto T, Kampe R, Jorgensen A, Hanson LG, Hamilton JP, Espinoza R, Emsell L, van Eijndhoven P, Dols A, Dannlowski U, Cardoner N, Bouckaert F, Anand A, Bartsch H, Kessler U, Oedegaard KJ, Dale AM, Oltedal L. Brain Changes Induced by Electroconvulsive Therapy Are Broadly Distributed. Biol Psychiatry 2020; 87:451-461. [PMID: 31561859 DOI: 10.1016/j.biopsych.2019.07.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/14/2019] [Accepted: 07/15/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND Electroconvulsive therapy (ECT) is associated with volumetric enlargements of corticolimbic brain regions. However, the pattern of whole-brain structural alterations following ECT remains unresolved. Here, we examined the longitudinal effects of ECT on global and local variations in gray matter, white matter, and ventricle volumes in patients with major depressive disorder as well as predictors of ECT-related clinical response. METHODS Longitudinal magnetic resonance imaging and clinical data from the Global ECT-MRI Research Collaboration (GEMRIC) were used to investigate changes in white matter, gray matter, and ventricle volumes before and after ECT in 328 patients experiencing a major depressive episode. In addition, 95 nondepressed control subjects were scanned twice. We performed a mega-analysis of single subject data from 14 independent GEMRIC sites. RESULTS Volumetric increases occurred in 79 of 84 gray matter regions of interest. In total, the cortical volume increased by mean ± SD of 1.04 ± 1.03% (Cohen's d = 1.01, p < .001) and the subcortical gray matter volume increased by 1.47 ± 1.05% (d = 1.40, p < .001) in patients. The subcortical gray matter increase was negatively associated with total ventricle volume (Spearman's rank correlation ρ = -.44, p < .001), while total white matter volume remained unchanged (d = -0.05, p = .41). The changes were modulated by number of ECTs and mode of electrode placements. However, the gray matter volumetric enlargements were not associated with clinical outcome. CONCLUSIONS The findings suggest that ECT induces gray matter volumetric increases that are broadly distributed. However, gross volumetric increases of specific anatomically defined regions may not serve as feasible biomarkers of clinical response.
Collapse
Affiliation(s)
| | - Miklos Argyelan
- Center for Psychiatric Neuroscience at the Feinstein Institute for Medical Research, New York, New York
| | - Katherine L Narr
- Departments of Neurology, Psychiatry, and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles
| | - Christopher Abbott
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Benjamin Wade
- Departments of Neurology, Psychiatry, and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles
| | - Mathieu Vandenbulcke
- Department of Geriatric Psychiatry, University Psychiatric Center Katholieke Universiteit Leuven, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Mikel Urretavizcaya
- Department of Psychiatry, Bellvitge University Hospital-Bellvitge Biomedical Research Institute; Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Carlos III Health Institute, Madrid, Spain
| | - Indira Tendolkar
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands; Donders Institute for Brain Cognition and Behavior, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands; Faculty of Medicine and Landschaftsverband Rheinland Clinic for Psychiatry and Psychotherapy, University of Duisburg-Essen, Duisburg-Essen, Germany
| | - Akihiro Takamiya
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan; Center for Psychiatry and Behavioral Science, Komagino Hospital, Tokyo, Japan
| | - Max L Stek
- Geestelijke GezondheidsZorg inGeest Specialized Mental Health Care, Amsterdam, The Netherlands; Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Carles Soriano-Mas
- Department of Psychiatry, Bellvitge University Hospital-Bellvitge Biomedical Research Institute; Department of Psychobiology and Methodology in Health Sciences, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Carlos III Health Institute, Madrid, Spain
| | - Ronny Redlich
- Department of Psychiatry and Psychotherapy, University of Muenster, Muenster, Germany
| | - Olaf B Paulson
- Neurobiology Research Unit, Department of Neurology, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mardien L Oudega
- Geestelijke GezondheidsZorg inGeest Specialized Mental Health Care, Amsterdam, The Netherlands; Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Nils Opel
- Department of Psychiatry and Psychotherapy, University of Muenster, Muenster, Germany; Interdisciplinary Centre for Clinical Research (IZKF), University of Muenster, Muenster, Germany
| | - Pia Nordanskog
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Taishiro Kishimoto
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Robin Kampe
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Anders Jorgensen
- Psychiatric Center Copenhagen (Rigshospitalet), Mental Health Services of the Capital Region of Denmark, Copenhagen, Denmark
| | - Lars G Hanson
- Center for Magnetic Resonance, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark; Danish Research Centre for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital, Hvidovre, Denmark
| | - J Paul Hamilton
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Randall Espinoza
- Departments of Neurology, Psychiatry, and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles
| | - Louise Emsell
- Department of Geriatric Psychiatry, University Psychiatric Center Katholieke Universiteit Leuven, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Philip van Eijndhoven
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands; Donders Institute for Brain Cognition and Behavior, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands
| | - Annemieke Dols
- Geestelijke GezondheidsZorg inGeest Specialized Mental Health Care, Amsterdam, The Netherlands; Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Udo Dannlowski
- Department of Psychiatry and Psychotherapy, University of Muenster, Muenster, Germany
| | - Narcis Cardoner
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Carlos III Health Institute, Madrid, Spain; Department of Mental Health, University Hospital Parc Taulí-I3PT, Sabadell, Spain
| | - Filip Bouckaert
- Department of Geriatric Psychiatry, University Psychiatric Center Katholieke Universiteit Leuven, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Amit Anand
- Cleveland Clinic, Center for Behavioral Health, Cleveland, Ohio
| | - Hauke Bartsch
- Center for Multimodal Imaging and Genetics, University of California, San Diego, La Jolla, California; Department of Radiology, University of California, San Diego, La Jolla, California
| | - Ute Kessler
- Norwegian Centre for Mental Disorders Research, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Ketil J Oedegaard
- Norwegian Centre for Mental Disorders Research, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Anders M Dale
- Center for Multimodal Imaging and Genetics, University of California, San Diego, La Jolla, California; Department of Radiology, University of California, San Diego, La Jolla, California; Department of Neurosciences, University of California, San Diego, La Jolla, California
| | - Leif Oltedal
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | | |
Collapse
|
145
|
Neurocognitive markers of childhood abuse in individuals with PTSD: Findings from the INTRuST Clinical Consortium. J Psychiatr Res 2020; 121:108-117. [PMID: 31809943 PMCID: PMC7568209 DOI: 10.1016/j.jpsychires.2019.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 11/18/2019] [Accepted: 11/21/2019] [Indexed: 11/20/2022]
Abstract
To date, few studies have evaluated the contribution of early life experiences to neurocognitive abnormalities observed in posttraumatic stress disorder (PTSD). Childhood maltreatment is common among individuals with PTSD and is thought to catalyze stress-related biobehavioral changes that might impact both brain structure and function in adulthood. The current study examined differences in brain morphology (brain volume, cortical thickness) and neuropsychological performance in individuals with PTSD characterized by low or high self-reported childhood maltreatment, compared with healthy comparison participants. Data were drawn from the INjury and TRaUmatic STress (INTRuST) Clinical Consortium imaging repository, which contains MRI and self-report data for individuals classified as PTSD positive (with and without a history of mild traumatic brain injury [mTBI]), individuals with mTBI only, and healthy comparison participants. The final sample included 36 individuals with PTSD without childhood maltreatment exposure (PTSD, n = 30 with mTBI), 31 individuals with PTSD and childhood maltreatment exposure (PTSD + M, n = 26 with mTBI), and 114 healthy comparison participants without history of childhood maltreatment exposure (HC). The PTSD + M and PTSD groups demonstrated cortical thinning in prefrontal and occipital regions, and poorer verbal memory and processing speed compared to the HC group. PTSD + M participants demonstrated cortical thinning in frontal and cingulate regions, and poorer executive functioning relative to the PTSD and HC groups. Thus, neurocognitive features varied between individuals with PTSD who did versus did not have exposure to childhood maltreatment, highlighting the need to assess developmental history of maltreatment when examining biomarkers in PTSD.
Collapse
|
146
|
Kang SG, Cho SE, Na KS, Lee JS, Joo SW, Cho SJ, Son YD, Lee YJ. Differences in brain surface area and cortical volume between suicide attempters and non-attempters with major depressive disorder. Psychiatry Res Neuroimaging 2020; 297:111032. [PMID: 32028105 DOI: 10.1016/j.pscychresns.2020.111032] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 12/06/2019] [Accepted: 01/17/2020] [Indexed: 12/21/2022]
Abstract
The neurobiological causes underlying suicidal behaviors in major depressive disorder (MDD) have not been identified. This study was performed to investigate the differences in brain cortical thickness, surface area, and volume between suicide attempters and non-attempters with MDD. We performed magnetic resonance imaging (MRI) in 38 MDD patients (18-65 years old; 18 male, 20 female) with and without a history of suicide attempts. FreeSurfer software was used to compare the cortical thickness, surface area, and volume of 19 suicide attempters with MDD and 19 suicide non-attempters with MDD, while controlling for age, sex, mean area (or volume), and severity of depression. Compared with suicide non-attempters, suicide attempters with MDD exhibited a larger surface area in the left postcentral area and left lateral occipital area and a larger cortical volume in the left postcentral area and left lateral orbitofrontal area. Suicide attempters exhibited a smaller surface area in the left superior frontal area than suicide non-attempters. The present findings provide evidence for neuroanatomical risk factors of suicide in MDD. Further research to replicate these results and determine the mechanisms underlying these findings is needed.
Collapse
Affiliation(s)
- Seung-Gul Kang
- Department of Psychiatry, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Seo-Eun Cho
- Department of Psychiatry, Gil Medical Center, Incheon, Republic of Korea
| | - Kyoung-Sae Na
- Department of Psychiatry, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Jung Sun Lee
- Department of Psychiatry, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | | | - Seong-Jin Cho
- Department of Psychiatry, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Young-Don Son
- Department of Biomedical Engineering, College of Health Science, Gachon University, Incheon, Republic of Korea
| | - Yu Jin Lee
- Department of Psychiatry, Center for Sleep and Chronobiology, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
147
|
Reduced gray matter volume and cortical thickness associated with traffic-related air pollution in a longitudinally studied pediatric cohort. PLoS One 2020; 15:e0228092. [PMID: 31978108 PMCID: PMC6980590 DOI: 10.1371/journal.pone.0228092] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/07/2020] [Indexed: 12/20/2022] Open
Abstract
Early life exposure to air pollution poses a significant risk to brain development from direct exposure to toxicants or via indirect mechanisms involving the circulatory, pulmonary or gastrointestinal systems. In children, exposure to traffic related air pollution has been associated with adverse effects on cognitive, behavioral and psychomotor development. We aimed to determine whether childhood exposure to traffic related air pollution is associated with regional differences in brain volume and cortical thickness among children enrolled in a longitudinal cohort study of traffic related air pollution and child health. We used magnetic resonance imaging to obtain anatomical brain images from a nested subset of 12 year old participants characterized with either high or low levels of traffic related air pollution exposure during their first year of life. We employed voxel-based morphometry to examine group differences in regional brain volume, and with separate analyses, changes in cortical thickness. Smaller regional gray matter volumes were determined in the left pre- and post-central gyri, the cerebellum, and inferior parietal lobe of participants in the high traffic related air pollution exposure group relative to participants with low exposure. Reduced cortical thickness was observed in participants with high exposure relative to those with low exposure, primarily in sensorimotor regions of the brain including the pre- and post-central gyri and the paracentral lobule, but also within the frontal and limbic regions. These results suggest that significant childhood exposure to traffic related air pollution is associated with structural alterations in brain.
Collapse
|
148
|
Taubert M, Roggenhofer E, Melie-Garcia L, Muller S, Lehmann N, Preisig M, Vollenweider P, Marques-Vidal P, Lutti A, Kherif F, Draganski B. Converging patterns of aging-associated brain volume loss and tissue microstructure differences. Neurobiol Aging 2020; 88:108-118. [PMID: 32035845 DOI: 10.1016/j.neurobiolaging.2020.01.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 11/28/2022]
Abstract
Given the worldwide increasing socioeconomic burden of aging-associated brain diseases, there is pressing need to gain in-depth knowledge about the neurobiology of brain anatomy changes across the life span. Advances in quantitative magnetic resonance imaging sensitive to brain's myelin, iron, and free water content allow for a detailed in vivo investigation of aging-related changes while reducing spurious morphometry differences. Main aim of our study is to link previous morphometry findings in aging to microstructural tissue properties in a large-scale cohort (n = 966, age range 46-86 y). Addressing previous controversies in the field, we present results obtained with different approaches to adjust local findings for global effects. Beyond the confirmation of age-related atrophy, myelin, and free water decreases, we report proportionally steeper volume, iron, and myelin decline in sensorimotor and subcortical areas paralleled by free water increase. We demonstrate aging-related white matter volume, myelin, and iron loss in frontostriatal projections. Our findings provide robust evidence for spatial overlap between volume and tissue property differences in aging that affect predominantly motor and executive networks.
Collapse
Affiliation(s)
- Marco Taubert
- Chair for Training Science, Cognition and Action, Faculty of Humanities, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioural and Brain Sciences - CBBS, Magdeburg, Germany; Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Elisabeth Roggenhofer
- Laboratory for Research in Neuroimaging LREN, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Lester Melie-Garcia
- Laboratory for Research in Neuroimaging LREN, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Sandrine Muller
- Laboratory for Research in Neuroimaging LREN, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Nico Lehmann
- Chair for Training Science, Cognition and Action, Faculty of Humanities, Otto-von-Guericke University, Magdeburg, Germany
| | - Martin Preisig
- Center for Research in Psychiatric Epidemiology and Psychopathology, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Peter Vollenweider
- Department of Medicine, Internal Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Pedro Marques-Vidal
- Department of Medicine, Internal Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Antoine Lutti
- Laboratory for Research in Neuroimaging LREN, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ferath Kherif
- Laboratory for Research in Neuroimaging LREN, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Bogdan Draganski
- Laboratory for Research in Neuroimaging LREN, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| |
Collapse
|
149
|
Jorge L, Canário N, Quental H, Bernardes R, Castelo-Branco M. Is the Retina a Mirror of the Aging Brain? Aging of Neural Retina Layers and Primary Visual Cortex Across the Lifespan. Front Aging Neurosci 2020; 11:360. [PMID: 31998115 PMCID: PMC6961569 DOI: 10.3389/fnagi.2019.00360] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/10/2019] [Indexed: 01/13/2023] Open
Abstract
How aging concomitantly modulates the structural integrity of the brain and retina in healthy individuals remains an outstanding question. Given the strong bottom-up retinocortical connectivity, it is important to study how these structures co-evolve during healthy aging in order to unravel mechanisms that may affect the physiological integrity of both structures. For the 56 participants in the study, primary visual cortex (BA17), as well as frontal, parietal and temporal regions thicknesses were measured in T1-weighted magnetic resonance imaging (MRI), and retinal macular thickness (10 neuroretinal layers) was measured by optical coherence tomography (OCT) imaging. We investigated the statistical association of these measures and their age dependence. We found an age-related decay of primary visual cortical thickness that was significantly correlated with a decrease in global and multiple layer retinal thicknesses. The atrophy of both structures might jointly account for the decline of various visual capacities that accompany the aging process. Furthermore, associations with other cortical regions suggest that retinal status may index cortical integrity in general.
Collapse
Affiliation(s)
- Lília Jorge
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal.,Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Nádia Canário
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal.,Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Hugo Quental
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal.,Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Rui Bernardes
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal.,Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal.,Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
150
|
Vieira S, Gong QY, Pinaya WHL, Scarpazza C, Tognin S, Crespo-Facorro B, Tordesillas-Gutierrez D, Ortiz-García V, Setien-Suero E, Scheepers FE, Van Haren NEM, Marques TR, Murray RM, David A, Dazzan P, McGuire P, Mechelli A. Using Machine Learning and Structural Neuroimaging to Detect First Episode Psychosis: Reconsidering the Evidence. Schizophr Bull 2020; 46:17-26. [PMID: 30809667 PMCID: PMC6942152 DOI: 10.1093/schbul/sby189] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Despite the high level of interest in the use of machine learning (ML) and neuroimaging to detect psychosis at the individual level, the reliability of the findings is unclear due to potential methodological issues that may have inflated the existing literature. This study aimed to elucidate the extent to which the application of ML to neuroanatomical data allows detection of first episode psychosis (FEP), while putting in place methodological precautions to avoid overoptimistic results. We tested both traditional ML and an emerging approach known as deep learning (DL) using 3 feature sets of interest: (1) surface-based regional volumes and cortical thickness, (2) voxel-based gray matter volume (GMV) and (3) voxel-based cortical thickness (VBCT). To assess the reliability of the findings, we repeated all analyses in 5 independent datasets, totaling 956 participants (514 FEP and 444 within-site matched controls). The performance was assessed via nested cross-validation (CV) and cross-site CV. Accuracies ranged from 50% to 70% for surfaced-based features; from 50% to 63% for GMV; and from 51% to 68% for VBCT. The best accuracies (70%) were achieved when DL was applied to surface-based features; however, these models generalized poorly to other sites. Findings from this study suggest that, when methodological precautions are adopted to avoid overoptimistic results, detection of individuals in the early stages of psychosis is more challenging than originally thought. In light of this, we argue that the current evidence for the diagnostic value of ML and structural neuroimaging should be reconsidered toward a more cautious interpretation.
Collapse
Affiliation(s)
- Sandra Vieira
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, United Kingdom
| | - Qi-yong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Department of Psychoradiology, Chengdu Mental Health Center, Chengdu, China
| | - Walter H L Pinaya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, United Kingdom
- Centre of Mathematics, Computation, and Cognition, Universidade Federal do ABC, São Paulo, Brazil
| | - Cristina Scarpazza
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, United Kingdom
- Department of General Psychology, University of Padova, Padova, Italy
| | - Stefania Tognin
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, United Kingdom
| | - Benedicto Crespo-Facorro
- Centro Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
- Department of Psychiatry, University Hospital Marqués de Valdecilla, School of Medicine, University of Cantabria-IDIVAL, Santander, Spain
| | - Diana Tordesillas-Gutierrez
- Centro Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
- Neuroimaging Unit, Technological Facilities, Valdecilla Biomedical Research Institute IDIVAL, Santander, Cantabria, Spain
| | - Victor Ortiz-García
- Centro Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
- Department of Psychiatry, University Hospital Marqués de Valdecilla, School of Medicine, University of Cantabria-IDIVAL, Santander, Spain
| | - Esther Setien-Suero
- Centro Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
- Department of Psychiatry, University Hospital Marqués de Valdecilla, School of Medicine, University of Cantabria-IDIVAL, Santander, Spain
| | - Floortje E Scheepers
- Department of Psychiatry, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Neeltje E M Van Haren
- Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Tiago R Marques
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, United Kingdom
| | - Robin M Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, United Kingdom
| | - Anthony David
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, United Kingdom
| | - Paola Dazzan
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, United Kingdom
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, United Kingdom
| | - Andrea Mechelli
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, United Kingdom
| |
Collapse
|