101
|
Galatolo D, Tessa A, Filla A, Santorelli FM. Clinical application of next generation sequencing in hereditary spinocerebellar ataxia: increasing the diagnostic yield and broadening the ataxia-spasticity spectrum. A retrospective analysis. Neurogenetics 2017; 19:1-8. [DOI: 10.1007/s10048-017-0532-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/27/2017] [Indexed: 11/29/2022]
|
102
|
de Souza PVS, Bortholin T, Naylor FGM, Chieia MAT, de Rezende Pinto WBV, Oliveira ASB. Motor neuron disease in inherited neurometabolic disorders. Rev Neurol (Paris) 2017; 174:115-124. [PMID: 29128155 DOI: 10.1016/j.neurol.2017.06.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 04/29/2017] [Accepted: 06/15/2017] [Indexed: 01/18/2023]
Abstract
Inherited neurometabolic disorders represent a growing group of inborn errors of metabolism that present with major neurological symptoms or a complex spectrum of symptoms dominated by central or peripheral nervous system dysfunction. Many neurological presentations may arise from the same metabolic defect, especially in autosomal-recessive inherited disorders. Motor neuron disease (MND), mainly represented by amyotrophic lateral sclerosis, may also result from various inborn errors of metabolism, some of which may represent potentially treatable conditions, thereby emphasizing the importance of recognizing such diseases. The present review discusses the most important neurometabolic disorders presenting with motor neuron (lower and/or upper) dysfunction as the key clinical and neuropathological feature.
Collapse
Affiliation(s)
- P Victor Sgobbi de Souza
- Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - T Bortholin
- Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - F George Monteiro Naylor
- Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - M Antônio Troccoli Chieia
- Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - W Bocca Vieira de Rezende Pinto
- Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil.
| | - A Souza Bulle Oliveira
- Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| |
Collapse
|
103
|
Dodge JC. Lipid Involvement in Neurodegenerative Diseases of the Motor System: Insights from Lysosomal Storage Diseases. Front Mol Neurosci 2017; 10:356. [PMID: 29163032 PMCID: PMC5675881 DOI: 10.3389/fnmol.2017.00356] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 10/19/2017] [Indexed: 12/11/2022] Open
Abstract
Lysosomal storage diseases (LSDs) are a heterogeneous group of rare inherited metabolic diseases that are frequently triggered by the accumulation of lipids inside organelles of the endosomal-autophagic-lysosomal system (EALS). There is now a growing realization that disrupted lysosomal homeostasis (i.e., lysosomal cacostasis) also contributes to more common neurodegenerative disorders such as Parkinson disease (PD). Lipid deposition within the EALS may also participate in the pathogenesis of some additional neurodegenerative diseases of the motor system. Here, I will highlight the lipid abnormalities and clinical manifestations that are common to LSDs and several diseases of the motor system, including amyotrophic lateral sclerosis (ALS), atypical forms of spinal muscular atrophy, Charcot-Marie-Tooth disease (CMT), hereditary spastic paraplegia (HSP), multiple system atrophy (MSA), PD and spinocerebellar ataxia (SCA). Elucidating the underlying basis of intracellular lipid mislocalization as well as its consequences in each of these disorders will likely provide innovative targets for therapeutic research.
Collapse
Affiliation(s)
- James C Dodge
- Neuroscience Therapeutic Area, Sanofi, Framingham, MA, United States
| |
Collapse
|
104
|
Pang SYY, Teo KC, Hsu JS, Chang RSK, Li M, Sham PC, Ho SL. The role of gene variants in the pathogenesis of neurodegenerative disorders as revealed by next generation sequencing studies: a review. Transl Neurodegener 2017; 6:27. [PMID: 29046784 PMCID: PMC5639582 DOI: 10.1186/s40035-017-0098-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/02/2017] [Indexed: 12/13/2022] Open
Abstract
The clinical diagnosis of neurodegenerative disorders based on phenotype is difficult in heterogeneous conditions with overlapping symptoms. It does not take into account the disease etiology or the highly variable clinical course even amongst patients diagnosed with the same disorder. The advent of next generation sequencing (NGS) has allowed for a system-wide, unbiased approach to identify all gene variants in the genome simultaneously. With the plethora of new genes being identified, genetic rather than phenotype-based classification of Mendelian diseases such as spinocerebellar ataxia (SCA), hereditary spastic paraplegia (HSP) and Charcot-Marie-Tooth disease (CMT) has become widely accepted. It has also become clear that gene variants play a role in common and predominantly sporadic neurodegenerative diseases such as Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS). The observation of pleiotropy has emerged, with mutations in the same gene giving rise to diverse phenotypes, which further increases the complexity of phenotype-genotype correlation. Possible mechanisms of pleiotropy include different downstream effects of different mutations in the same gene, presence of modifier genes, and oligogenic inheritance. Future directions include development of bioinformatics tools and establishment of more extensive public genotype/phenotype databases to better distinguish deleterious gene variants from benign polymorphisms, translation of genetic findings into pathogenic mechanisms through in-vitro and in-vivo studies, and ultimately finding disease-modifying therapies for neurodegenerative disorders.
Collapse
Affiliation(s)
- Shirley Yin-Yu Pang
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, People's Republic of China
| | - Kay-Cheong Teo
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, People's Republic of China
| | - Jacob Shujui Hsu
- Centre for Genomic Sciences, University of Hong Kong, Hong Kong, People's Republic of China
| | - Richard Shek-Kwan Chang
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, People's Republic of China
| | - Miaoxin Li
- Centre for Genomic Sciences, University of Hong Kong, Hong Kong, People's Republic of China.,Department of Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, People's Republic of China
| | - Pak-Chung Sham
- Centre for Genomic Sciences, University of Hong Kong, Hong Kong, People's Republic of China
| | - Shu-Leong Ho
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, People's Republic of China
| |
Collapse
|
105
|
Du J, Hu YC, Tang BS, Jiang H, Shen L. Identification of novel SPG11 mutations in a cohort of Chinese families with hereditary spastic paraplegia. Int J Neurosci 2017; 128:146-150. [PMID: 28933964 DOI: 10.1080/00207454.2017.1378878] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Juan Du
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Ya-Cen Hu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Bei-Sha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- The Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- The State Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- The Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- The State Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- The Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- The State Key Laboratory of Medical Genetics, Central South University, Changsha, China
| |
Collapse
|
106
|
Abstract
Hereditary spastic paraplegia comprises a wide and heterogeneous group of inherited neurodegenerative and neurodevelopmental disorders resulting from primary retrograde dysfunction of the long descending fibers of the corticospinal tract. Although spastic paraparesis and urinary dysfunction represent the most common clinical presentation, a complex group of different neurological and systemic compromise has been recognized recently and a growing number of new genetic subtypes were described in the last decade. Clinical characterization of individual and familial history represents the main step during diagnostic workup; however, frequently, few and unspecific data allows a low rate of definite diagnosis based solely in clinical and neuroimaging basis. Likewise, a wide group of neurological acquired and inherited disorders should be included in the differential diagnosis and properly excluded after a complete laboratorial, neuroimaging, and genetic evaluation. The aim of this review article is to provide an extensive overview regarding the main clinical and genetic features of the classical and recently described subtypes of hereditary spastic paraplegia (HSP).
Collapse
|
107
|
De Gregorio C, Delgado R, Ibacache A, Sierralta J, Couve A. Drosophila Atlastin in motor neurons is required for locomotion and presynaptic function. J Cell Sci 2017; 130:3507-3516. [PMID: 28860117 DOI: 10.1242/jcs.201657] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 08/29/2017] [Indexed: 01/22/2023] Open
Abstract
Hereditary spastic paraplegias (HSPs) are characterized by spasticity and weakness of the lower limbs, resulting from length-dependent axonopathy of the corticospinal tracts. In humans, the HSP-related atlastin genes ATL1-ATL3 catalyze homotypic membrane fusion of endoplasmic reticulum (ER) tubules. How defects in neuronal Atlastin contribute to axonal degeneration has not been explained satisfactorily. Using Drosophila, we demonstrate that downregulation or overexpression of Atlastin in motor neurons results in decreased crawling speed and contraction frequency in larvae, while adult flies show progressive decline in climbing ability. Broad expression in the nervous system is required to rescue the atlastin-null Drosophila mutant (atl2 ) phenotype. Importantly, both spontaneous release and the reserve pool of synaptic vesicles are affected. Additionally, axonal secretory organelles are abnormally distributed, whereas presynaptic proteins diminish at terminals and accumulate in distal axons, possibly in lysosomes. Our findings suggest that trafficking defects produced by Atlastin dysfunction in motor neurons result in redistribution of presynaptic components and aberrant mobilization of synaptic vesicles, stressing the importance of ER-shaping proteins and the susceptibility of motor neurons to their mutations or depletion.
Collapse
Affiliation(s)
- Cristian De Gregorio
- Department of Neuroscience, Universidad de Chile, Santiago CP8380453, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago CP8380453, Chile
| | - Ricardo Delgado
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago CP7800003, Chile
| | - Andrés Ibacache
- Department of Neuroscience, Universidad de Chile, Santiago CP8380453, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago CP8380453, Chile
| | - Jimena Sierralta
- Department of Neuroscience, Universidad de Chile, Santiago CP8380453, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago CP8380453, Chile
| | - Andrés Couve
- Department of Neuroscience, Universidad de Chile, Santiago CP8380453, Chile .,Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago CP8380453, Chile
| |
Collapse
|
108
|
New genetic causes for complex hereditary spastic paraplegia. J Neurol Sci 2017; 379:283-292. [DOI: 10.1016/j.jns.2017.06.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/01/2017] [Accepted: 06/13/2017] [Indexed: 11/17/2022]
|
109
|
Jennings S, Chenevert M, Liu L, Mottamal M, Wojcik EJ, Huckaba TM. Characterization of kinesin switch I mutations that cause hereditary spastic paraplegia. PLoS One 2017; 12:e0180353. [PMID: 28678816 PMCID: PMC5498027 DOI: 10.1371/journal.pone.0180353] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 06/14/2017] [Indexed: 11/18/2022] Open
Abstract
Kif5A is a neuronally-enriched isoform of the Kinesin-1 family of cellular transport motors. 23 separate mutations in the motor domain of Kif5A have been identified in patients with the complicated form of hereditary spastic paraplegia (HSP). We performed in vitro assays on dimeric recombinant Kif5A with HSP-causing mutations in the Switch I domain, which participates in the coordination and hydrolysis of ATP by kinesin. We observed a variety of significantly reduced catalytic and mechanical activities as a result of each mutation, with the shared phenotype from each that motility was significantly reduced. Substitution of Mn2+ for Mg2+ in our reaction buffers provides a dose-dependent rescue in both the catalytic and ensemble mechanical properties of the S203C mutant. This work provides mechanistic insight into the cause of HSP in patients with these mutations and points to future experiments to further dissect the root cause of this disease.
Collapse
Affiliation(s)
- Scott Jennings
- Department of Biology, Xavier University of Louisiana, New Orleans, Louisiana, United States of America
| | - Madeline Chenevert
- Department of Biology, Xavier University of Louisiana, New Orleans, Louisiana, United States of America
| | - Liqiong Liu
- Department of Biochemistry and Molecular Biology, LSU School of Medicine & Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Madhusoodanan Mottamal
- RCMI Molecular Modeling Core, Xavier University of Louisiana, New Orleans, Louisiana, United States of America
| | - Edward J. Wojcik
- Department of Biochemistry and Molecular Biology, LSU School of Medicine & Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Thomas M. Huckaba
- Department of Biology, Xavier University of Louisiana, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
110
|
Lavie J, Serrat R, Bellance N, Courtand G, Dupuy JW, Tesson C, Coupry I, Brice A, Lacombe D, Durr A, Stevanin G, Darios F, Rossignol R, Goizet C, Bénard G. Mitochondrial morphology and cellular distribution are altered in SPG31 patients and are linked to DRP1 hyperphosphorylation. Hum Mol Genet 2017; 26:674-685. [PMID: 28007911 DOI: 10.1093/hmg/ddw425] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 12/12/2016] [Indexed: 01/07/2023] Open
Abstract
Hereditary spastic paraplegia, SPG31, is a rare neurological disorder caused by mutations in REEP1 gene encoding the microtubule-interacting protein, REEP1. The mechanism by which REEP1-dependent processes are linked with the disease is unclear. REEP1 regulates the morphology and trafficking of various organelles via interaction with the microtubules. In this study, we collected primary fibroblasts from SPG31 patients to investigate their mitochondrial morphology. We observed that the mitochondrial morphology in patient cells was highly tubular compared with control cells. We provide evidence that these morphological alterations are caused by the inhibition of mitochondrial fission protein, DRP1, due to the hyperphosphorylation of its serine 637 residue. This hyperphosphorylation is caused by impaired interactions between REEP1 and mitochondrial phosphatase PGAM5. Genetically or pharmacologically induced decrease of DRP1-S637 phosphorylation restores mitochondrial morphology in patient cells. Furthermore, ectopic expression of REEP1 carrying pathological mutations in primary neuronal culture targets REEP1 to the mitochondria. Mutated REEP1 proteins sequester mitochondria to the perinuclear region of the neurons and therefore, hamper mitochondrial transport along the axon. Considering the established role of mitochondrial distribution and morphology in neuronal health, our results support the involvement of a mitochondrial dysfunction in SPG31 pathology.
Collapse
Affiliation(s)
- Julie Lavie
- INSERM U1211, Laboratoire Maladies Rares: Génétique et Métabolisme. Hôpital Pellegrin, 33000 Bordeaux, France.,University of Bordeaux, 33077 Bordeaux, France
| | - Román Serrat
- University of Bordeaux, 33077 Bordeaux, France.,INSERM U1215, NeuroCentre Magendie, 33077 Bordeaux, France
| | - Nadège Bellance
- INSERM U1211, Laboratoire Maladies Rares: Génétique et Métabolisme. Hôpital Pellegrin, 33000 Bordeaux, France.,University of Bordeaux, 33077 Bordeaux, France
| | - Gilles Courtand
- University of Bordeaux, 33077 Bordeaux, France.,INCIA, Université de Bordeaux, CNRS UMR5287, Bordeaux, France
| | - Jean-William Dupuy
- University of Bordeaux, 33077 Bordeaux, France.,Plateforme Protéome, Centre de Génomique Fonctionnelle, F-33000 Bordeaux, France
| | - Christelle Tesson
- INSERM U1127, CNRS UMR 7225, UPMC Université Paris 06 UMR S1127, Sorbonne Université Institut du Cerveau et de la Moelle épinière, ICM F-75013, Paris, France.,Ecole Pratique des Hautes Etudes, PSL Research University, 75014 Paris, France
| | - Isabelle Coupry
- INSERM U1211, Laboratoire Maladies Rares: Génétique et Métabolisme. Hôpital Pellegrin, 33000 Bordeaux, France.,University of Bordeaux, 33077 Bordeaux, France
| | - Alexis Brice
- INSERM U1127, CNRS UMR 7225, UPMC Université Paris 06 UMR S1127, Sorbonne Université Institut du Cerveau et de la Moelle épinière, ICM F-75013, Paris, France
| | - Didier Lacombe
- INSERM U1211, Laboratoire Maladies Rares: Génétique et Métabolisme. Hôpital Pellegrin, 33000 Bordeaux, France.,University of Bordeaux, 33077 Bordeaux, France
| | - Alexandra Durr
- INSERM U1127, CNRS UMR 7225, UPMC Université Paris 06 UMR S1127, Sorbonne Université Institut du Cerveau et de la Moelle épinière, ICM F-75013, Paris, France
| | - Giovanni Stevanin
- INSERM U1127, CNRS UMR 7225, UPMC Université Paris 06 UMR S1127, Sorbonne Université Institut du Cerveau et de la Moelle épinière, ICM F-75013, Paris, France.,Ecole Pratique des Hautes Etudes, PSL Research University, 75014 Paris, France
| | - Fréderic Darios
- INSERM U1127, CNRS UMR 7225, UPMC Université Paris 06 UMR S1127, Sorbonne Université Institut du Cerveau et de la Moelle épinière, ICM F-75013, Paris, France
| | - Rodrigue Rossignol
- INSERM U1211, Laboratoire Maladies Rares: Génétique et Métabolisme. Hôpital Pellegrin, 33000 Bordeaux, France.,University of Bordeaux, 33077 Bordeaux, France
| | - Cyril Goizet
- INSERM U1211, Laboratoire Maladies Rares: Génétique et Métabolisme. Hôpital Pellegrin, 33000 Bordeaux, France.,University of Bordeaux, 33077 Bordeaux, France
| | - Giovanni Bénard
- INSERM U1211, Laboratoire Maladies Rares: Génétique et Métabolisme. Hôpital Pellegrin, 33000 Bordeaux, France.,University of Bordeaux, 33077 Bordeaux, France
| |
Collapse
|
111
|
Groh J, Martini R. Neuroinflammation as modifier of genetically caused neurological disorders of the central nervous system: Understanding pathogenesis and chances for treatment. Glia 2017; 65:1407-1422. [PMID: 28568966 DOI: 10.1002/glia.23162] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/10/2017] [Accepted: 04/18/2017] [Indexed: 12/21/2022]
Abstract
Genetically caused neurological disorders of the central nervous system (CNS) are usually orphan diseases with poor or even fatal clinical outcome and few or no treatments that will improve longevity or at least quality of life. Neuroinflammation is common to many of these disorders, despite the fact that a plethora of distinct mutations and molecular changes underlie the disorders. In this article, data from corresponding animal models are analyzed to define the roles of innate and adaptive inflammation as modifiers and amplifiers of disease. We describe both common and distinct patterns of neuroinflammation in genetically mediated CNS disorders and discuss the contrasting mechanisms that lead to adverse versus neuroprotective effects. Moreover, we identify the juxtaparanode as a neuroanatomical compartment commonly associated with inflammatory cells and ongoing axonopathic changes, in models of diverse diseases. The identification of key immunological effector pathways that amplify neuropathic features should lead to realistic possibilities for translatable therapeutic interventions using existing immunomodulators. Moreover, evidence emerges that neuroinflammation is not only able to modify primary neural damage-related symptoms but also may lead to unexpected clinical outcomes such as neuropsychiatric syndromes.
Collapse
Affiliation(s)
- Janos Groh
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Josef-Schneider-Str. 11, Würzburg, D-97080, Germany
| | - Rudolf Martini
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Josef-Schneider-Str. 11, Würzburg, D-97080, Germany
| |
Collapse
|
112
|
Darvish H, Azcona LJ, Tafakhori A, Ahmadi M, Ahmadifard A, Paisán-Ruiz C. Whole genome sequencing identifies a novel homozygous exon deletion in the NT5C2 gene in a family with intellectual disability and spastic paraplegia. NPJ Genom Med 2017; 2. [PMID: 29123918 PMCID: PMC5675118 DOI: 10.1038/s41525-017-0022-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hereditary spastic paraplegias are a rare group of clinically and genetically heterogeneous neurodegenerative diseases, with upper motor neuron degeneration and progressive lower limb spasticity as their main phenotypic features. Despite that 76 distinct loci have been reported and some casual genes identified, most of the underlying causes still remain unidentified. Moreover, a wide range of clinical manifestations is present in most hereditary spastic paraplegias subtypes, adding further complexity to their differential clinical diagnoses. Here, we describe the first exon rearrangement reported in the SPG45/SPG65 (NT5C2) loci in a family featuring a complex hereditary spastic paraplegias phenotype. This study expands both the phenotypic and mutational spectra of the NT5C2-associated disease.
Collapse
Affiliation(s)
- Hossein Darvish
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Luis J Azcona
- Department of Neurosciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Abbas Tafakhori
- Department of Neurology, School of Medicine, Imam Khomeini Hospital and Iranian Center of Neurological Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Mona Ahmadi
- Department of Neurology, School of Medicine, Imam Khomeini Hospital and Iranian Center of Neurological Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Azadeh Ahmadifard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Coro Paisán-Ruiz
- Departments of Neurology, Psychiatry, and Genetics and Genomic sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
113
|
Rydning SL, Backe PH, Sousa MML, Iqbal Z, Øye AM, Sheng Y, Yang M, Lin X, Slupphaug G, Nordenmark TH, Vigeland MD, Bjørås M, Tallaksen CM, Selmer KK. Novel UCHL1 mutations reveal new insights into ubiquitin processing. Hum Mol Genet 2017; 26:1031-1040. [PMID: 28007905 DOI: 10.1093/hmg/ddw391] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/08/2016] [Indexed: 12/30/2022] Open
Abstract
Recessive loss of function of the neuronal ubiquitin hydrolase UCHL1 has been implicated in early-onset progressive neurodegeneration (MIM no. 615491), so far only in one family. In this study a second family is characterized, and the functional consequences of the identified mutations in UCHL1 are explored. Three siblings developed childhood-onset optic atrophy, followed by spasticity and ataxia. Whole exome sequencing identified compound heterozygous variants in UCHL1, c.533G > A (p.Arg178Gln) and c.647C > A (p.Ala216Asp), cosegregating with the phenotype. Enzymatic activity of purified recombinant proteins analysed by ubiquitin hydrolase assays showed a 4-fold increased hydrolytic activity of the recombinant UCHL1 mutant Arg178Gln compared to wild type, whereas the Ala216Asp protein was insoluble. Structural 3D analysis of UCHL1 by computer modelling suggests that Arg178 is a rate-controlling residue in catalysis which is partly abolished in the Arg178Gln mutant and, consequently, the Arg178Gln mutant increases the enzymatic turnover. UCHL1 protein levels in fibroblasts measured by targeted mass spectrometry showed a total amount of UCHL1 in control fibroblasts about 4-fold higher than in the patients. Hence, studies of the identified missense variants reveal surprisingly different functional consequences as the insoluble Ala216Asp variant leads to loss of function, whereas the Arg178Gln leads to increased enzyme activity. The reported patients have remarkably preserved cognition, and we propose that the increased enzyme activity of the Arg178Gln variant offers a protective effect on cognitive function. This study establishes the importance of UCHL1 in neurodegeneration, provides new mechanistic insight about ubiquitin processing, and underlines the complexity of the different roles of UCHL1.
Collapse
Affiliation(s)
- Siri L Rydning
- Department of Neurology, Oslo University Hospital, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | - Paul H Backe
- Department of Microbiology, Oslo University Hospital, Norway.,Department of Medical Biochemistry, University of Oslo, Norway
| | - Mirta M L Sousa
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Zafar Iqbal
- Department of Neurology, Oslo University Hospital, Norway
| | - Ane-Marte Øye
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Norway
| | - Ying Sheng
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Norway
| | - Mingyi Yang
- Department of Microbiology, Oslo University Hospital, Norway.,Department of Medical Biochemistry, University of Oslo, Norway
| | - Xiaolin Lin
- Department of Microbiology, Oslo University Hospital, Norway.,Department of Medical Biochemistry, University of Oslo, Norway
| | - Geir Slupphaug
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Proteomics and Metabolomics Core Facility (PROMEC), NTNU, Trondheim, Norway
| | - Tonje H Nordenmark
- Department of Physical Medicine and Rehabilitation, Oslo University Hospital, Norway
| | - Magnus D Vigeland
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Norway
| | - Magnar Bjørås
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway.,Department of Microbiology, Oslo University Hospital, Norway.,Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Chantal M Tallaksen
- Department of Neurology, Oslo University Hospital, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | - Kaja K Selmer
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Norway
| |
Collapse
|
114
|
Parodi L, Fenu S, Stevanin G, Durr A. Hereditary spastic paraplegia: More than an upper motor neuron disease. Rev Neurol (Paris) 2017; 173:352-360. [DOI: 10.1016/j.neurol.2017.03.034] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 03/31/2017] [Indexed: 12/11/2022]
|
115
|
Kichula EA. Inherited Neuromuscular Disorders: Presentation, Diagnosis, and Advances in Treatment. CURRENT PEDIATRICS REPORTS 2017. [DOI: 10.1007/s40124-017-0118-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
116
|
Geuens T, De Winter V, Rajan N, Achsel T, Mateiu L, Almeida-Souza L, Asselbergh B, Bouhy D, Auer-Grumbach M, Bagni C, Timmerman V. Mutant HSPB1 causes loss of translational repression by binding to PCBP1, an RNA binding protein with a possible role in neurodegenerative disease. Acta Neuropathol Commun 2017; 5:5. [PMID: 28077174 PMCID: PMC5225548 DOI: 10.1186/s40478-016-0407-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/16/2016] [Indexed: 12/12/2022] Open
Abstract
The small heat shock protein HSPB1 (Hsp27) is an ubiquitously expressed molecular chaperone able to regulate various cellular functions like actin dynamics, oxidative stress regulation and anti-apoptosis. So far disease causing mutations in HSPB1 have been associated with neurodegenerative diseases such as distal hereditary motor neuropathy, Charcot-Marie-Tooth disease and amyotrophic lateral sclerosis. Most mutations in HSPB1 target its highly conserved α-crystallin domain, while other mutations affect the C- or N-terminal regions or its promotor. Mutations inside the α-crystallin domain have been shown to enhance the chaperone activity of HSPB1 and increase the binding to client proteins. However, the HSPB1-P182L mutation, located outside and downstream of the α-crystallin domain, behaves differently. This specific HSPB1 mutation results in a severe neuropathy phenotype affecting exclusively the motor neurons of the peripheral nervous system. We identified that the HSPB1-P182L mutant protein has a specifically increased interaction with the RNA binding protein poly(C)binding protein 1 (PCBP1) and results in a reduction of its translational repressive activity. RNA immunoprecipitation followed by RNA sequencing on mouse brain lead to the identification of PCBP1 mRNA targets. These targets contain larger 3′- and 5′-UTRs than average and are enriched in an RNA motif consisting of the CTCCTCCTCCTCC consensus sequence. Interestingly, next to the clear presence of neuronal transcripts among the identified PCBP1 targets we identified known genes associated with hereditary peripheral neuropathies and hereditary spastic paraplegias. We therefore conclude that HSPB1 can mediate translational repression through interaction with an RNA binding protein further supporting its role in neurodegenerative disease.
Collapse
|
117
|
Hasegawa A, Koike R, Koh K, Kawakami A, Hara N, Takiyama Y, Ikeuchi T. Co-existence of spastic paraplegia-30 with novel KIF1A mutation and spinocerebellar ataxia 31 with intronic expansion of BEAN and TK2 in a family. J Neurol Sci 2017; 372:128-130. [DOI: 10.1016/j.jns.2016.11.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/24/2016] [Accepted: 11/14/2016] [Indexed: 10/20/2022]
|
118
|
Wu C, Fan D. A Novel Missense Mutation of the DDHD1 Gene Associated with Juvenile Amyotrophic Lateral Sclerosis. Front Aging Neurosci 2016; 8:291. [PMID: 27999540 PMCID: PMC5138217 DOI: 10.3389/fnagi.2016.00291] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/17/2016] [Indexed: 12/11/2022] Open
Abstract
Background: Juvenile amyotrophic lateral sclerosis (jALS) is a rare form of ALS with an onset age of less than 25 years and is frequently thought to be genetic in origin. DDHD1 gene mutations have been reported to be associated with the SPG28 subtype of autosomal recessive HSP but have never been reported in jALS patients. Methods: Gene screens for the causative genes of ALS, HSP and CMT using next-generation sequencing (NGS) technologies were performed on a jALS patient. Sanger sequencing was used to validate identified variants and perform segregation analysis. Results: We identified a novel c.1483A>G (p.Met495Val) homozygous missense mutation of the DDHD1 gene in the jALS patient. All of his parents and young bother were heterozygous for this mutation. The mutation was not found in 800 Chinese control subjects or the database of dbSNP, ExAC and 1000G. Conclusion: The novel c.1483A>G (p.Met495Val) missense mutation of the DDHD1 gene could be a causative mutation of autosomal recessive jALS.
Collapse
Affiliation(s)
- Chujun Wu
- Department of Neurology, Peking University Third Hospital Beijing, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital Beijing, China
| |
Collapse
|
119
|
Liu P, Jiang B, Ma J, Lin P, Zhang Y, Shao C, Sun W, Gong Y. S113R mutation in SLC33A1 leads to neurodegeneration and augmented BMP signaling in a mouse model. Dis Model Mech 2016; 10:53-62. [PMID: 27935820 PMCID: PMC5278525 DOI: 10.1242/dmm.026880] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 11/09/2016] [Indexed: 01/08/2023] Open
Abstract
The S113R mutation (c.339T>G) (MIM #603690.0001) in SLC33A1 (MIM #603690), an ER membrane acetyl-CoA transporter, has been previously identified in individuals with hereditary spastic paraplegia type 42 (SPG42; MIM #612539). SLC33A1 has also been shown to inhibit the bone morphogenetic protein (BMP) signaling pathway in zebrafish. To better understand the function of SLC33A1, we generated and characterized Slc33a1S113R knock-in mice. Homozygous Slc33a1S113R mutant mice were embryonic lethal, whereas heterozygous Slc33a1 mutant mice (Slc33a1wt/mut) exhibited behavioral abnormalities and central neurodegeneration, which is consistent with hereditary spastic paraplegia (HSP) phenotypes. Importantly, we found an upregulation of BMP signaling in the nervous system and mouse embryonic fibroblasts of Slc33a1wt/mut mice. Using a sciatic nerve crush injury model in vivo and dorsal root ganglion (DRG) culture in vitro we showed that injury-induced axonal regeneration in Slc33a1wt/mut mice was accelerated and mediated by upregulated BMP signaling. Exogenous addition of BMP signaling antagonist, noggin, could efficiently alleviate the accelerated injury-induced axonal regrowth. These results indicate that SLC33A1 can negatively regulate BMP signaling in mice, further supporting the notion that upregulation of BMP signaling is a common mechanism of a subset of hereditary spastic paraplegias. Summary:Slc33a1wt/mut knock-in mice with a S113R mutation and exhibiting hereditary spastic paraplegia-related phenotypes show that SLC33A1 negatively regulates BMP signaling and axonal regeneration.
Collapse
Affiliation(s)
- Pingting Liu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Baichun Jiang
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Jian Ma
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Pengfei Lin
- Laboratory of Neuromuscular Disorders and Department of Neurology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, China
| | - Yinshuai Zhang
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Changshun Shao
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Wenjie Sun
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Yaoqin Gong
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, China
| |
Collapse
|
120
|
SPG46 and SPG56 are rare causes of hereditary spastic paraplegia in China. J Neurol 2016; 263:2136-8. [PMID: 27553021 DOI: 10.1007/s00415-016-8256-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 01/08/2023]
|
121
|
Fjermestad KW, Kanavin ØJ, Næss EE, Hoxmark LB, Hummelvoll G. Health survey of adults with hereditary spastic paraparesis compared to population study controls. Orphanet J Rare Dis 2016; 11:98. [PMID: 27412159 PMCID: PMC4944497 DOI: 10.1186/s13023-016-0469-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/15/2016] [Indexed: 11/17/2022] Open
Abstract
Background Hereditary spastic paraparesis (HSP) is a rare neurodegenerative condition characterized by slowly progressive spastic weakness of the lower limbs and urinary sphincter dysfunction. Complex HSP involves additional neurologic symptoms and signs like ataxia, extra pyramidal signs, polyneuropathy, and cognitive decline. Little is known about the disease burden for adults with HSP beyond the described core symptoms. Methods A cross-sectional survey of 108 adults aged 30 years and older (Mage = 57.7 years, SD = 11.5, range 30 to 81; 54.2 % females) recruited from a national center of expertise for rare disorders and a patient advocacy organization in Norway. Self-report data from the HSP sample was compared to self-report data from a large Norwegian population study, HUNT3 (N = 46,293), covering health-related variables such as overall life satisfaction, mental wellbeing, memory function, perceived pain, and co-morbid diseases. In addition, the HSP sample reported specific items developed for this study in co-operation with the patient advocacy organization. Results The HSP sample more frequently lived alone. Overall, the HSP sample reported lower life satisfaction, lower mental wellbeing and lower social support, as well as poorer memory and sleep, compared to controls. Furthermore, the HSP sample more frequently reported musculoskeletal pain, constipation, and urinary incontinence compared to controls. There was no difference between samples in frequency of physical activity and alcohol and tobacco use. Men with HSP reported higher impact of HSP, lower life satisfaction, and less ability to perform activities of daily living compared to women with HSP. Conclusions Adults with HSP experience disease burden on a larger number of areas than previously documented, and men with HSP may represent a particularly vulnerable group.
Collapse
Affiliation(s)
- Krister W Fjermestad
- Frambu centre for rare disorders, Sandbakkveien 18, 1404, Siggerud, Norway. .,Department of Psychology, University of Oslo, PO Box 1094 Blindern, 0317, Oslo, Norway.
| | - Øivind J Kanavin
- Frambu centre for rare disorders, Sandbakkveien 18, 1404, Siggerud, Norway
| | - Eva E Næss
- Frambu centre for rare disorders, Sandbakkveien 18, 1404, Siggerud, Norway
| | - Lise B Hoxmark
- Frambu centre for rare disorders, Sandbakkveien 18, 1404, Siggerud, Norway
| | - Grete Hummelvoll
- Frambu centre for rare disorders, Sandbakkveien 18, 1404, Siggerud, Norway
| |
Collapse
|
122
|
Fraidakis MJ, Brunetti M, Blackstone C, Filippi M, Chiò A. Novel Compound Heterozygous Spatacsin Mutations in a Greek Kindred with Hereditary Spastic Paraplegia SPG11 and Dementia. NEURODEGENER DIS 2016; 16:373-81. [PMID: 27318863 DOI: 10.1159/000444715] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/16/2016] [Indexed: 11/19/2022] Open
Abstract
SPG11 belongs to the autosomal recessive hereditary spastic paraplegias (HSP) and presents during childhood or puberty with a complex clinical phenotype encompassing learning difficulties, ataxia, peripheral neuropathy, amyotrophy, and mental retardation. We hereby present the case of a 30-year-old female patient with complex autosomal recessive HSP with thinning of the corpus callosum (TCC) and dementia that was compound heterozygous with two novel mutations in the SPG11 gene. Sequence analysis of the SPG11 gene revealed two novel mutations in a compound heterozygous state in the index patient (c.2431C>T/p.Gln811Ter and c.6755_6756insT/p.Glu2252Aspfs*88). MRI showed abnormal TCC, white matter (WM) hyperintensities periventricularly, and the 'ears of the lynx' sign. Diffusion tensor imaging showed a mild-to-moderate decrease in fractional anisotropy and an increase in mean diffusivity in WM compared to age-matched controls, while magnetic resonance spectroscopy showed abnormal findings in affected WM with a decrease in N-acetyl-aspartate in WM regions of interest. This is the first SPG11 kindred from the Greek population to be reported in the medical literature.
Collapse
Affiliation(s)
- Matthew J Fraidakis
- NEURORARE Centre for Rare and Genetic Neurological and Neuromuscular Diseases and Neurogenetics, Athens, Greece
| | | | | | | | | |
Collapse
|
123
|
Mishra HK, Prots I, Havlicek S, Kohl Z, Perez-Branguli F, Boerstler T, Anneser L, Minakaki G, Wend H, Hampl M, Leone M, Brückner M, Klucken J, Reis A, Boyer L, Schuierer G, Behrens J, Lampert A, Engel FB, Gage FH, Winkler J, Winner B. GSK3ß-dependent dysregulation of neurodevelopment in SPG11-patient induced pluripotent stem cell model. Ann Neurol 2016; 79:826-840. [PMID: 26971897 PMCID: PMC5084783 DOI: 10.1002/ana.24633] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 03/06/2016] [Accepted: 03/07/2016] [Indexed: 12/12/2022]
Abstract
Objective Mutations in the spastic paraplegia gene 11 (SPG11), encoding spatacsin, cause the most frequent form of autosomal‐recessive complex hereditary spastic paraplegia (HSP) and juvenile‐onset amyotrophic lateral sclerosis (ALS5). When SPG11 is mutated, patients frequently present with spastic paraparesis, a thin corpus callosum, and cognitive impairment. We previously delineated a neurodegenerative phenotype in neurons of these patients. In the current study, we recapitulated early developmental phenotypes of SPG11 and outlined their cellular and molecular mechanisms in patient‐specific induced pluripotent stem cell (iPSC)‐derived cortical neural progenitor cells (NPCs). Methods We generated and characterized iPSC‐derived NPCs and neurons from 3 SPG11 patients and 2 age‐matched controls. Results Gene expression profiling of SPG11‐NPCs revealed widespread transcriptional alterations in neurodevelopmental pathways. These include changes in cell‐cycle, neurogenesis, cortical development pathways, in addition to autophagic deficits. More important, the GSK3ß‐signaling pathway was found to be dysregulated in SPG11‐NPCs. Impaired proliferation of SPG11‐NPCs resulted in a significant diminution in the number of neural cells. The decrease in mitotically active SPG11‐NPCs was rescued by GSK3 modulation. Interpretation This iPSC‐derived NPC model provides the first evidence for an early neurodevelopmental phenotype in SPG11, with GSK3ß as a potential novel target to reverse the disease phenotype. Ann Neurol 2016;79:826–840
Collapse
Affiliation(s)
- Himanshu K Mishra
- IZKF Junior Research Group III and BMBF Research Group Neuroscience, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Iryna Prots
- IZKF Junior Research Group III and BMBF Research Group Neuroscience, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Steven Havlicek
- IZKF Junior Research Group III and BMBF Research Group Neuroscience, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Zacharias Kohl
- Department of Molecular Neurology, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Francesc Perez-Branguli
- IZKF Junior Research Group III and BMBF Research Group Neuroscience, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Tom Boerstler
- IZKF Junior Research Group III and BMBF Research Group Neuroscience, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Lukas Anneser
- IZKF Junior Research Group III and BMBF Research Group Neuroscience, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Georgia Minakaki
- Department of Molecular Neurology, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Holger Wend
- IZKF Junior Research Group III and BMBF Research Group Neuroscience, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Martin Hampl
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Marina Leone
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Martina Brückner
- Department of Experimental Medicine II, Nikolaus-Fiebiger-Centre for Molecular Medicine, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Jochen Klucken
- Department of Molecular Neurology, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Andre Reis
- Institute of Human Genetics, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Leah Boyer
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Gerhard Schuierer
- Institute of Neuroradiology, Center of Neuroradiology, Regensburg, Germany
| | - Jürgen Behrens
- Department of Experimental Medicine II, Nikolaus-Fiebiger-Centre for Molecular Medicine, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Angelika Lampert
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Erlangen, Germany.,Institute of Physiology, RWTH University, Aachen, Germany
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jürgen Winkler
- Department of Molecular Neurology, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Beate Winner
- IZKF Junior Research Group III and BMBF Research Group Neuroscience, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Erlangen, Germany
| |
Collapse
|
124
|
Mignarri A, Rubegni A, Tessa A, Stefanucci S, Malandrini A, Cardaioli E, Meschini MC, Stromillo ML, Doccini S, Federico A, Santorelli FM, Dotti MT. Mitochondrial dysfunction in hereditary spastic paraparesis with mutations in DDHD1/SPG28. J Neurol Sci 2016; 362:287-91. [PMID: 26944165 DOI: 10.1016/j.jns.2016.02.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 01/12/2016] [Accepted: 02/02/2016] [Indexed: 12/22/2022]
Abstract
Mutations in DDHD1 cause the SPG28 subtype of hereditary spastic paraplegia (HSP). Recent studies suggested that mitochondrial dysfunction occurs in SPG28. Here we describe two siblings with SPG28, and report evidence of mitochondrial impairment in skeletal muscle and skin fibroblasts. Patient 1 (Pt1) was a 35-year-old man with spastic paraparesis and urinary incontinence, while his 25-year-old brother (Pt2) had gait spasticity and motor axonal neuropathy. In these patients we identified the novel homozygous c.1429C>T/p.R477* mutation in DDHD1, using a next-generation sequencing (NGS) approach. Histochemical analyses in muscle showed mitochondrial alterations, and multiple mitochondrial DNA (mtDNA) deletions were evident. In Pt1, respiratory chain enzyme activities were altered in skeletal muscle, mitochondrial ATP levels reduced, and analysis of skin fibroblasts revealed mitochondrial fragmentation. It seems possible that the novel nonsense mutation identified abolishes DDHD1 protein function thus altering oxidative metabolism. Qualitative alterations of mtDNA could have a pathogenetic significance. We suggest to perform DDHD1 analysis in patients with multiple mtDNA deletions.
Collapse
Affiliation(s)
- Andrea Mignarri
- Unit of Neurology and Neurometabolic Disorders, Department of Medicine, Surgery and Neurosciences, University of Siena, Italy
| | - Anna Rubegni
- Unit of Molecular Medicine, IRCCS Stella Maris, Pisa, Italy
| | | | | | - Alessandro Malandrini
- Unit of Neurology and Neurometabolic Disorders, Department of Medicine, Surgery and Neurosciences, University of Siena, Italy
| | - Elena Cardaioli
- Unit of Neurology and Neurometabolic Disorders, Department of Medicine, Surgery and Neurosciences, University of Siena, Italy
| | | | - Maria Laura Stromillo
- Unit of Neurology and Neurometabolic Disorders, Department of Medicine, Surgery and Neurosciences, University of Siena, Italy
| | | | - Antonio Federico
- Unit of Neurology and Neurometabolic Disorders, Department of Medicine, Surgery and Neurosciences, University of Siena, Italy
| | | | - Maria Teresa Dotti
- Unit of Neurology and Neurometabolic Disorders, Department of Medicine, Surgery and Neurosciences, University of Siena, Italy
| |
Collapse
|
125
|
Ainslie GR, Gibson KM, Vogel KR. mTOR, Autophagy, Aminoacidopathies, and Human Genetic Disorders. MOLECULES TO MEDICINE WITH MTOR 2016:143-166. [DOI: 10.1016/b978-0-12-802733-2.00010-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
126
|
Progressive Lower Extremity Weakness and Axonal Sensorimotor Polyneuropathy from a Mutation in KIF5A (c.611G>A;p.Arg204Gln). Case Rep Genet 2015; 2015:496053. [PMID: 26543653 PMCID: PMC4620279 DOI: 10.1155/2015/496053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/29/2015] [Indexed: 11/17/2022] Open
Abstract
Introduction. Hereditary Spastic Paraplegia (HSP) is a rare hereditary disorder that primarily involves progressive spasticity of the legs (hamstrings, quadriceps, and calves). Methods. A 27-year-old gentleman was a fast runner and able to play soccer until age 9 when he developed slowly progressive weakness. He was wheelchair-bound by age 25. He was evaluated by laboratory testing, imaging, electrodiagnostics, and molecular genetics. Results. Electrodiagnostic testing revealed an axonal sensorimotor polyneuropathy. Genetic testing for HSP in 2003 was negative; repeat testing in 2013 revealed a mutation in KIF5A (c.611G>A;p.Arg204Gln). Conclusions. A recent advance in neurogenetics has allowed for more genes and mutations to be identified; over 76 different genetic loci for HSP and 59 gene products are currently known. Even though our patient had a sensorimotor polyneuropathy on electrodiagnostic testing and a 2003 HSP genetic panel that was negative, a repeat HSP genetic panel was performed in 2013 due to the advancement in neurogenetics. This revealed a mutation in KIF5A.
Collapse
|