101
|
Kim S, Nie H, Nesin V, Tran U, Outeda P, Bai CX, Keeling J, Maskey D, Watnick T, Wessely O, Tsiokas L. The polycystin complex mediates Wnt/Ca(2+) signalling. Nat Cell Biol 2016; 18:752-764. [PMID: 27214281 PMCID: PMC4925210 DOI: 10.1038/ncb3363] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/22/2016] [Indexed: 01/22/2023]
Abstract
WNT ligands induce Ca2+ signaling on target cells. PKD1 (Polycystin 1) is considered an orphan, atypical G protein coupled receptor complexed with TRPP2 (Polycystin 2 or PKD2), a Ca2+-permeable ion channel. Inactivating mutations in their genes cause autosomal dominant polycystic kidney disease (ADPKD), one of the most common genetic diseases. Here, we show that WNTs bind to the extracellular domain of PKD1 and induce whole cell currents and Ca2+ influx dependent on TRPP2. Pathogenic PKD1 or PKD2 mutations that abrogate complex formation, compromise cell surface expression of PKD1, or reduce TRPP2 channel activity suppress activation by WNTs. Pkd2−/− fibroblasts lack WNT-induced Ca2+ currents and are unable to polarize during directed cell migration. In Xenopus embryos, PKD1, Dishevelled 2 (DVL2), and WNT9A act within the same pathway to preserve normal tubulogenesis. These data define PKD1 as a WNT (co)receptor and implicate defective WNT/Ca2+ signaling as one of the causes of ADPKD.
Collapse
Affiliation(s)
- Seokho Kim
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK 73104, USA
| | - Hongguang Nie
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK 73104, USA.,Institute of Metabolic Disease Research and Drug Development, China Medical University, Liaoning Shenyang, 110001 China (H.N)
| | - Vasyl Nesin
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK 73104, USA
| | - Uyen Tran
- Department of Cellular and Molecular Medicine, Cleveland Clinic, 9500 Euclid Avenue/NC10, Cleveland, OH 44195, USA
| | - Patricia Outeda
- Division of Nephrology, Baltimore PKD Research and Clinical Core Center, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, USA
| | - Chang-Xi Bai
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK 73104, USA.,Department of Advanced Research on Mongolian Medicine, Research Institute for Mongolian Medicine, Inner Mongolia Medical University, Hohhot 010110, Inner Mongolia, China (CB)
| | - Jacob Keeling
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK 73104, USA
| | - Dipak Maskey
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK 73104, USA
| | - Terry Watnick
- Division of Nephrology, Baltimore PKD Research and Clinical Core Center, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, USA
| | - Oliver Wessely
- Department of Cellular and Molecular Medicine, Cleveland Clinic, 9500 Euclid Avenue/NC10, Cleveland, OH 44195, USA
| | - Leonidas Tsiokas
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK 73104, USA
| |
Collapse
|
102
|
Abstract
Studies of syndromic hydrocephalus have led to the identification of >100 causative genes. Even though this work has illuminated numerous pathways associated with hydrocephalus, it has also highlighted the fact that the genetics underlying this phenotype are more complex than anticipated originally. Mendelian forms of hydrocephalus account for a small fraction of the genetic burden, with clear evidence of background-dependent effects of alleles on penetrance and expressivity of driver mutations in key developmental and homeostatic pathways. Here, we synthesize the currently implicated genes and inheritance paradigms underlying hydrocephalus, grouping causal loci into functional modules that affect discrete, albeit partially overlapping, cellular processes. These in turn have the potential to both inform pathomechanism and assist in the rational molecular classification of a clinically heterogeneous phenotype. Finally, we discuss conceptual methods that can lead to enhanced gene identification and dissection of disease basis, knowledge that will potentially form a foundation for the design of future therapeutics.
Collapse
Affiliation(s)
- Maria Kousi
- Center for Human Disease Modeling, Duke University School of Medicine, Durham, North Carolina 27701;
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University School of Medicine, Durham, North Carolina 27701;
| |
Collapse
|
103
|
Positioning of centrioles is a conserved readout of Frizzled planar cell polarity signalling. Nat Commun 2016; 7:11135. [PMID: 27021213 PMCID: PMC4820615 DOI: 10.1038/ncomms11135] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/22/2016] [Indexed: 12/28/2022] Open
Abstract
Planar cell polarity (PCP) signalling is a well-conserved developmental pathway regulating cellular orientation during development. An evolutionarily conserved pathway readout is not established and, moreover, it is thought that PCP mediated cellular responses are tissue-specific. A key PCP function in vertebrates is to regulate coordinated centriole/cilia positioning, a function that has not been associated with PCP in Drosophila. Here we report instructive input of Frizzled-PCP (Fz/PCP) signalling into polarized centriole positioning in Drosophila wings. We show that centrioles are polarized in pupal wing cells as a readout of PCP signalling, with both gain and loss-of-function Fz/PCP signalling affecting centriole polarization. Importantly, loss or gain of centrioles does not affect Fz/PCP establishment, implicating centriolar positioning as a conserved PCP-readout, likely downstream of PCP-regulated actin polymerization. Together with vertebrate data, these results suggest a unifying model of centriole/cilia positioning as a common downstream effect of PCP signalling from flies to mammals. Planar cell polarity (PCP) contributes to cellular orientation during development but how this is regulated in Drosophila is unclear. Here, the authors identify Frizzled-PCP signalling as regulating polarised centriole positioning in the wing disc.
Collapse
|
104
|
Devenport D. Tissue morphodynamics: Translating planar polarity cues into polarized cell behaviors. Semin Cell Dev Biol 2016; 55:99-110. [PMID: 26994528 DOI: 10.1016/j.semcdb.2016.03.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/15/2016] [Indexed: 12/21/2022]
Abstract
The ability of cells to collectively orient and align their behaviors is essential in multicellular organisms for unidirectional cilia beating, collective cell movements, oriented cell divisions, and asymmetric cell fate specification. The planar cell polarity pathway coordinates a vast and diverse array of collective cell behaviors by intersecting with downstream pathways that regulate cytoskeletal dynamics and intercellular signaling. How the planar polarity pathway translates directional cues to produce polarized cell behaviors is the focus of this review.
Collapse
Affiliation(s)
- Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
105
|
Abstract
Hydrocephalus is a common disorder of cerebral spinal fluid (CSF) physiology resulting in abnormal expansion of the cerebral ventricles. Infants commonly present with progressive macrocephaly whereas children older than 2 years generally present with signs and symptoms of intracranial hypertension. The classic understanding of hydrocephalus as the result of obstruction to bulk flow of CSF is evolving to models that incorporate dysfunctional cerebral pulsations, brain compliance, and newly characterised water-transport mechanisms. Hydrocephalus has many causes. Congenital hydrocephalus, most commonly involving aqueduct stenosis, has been linked to genes that regulate brain growth and development. Hydrocephalus can also be acquired, mostly from pathological processes that affect ventricular outflow, subarachnoid space function, or cerebral venous compliance. Treatment options include shunt and endoscopic approaches, which should be individualised to the child. The long-term outcome for children that have received treatment for hydrocephalus varies. Advances in brain imaging, technology, and understanding of the pathophysiology should ultimately lead to improved treatment of the disorder.
Collapse
Affiliation(s)
- Kristopher T Kahle
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Abhaya V Kulkarni
- Division of Neurosurgery, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - David D Limbrick
- Division of Neurosurgery, St Louis Children's Hospital, Washington University School of Medicine, St Louis, MO, USA
| | - Benjamin C Warf
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
106
|
Jaffe KM, Grimes DT, Schottenfeld-Roames J, Werner ME, Ku TSJ, Kim SK, Pelliccia JL, Morante NFC, Mitchell BJ, Burdine RD. c21orf59/kurly Controls Both Cilia Motility and Polarization. Cell Rep 2016; 14:1841-9. [PMID: 26904945 DOI: 10.1016/j.celrep.2016.01.069] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 11/29/2015] [Accepted: 01/22/2016] [Indexed: 11/17/2022] Open
Abstract
Cilia are microtubule-based projections that function in the movement of extracellular fluid. This requires cilia to be: (1) motile and driven by dynein complexes and (2) correctly polarized on the surface of cells, which requires planar cell polarity (PCP). Few factors that regulate both processes have been discovered. We reveal that C21orf59/Kurly (Kur), a cytoplasmic protein with some enrichment at the base of cilia, is needed for motility; zebrafish mutants exhibit characteristic developmental abnormalities and dynein arm defects. kur was also required for proper cilia polarization in the zebrafish kidney and the larval skin of Xenopus laevis. CRISPR/Cas9 coupled with homologous recombination to disrupt the endogenous kur locus in Xenopus resulted in the asymmetric localization of the PCP protein Prickle2 being lost in mutant multiciliated cells. Kur also makes interactions with other PCP components, including Disheveled. This supports a model wherein Kur plays a dual role in cilia motility and polarization.
Collapse
Affiliation(s)
- Kimberly M Jaffe
- Molecular Biology Department, Princeton University, Princeton, NJ 08544, USA
| | - Daniel T Grimes
- Molecular Biology Department, Princeton University, Princeton, NJ 08544, USA
| | | | - Michael E Werner
- Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Tse-Shuen J Ku
- Molecular Biology Department, Princeton University, Princeton, NJ 08544, USA
| | - Sun K Kim
- Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jose L Pelliccia
- Molecular Biology Department, Princeton University, Princeton, NJ 08544, USA
| | | | - Brian J Mitchell
- Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Rebecca D Burdine
- Molecular Biology Department, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
107
|
Labedan P, Matthews C, Kodjabachian L, Cremer H, Tissir F, Boutin C. Dissection and Staining of Mouse Brain Ventricular Wall for the Analysis of Ependymal Cell Cilia Organization. Bio Protoc 2016. [DOI: 10.21769/bioprotoc.1757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
108
|
Hirota Y, Sawada M, Huang SH, Ogino T, Ohata S, Kubo A, Sawamoto K. Roles of Wnt Signaling in the Neurogenic Niche of the Adult Mouse Ventricular-Subventricular Zone. Neurochem Res 2015; 41:222-30. [PMID: 26572545 DOI: 10.1007/s11064-015-1766-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/04/2015] [Accepted: 11/05/2015] [Indexed: 01/08/2023]
Abstract
In many animal species, the production of new neurons (neurogenesis) occurs throughout life, in a specialized germinal region called the ventricular-subventricular zone (V-SVZ). In this region, neural stem cells undergo self-renewal and generate neural progenitor cells and new neurons. In the olfactory system, the new neurons migrate rostrally toward the olfactory bulb, where they differentiate into mature interneurons. V-SVZ-derived new neurons can also migrate toward sites of brain injury, where they contribute to neural regeneration. Recent studies indicate that two major branches of the Wnt signaling pathway, the Wnt/β-catenin and Wnt/planar cell polarity pathways, play essential roles in various facets of adult neurogenesis. Here, we review the Wnt signaling-mediated regulation of adult neurogenesis in the V-SVZ under physiological and pathological conditions.
Collapse
Affiliation(s)
- Yuki Hirota
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Masato Sawada
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Shih-Hui Huang
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Takashi Ogino
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Shinya Ohata
- Laboratory of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, 113-0033, Japan
| | - Akiharu Kubo
- Department of Dermatology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan.
| |
Collapse
|
109
|
Chang H, Smallwood PM, Williams J, Nathans J. The spatio-temporal domains of Frizzled6 action in planar polarity control of hair follicle orientation. Dev Biol 2015; 409:181-193. [PMID: 26517967 DOI: 10.1016/j.ydbio.2015.10.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 10/16/2015] [Indexed: 12/26/2022]
Abstract
In mammals, hair follicles cover most of the body surface and exhibit precise and stereotyped orientations relative to the body axes. Follicle orientation is controlled by the planar cell polarity (PCP; or, more generally, tissue polarity) system, as determined by the follicle mis-orientation phenotypes observed in mice with PCP gene mutations. The present study uses conditional knockout alleles of the PCP genes Frizzled6 (Fz6), Vangl1, and Vangl2, together with a series of Cre drivers to interrogate the spatio-temporal domains of PCP gene action in the developing mouse epidermis required for follicle orientation. Fz6 is required starting between embryonic day (E)11.5 and E12.5. Eliminating Fz6 in either the anterior or the posterior halves of the embryo or in either the feet or the torso leads to follicle mis-orientation phenotypes that are limited to the territories associated with Fz6 loss, implying either that PCP signaling is required for communicating polarity information on a local but not a global scale, or that there are multiple independent sources of global polarity information. Eliminating Fz6 in most hair follicle cells or in the inter-follicular epidermis at E15.5 suggests that PCP signaling in developing follicles is not required to maintain their orientation. The asymmetric arrangement of Merkel cells around the base of each guard hair follicle dependents on Fz6 expression in the epidermis but not in differentiating Merkel cells. These experiments constrain current models of PCP signaling and the flow of polarity information in mammalian skin.
Collapse
Affiliation(s)
- Hao Chang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Philip M Smallwood
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - John Williams
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Jeremy Nathans
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States.
| |
Collapse
|
110
|
Mechanosensory Genes Pkd1 and Pkd2 Contribute to the Planar Polarization of Brain Ventricular Epithelium. J Neurosci 2015; 35:11153-68. [PMID: 26245976 DOI: 10.1523/jneurosci.0686-15.2015] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Directional beating of ependymal (E) cells' cilia in the walls of the ventricles in the brain is essential for proper CSF flow. E cells display two forms of planar cell polarity (PCP): rotational polarity of individual cilium and translational polarity (asymmetric positioning of cilia in the apical area). The orientation of individual E cells varies according to their location in the ventricular wall (location-specific PCP). It has been hypothesized that hydrodynamic forces on the apical surface of radial glia cells (RGCs), the embryonic precursors of E cells, could guide location-specific PCP in the ventricular epithelium. However, the detection mechanisms for these hydrodynamic forces have not been identified. Here, we show that the mechanosensory proteins polycystic kidney disease 1 (Pkd1) and Pkd2 are present in primary cilia of RGCs. Ablation of Pkd1 or Pkd2 in Nestin-Cre;Pkd1(flox/flox) or Nestin-Cre;Pkd2(flox/flox) mice, affected PCP development in RGCs and E cells. Early shear forces on the ventricular epithelium may activate Pkd1 and Pkd2 in primary cilia of RGCs to properly polarize RGCs and E cells. Consistently, Pkd1, Pkd2, or primary cilia on RGCs were required for the proper asymmetric localization of the PCP protein Vangl2 in E cells' apical area. Analyses of single- and double-heterozygous mutants for Pkd1 and/or Vangl2 suggest that these genes function in the same pathway to establish E cells' PCP. We conclude that Pkd1 and Pkd2 mechanosensory proteins contribute to the development of brain PCP and prevention of hydrocephalus. SIGNIFICANCE STATEMENT This study identifies key molecules in the development of planar cell polarity (PCP) in the brain and prevention of hydrocephalus. Multiciliated ependymal (E) cells within the brain ventricular epithelium generate CSF flow through ciliary beating. E cells display location-specific PCP in the orientation and asymmetric positioning of their cilia. Defects in this PCP can result in hydrocephalus. Hydrodynamic forces on radial glial cells (RGCs), the embryonic progenitors of E cells, have been suggested to guide PCP. We show that the mechanosensory proteins Pkd1 and Pkd2 localize to primary cilia in RGCs, and their ablation disrupts the development of PCP in E cells. Early shear forces on RGCs may activate Pkd1 and Pkd2 in RGCs' primary cilia to properly orient E cells. This study identifies key molecules in the development of brain PCP and prevention of hydrocephalus.
Collapse
|
111
|
Gonzalez-Cano L, Fuertes-Alvarez S, Robledinos-Anton N, Bizy A, Villena-Cortes A, Fariñas I, Marques MM, Marin MC. p73 is required for ependymal cell maturation and neurogenic SVZ cytoarchitecture. Dev Neurobiol 2015; 76:730-47. [PMID: 26482843 PMCID: PMC6175433 DOI: 10.1002/dneu.22356] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/30/2015] [Accepted: 10/15/2015] [Indexed: 12/14/2022]
Abstract
The adult subventricular zone (SVZ) is a highly organized microenvironment established during the first postnatal days when radial glia cells begin to transform into type B-cells and ependymal cells, all of which will form regenerative units, pinwheels, along the lateral wall of the lateral ventricle. Here, we identify p73, a p53 homologue, as a critical factor controlling both cell-type specification and structural organization of the developing mouse SVZ. We describe that p73 deficiency halts the transition of the radial glia into ependymal cells, leading to the emergence of immature cells with abnormal identities in the ventricle and resulting in loss of the ventricular integrity. p73-deficient ependymal cells have noticeably impaired ciliogenesis and they fail to organize into pinwheels, disrupting SVZ niche structure and function. Therefore, p73 is essential for appropriate ependymal cell maturation and the establishment of the neurogenic niche architecture. Accordingly, lack of p73 results in impaired neurogenesis. Moreover, p73 is required for translational planar cell polarity establishment, since p73 deficiency results in profound defects in cilia organization in individual cells and in intercellular patch orientation. Thus, our data reveal a completely new function of p73, independent of p53, in the neurogenic architecture of the SVZ of rodent brain and in the establishment of ependymal planar cell polarity with important implications in neurogenesis. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 730-747, 2016.
Collapse
Affiliation(s)
- L Gonzalez-Cano
- Instituto De Biomedicina (IBIOMED) and Departamento de Biologia Molecular, Universidad de Leon, Campus De Vegazana, Leon, 24071, Spain
| | - S Fuertes-Alvarez
- Instituto De Biomedicina (IBIOMED) and Departamento de Biologia Molecular, Universidad de Leon, Campus De Vegazana, Leon, 24071, Spain
| | - N Robledinos-Anton
- Instituto De Biomedicina (IBIOMED) and Departamento de Biologia Molecular, Universidad de Leon, Campus De Vegazana, Leon, 24071, Spain
| | - A Bizy
- Departamento De Biologia Celular and CIBERNED, Universidad De Valencia, Burjassot, 46100, Spain
| | - A Villena-Cortes
- Departamento De Biologia Molecular, Universidad de Leon, Campus De Vegazana, Leon, 24071, Spain
| | - I Fariñas
- Departamento De Biologia Celular and CIBERNED, Universidad De Valencia, Burjassot, 46100, Spain
| | - M M Marques
- Instituto De Desarrollo Ganadero and Departamento De Produccion Animal, University of Leon, Campus De Vegazana, 24071 Leon, Spain
| | - Maria C Marin
- Instituto De Biomedicina (IBIOMED) and Departamento de Biologia Molecular, Universidad de Leon, Campus De Vegazana, Leon, 24071, Spain.,Departamento De Biologia Molecular, Universidad de Leon, Campus De Vegazana, Leon, 24071, Spain
| |
Collapse
|
112
|
Chien YH, Keller R, Kintner C, Shook DR. Mechanical strain determines the axis of planar polarity in ciliated epithelia. Curr Biol 2015; 25:2774-2784. [PMID: 26441348 DOI: 10.1016/j.cub.2015.09.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/27/2015] [Accepted: 09/02/2015] [Indexed: 10/23/2022]
Abstract
Epithelia containing multiciliated cells align beating cilia along a common planar axis specified by the conserved planar cell polarity (PCP) pathway. Specification of the planar axis is also thought to require a long-range cue to align the axis globally, but the nature of this cue in ciliated and other epithelia remains poorly understood. We examined this issue using the Xenopus larval skin, where ciliary flow aligns to the anterior-posterior (A-P) axis. We first show that a planar axis initially arises in the developing skin during gastrulation, based on the appearance of polarized apical microtubules and cell junctions with increased levels of stable PCP components. This axis also arises in severely ventralized embryos, despite their deficient embryonic patterning. Because ventralized embryos still gastrulate, producing a mechanical force that strains the developing skin along the A-P axis, we asked whether this strain alone drives global planar patterning. Isolated skin explanted before gastrulation lacks strain and fails to acquire a global planar axis but responds to exogenous strain by undergoing cell elongation, forming polarized apical microtubules, and aligning stable components of the PCP pathway orthogonal to the axis of strain. The planar axis in embryos can be redirected by applying exogenous strain during a critical period around gastrulation. Finally, we provide evidence that apical microtubules and the PCP pathway interact to align the planar axis. These results indicate that oriented tissue strain generated by the gastrulating mesoderm plays a major role in determining the global axis of planar polarity of the developing skin.
Collapse
Affiliation(s)
- Yuan-Hung Chien
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Ray Keller
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Chris Kintner
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - David R Shook
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
113
|
Abstract
Cilia are microtubule-based projections that serve a wide variety of essential functions in animal cells. Defects in cilia structure or function have recently been found to underlie diverse human diseases. While many eukaryotic cells possess only one or two cilia, some cells, including those of many unicellular organisms, exhibit many cilia. In vertebrates, multiciliated cells are a specialized population of post-mitotic cells decorated with dozens of motile cilia that beat in a polarized and synchronized fashion to drive directed fluid flow across an epithelium. Dysfunction of human multiciliated cells is associated with diseases of the brain, airway and reproductive tracts. Despite their importance, multiciliated cells are relatively poorly studied and we are only beginning to understand the mechanisms underlying their development and function. Here, we review the general phylogeny and physiology of multiciliation and detail our current understanding of the developmental and cellular events underlying the specification, differentiation and function of multiciliated cells in vertebrates.
Collapse
Affiliation(s)
- Eric R Brooks
- Department of Molecular Biosciences and the Institute for Cell and Molecular Biology, the University of Texas at Austin, Patterson Labs, 2401 Speedway, Austin, TX 78712, USA.
| | - John B Wallingford
- Department of Molecular Biosciences and the Institute for Cell and Molecular Biology, the University of Texas at Austin, Patterson Labs, 2401 Speedway, Austin, TX 78712, USA; The Howard Hughes Medical Institute.
| |
Collapse
|
114
|
Morgan-Smith M, Wu Y, Zhu X, Pringle J, Snider WD. GSK-3 signaling in developing cortical neurons is essential for radial migration and dendritic orientation. eLife 2014; 3:e02663. [PMID: 25073924 PMCID: PMC4109311 DOI: 10.7554/elife.02663] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
GSK-3 is an essential mediator of several signaling pathways that regulate cortical development. We therefore created conditional mouse mutants lacking both GSK-3α and GSK-3β in newly born cortical excitatory neurons. Gsk3-deleted neurons expressing upper layer markers exhibited striking migration failure in all areas of the cortex. Radial migration in hippocampus was similarly affected. In contrast, tangential migration was not grossly impaired after Gsk3 deletion in interneuron precursors. Gsk3-deleted neurons extended axons and developed dendritic arbors. However, the apical dendrite was frequently branched while basal dendrites exhibited abnormal orientation. GSK-3 regulation of migration in neurons was independent of Wnt/β-catenin signaling. Importantly, phosphorylation of the migration mediator, DCX, at ser327, and phosphorylation of the semaphorin signaling mediator, CRMP-2, at Thr514 were markedly decreased. Our data demonstrate that GSK-3 signaling is essential for radial migration and dendritic orientation and suggest that GSK-3 mediates these effects by phosphorylating key microtubule regulatory proteins. DOI:http://dx.doi.org/10.7554/eLife.02663.001 In the brain, one of the most striking features of the cerebral cortex is that its neurons are organized into different layers that are specifically connected to one another and to other regions of the brain. How newly generated neurons find their appropriate layer during the development of the brain is an important question; and, in humans, when this process goes awry, it can often result in seizures and mental retardation. An enzyme called GSK-3 regulates several major signaling pathways important to brain development. The GSK-3 enzyme switches other proteins on or off by adding phosphate groups to them. Morgan-Smith et al. set out to better understand the role of GSK-3 in brain development by deleting the genes for this enzyme specifically in the cerebral cortex of mice. Mice have two genes that encode slightly different forms of the GSK-3 enzyme. Deleting both of these in different groups of neurons during brain development revealed that a major group of neurons need GSK-3 in order to migrate to the correct layer. Specifically, the movement of neurons from where they arise in the central region of the brain to the outermost layer (a process called radial migration) was disrupted when the GSK-3 genes were deleted. Morgan-Smith et al. further found that cortical neurons without GSK-3 were unable to develop the shape needed to undertake radial migration because they failed to switch from having many branches to having just two main branches. Additional experiments revealed that these abnormalities did not depend on certain signaling pathways, such as the Wnt-signaling pathway or the PI3K signaling pathway that can control GSK-3 activity. Instead, Morgan-Smith et al. found that two proteins that are normally targeted by the GSK-3 enzyme have fewer phosphate groups than normal in the cortical neurons that did not contain the enzyme: both of these proteins regulate the shape of neurons by interacting with the molecular ‘scaffolding’ within the cell. The GSK-3 enzyme was already known to modify the activities of many other proteins that affect the migration of cells. Thus, the findings of Morgan-Smith et al. suggest that this enzyme may coordinate many of the mechanisms thought to underlie this process during brain development. DOI:http://dx.doi.org/10.7554/eLife.02663.002
Collapse
Affiliation(s)
- Meghan Morgan-Smith
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, United States Neurobiology Curriculum, University of North Carolina, Chapel Hill, United States
| | - Yaohong Wu
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, United States
| | - Xiaoqin Zhu
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, United States
| | - Julia Pringle
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, United States
| | - William D Snider
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, United States Neurobiology Curriculum, University of North Carolina, Chapel Hill, United States
| |
Collapse
|