101
|
Jakab A, Kasprian G, Schwartz E, Gruber GM, Mitter C, Prayer D, Schöpf V, Langs G. Disrupted developmental organization of the structural connectome in fetuses with corpus callosum agenesis. Neuroimage 2015; 111:277-88. [PMID: 25725467 DOI: 10.1016/j.neuroimage.2015.02.038] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/23/2014] [Accepted: 02/17/2015] [Indexed: 11/26/2022] Open
Abstract
Agenesis of the corpus callosum is a model disease for disrupted connectivity of the human brain, in which the pathological formation of interhemispheric fibers results in subtle to severe cognitive deficits. Postnatal studies suggest that the characteristic abnormal pathways in this pathology are compensatory structures that emerge via neural plasticity. We challenge this hypothesis and assume a globally different network organization of the structural interconnections already in the fetal acallosal brain. Twenty fetuses with isolated corpus callosum agenesis with or without associated malformations were enrolled and fiber connectivity among 90 brain regions was assessed using in utero diffusion tensor imaging and streamline tractography. Macroscopic scale connectomes were compared to 20 gestational age-matched normally developing fetuses with multiple granularity of network analysis. Gradually increasing connectivity strength and tract diffusion anisotropy during gestation were dominant in antero-posteriorly running paramedian and antero-laterally running aberrant pathways, and in short-range connections in the temporoparietal regions. In fetuses with associated abnormalities, more diffuse reduction of cortico-cortical and cortico-subcortical connectivity was observed than in cases with isolated callosal agenesis. The global organization of anatomical networks consisted of less segregated nodes in acallosal brains, and hubs of dense connectivity, such as the thalamus and cingulate cortex, showed reduced network centrality. Acallosal fetal brains show a globally altered connectivity network structure compared to normals. Besides the previously described Probst and sigmoid bundles, we revealed a prenatally differently organized macroconnectome, dominated by increased connectivity. These findings provide evidence that abnormal pathways are already present during at early stages of fetal brain development in the majority of cerebral white matter.
Collapse
Affiliation(s)
- András Jakab
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Computational Imaging Research Lab (CIR) Vienna, Austria.
| | - Gregor Kasprian
- Department for Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna Austria
| | - Ernst Schwartz
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Computational Imaging Research Lab (CIR) Vienna, Austria
| | - Gerlinde Maria Gruber
- Center for Anatomy and Cell Biology, Department of Systematic Anatomy, Medical University of Vienna, Vienna, Austria
| | - Christian Mitter
- Department for Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna Austria
| | - Daniela Prayer
- Department for Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna Austria
| | - Veronika Schöpf
- Department for Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna Austria
| | - Georg Langs
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Computational Imaging Research Lab (CIR) Vienna, Austria; Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
102
|
Bracht T, Jones DK, Müller TJ, Wiest R, Walther S. Limbic white matter microstructure plasticity reflects recovery from depression. J Affect Disord 2015; 170:143-9. [PMID: 25240841 DOI: 10.1016/j.jad.2014.08.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 08/22/2014] [Accepted: 08/22/2014] [Indexed: 01/13/2023]
Abstract
BACKGROUND White matter microstructure alterations of limbic and reward pathways have been reported repeatedly for depressive episodes in major depressive disorder (MDD) and bipolar disorder (BD). However, findings during remission are equivocal. It was the aim of this study to investigate if white matter microstructure changes during the time course of clinical remission. METHODS Fifteen depressed patients (11 MDD, 4 BD) underwent diffusion-weighted MRI both during depression, and during remission following successful antidepressive treatment (average time interval between scans = 6 months). Fractional anisotropy (FA) was sampled along reconstructions of the supero-lateral medial forebrain bundle (slMFB), the cingulum bundle (CB), the uncinate fasciculus (UF), the parahippocampal cingulum (PHC) and the fornix. Repeated measures ANCOVAs controlling for the effect of age were calculated for each tract. RESULTS There was a significant main effect of time (inter-scan interval) for mean-FA for the right CB and for the left PHC. For both pathways there was a significant time × age interaction. In the right CB, FA increased in younger patients, while FA decreased in older patients. In the left PHC, a reverse pattern was seen. FA changes in the right CB correlated positively with symptom reductions. Mean-FA of UF, slMFB and fornix did not change between the two time points. LIMITATIONS All patients were medicated, sample size, and lack of control group. CONCLUSIONS Right CB and left PHC undergo age-dependent plastic changes during the course of remission and may serve as a state marker in depression. UF, slMFB and FO microstructure remains stable.
Collapse
Affiliation(s)
- Tobias Bracht
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom; University Hospital of Psychiatry, University of Bern, Bern, Switzerland.
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Thomas J Müller
- University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Roland Wiest
- Institute of Diagnostic and Interventional Neuroradiology, Inselspital, University of Bern, Bern, Switzerland
| | - Sebastian Walther
- University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| |
Collapse
|
103
|
Schlegel A, Alexander P, Fogelson SV, Li X, Lu Z, Kohler PJ, Riley E, Tse PU, Meng M. The artist emerges: Visual art learning alters neural structure and function. Neuroimage 2015; 105:440-51. [DOI: 10.1016/j.neuroimage.2014.11.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 10/19/2014] [Accepted: 11/07/2014] [Indexed: 12/21/2022] Open
|
104
|
Hong SB, Harrison BJ, Dandash O, Choi EJ, Kim SC, Kim HH, Shim DH, Kim CD, Kim JW, Yi SH. A selective involvement of putamen functional connectivity in youth with internet gaming disorder. Brain Res 2014; 1602:85-95. [PMID: 25553620 DOI: 10.1016/j.brainres.2014.12.042] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 12/05/2014] [Accepted: 12/20/2014] [Indexed: 01/07/2023]
Abstract
Brain cortico-striatal circuits have consistently been implicated in the pathology of addiction related disorders. We applied a reliable seed-based analysis of the resting-state brain activity to comprehensively delineate the subdivisions of striatal functional connectivity implicated in internet gaming disorder. Among twelve right-handed male adolescents with internet gaming disorder and 11 right-handed and gender-matched healthy controls, we examined group differences in the functional connectivity of dorsal and ventral subdivisions of the caudate nucleus and putamen, as well as the association of these connectivity indices with behavioral measures of internet use. Adolescents with internet gaming disorder showed significantly reduced dorsal putamen functional connectivity with the posterior insula-parietal operculum. More time spent playing online games predicted significantly greater functional connectivity between the dorsal putamen and bilateral primary somatosensory cortices in adolescents with internet gaming disorder, and significantly lower functional connectivity between the dorsal putamen and bilateral sensorimotor cortices in healthy controls. The dorsal putamen functional connectivity was significantly and specifically different in adolescents with internet gaming disorder. The findings suggest a possible biomarker of internet gaming disorder.
Collapse
Affiliation(s)
- Soon-Beom Hong
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Parkville, Victoria, Australia; Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; Division of Child and Adolescent Psychiatry, Department of Psychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Ben J Harrison
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Parkville, Victoria, Australia
| | - Orwa Dandash
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Parkville, Victoria, Australia
| | - Eun-Jung Choi
- Department of Child Development and Family Studies, College of Human Ecology, Seoul National University, Seoul, Republic of Korea
| | - Seong-Chan Kim
- Seoul-Top Psychiatric Clinic, Gyeonggi, Republic of Korea
| | - Ho-Hyun Kim
- Interdisciplinary Program (Early Childhood Education Major), College of Education, Seoul National University, Seoul, Republic of Korea
| | - Do-Hyun Shim
- Department of Child Development and Family Studies, College of Human Ecology, Seoul National University, Seoul, Republic of Korea
| | - Chang-Dai Kim
- Department of Education (Educational Counseling Major), College of Education, Seoul National University, Seoul, Republic of Korea
| | - Jae-Won Kim
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Soon-Hyung Yi
- Department of Child Development and Family Studies, College of Human Ecology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
105
|
Affiliation(s)
- Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany. Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London WC1B 5EH, UK
| |
Collapse
|
106
|
Brehmer Y, Kalpouzos G, Wenger E, Lövdén M. Plasticity of brain and cognition in older adults. PSYCHOLOGICAL RESEARCH 2014; 78:790-802. [PMID: 25261907 DOI: 10.1007/s00426-014-0587-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 06/10/2014] [Indexed: 12/11/2022]
Abstract
Aging is typically related to changes in brain and cognition, but the aging process is heterogeneous and differs between individuals. Recent research has started investigating the influence of cognitive and physical training on cognitive performance, functional brain activity, and brain structure in old age. The functional relevance of neural changes and the interactions among these changes following interventions is still a matter of debate. Here we selectively review research on structural and functional brain correlates of training-induced performance changes in healthy older adults and present exemplary longitudinal intervention studies sorted by the type of training applied (i.e., strategy-based training, process-specific training, and physical exercise). Although many training studies have been conducted recently, within each task domain, the number of studies that used comparable methods and techniques to assess behavioral and neural changes is limited. We suggest that future studies should include a multimodal approach to enhance the understanding of the relation between different levels of brain changes in aging and those changes that result from training. Investigating inter-individual differences in intervention-induced behavioral and neuronal changes would provide more information about who would benefit from a specific intervention and why. In addition, a more systematic examination of the time course of training-related structural and functional changes would improve the current level of knowledge about how learning is implemented in the brain and facilitate our understanding of contradictory results.
Collapse
Affiliation(s)
- Yvonne Brehmer
- Max Planck Institute for Human Development, Center for Lifespan Psychology, Lentzeallee 94, 14195, Berlin, Germany,
| | | | | | | |
Collapse
|
107
|
Scheldrup M, Greenwood PM, McKendrick R, Strohl J, Bikson M, Alam M, McKinley RA, Parasuraman R. Transcranial direct current stimulation facilitates cognitive multi-task performance differentially depending on anode location and subtask. Front Hum Neurosci 2014; 8:665. [PMID: 25249958 PMCID: PMC4157612 DOI: 10.3389/fnhum.2014.00665] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 08/11/2014] [Indexed: 11/13/2022] Open
Abstract
There is a need to facilitate acquisition of real world cognitive multi-tasks that require long periods of training (e.g., air traffic control, intelligence analysis, medicine). Non-invasive brain stimulation—specifically transcranial Direct Current Stimulation (tDCS)—has promise as a method to speed multi-task training. We hypothesized that during acquisition of the complex multi-task Space Fortress, subtasks that require focused attention on ship control would benefit from tDCS aimed at the dorsal attention network while subtasks that require redirection of attention would benefit from tDCS aimed at the right hemisphere ventral attention network. We compared effects of 30 min prefrontal and parietal stimulation to right and left hemispheres on subtask performance during the first 45 min of training. The strongest effects both overall and for ship flying (control and velocity subtasks) were seen with a right parietal (C4, reference to left shoulder) montage, shown by modeling to induce an electric field that includes nodes in both dorsal and ventral attention networks. This is consistent with the re-orienting hypothesis that the ventral attention network is activated along with the dorsal attention network if a new, task-relevant event occurs while visuospatial attention is focused (Corbetta et al., 2008). No effects were seen with anodes over sites that stimulated only dorsal (C3) or only ventral (F10) attention networks. The speed subtask (update memory for symbols) benefited from an F9 anode over left prefrontal cortex. These results argue for development of tDCS as a training aid in real world settings where multi-tasking is critical.
Collapse
Affiliation(s)
- Melissa Scheldrup
- Arch Lab, Department of Psychology, George Mason University Fairfax, VA, USA
| | - Pamela M Greenwood
- Arch Lab, Department of Psychology, George Mason University Fairfax, VA, USA
| | - Ryan McKendrick
- Arch Lab, Department of Psychology, George Mason University Fairfax, VA, USA
| | - Jon Strohl
- Arch Lab, Department of Psychology, George Mason University Fairfax, VA, USA
| | - Marom Bikson
- Neural Engineering Group, Department of Biomedical Engineering, The City College of New York of CUNY New York, NY, USA
| | - Mahtab Alam
- Neural Engineering Group, Department of Biomedical Engineering, The City College of New York of CUNY New York, NY, USA
| | - R Andy McKinley
- 711th HPW, Warfighter Interfaces Division, Applied Neuroscience Branch, WPAFB Wright-Patterson AFB, OH, USA
| | - Raja Parasuraman
- Arch Lab, Department of Psychology, George Mason University Fairfax, VA, USA
| |
Collapse
|
108
|
Hosseini SMH, Kramer JH, Kesler SR. Neural correlates of cognitive intervention in persons at risk of developing Alzheimer's disease. Front Aging Neurosci 2014; 6:231. [PMID: 25206335 PMCID: PMC4143724 DOI: 10.3389/fnagi.2014.00231] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/11/2014] [Indexed: 01/18/2023] Open
Abstract
Cognitive training is an emergent approach that has begun to receive increased attention in recent years as a non-pharmacological, cost-effective intervention for Alzheimer’s disease (AD). There has been increasing behavioral evidence regarding training-related improvement in cognitive performance in early stages of AD. Although these studies provide important insight about the efficacy of cognitive training, neuroimaging studies are crucial to pinpoint changes in brain structure and function associated with training and to examine their overlap with pathology in AD. In this study, we reviewed the existing neuroimaging studies on cognitive training in persons at risk of developing AD to provide an overview of the overlap between neural networks rehabilitated by the current training methods and those affected in AD. The data suggest a consistent training-related increase in brain activity in medial temporal, prefrontal, and posterior default mode networks, as well as increase in gray matter structure in frontoparietal and entorhinal regions. This pattern differs from the observed pattern in healthy older adults that shows a combination of increased and decreased activity in response to training. Detailed investigation of the data suggests that training in persons at risk of developing AD mainly improves compensatory mechanisms and partly restores the affected functions. While current neuroimaging studies are quite helpful in identifying the mechanisms underlying cognitive training, the data calls for future multi-modal neuroimaging studies with focus on multi-domain cognitive training, network level connectivity, and individual differences in response to training.
Collapse
Affiliation(s)
- S M Hadi Hosseini
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine Stanford, CA, USA
| | - Joel H Kramer
- Department of Neurology, Memory and Aging Center, University of California San Francisco, CA, USA
| | - Shelli R Kesler
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine Stanford, CA, USA ; Stanford Cancer Institute Palo Alto, CA, USA
| |
Collapse
|
109
|
Reuter-Lorenz PA, Park DC. How does it STAC up? Revisiting the scaffolding theory of aging and cognition. Neuropsychol Rev 2014; 24:355-70. [PMID: 25143069 PMCID: PMC4150993 DOI: 10.1007/s11065-014-9270-9] [Citation(s) in RCA: 569] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 08/07/2014] [Indexed: 12/11/2022]
Abstract
"The Scaffolding Theory of Aging and Cognition (STAC)", proposed in 2009, is a conceptual model of cognitive aging that integrated evidence from structural and functional neuroimaging to explain how the combined effects of adverse and compensatory neural processes produce varying levels of cognitive function. The model made clear and testable predictions about how different brain variables, both structural and functional, were related to cognitive function, focusing on the core construct of compensatory scaffolding. The present paper provides a revised model that integrates new evidence about the aging brain that has emerged since STAC was published 5 years ago. Unlike the original STAC model, STAC-r incorporates life-course factors that serve to enhance or deplete neural resources, thereby influencing the developmental course of brain structure and function, as well as cognition, over time. Life-course factors also influence compensatory processes that are engaged to meet cognitive challenge, and to ameliorate the adverse effects of structural and functional decline. The revised model is discussed in relation to recent lifespan and longitudinal data as well as emerging evidence about the effects of training interventions. STAC-r goes beyond the previous model by combining a life-span approach with a life-course approach to understand and predict cognitive status and rate of cognitive change over time.
Collapse
Affiliation(s)
- Patricia A Reuter-Lorenz
- Department of Psychology, The University of Michigan, 530 Church Street, Ann Arbor, MI, 48109, USA,
| | | |
Collapse
|
110
|
Diffusion tensor MRI of chemotherapy-induced cognitive impairment in non-CNS cancer patients: a review. Brain Imaging Behav 2014; 7:409-35. [PMID: 23329357 DOI: 10.1007/s11682-012-9220-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Patients with non-central nervous system cancers often experience subtle cognitive deficits after treatment with cytotoxic agents. Therapy-induced structural changes to the brain could be one of the possible causes underlying these reported cognitive deficits. In this review, we evaluate the use of diffusion tensor imaging (DTI) for assessing possible therapy-induced changes in the microstructure of the cerebral white matter (WM) and provide a critical overview of the published DTI research on therapy-induced cognitive impairment. Both cross-sectional and longitudinal DTI studies have demonstrated abnormal microstructural properties in WM regions involved in cognition. These findings correlated with cognitive performance, suggesting that there is a link between reduced "WM integrity" and chemotherapy-induced impaired cognition. In this paper, we will also introduce the basics of diffusion tensor imaging and how it can be applied to evaluate effects of therapy on structural changes in cerebral WM. The review concludes with considerations and discussion regarding DTI data interpretation and possible future directions for investigating therapy-induced WM changes in cancer patients. This review article is part of a Special Issue entitled: Neuroimaging Studies of Cancer and Cancer Treatment.
Collapse
|
111
|
Gene-environment interactions: lifetime cognitive activity, APOE genotype, and β-amyloid burden. J Neurosci 2014; 34:8612-7. [PMID: 24948815 DOI: 10.1523/jneurosci.4612-13.2014] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Carriers of the apolipoprotein E (APOE) ε4 allele, the major genetic risk for Alzheimer's disease (AD), harbor an increased load of β-amyloid (Aβ) plaque burden that is felt to be a major instigator of AD development. Data has suggested that lifestyle factors may reduce AD risk by directly mitigating Aβ pathology, which could be particularly beneficial in APOE ε4 carriers. We therefore examined the interaction between lifetime cognitive activity and the APOE ε4 allele in relation to brain Aβ burden. We obtained measures of lifetime cognitive activity in 118 cognitively normal human individuals (mean age: 76.13 ± 5.56 years, 70 women) using a validated questionnaire that included measures over early, middle, and current age epochs. Hierarchical regression models (adjusted for age, gender, and years of education) were conducted to examine effects of APOE ε4 carrier status, lifetime cognitive activity, and the interaction of the two factors with cortical Aβ deposition, quantified using [11C] Pittsburgh-compound-B (PIB)-PET. As expected, the ε4 carriers exhibited higher PIB retention compared with noncarriers. Lifetime cognitive activity moderated the APOE genotype effect such that cortical PIB retention was diminished in ε4 carriers that reported higher cognitive activity over the life course. The findings suggest that greater lifetime cognitive activity may forestall AD pathology, specifically in genetically susceptible individuals. The effect could imply that cognitive training promotes increased neural efficiency that might retard the lifelong neurally mediated deposition of Aβ.
Collapse
|
112
|
Morimoto SS, Wexler BE, Liu J, Hu W, Seirup J, Alexopoulos GS. Neuroplasticity-based computerized cognitive remediation for treatment-resistant geriatric depression. Nat Commun 2014; 5:4579. [PMID: 25093396 PMCID: PMC4139707 DOI: 10.1038/ncomms5579] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 07/02/2014] [Indexed: 01/11/2023] Open
Abstract
Executive dysfunction (ED) in geriatric depression (GD) is common, predicts poor clinical outcomes and often persists despite remission of symptoms. Here we develop a neuroplasticity-based computerized cognitive remediation treatment (CCR-GD) to target ED in GD. Our assumption is that remediation of these deficits may modulate the underlying brain network abnormalities shared by executive dysfunction and depression. We compare CCR-GD to a gold standard treatment (escitalopram: 20mgs/12 weeks) in 11 treatment resistant older adults with major depression; and 33 matched historical controls. We find that 91% of participants complete CCR-GD. CCR-GD is equally as effective at reducing depressive symptoms as escitalopram but does so in 4 weeks instead of 12. In addition CCR-GD improves measures of executive function more than the escitalopram. We conclude that CCR-GD may be equally effective as escitalopram in treating GD. In addition, CCR-GD participants showed greater improvement in executive functions than historical controls treated with escitalopram.
Collapse
Affiliation(s)
- Sarah Shizuko Morimoto
- Weill Cornell Medical College, Institute of Geriatric Psychiatry, New York, New York 10605, USA
| | - Bruce E Wexler
- Department of Psychiatry, Yale Medical School, New Haven, Connecticut 06519, USA
| | - Jiacheng Liu
- 1] Department of Psychiatry, Yale Medical School, New Haven, Connecticut 06519, USA [2] Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Willie Hu
- Weill Cornell Medical College, Institute of Geriatric Psychiatry, New York, New York 10605, USA
| | - Joanna Seirup
- Weill Cornell Medical College, Institute of Geriatric Psychiatry, New York, New York 10605, USA
| | - George S Alexopoulos
- Weill Cornell Medical College, Institute of Geriatric Psychiatry, New York, New York 10605, USA
| |
Collapse
|
113
|
Abstract
BACKGROUND An increasing number of studies have examined the effects of training of cognitive and other tasks on brain structure, using magnetic resonance imaging. METHODS Studies combining cognitive and other tasks training with longitudinal imaging designs were reviewed, with a view to identify paradigms potentially applicable to treatment of cognitive impairment. RESULTS We identified 36 studies, employing training as variable as juggling, working memory, meditation, learning abstract information, and aerobic exercise. There were training-related structural changes, increases in gray matter volume, decreases, increases and decreases in different regions, or no change at all. There was increased integrity in white matter following training, but other patterns of results were also reported. CONCLUSIONS Questions still to be answered are: Are changes due to use-dependent effects or are they specific to learning? What are the underlying neural correlates of learning, the temporal dynamics of changes, the relations between structure and function, and the upper limits of improvement? How can gains be maintained? The question whether neuroplasticity will contribute to the treatment of dementia will need to be posed again at that stage.
Collapse
Affiliation(s)
| | | | - Klaus P Ebmeier
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| |
Collapse
|
114
|
Mills KL, Tamnes CK. Methods and considerations for longitudinal structural brain imaging analysis across development. Dev Cogn Neurosci 2014; 9:172-90. [PMID: 24879112 PMCID: PMC6989768 DOI: 10.1016/j.dcn.2014.04.004] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/14/2014] [Accepted: 04/25/2014] [Indexed: 11/29/2022] Open
Abstract
There have now been several longitudinal studies of structural brain development. We discuss current methods and analysis techniques in longitudinal MRI. We relate MRI measures to possible underlying physiological mechanisms. We encourage more open discussion amongst researchers regarding best practices.
Magnetic resonance imaging (MRI) has allowed the unprecedented capability to measure the human brain in vivo. This technique has paved the way for longitudinal studies exploring brain changes across the entire life span. Results from these studies have given us a glimpse into the remarkably extended and multifaceted development of our brain, converging with evidence from anatomical and histological studies. Ever-evolving techniques and analytical methods provide new avenues to explore and questions to consider, requiring researchers to balance excitement with caution. This review addresses what MRI studies of structural brain development in children and adolescents typically measure and how. We focus on measurements of brain morphometry (e.g., volume, cortical thickness, surface area, folding patterns), as well as measurements derived from diffusion tensor imaging (DTI). By integrating finding from multiple longitudinal investigations, we give an update on current knowledge of structural brain development and how it relates to other aspects of biological development and possible underlying physiological mechanisms. Further, we review and discuss current strategies in image processing, analysis techniques and modeling of brain development. We hope this review will aid current and future longitudinal investigations of brain development, as well as evoke a discussion amongst researchers regarding best practices.
Collapse
Affiliation(s)
- Kathryn L Mills
- Institute of Cognitive Neuroscience, University College London, London, UK; Child Psychiatry Branch, National Institute of Mental Health, Bethesda, MD, USA.
| | - Christian K Tamnes
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| |
Collapse
|
115
|
Ugwu ID, Amico F, Carballedo A, Fagan AJ, Frodl T. Childhood adversity, depression, age and gender effects on white matter microstructure: a DTI study. Brain Struct Funct 2014; 220:1997-2009. [PMID: 24744150 DOI: 10.1007/s00429-014-0769-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 04/01/2014] [Indexed: 11/26/2022]
Abstract
Previous diffusion tensor imaging (DTI) studies have shown that various factors can affect white matter (WM) tract diffusivity. The aim of the present study was to investigate the effects of childhood adversity (CA), age and gender on WM diffusivity in tracts that are thought to be involved in emotional regulation in individuals with major depressive disorder (MDD) and healthy controls (HC). DTI was obtained from 46 subjects with MDD and 46 HC subjects. Data were pre-processed and deterministic tractography was applied in the cingulum, uncinate fasciculus (UF), fornix, superior longitudinal fasciculus (SLF) and fronto-occipital fasciculus (FOF). In subjects with a history of CA, fractional anisotropy (FA) was greater in the rostral cingulum (RC) and dorsal cingulum, whereas radial diffusivity (RD) was smaller in the RC when compared with subjects with no history of CA. In the UF, FOF and parahippocampal cingulum, FA was greater in the left hemisphere in the subjects with CA when compared with those without CA. Age affected FA, longitudinal diffusivity and RD in the UF, fornix, FOF and SLF, reflecting axonal and myelin degeneration with increasing age. Depression or gender did not have any effects on the diffusivity measures. Due to the cross-sectional nature of the study, a recall bias for CA and possible effects of medical treatment on diffusivity measures could have played a role. CA and age could increase the likelihood to develop WM microstructural anomalies in the brain affective network. Moreover, subjects with CA could be more vulnerable to FA changes.
Collapse
Affiliation(s)
- Izuchukwu D Ugwu
- Adelaide and Meath Hospital Incorporating the National Children's Hospital, Tallaght, Dublin 24, Dublin, Ireland
| | | | | | | | | |
Collapse
|
116
|
Gooijers J, Swinnen SP. Interactions between brain structure and behavior: the corpus callosum and bimanual coordination. Neurosci Biobehav Rev 2014; 43:1-19. [PMID: 24661987 DOI: 10.1016/j.neubiorev.2014.03.008] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 01/30/2014] [Accepted: 03/13/2014] [Indexed: 12/12/2022]
Abstract
Bimanual coordination skills are required for countless everyday activities, such as typing, preparing food, and driving. The corpus callosum (CC) is the major collection of white matter bundles connecting both hemispheres that enables the coordination between the two sides of the body. Principal evidence for this brain-behavior relationship in humans was first provided by research on callosotomy patients, showing that sectioning (parts of) the CC affected interactions between both hands directly. Later, new noninvasive in vivo imaging techniques, such as diffusion tensor imaging, have energized the study of the link between microstructural properties of the CC and bimanual performance in normal volunteers. Here we discuss the principal factors (such as age, pathology and training) that mediate the relationship between specific bimanual functions and distinct anatomical CC subdivisions. More specifically, the question is whether different bimanual task characteristics can be mapped onto functionally distinct CC subregions. We review the current status of this mapping endeavor, and propose future perspectives to inspire research on this unique link between brain structure and behavior.
Collapse
Affiliation(s)
- J Gooijers
- KU Leuven, Department of Kinesiology, Movement Control and Neuroplasticity Research Group, Tervuursevest 101, 3001 Leuven, Belgium.
| | - S P Swinnen
- KU Leuven, Department of Kinesiology, Movement Control and Neuroplasticity Research Group, Tervuursevest 101, 3001 Leuven, Belgium; KU Leuven, Leuven Research Institute for Neuroscience & Disease (LIND), Belgium.
| |
Collapse
|
117
|
Yang S, Lu W, Zhou DS, Tang Y. Four-month enriched environment prevents myelinated fiber loss in the white matter during normal aging of male rats. Brain Struct Funct 2014; 220:1263-72. [DOI: 10.1007/s00429-014-0721-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 01/28/2014] [Indexed: 11/29/2022]
|
118
|
Wirth M, Haase CM, Villeneuve S, Vogel J, Jagust WJ. Neuroprotective pathways: lifestyle activity, brain pathology, and cognition in cognitively normal older adults. Neurobiol Aging 2014; 35:1873-82. [PMID: 24656834 DOI: 10.1016/j.neurobiolaging.2014.02.015] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 02/11/2014] [Accepted: 02/16/2014] [Indexed: 01/26/2023]
Abstract
This study used path analysis to examine effects of cognitive activity and physical activity on cognitive functioning in older adults, through pathways involving beta-amyloid (Aβ) burden, cerebrovascular lesions, and neural injury within the brain regions affected in Alzheimer's disease (AD). Ninety-two cognitively normal older adults (75.2 ± 5.6 years) reported lifetime cognitive activity and current physical activity using validated questionnaires. For each participant, we evaluated cortical Aβ burden (using [(11)C] labeled Pittsburgh-Compound-B positron emission tomography), cerebrovascular lesions (using magnetic resonance imaging-defined white matter lesion [WML]), and neural integrity within AD regions (using a multimodal neuroimaging biomarker). Path models (adjusted for age, gender, and education) indicated that higher lifetime cognitive activity and higher current physical activity was associated with fewer WMLs. Lower WML volumes were in turn related to higher neural integrity and higher global cognitive functioning. As shown previously, higher lifetime cognitive activity was associated with lower [(11)C] labeled Pittsburgh-Compound-B retention, which itself moderated the impact of neural integrity on cognitive functioning. Lifestyle activity may thus promote cognitive health in aging by protecting against cerebrovascular pathology and Aβ pathology thought to be relevant to AD development.
Collapse
Affiliation(s)
- Miranka Wirth
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.
| | - Claudia M Haase
- School of Education and Social Policy, Northwestern University, Evanston, IL, USA
| | - Sylvia Villeneuve
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Jacob Vogel
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA; Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; School of Public Health, University of California, Berkeley, CA, USA
| |
Collapse
|
119
|
Herholz SC, Herholz RS, Herholz K. Non-pharmacological interventions and neuroplasticity in early stage Alzheimer's disease. Expert Rev Neurother 2014; 13:1235-45. [DOI: 10.1586/14737175.2013.845086] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
120
|
Ayaz H, Onaral B, Izzetoglu K, Shewokis PA, McKendrick R, Parasuraman R. Continuous monitoring of brain dynamics with functional near infrared spectroscopy as a tool for neuroergonomic research: empirical examples and a technological development. Front Hum Neurosci 2013; 7:871. [PMID: 24385959 PMCID: PMC3866520 DOI: 10.3389/fnhum.2013.00871] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 11/28/2013] [Indexed: 11/13/2022] Open
Abstract
Functional near infrared spectroscopy (fNIRS) is a non-invasive, safe, and portable optical neuroimaging method that can be used to assess brain dynamics during skill acquisition and performance of complex work and everyday tasks. In this paper we describe neuroergonomic studies that illustrate the use of fNIRS in the examination of training-related brain dynamics and human performance assessment. We describe results of studies investigating cognitive workload in air traffic controllers, acquisition of dual verbal-spatial working memory skill, and development of expertise in piloting unmanned vehicles. These studies used conventional fNIRS devices in which the participants were tethered to the device while seated at a workstation. Consistent with the aims of mobile brain imaging (MoBI), we also describe a compact and battery-operated wireless fNIRS system that performs with similar accuracy as other established fNIRS devices. Our results indicate that both wired and wireless fNIRS systems allow for the examination of brain function in naturalistic settings, and thus are suitable for reliable human performance monitoring and training assessment.
Collapse
Affiliation(s)
- Hasan Ayaz
- School of Biomedical Engineering, Science and Health Systems, Drexel University Philadelphia, PA, USA
| | - Banu Onaral
- School of Biomedical Engineering, Science and Health Systems, Drexel University Philadelphia, PA, USA
| | - Kurtulus Izzetoglu
- School of Biomedical Engineering, Science and Health Systems, Drexel University Philadelphia, PA, USA
| | - Patricia A Shewokis
- School of Biomedical Engineering, Science and Health Systems, Drexel University Philadelphia, PA, USA ; Nutrition Sciences Department, College of Nursing and Health Professions, Drexel University Philadelphia, PA, USA
| | - Ryan McKendrick
- Center of Excellence in Neuroergonomics, Technology, and Cognition, George Mason University Fairfax, VA, USA
| | - Raja Parasuraman
- Center of Excellence in Neuroergonomics, Technology, and Cognition, George Mason University Fairfax, VA, USA
| |
Collapse
|
121
|
Strenziok M, Greenwood PM, Santa Cruz SA, Thompson JC, Parasuraman R. Differential contributions of dorso-ventral and rostro-caudal prefrontal white matter tracts to cognitive control in healthy older adults. PLoS One 2013; 8:e81410. [PMID: 24312550 PMCID: PMC3846728 DOI: 10.1371/journal.pone.0081410] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 10/13/2013] [Indexed: 12/27/2022] Open
Abstract
Prefrontal cortex mediates cognitive control by means of circuitry organized along dorso-ventral and rostro-caudal axes. Along the dorso-ventral axis, ventrolateral PFC controls semantic information, whereas dorsolateral PFC encodes task rules. Along the rostro-caudal axis, anterior prefrontal cortex encodes complex rules and relationships between stimuli, whereas posterior prefrontal cortex encodes simple relationships between stimuli and behavior. Evidence of these gradients of prefrontal cortex organization has been well documented in fMRI studies, but their functional correlates have not been examined with regard to integrity of underlying white matter tracts. We hypothesized that (a) the integrity of specific white matter tracts is related to cognitive functioning in a manner consistent with the dorso-ventral and rostro-caudal organization of the prefrontal cortex, and (b) this would be particularly evident in healthy older adults. We assessed three cognitive processes that recruit the prefrontal cortex and can distinguish white matter tracts along the dorso-ventral and rostro-caudal dimensions -episodic memory, working memory, and reasoning. Correlations between cognition and fractional anisotropy as well as fiber tractography revealed: (a) Episodic memory was related to ventral prefrontal cortex-thalamo-hippocampal fiber integrity; (b) Working memory was related to integrity of corpus callosum body fibers subserving dorsolateral prefrontal cortex; and (c) Reasoning was related to integrity of corpus callosum body fibers subserving rostral and caudal dorsolateral prefrontal cortex. These findings confirm the ventrolateral prefrontal cortex's role in semantic control and the dorsolateral prefrontal cortex's role in rule-based processing, in accordance with the dorso-ventral prefrontal cortex gradient. Reasoning-related rostral and caudal superior frontal white matter may facilitate different levels of task rule complexity. This study is the first to demonstrate dorso-ventral and rostro-caudal prefrontal cortex processing gradients in white matter integrity.
Collapse
Affiliation(s)
- Maren Strenziok
- Department of Psychology, George Mason University, Fairfax, Virginia, United States of America
| | - Pamela M. Greenwood
- Department of Psychology, George Mason University, Fairfax, Virginia, United States of America
| | - Sophia A. Santa Cruz
- Department of Psychology, George Mason University, Fairfax, Virginia, United States of America
| | - James C. Thompson
- Department of Psychology, George Mason University, Fairfax, Virginia, United States of America
| | - Raja Parasuraman
- Department of Psychology, George Mason University, Fairfax, Virginia, United States of America
| |
Collapse
|
122
|
Morimoto SS, Alexopoulos GS. Cognitive deficits in geriatric depression: clinical correlates and implications for current and future treatment. Psychiatr Clin North Am 2013; 36:517-31. [PMID: 24229654 PMCID: PMC3830452 DOI: 10.1016/j.psc.2013.08.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The purpose of this article is to identify the cognitive deficits commonly associated with geriatric depression and describe their clinical significance. The complex relationship between geriatric depression and dementia is summarized and possible shared mechanisms discussed. Evidence regarding whether the cognitive deficits in depression may be mitigated with medication or with computerized cognitive remediation is presented.
Collapse
Affiliation(s)
- Sarah Shizuko Morimoto
- Department of Psychiatry, Institute of Geriatric Psychiatry, Weill Cornell Medical College, 21 Bloomingdale Road, White Plains, NY 10605, USA.
| | - George S. Alexopoulos
- Stephen P. Tobin and Dr. Arnold M. Cooper Professor of Psychiatry, Weill Cornell Medical College, White Plains, NY
| |
Collapse
|
123
|
Dennis M, Spiegler BJ, Juranek JJ, Bigler ED, Snead OC, Fletcher JM. Age, plasticity, and homeostasis in childhood brain disorders. Neurosci Biobehav Rev 2013; 37:2760-73. [PMID: 24096190 PMCID: PMC3859812 DOI: 10.1016/j.neubiorev.2013.09.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 07/29/2013] [Accepted: 09/19/2013] [Indexed: 12/26/2022]
Abstract
It has been widely accepted that the younger the age and/or immaturity of the organism, the greater the brain plasticity, the young age plasticity privilege. This paper examines the relation of a young age to plasticity, reviewing human pediatric brain disorders, as well as selected animal models, human developmental and adult brain disorder studies. As well, we review developmental and childhood acquired disorders that involve a failure of regulatory homeostasis. Our core arguments are as follows:
Collapse
Affiliation(s)
- Maureen Dennis
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X8, Canada.
| | | | | | | | | | | |
Collapse
|
124
|
Johnson NF, Kim C, Gold BT. Socioeconomic status is positively correlated with frontal white matter integrity in aging. AGE (DORDRECHT, NETHERLANDS) 2013; 35:2045-56. [PMID: 23160736 PMCID: PMC3825008 DOI: 10.1007/s11357-012-9493-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 11/06/2012] [Indexed: 06/01/2023]
Abstract
Socioeconomic status (SES) is an important reserve variable which has been shown to benefit the aging brain's macrostructure. However, it remains unknown whether SES affects age-related changes in the brain's white matter (WM) microstructure. Here, we used diffusion tensor imaging to explore the relationship between SES and three components of the diffusion tensor [fractional anisotropy (FA), axial diffusivity, and radial diffusivity (DR)]. Participants were 40 (16 male) cognitively normal young adults (mean age = 33.3 years, SD = 4.27) and 44 (19 male) cognitively normal community dwelling seniors (mean age = 66.2 years, SD = 7.5). Age-related FA declines were observed across a large portion of the WM skeleton. However, seniors with high SES showed lower age-related WM integrity declines in three frontal tracts: the right anterior corona radiata and bilateral portions of WM underlying the superior frontal gyri (SFG-WM). Positive SES-FA correlations were primarily driven by negative DR-SES correlations, suggesting that SES may buffer age-related declines in myelin. The functional significance of high SES in these frontal tracts was demonstrated through positive correlations with working memory performance. Possible mechanisms through which SES may attenuate the effects of age on frontal WM integrity are discussed.
Collapse
Affiliation(s)
- Nathan F. Johnson
- />Department of Anatomy and Neurobiology, University of Kentucky School of Medicine, Lexington, KY 40536-0298 USA
| | - Chobok Kim
- />Department of Anatomy and Neurobiology, University of Kentucky School of Medicine, Lexington, KY 40536-0298 USA
- />Department of Psychology, Kyungpook National University, Daegu, 702-701 South Korea
| | - Brian T. Gold
- />Department of Anatomy and Neurobiology, University of Kentucky School of Medicine, Lexington, KY 40536-0298 USA
- />Magnetic Resonance Imaging and Spectroscopy Center, University of Kentucky, Lexington, KY 40536 USA
- />Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536 USA
| |
Collapse
|
125
|
Genetic basis of neurocognitive decline and reduced white-matter integrity in normal human brain aging. Proc Natl Acad Sci U S A 2013; 110:19006-11. [PMID: 24191011 DOI: 10.1073/pnas.1313735110] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Identification of genes associated with brain aging should markedly improve our understanding of the biological processes that govern normal age-related decline. However, challenges to identifying genes that facilitate successful brain aging are considerable, including a lack of established phenotypes and difficulties in modeling the effects of aging per se, rather than genes that influence the underlying trait. In a large cohort of randomly selected pedigrees (n = 1,129 subjects), we documented profound aging effects from young adulthood to old age (18-83 y) on neurocognitive ability and diffusion-based white-matter measures. Despite significant phenotypic correlation between white-matter integrity and tests of processing speed, working memory, declarative memory, and intelligence, no evidence for pleiotropy between these classes of phenotypes was observed. Applying an advanced quantitative gene-by-environment interaction analysis where age is treated as an environmental factor, we demonstrate a heritable basis for neurocognitive deterioration as a function of age. Furthermore, by decomposing gene-by-aging (G × A) interactions, we infer that different genes influence some neurocognitive traits as a function of age, whereas other neurocognitive traits are influenced by the same genes, but to differential levels, from young adulthood to old age. In contrast, increasing white-matter incoherence with age appears to be nongenetic. These results clearly demonstrate that traits sensitive to the genetic influences on brain aging can be identified, a critical first step in delineating the biological mechanisms of successful aging.
Collapse
|
126
|
Wang S, Young KM. White matter plasticity in adulthood. Neuroscience 2013; 276:148-60. [PMID: 24161723 DOI: 10.1016/j.neuroscience.2013.10.018] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 10/09/2013] [Accepted: 10/10/2013] [Indexed: 01/24/2023]
Abstract
CNS white matter is subject to a novel form of neural plasticity which has been termed "myelin plasticity". It is well established that oligodendrocyte generation and the addition of new myelin internodes continue throughout normal adulthood. These new myelin internodes maybe required for the de novo myelination of previously unmyelinated axons, myelin sheath replacement, or even myelin remodeling. Each process could alter axonal conduction velocity, but to what end? We review the changes that occur within the white matter over the lifetime, the known regulators and mediators of white matter plasticity in the mature CNS, and the physiological role this plasticity may play in CNS function.
Collapse
Affiliation(s)
- S Wang
- Menzies Research Institute Tasmania, University of Tasmania, Hobart 7000, Australia
| | - K M Young
- Menzies Research Institute Tasmania, University of Tasmania, Hobart 7000, Australia.
| |
Collapse
|
127
|
Burgaleta M, Johnson W, Waber DP, Colom R, Karama S. Cognitive ability changes and dynamics of cortical thickness development in healthy children and adolescents. Neuroimage 2013; 84:810-9. [PMID: 24071525 DOI: 10.1016/j.neuroimage.2013.09.038] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 09/15/2013] [Indexed: 01/18/2023] Open
Abstract
Intelligence quotient (IQ) scores tend to remain stable across the lifespan. Nevertheless, in some healthy individuals, significant decreases or increases in IQ have been observed over time. It is unclear whether such changes reflect true functional change or merely measurement error. Here, we applied surface-based corticometry to investigate vertex-wise cortical surface area and thickness correlates of changes in Full Scale IQ (FSIQ), Performance IQ (PIQ) and Verbal IQ (VIQ) in a representative sample of children and adolescents (n=188, mean age=11.59years) assessed two years apart as part of the NIH Study of Normal Brain Development. No significant associations between changes in IQ measures and changes in cortical surface area were observed, whereas changes in FSIQ, PIQ, and VIQ were related to rates of cortical thinning, mainly in left frontal areas. Participants who showed reliable gains in FSIQ showed no significant changes in cortical thickness on average, whereas those who exhibited no significant FSIQ change showed moderate declines in cortical thickness. Importantly, individuals who showed large decreases in FSIQ displayed the steepest and most significant reductions in cortical thickness. Results support the view that there can be meaningful cognitive ability changes that impact IQ within relatively short developmental periods and show that such changes are associated with the dynamics of cortical thickness development.
Collapse
Affiliation(s)
- Miguel Burgaleta
- Universidad Autónoma de Madrid, Spain; Universitat Pompeu Fabra, Spain
| | | | | | | | | |
Collapse
|
128
|
Barulli D, Stern Y. Efficiency, capacity, compensation, maintenance, plasticity: emerging concepts in cognitive reserve. Trends Cogn Sci 2013; 17:502-9. [PMID: 24018144 DOI: 10.1016/j.tics.2013.08.012] [Citation(s) in RCA: 576] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 08/30/2013] [Indexed: 02/04/2023]
Abstract
Cognitive reserve (CR) is a concept meant to account for the frequent discrepancy between an individual's measured level of brain pathology and her expected cognitive performance. It is particularly important within the context of aging and dementia, but has wider applicability to all forms of brain damage. As such, it has intimate links to related compensatory and neuroprotective concepts, as well as to the related notion of brain reserve. In this article, we introduce the concept of cognitive reserve and explicate its potential cognitive and neural implementation. We conclude that cognitive reserve is compatible and complementary with many related concepts, but that each much draw sharper conceptual boundaries in order to truly explain preserved cognitive function in the face of aging or brain damage.
Collapse
Affiliation(s)
- Daniel Barulli
- Cognitive Neuroscience Division, Department of Neurology, Columbia University College of Physicians and Surgeons, New York, USA
| | | |
Collapse
|
129
|
Gao F, Edden RA, Li M, Puts NA, Wang G, Liu C, Zhao B, Wang H, Bai X, Zhao C, Wang X, Barker PB. Edited magnetic resonance spectroscopy detects an age-related decline in brain GABA levels. Neuroimage 2013; 78:75-82. [DOI: 10.1016/j.neuroimage.2013.04.012] [Citation(s) in RCA: 205] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 04/01/2013] [Accepted: 04/05/2013] [Indexed: 11/16/2022] Open
|
130
|
Zahodne LB, Manly JJ, Brickman AM, Siedlecki KL, DeCarli C, Stern Y. Quantifying cognitive reserve in older adults by decomposing episodic memory variance: replication and extension. J Int Neuropsychol Soc 2013; 19:854-62. [PMID: 23866160 PMCID: PMC3777696 DOI: 10.1017/s1355617713000738] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The theory of cognitive reserve attempts to explain why some individuals are more resilient to age-related brain pathology. Efforts to explore reserve have been hindered by measurement difficulties. Reed et al. (2010) proposed quantifying reserve as residual variance in episodic memory performance that remains after accounting for demographic factors and brain pathology (whole brain, hippocampal, and white matter hyperintensity volumes). This residual variance represents the discrepancy between an individual’s predicted and actual memory performance. The goals of the present study were to extend these methods to a larger, community-based sample and to investigate whether the residual reserve variable is explained by age, predicts longitudinal changes in language, and predicts dementia conversion independent of age. Results support this operational measure of reserve. The residual reserve variable was associated with higher reading ability, lower likelihood of meeting criteria for mild cognitive impairment, lower odds of dementia conversion in dependent of age, and less decline in language abilities over 3 years. Finally, the residual reserve variable moderated the negative impact of memory variance explained by brain pathology on language decline. This method has the potential to facilitate research on the mechanisms of cognitive reserve and the efficacy of interventions designed to impart reserve.
Collapse
Affiliation(s)
- Laura B. Zahodne
- Cognitive Neuroscience Division, Department of Neurology and Taub Institute for Research on Alzheimer’s Disease and The Aging Brain, Columbia University College of Physicians and Surgeons, New York, New York
| | - Jennifer J. Manly
- Cognitive Neuroscience Division, Department of Neurology and Taub Institute for Research on Alzheimer’s Disease and The Aging Brain, Columbia University College of Physicians and Surgeons, New York, New York
| | - Adam M. Brickman
- Cognitive Neuroscience Division, Department of Neurology and Taub Institute for Research on Alzheimer’s Disease and The Aging Brain, Columbia University College of Physicians and Surgeons, New York, New York
| | | | - Charles DeCarli
- Department of Neurology, School of Medicine, University of California, Davis, California
| | - Yaakov Stern
- Cognitive Neuroscience Division, Department of Neurology and Taub Institute for Research on Alzheimer’s Disease and The Aging Brain, Columbia University College of Physicians and Surgeons, New York, New York
| |
Collapse
|
131
|
Strenziok M, Parasuraman R, Clarke E, Cisler DS, Thompson JC, Greenwood PM. Neurocognitive enhancement in older adults: comparison of three cognitive training tasks to test a hypothesis of training transfer in brain connectivity. Neuroimage 2013; 85 Pt 3:1027-39. [PMID: 23933474 DOI: 10.1016/j.neuroimage.2013.07.069] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 07/20/2013] [Accepted: 07/23/2013] [Indexed: 10/26/2022] Open
Abstract
The ultimate goal of cognitive enhancement as an intervention for age-related cognitive decline is transfer to everyday cognitive functioning. Development of training methods that transfer broadly to untrained cognitive tasks (far transfer) requires understanding of the neural bases of training and far transfer effects. We used cognitive training to test the hypothesis that far transfer is associated with altered attentional control demands mediated by the dorsal attention network and trained sensory cortex. In an exploratory study, we randomly assigned 42 healthy older adults to six weeks of training on Brain Fitness (BF-auditory perception), Space Fortress (SF-visuomotor/working memory), or Rise of Nations (RON-strategic reasoning). Before and after training, cognitive performance, diffusion-derived white matter integrity, and functional connectivity of the superior parietal cortex (SPC) were assessed. We found the strongest effects from BF training, which transferred to everyday problem solving and reasoning and selectively changed integrity of occipito-temporal white matter associated with improvement on untrained everyday problem solving. These results show that cognitive gain from auditory perception training depends on heightened white matter integrity in the ventral attention network. In BF and SF (which also transferred positively), a decrease in functional connectivity between SPC and inferior temporal lobe (ITL) was observed compared to RON-which did not transfer to untrained cognitive function. These findings highlight the importance for cognitive training of top-down control of sensory processing by the dorsal attention network. Altered brain connectivity - observed in the two training tasks that showed far transfer effects - may be a marker for training success.
Collapse
Affiliation(s)
- Maren Strenziok
- Arch Laboratory, Department of Psychology, George Mason University, Fairfax, VA, USA
| | | | | | | | | | | |
Collapse
|
132
|
Abstract
BACKGROUND AND PURPOSE Impaired hand function decreases quality of life after stroke. The purpose of this study was to pilot a novel 2-week upper extremity sensorimotor training program. This case series describes the training program and highlights outcome measures used for documenting behavioral change and neural reorganization. CASE DESCRIPTION Behavioral/performance changes were identified via sensorimotor evaluation. Activity-induced neural reorganization was examined using sensory functional magnetic resonance imaging, diffusion tensor tractography, and brain volume measurement. Participant 1 was a 75-year-old right-handed man 1 year post-right hemisphere stroke, with severe sensory impairment across domains in his left hand; he reported limited left-hand/arm use. Participant 2 was a 63-year-old right-handed woman who had experienced a left hemisphere stroke 9 months earlier, resulting in mild sensory impairment across domains in her right hand, as well as mild motor deficit. INTERVENTION Participants were trained 4 hours per day, 5 days per week for 2 weeks. Training tasks required sensory discrimination of temperature, weights, textures, shapes, and objects in the context of active exploration with the involved hand. Random multimodal feedback was used. OUTCOMES Both participants had improved scores on the Wolf Motor Function Test after training. Participant 1 had no measurable change in sensory function, while participant 2 improved in touch perception, proprioception, and haptic performance. Sensory functional magnetic resonance imaging suggested neural reorganization in both participants; participant 1 had a small increase in brain volume, while superior thalamic radiation white matter connectivity was unchanged in either participant. DISCUSSION Participating in sensorimotor training focused on sensory discrimination during manual manipulation was feasible for both participants. Future research to determine efficacy and identify optimal measures of sensory function and neural reorganization is recommended. VIDEO ABSTRACT AVAILABLE (see Video, Supplemental Digital Content 1, http://links.lww.com/JNPT/A38) for more insights from the authors.
Collapse
|
133
|
Wilson RS, Boyle PA, Yu L, Barnes LL, Schneider JA, Bennett DA. Life-span cognitive activity, neuropathologic burden, and cognitive aging. Neurology 2013; 81:314-21. [PMID: 23825173 DOI: 10.1212/wnl.0b013e31829c5e8a] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE To test the hypothesis that cognitive activity across the life span is related to late-life cognitive decline not linked to common neuropathologic disorders. METHODS On enrollment, older participants in a longitudinal clinical-pathologic cohort study rated late-life (i.e., current) and early-life participation in cognitively stimulating activities. After a mean of 5.8 years of annual cognitive function testing, 294 individuals had died and undergone neuropathologic examination. Chronic gross infarcts, chronic microscopic infarcts, and neocortical Lewy bodies were identified, and measures of β-amyloid burden and tau-positive tangle density in multiple brain regions were derived. RESULTS In a mixed-effects model adjusted for age at death, sex, education, gross and microscopic infarction, neocortical Lewy bodies, amyloid burden, and tangle density, more frequent late-life cognitive activity (estimate = 0.028, standard error [SE] = 0.008, p < 0.001) and early-life cognitive activity (estimate = 0.034, SE = 0.013, p = 0.008) were each associated with slower cognitive decline. The 2 measures together accounted for 14% of the residual variability in cognitive decline not related to neuropathologic burden. The early-life-activity association was attributable to cognitive activity in childhood (estimate = 0.027, SE = 0.012, p = 0.026) and middle age (estimate = 0.029, SE = 0.013, p = 0.025) but not young adulthood (estimate = -0.020, SE = 0.014, p = 0.163). CONCLUSIONS More frequent cognitive activity across the life span has an association with slower late-life cognitive decline that is independent of common neuropathologic conditions, consistent with the cognitive reserve hypothesis.
Collapse
Affiliation(s)
- Robert S Wilson
- Rush Alzheimer's Disease Center and Departments of Neurological Sciences, Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA.
| | | | | | | | | | | |
Collapse
|
134
|
Scherf KS, Thomas C, Doyle J, Behrmann M. Emerging structure-function relations in the developing face processing system. Cereb Cortex 2013; 24:2964-80. [PMID: 23765156 DOI: 10.1093/cercor/bht152] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
To evaluate emerging structure-function relations in a neural circuit that mediates complex behavior, we investigated age-related differences among cortical regions that support face recognition behavior and the fiber tracts through which they transmit and receive signals using functional neuroimaging and diffusion tensor imaging. In a large sample of human participants (aged 6-23 years), we derived the microstructural and volumetric properties of the inferior longitudinal fasciculus (ILF), the inferior fronto-occipital fasciculus, and control tracts, using independently defined anatomical markers. We also determined the functional characteristics of core face- and place-selective regions that are distributed along the trajectory of the pathways of interest. We observed disproportionately large age-related differences in the volume, fractional anisotropy, and mean and radial, but not axial, diffusivities of the ILF. Critically, these differences in the structural properties of the ILF were tightly and specifically linked with an age-related increase in the size of a key face-selective functional region, the fusiform face area. This dynamic association between emerging structural and functional architecture in the developing brain may provide important clues about the mechanisms by which neural circuits become organized and optimized in the human cortex.
Collapse
Affiliation(s)
- K Suzanne Scherf
- Department of Psychology, The Pennsylvania State University, University Park, PA, USA
| | - Cibu Thomas
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA, Center for Neuroscience and Regenerative Medicine at the Uniformed Services, University of the Health Sciences, Bethesda, MD 20892, USA
| | - Jaime Doyle
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA 15213, USA and
| | - Marlene Behrmann
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA 15213, USA and Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA
| |
Collapse
|
135
|
Thomas C, Baker CI. Teaching an adult brain new tricks: A critical review of evidence for training-dependent structural plasticity in humans. Neuroimage 2013; 73:225-36. [DOI: 10.1016/j.neuroimage.2012.03.069] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 02/03/2012] [Accepted: 03/22/2012] [Indexed: 11/16/2022] Open
|
136
|
Raz N, Schmiedek F, Rodrigue KM, Kennedy KM, Lindenberger U, Lövdén M. Differential brain shrinkage over 6 months shows limited association with cognitive practice. Brain Cogn 2013; 82:171-80. [PMID: 23665948 DOI: 10.1016/j.bandc.2013.04.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/03/2013] [Accepted: 04/05/2013] [Indexed: 11/16/2022]
Abstract
The brain shrinks with age, but the timing of this process and the extent of its malleability are unclear. We measured changes in regional brain volumes in younger (age 20-31) and older (age 65-80) adults twice over a 6 month period, and examined the association between changes in volume, history of hypertension, and cognitive training. Between two MRI scans, 49 participants underwent intensive practice in three cognitive domains for 100 consecutive days, whereas 23 control group members performed no laboratory cognitive tasks. Regional volumes of seven brain structures were measured manually and adjusted for intracranial volume. We observed significant mean shrinkage in the lateral prefrontal cortex, the hippocampus, the caudate nucleus, and the cerebellum, but no reliable mean change of the prefrontal white matter, orbital-frontal cortex, and the primary visual cortex. Individual differences in change were reliable in all regions. History of hypertension was associated with greater cerebellar shrinkage. The cerebellum was the only region in which significantly reduced shrinkage was apparent in the experimental group after completion of cognitive training. Thus, in healthy adults, differential brain shrinkage can be observed in a narrow time window, vascular risk may aggravate it, and intensive cognitive activity may have a limited effect on it.
Collapse
Affiliation(s)
- Naftali Raz
- Institute of Gerontology and Department of Psychology, Wayne State University, Detroit, MI, USA.
| | | | | | | | | | | |
Collapse
|
137
|
Borich M, MacKay A, Vavasour I, Rauscher A, Boyd L. Evaluation of white matter myelin water fraction in chronic stroke. Neuroimage Clin 2013; 2:569-80. [PMID: 24179808 PMCID: PMC3777839 DOI: 10.1016/j.nicl.2013.04.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 04/11/2013] [Accepted: 04/11/2013] [Indexed: 12/15/2022]
Abstract
Multi-component T2 relaxation imaging (MCRI) provides specific in vivo measurement of myelin water content and tissue water environments through myelin water fraction (MWF), intra/extra-cellular water fraction (I/EWF) and intra/extracellular and global geometric mean T2 (GMT2) times. Quantitative MCRI assessment of tissue water environments has provided new insights into the progression and underlying white matter pathology in neural disorders such as multiple sclerosis. It has not previously been applied to investigate changes in white matter in the stroke-affected brain. Thus, the purposes of this study were to 1) use MCRI to index myelin water content and tissue water environments in the brain after stroke 2) evaluate relationships between MWF and diffusion behavior indexed by diffusion tensor imaging-based metrics and 3) examine the relationship between white matter status (MWF and fractional anisotropy) and motor behavior in the chronic phase of stroke recovery. Twenty individuals with ischemic stroke and 12 matched healthy controls participated. Excellent to good test/re-test and inter-rater reliability was observed for region of interest-based voxelwise MWF data. Reduced MWF was observed in whole-cerebrum white matter (p < 0.001) and in the ipsilesional (p = 0.017) and contralesional (p = 0.037) posterior limb of internal capsule (PLIC) after stroke compared to whole-cerebrum and bilateral PLIC MWF in healthy controls. The stroke group also demonstrated increased I/EWF, I/E GMT2 and global GMT2 times for whole-cerebrum white matter. Measures of diffusion behavior were also significantly different in the stroke group across each region investigated (p < 0.001). MWF was not significantly correlated with specific tensor-based measures of diffusion in the PLIC for either group. Fractional anisotropy in the ipsilesional PLIC correlated with motor behavior in chronic stroke. These results provide novel insights into tissue-specific changes within white matter after stroke that may have important applications for the understanding of the neuropathology of stroke.
Collapse
Affiliation(s)
- M.R. Borich
- Department of Physical Therapy, University of British Columbia, Canada
| | - A.L. MacKay
- Department of Radiology, University of British Columbia, Canada
- Department of Physics and Astronomy, University of British Columbia, Canada
| | - I.M. Vavasour
- Department of Radiology, University of British Columbia, Canada
| | - A. Rauscher
- Department of Radiology, University of British Columbia, Canada
- UBC MRI Research Centre, University of British Columbia, Canada
- Brain Research Centre, University of British Columbia, Canada
| | - L.A. Boyd
- Department of Physical Therapy, University of British Columbia, Canada
- Brain Research Centre, University of British Columbia, Canada
| |
Collapse
|
138
|
Grandy TH, Werkle-Bergner M, Chicherio C, Schmiedek F, Lövdén M, Lindenberger U. Peak individual alpha frequency qualifies as a stable neurophysiological trait marker in healthy younger and older adults. Psychophysiology 2013; 50:570-82. [PMID: 23551082 DOI: 10.1111/psyp.12043] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 02/21/2013] [Indexed: 11/29/2022]
Abstract
The individual alpha frequency (IAF) of the human EEG reflects systemic properties of the brain, is highly heritable, and relates to cognitive functioning. Not much is known about the modifiability of IAF by cognitive interventions. We report analyses of resting EEG from a large-scale training study in which healthy younger (20-31 years, N = 30) and older (65-80 years, N = 28) adults practiced 12 cognitive tasks for ∼100 1-h sessions. EEG was recorded before and after the cognitive training intervention. In both age groups, IAF (and, in a control analysis, alpha amplitude) did not change, despite large gains in cognitive performance. As within-session reliability and test-retest stability were high for both age groups, imprecise measurements cannot account for the findings. In sum, IAF is highly stable in healthy adults up to 80 years, not easily modifiable by cognitive interventions alone, and thus qualifies as a stable neurophysiological trait marker.
Collapse
Affiliation(s)
- Thomas H Grandy
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Germany
| | | | | | | | | | | |
Collapse
|
139
|
Zelinski EM. How Interventions Might Improve Cognition in Healthy Older Adults. INTERNATIONAL JOURNAL OF GAMING AND COMPUTER-MEDIATED SIMULATIONS 2013; 5:72-82. [PMID: 33329761 PMCID: PMC7737913 DOI: 10.4018/jgcms.2013070105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2024]
Abstract
Many of the cognitive declines in healthy aging are moderated by experience, suggesting that interventions may be beneficial. Goals for aging outcomes include improving performance on untrained tasks, remediating observed cognitive declines, and ensuring preservation of functional ability. This selective review evaluates current progress towards these goals. Most research focuses on untrained tasks. Interventions associated with this outcome include games and exercises practicing specific cognitive skills, as well as aerobic exercise, and modestly benefit a relatively narrow range of cognitive tasks. Few studies have directly tested improvements in tasks on which individuals have been shown to experience longitudinal decline, so this goal has not been realized, though remediation can be examined rather easily. Little work has been done to develop psychometrically strong functional outcomes that could be used to test preservation of independence in everyday activities. Virtual reality approaches to functional assessment show promise for achieving the third goal.
Collapse
|
140
|
Morimoto SS, Wexler BE, Alexopoulos GS. Neuroplasticity-based computerized cognitive remediation for geriatric depression. Int J Geriatr Psychiatry 2012; 27:1239-47. [PMID: 22451346 PMCID: PMC3387346 DOI: 10.1002/gps.3776] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 12/21/2011] [Accepted: 01/05/2012] [Indexed: 11/07/2022]
Abstract
OBJECTIVE This article describes a novel treatment model designed to target specific neurocognitive deficits in geriatric depression with neuroplasticity-based computerized cognitive remediation (NBCCR). METHOD The recent National Institute of Mental Health (NIMH) report "From Discovery to Cure" calls for studies focusing on mechanisms of treatment response with the goal of arriving at new interventions for those who do not respond to existing treatments. We describe the process that led to the identification of specific executive deficits and their underlying neurobiology, as well as the rationale for targeting these symptoms as a part of a strategy intended to improve both executive dysfunction and depression. We then propose a strategy for further research in this emerging area. RESULTS AND CONCLUSIONS Despite significant developments, conventional antidepressant treatments leave many older adults still depressed and suffering. Psychotherapy may be effective in some depressed elders, although a recent review concluded that none of the available treatment studies meets stringent criteria for efficacy in the acute treatment of geriatric depression. Appropriately developed and targeted NBCCR, has the potential to serve as a novel treatment intervention for geriatric depression. Pathophysiological changes associated with executive dysfunction may be an appropriate target for NBCCR. Examining both behavioral changes and indices of structural integrity and functional change of networks related to cognitive and emotional regulation may lead to a novel treatment and elucidate the role of specific cerebral networks in geriatric depression.
Collapse
Affiliation(s)
- Sarah Shizuko Morimoto
- Department of Psychiatry, Institute of Geriatric Psychiatry, Weill Cornell Medical College, White Plains, NY, USA.
| | - Bruce E. Wexler
- Yale Medical School, Department of Psychiatry, New Haven, CT
| | - George S. Alexopoulos
- Weill Cornell Medical College, Department of Psychiatry, Institute of Geriatric Psychiatry, White Plains, NY
| |
Collapse
|
141
|
Travers BG, Adluru N, Ennis C, Tromp DPM, Destiche D, Doran S, Bigler ED, Lange N, Lainhart JE, Alexander AL. Diffusion tensor imaging in autism spectrum disorder: a review. Autism Res 2012; 5:289-313. [PMID: 22786754 PMCID: PMC3474893 DOI: 10.1002/aur.1243] [Citation(s) in RCA: 313] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 06/04/2012] [Indexed: 12/18/2022]
Abstract
White matter tracts of the brain allow neurons and neuronal networks to communicate and function with high efficiency. The aim of this review is to briefly introduce diffusion tensor imaging methods that examine white matter tracts and then to give an overview of the studies that have investigated white matter integrity in the brains of individuals with autism spectrum disorder (ASD). From the 48 studies we reviewed, persons with ASD tended to have decreased fractional anisotropy and increased mean diffusivity in white matter tracts spanning many regions of the brain but most consistently in regions such as the corpus callosum, cingulum, and aspects of the temporal lobe. This decrease in fractional anisotropy was often accompanied by increased radial diffusivity. Additionally, the review suggests possible atypical lateralization in some white matter tracts of the brain and a possible atypical developmental trajectory of white matter microstructure in persons with ASD. Clinical implications and future research directions are discussed.
Collapse
Affiliation(s)
- Brittany G Travers
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin, Madison, Wisconsin 53705, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Abstract
Executive functions (EFs) make possible mentally playing with ideas; taking the time to think before acting; meeting novel, unanticipated challenges; resisting temptations; and staying focused. Core EFs are inhibition [response inhibition (self-control--resisting temptations and resisting acting impulsively) and interference control (selective attention and cognitive inhibition)], working memory, and cognitive flexibility (including creatively thinking "outside the box," seeing anything from different perspectives, and quickly and flexibly adapting to changed circumstances). The developmental progression and representative measures of each are discussed. Controversies are addressed (e.g., the relation between EFs and fluid intelligence, self-regulation, executive attention, and effortful control, and the relation between working memory and inhibition and attention). The importance of social, emotional, and physical health for cognitive health is discussed because stress, lack of sleep, loneliness, or lack of exercise each impair EFs. That EFs are trainable and can be improved with practice is addressed, including diverse methods tried thus far.
Collapse
Affiliation(s)
- Adele Diamond
- Department of Psychiatry, University of British Columbia and BC Children's Hospital, Vancouver, BC V6T 2A1, Canada.
| |
Collapse
|
143
|
Nyberg L, Lövdén M, Riklund K, Lindenberger U, Bäckman L. Memory aging and brain maintenance. Trends Cogn Sci 2012; 16:292-305. [PMID: 22542563 DOI: 10.1016/j.tics.2012.04.005] [Citation(s) in RCA: 743] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 04/05/2012] [Accepted: 04/06/2012] [Indexed: 10/28/2022]
Abstract
Episodic memory and working memory decline with advancing age. Nevertheless, large-scale population-based studies document well-preserved memory functioning in some older individuals. The influential ‘reserve’ notion holds that individual differences in brain characteristics or in the manner people process tasks allow some individuals to cope better than others with brain pathology and hence show preserved memory performance. Here, we discuss a complementary concept, that of brain maintenance (or relative lack of brain pathology), and argue that it constitutes the primary determinant of successful memory aging. We discuss evidence for brain maintenance at different levels: cellular, neurochemical, gray- and white-matter integrity, and systems-level activation patterns. Various genetic and lifestyle factors support brain maintenance in aging and interventions may be designed to promote maintenance of brain structure and function in late life.
Collapse
Affiliation(s)
- Lars Nyberg
- Department of Radiation Sciences, Umeå University, Umeå, Sweden.
| | | | | | | | | |
Collapse
|
144
|
Frontostriatal white matter integrity mediates adult age differences in probabilistic reward learning. J Neurosci 2012; 32:5333-7. [PMID: 22496578 DOI: 10.1523/jneurosci.5756-11.2012] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Frontostriatal circuits have been implicated in reward learning, and emerging findings suggest that frontal white matter structural integrity and probabilistic reward learning are reduced in older age. This cross-sectional study examined whether age differences in frontostriatal white matter integrity could account for age differences in reward learning in a community life span sample of human adults. By combining diffusion tensor imaging with a probabilistic reward learning task, we found that older age was associated with decreased reward learning and decreased white matter integrity in specific pathways running from the thalamus to the medial prefrontal cortex and from the medial prefrontal cortex to the ventral striatum. Further, white matter integrity in these thalamocorticostriatal paths could statistically account for age differences in learning. These findings suggest that the integrity of frontostriatal white matter pathways critically supports reward learning. The findings also raise the possibility that interventions that bolster frontostriatal integrity might improve reward learning and decision making.
Collapse
|
145
|
Belleville S, Bherer L. Biomarkers of Cognitive Training Effects in Aging. CURRENT TRANSLATIONAL GERIATRICS AND EXPERIMENTAL GERONTOLOGY REPORTS 2012; 1:104-110. [PMID: 23864998 PMCID: PMC3693427 DOI: 10.1007/s13670-012-0014-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
An increasing number of studies have relied on brain imaging to assess the effects of cognitive training in healthy aging populations and in persons with early Alzheimer's disease or mild cognitive impairment (MCI). At the structural level, cognitive training in healthy aging individuals has been associated with increased brain volume, cortical thickness, and density and coherence of white matter tracts. At the functional level, task-related brain activation (using fMRI and PET) and fluorodeoxyglucose positron emission tomography (FDG-PET) were found to be sensitive to the effects of training. In persons with MCI, cognitive training increased brain metabolism and task-related brain activation, whereas healthy older adults showed patterns of increased and decreased activation. Further studies are required to generalize these findings to larger groups and to investigate more diverse training protocols. Research will also need to address important methodological issues regarding the use of biomarkers in cognitive aging, including reliability, clinical validity, and relevance to the pathophysiological process.
Collapse
Affiliation(s)
- Sylvie Belleville
- Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, 4565 Chemin Queen Mary, Montréal, Quebec H3W-1 W5 Canada
- Département de Psychologie, Université de Montréal, Montréal, Quebec Canada
| | - Louis Bherer
- Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, 4565 Chemin Queen Mary, Montréal, Quebec H3W-1 W5 Canada
- Département de Psychologie, Université du Québec à Montréal, Montréal, Quebec Canada
| |
Collapse
|
146
|
Jolles DD, Crone EA. Training the developing brain: a neurocognitive perspective. Front Hum Neurosci 2012; 6:76. [PMID: 22509161 PMCID: PMC3321411 DOI: 10.3389/fnhum.2012.00076] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 03/19/2012] [Indexed: 11/13/2022] Open
Abstract
Developmental training studies are important to increase our understanding of the potential of the developing brain by providing answers to questions such as: “Which functions can and which functions cannot be improved as a result of practice?,” “Is there a specific period during which training has more impact?,” and “Is it always advantageous to train a particular function?”In addition, neuroimaging methods provide valuable information about the underlying mechanisms that drive cognitive plasticity. In this review, we describe how neuroscientific studies of training effects inform us about the possibilities of the developing brain, pointing out that childhood is a special period during which training may have different effects. We conclude that there is much complexity in interpreting training effects in children. Depending on the type of training and the level of maturation of the individual, training may influence developmental trajectories in different ways. We propose that the immature brain structure might set limits on how much can be achieved with training, but that the immaturity can also have advantages, in terms of flexibility for learning.
Collapse
Affiliation(s)
- Dietsje D Jolles
- Leiden Institute for Brain and Cognition (LIBC), Leiden University Leiden, Netherlands
| | | |
Collapse
|
147
|
Wilson RS, Segawa E, Boyle PA, Bennett DA. Influence of late-life cognitive activity on cognitive health. Neurology 2012; 78:1123-9. [PMID: 22491864 DOI: 10.1212/wnl.0b013e31824f8c03] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE To test the hypothesis that late-life participation in mentally stimulating activities affects subsequent cognitive health. METHODS Analyses are based on 1,076 older persons without dementia at study onset participating in a longitudinal cohort study. They completed annual clinical evaluations for a mean of 4.9 years. Each evaluation included administration of a self-report scale about participation in mentally stimulating activities and a battery of cognitive performance tests. Previously established measures of cognitively stimulating activity and cognitive function were derived. We assessed the temporal sequence of activity changes in relation to functional changes in a series of cross-lagged panel models adjusted for age, sex, and education. RESULTS During the observation period, cognitive activity participation (estimate of mean annual change = -0.066, SE = 0.005, p < 0.001) and cognitive functioning (estimate = -0.077, SE = 0.005, p < 0.001) declined at rates that were moderately correlated (r = 0.44, p < 0.001). The level of cognitive activity in a given year predicted the level of global cognitive function in the following year, but the level of global cognition did not predict the subsequent level of cognitive activity participation. Cognitive activity showed the same pattern of unidirectional associations with measures of episodic and semantic memory, but its associations with working memory were bidirectional. CONCLUSIONS The results suggest that more frequent mental stimulation in old age leads to better cognitive functioning.
Collapse
Affiliation(s)
- Robert S Wilson
- Rush Alzheimer’s Disease Center and Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA.
| | | | | | | |
Collapse
|
148
|
Zhao YY, Shi XY, Qiu X, Lu W, Yang S, Li C, Chen L, Zhang L, Cheng GH, Tang Y. Enriched Environment Increases the Myelinated Nerve Fibers of Aged Rat Corpus Callosum. Anat Rec (Hoboken) 2012; 295:999-1005. [DOI: 10.1002/ar.22446] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Accepted: 12/05/2011] [Indexed: 01/13/2023]
|
149
|
Lövdén M, Laukka EJ, Rieckmann A, Kalpouzos G, Li TQ, Jonsson T, Wahlund LO, Fratiglioni L, Bäckman L. The dimensionality of between-person differences in white matter microstructure in old age. Hum Brain Mapp 2012; 34:1386-98. [PMID: 22331619 DOI: 10.1002/hbm.21518] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 09/30/2011] [Accepted: 10/19/2011] [Indexed: 11/06/2022] Open
Abstract
Between-person differences in white matter microstructure may partly generalize across the brain and partly play out differently for distinct tracts. We used diffusion-tensor imaging and structural equation modeling to investigate this issue in a sample of 260 adults aged 60-87 years. Mean fractional anisotropy and mean diffusivity of seven white matter tracts in each hemisphere were quantified. Results showed good fit of a model positing that individual differences in white matter microstructure are structured according to tracts. A general factor, although accounting for variance in the measures, did not adequately represent the individual differences. This indicates the presence of a substantial amount of tract-specific individual differences in white matter microstructure. In addition, individual differences are to a varying degree shared between tracts, indicating that general factors also affect white matter microstructure. Age-related differences in white matter microstructure were present for all tracts. Correlations among tract factors did not generally increase as a function of age, suggesting that aging is not a process with homogenous effects on white matter microstructure across the brain. These findings highlight the need for future research to examine whether relations between white matter microstructure and diverse outcomes are specific or general.
Collapse
Affiliation(s)
- Martin Lövdén
- Aging Research Center, Karolinska Institutet and Stockholm University, Gävlegatan 16, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Raz N, Lindenberger U. Only time will tell: cross-sectional studies offer no solution to the age-brain-cognition triangle: comment on Salthouse (2011). Psychol Bull 2012; 137:790-5. [PMID: 21859179 DOI: 10.1037/a0024503] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Salthouse (2011) critically reviewed cross-sectional and longitudinal relations among adult age, brain structure, and cognition (ABC) and identified problems in interpretation of the extant literature. His review, however, missed several important points. First, there is enough disparity among the measures of brain structure and cognitive performance to question the uniformity of B and C vertices of the ABC triangle. Second, age differences and age changes in brain and cognition are often nonlinear. Third, variances and correlations among measures of brain and cognition frequently vary with age. Fourth, cross-sectional comparisons among competing models of ABC associations cannot disambiguate competing hypotheses about the structure and the range of directed and reciprocal relations between changes in brain and behavior. We offer the following conclusions, based on these observations. First, individual differences among younger adults are not useful for understanding the aging of brain and behavior. Second, only multivariate longitudinal studies, age-comparative experimental interventions, and a combination of the two will deliver us from the predicaments of the ABC triangle described by Salthouse. Mediation models of cross-sectional data represent age-related differences in target variables but fail to approximate time-dependent relations; thus, they do not elucidate the dimensions and dynamics of cognitive aging.
Collapse
Affiliation(s)
- Naftali Raz
- Institute of Gerontology and Department of Psychology, Wayne State University, 87 East Ferry Street, Detroit, MI 48202, USA.
| | | |
Collapse
|