101
|
Sengillo JD, Cabral T, Schuerch K, Duong J, Lee W, Boudreault K, Xu Y, Justus S, Sparrow JR, Mahajan VB, Tsang SH. Electroretinography Reveals Difference in Cone Function between Syndromic and Nonsyndromic USH2A Patients. Sci Rep 2017; 7:11170. [PMID: 28894305 PMCID: PMC5593892 DOI: 10.1038/s41598-017-11679-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 08/15/2017] [Indexed: 11/23/2022] Open
Abstract
Usher syndrome is an inherited and irreversible disease that manifests as retinitis pigmentosa (RP) and bilateral neurosensory hearing loss. Mutations in Usherin 2A (USH2A) are not only a frequent cause of Usher syndrome, but also nonsyndromic RP. Although gene- and cell-based therapies are on the horizon for RP and Usher syndrome, studies characterizing natural disease are lacking. In this retrospective analysis, retinal function of USH2A patients was quantified with electroretinography. Both groups had markedly reduced rod and cone responses, but nonsyndromic USH2A patients had 30 Hz-flicker electroretinogram amplitudes that were significantly higher than syndromic patients, suggesting superior residual cone function. There was a tendency for Usher syndrome patients to have a higher distribution of severe mutations, and alleles in this group had a higher odds of containing nonsense or frame-shift mutations. These data suggest that the previously reported severe visual phenotype seen in syndromic USH2A patients could relate to a greater extent of cone dysfunction. Additionally, a genetic threshold may exist where mutation burden relates to visual phenotype and the presence of hearing deficits. The auditory phenotype and allelic hierarchy observed among patients should be considered in prospective studies of disease progression and during enrollment for future clinical trials.
Collapse
Affiliation(s)
- Jesse D Sengillo
- Jonas Children's Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University Medical Center, New York, NY, USA.,Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA.,State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Thiago Cabral
- Jonas Children's Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University Medical Center, New York, NY, USA.,Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA.,Department of Ophthalmology, Federal University of Espírito Santo, Vitoria, Brazil.,Department of Ophthalmology, Federal University of São Paulo, Sao Paulo, Brazil
| | - Kaspar Schuerch
- Jonas Children's Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University Medical Center, New York, NY, USA.,Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA
| | - Jimmy Duong
- Department of Biostatistics, Columbia University, New York, NY, USA
| | - Winston Lee
- Jonas Children's Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University Medical Center, New York, NY, USA.,Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA
| | - Katherine Boudreault
- Jonas Children's Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University Medical Center, New York, NY, USA.,Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA.,Department of Ophthalmology, University of Montreal, Montreal, Canada
| | - Yu Xu
- Department of Ophthalmology, Xin Hua Hospital affiliate of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sally Justus
- Jonas Children's Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University Medical Center, New York, NY, USA.,Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA
| | - Janet R Sparrow
- Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA.,Department of Pathology & Cell Biology, Stem Cell Initiative (CSCI), Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Vinit B Mahajan
- Omics Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA, USA
| | - Stephen H Tsang
- Jonas Children's Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University Medical Center, New York, NY, USA. .,Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA. .,Department of Pathology & Cell Biology, Stem Cell Initiative (CSCI), Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
102
|
Jafarnezhadgero AA, Majlesi M, Azadian E. Gait ground reaction force characteristics in deaf and hearing children. Gait Posture 2017; 53:236-240. [PMID: 28219845 DOI: 10.1016/j.gaitpost.2017.02.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 02/07/2017] [Accepted: 02/10/2017] [Indexed: 02/02/2023]
Abstract
The link between gait parameters and hearing loss is not well understood. The objective of this study was to investigate the effects of the gait ground reaction forces, their time to peak, vertical loading rate, impulses and free moment during gait in deaf and hearing children. Thirty male children were equally divided into a healthy group and a group with hearing loss problems (Deaf group). Ground reaction forces were analyzed during barefoot walking. MANOVA test was used for between group comparisons. The significance level was set at p<0.05 for all analyses. Hearing loss was associated with increased propulsion lateral-medial ground reaction force (p=0.031), its time to peak (p=0.008), and lateral- medial impulse (p=0.018). Similar vertical reaction forces were observed in both groups (p>0.05). Positive peak of free moments in the healthy group was significantly greater than that in the deaf group (p=0.004). In conclusion, the results reveal that gait ground reaction force components in deaf children may have clinical values for rehabilitation of these subjects.
Collapse
Affiliation(s)
- Amir Ali Jafarnezhadgero
- Department of Physical Education and Sport Sciences, Faculty of Educational Science and Psychology, University of Mohaghegh Ardabili, Ardabil, Iran.
| | - Mahdi Majlesi
- Department of Sport Biomechanics, Faculty of Humanities, Islamic Azad University, Hamedan Branch, Hamedan, Iran.
| | - Elaheh Azadian
- Department of Motor Behavior, Faculty of Humanities, Islamic Azad University, Hamedan Branch, Hamedan, Iran.
| |
Collapse
|
103
|
Mittal R, Chan B, Grati M, Mittal J, Patel K, Debs LH, Patel AP, Yan D, Chapagain P, Liu XZ. Molecular Structure and Regulation of P2X Receptors With a Special Emphasis on the Role of P2X2 in the Auditory System. J Cell Physiol 2015; 231:1656-70. [PMID: 26627116 DOI: 10.1002/jcp.25274] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 12/01/2015] [Indexed: 12/23/2022]
Abstract
The P2X purinergic receptors are cation-selective channels gated by extracellular adenosine 5'-triphosphate (ATP). These purinergic receptors are found in virtually all mammalian cell types and facilitate a number of important physiological processes. Within the past few years, the characterization of crystal structures of the zebrafish P2X4 receptor in its closed and open states has provided critical insights into the mechanisms of ligand binding and channel activation. Understanding of this gating mechanism has facilitated to design and interpret new modeling and structure-function experiments to better elucidate how different agonists and antagonists can affect the receptor with differing levels of potency. This review summarizes the current knowledge on the structure, activation, allosteric modulators, function, and location of the different P2X receptors. Moreover, an emphasis on the P2X2 receptors has been placed in respect to its role in the auditory system. In particular, the discovery of three missense mutations in P2X2 receptors could become important areas of study in the field of gene therapy to treat progressive and noise-induced hearing loss. J. Cell. Physiol. 231: 1656-1670, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rahul Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Brandon Chan
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - M'hamed Grati
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Jeenu Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Kunal Patel
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Luca H Debs
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Amit P Patel
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Denise Yan
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Prem Chapagain
- Department of Physics, Florida International University, Miami, Florida.,Biomolecular Science Institute, Florida International University, Miami, Florida
| | - Xue Zhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida.,Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida.,Department of Biochemistry, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|