101
|
Alexeev M, Grosenbaugh DK, Mott DD, Fisher JL. The natural products magnolol and honokiol are positive allosteric modulators of both synaptic and extra-synaptic GABA(A) receptors. Neuropharmacology 2012; 62:2507-14. [PMID: 22445602 DOI: 10.1016/j.neuropharm.2012.03.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 03/01/2012] [Indexed: 12/16/2022]
Abstract
The National Center for Complementary and Alternative Medicine (NCCAM) estimates that nearly 40% of adults in the United States use alternative medicines, often in the form of an herbal supplement. Extracts from the tree bark of magnolia species have been used for centuries in traditional Chinese and Japanese medicines to treat a variety of neurological diseases, including anxiety, depression, and seizures. The active ingredients in the extracts have been identified as the bi-phenolic isomers magnolol and honokiol. These compounds were shown to enhance the activity of GABA(A) receptors, consistent with their biological effects. The GABA(A) receptors exhibit substantial subunit heterogeneity, which influences both their functional and pharmacological properties. We examined the activity of magnolol and honokiol at different populations of both neuronal and recombinant GABA(A) receptors to characterize their mechanism of action and to determine whether sensitivity to modulation was dependent upon the receptor's subunit composition. We found that magnolol and honokiol enhanced both phasic and tonic GABAergic neurotransmission in hippocampal dentate granule neurons. In addition, all recombinant receptors examined were sensitive to modulation, regardless of the identity of the α, β, or γ subunit subtype, although the compounds showed particularly high efficacy at δ-containing receptors. This direct positive modulation of both synaptic and extra-synaptic populations of GABA(A) receptors suggests that supplements containing magnolol and/or honokiol would be effective anxiolytics, sedatives, and anti-convulsants. However, significant side-effects and risk of drug interactions would also be expected.
Collapse
Affiliation(s)
- Mikhail Alexeev
- Honors College, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | |
Collapse
|
102
|
Kaore SN, Langade DK, Yadav VK, Sharma P, Thawani VR, Sharma R. Novel actions of progesterone: what we know today and what will be the scenario in the future? J Pharm Pharmacol 2012; 64:1040-62. [DOI: 10.1111/j.2042-7158.2012.01464.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Abstract
Objectives
This article is aimed to review the novel actions of progesterone, which otherwise is considered as a female reproductive hormone. The article focuses on its important physiological actions in males too and gives an overview of its novel perspectives in disorders of central and peripheral nervous system.
Key findings
Progesterone may have a potential benefit in treatment of traumatic brain injury, various neurological disorders and male related diseases like benign prostatic hypertrophy (BPH), prostate cancer and osteoporosis. Norethisterone (NETA), a progesterone derivative, decreases bone mineral loss in male castrated mice suggesting its role in osteoporosis. In the future, progesterone may find use as a male contraceptive too, but still needs confirmatory trials for safety, tolerability and acceptability. Megestrol acetate, a progesterone derivative is preferred in prostatic cancer. Further, it may find utility in nicotine addiction, traumatic brain injury (recently entered Phase III trial) and Alzheimer's disease, diabetic neuropathy and crush injuries. Studies also suggest role of progesterone in stroke, for which further clinical trials are needed. The non genomic actions of progesterone may be in part responsible for these novel actions.
Summary
Although progesterone has shown promising role in various non-hormonal benefits, further clinical studies are needed to prove its usefulness in conditions like stroke, traumatic brain injury, neuropathy and crush injury. In male related illnesses like BPH and prostatic Ca, it may prove a boon in near future. New era of hormonal male contraception may be initiated by use of progesterone along with testosterone.
Collapse
Affiliation(s)
- Shilpa N Kaore
- Department of Pharmacology, Peoples College of Medical Sciences & Research Center, Bhopal, Madhya Pradesh, India
| | - Deepak Kumar Langade
- Department of Pharmacology, Peoples College of Medical Sciences & RC, Bhopal, Madhya Pradesh, India
| | - Vijay Kumar Yadav
- Department of Pharmacology, Peoples College of Medical Sciences & RC, Bhopal, Madhya Pradesh, India
| | - Parag Sharma
- Department of Pharmacology, Peoples College of Medical Sciences & RC, Bhopal, Madhya Pradesh, India
| | - Vijay R Thawani
- Department of Pharmacology, VCSG GMSRI, Srinagar and Pauri Garhwal, Uttarakhand, India
| | - Raj Sharma
- Department of Pharmacology, Govt medical College, Jagdalpur, Chhatisgarh, India
| |
Collapse
|
103
|
Richardson BD, Brozoski TJ, Ling LL, Caspary DM. Targeting inhibitory neurotransmission in tinnitus. Brain Res 2012; 1485:77-87. [PMID: 22405692 DOI: 10.1016/j.brainres.2012.02.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 02/06/2012] [Accepted: 02/06/2012] [Indexed: 02/07/2023]
Abstract
Tinnitus perception depends on the presence of its neural correlates within the auditory neuraxis and associated structures. Targeting specific circuits and receptors within the central nervous system in an effort to relieve the perception of tinnitus and its impact on one's emotional and mental state has become a focus of tinnitus research. One approach is to upregulate endogenous inhibitory neurotransmitter levels (e.g., glycine and GABA) and selectively target inhibitory receptors in key circuits to normalize tinnitus pathophysiology. Thus, the basic functional and molecular properties of two major ligand-gated inhibitory receptor systems, the GABA(A) receptor (GABA(A)R) and glycine receptor (GlyR) are described. Also reviewed is the rationale for targeting inhibition, which stems from reported tinnitus-related homeostatic plasticity of inhibitory neurotransmitter systems and associated enhanced neuronal excitability throughout most central auditory structures. However, the putative role of the medial geniculate body (MGB) in tinnitus has not been previously addressed, specifically in terms of its inhibitory afferents from inferior colliculus and thalamic reticular nucleus and its GABA(A)R functional heterogeneity. This heterogeneous population of GABA(A)Rs, which may be altered in tinnitus pathology, and its key anatomical position in the auditory CNS make the MGB a compelling structure for tinnitus research. Finally, some selective compounds, which enhance tonic inhibition, have successfully ameliorated tinnitus in animal studies, suggesting that the MGB and, to a lesser degree, the auditory cortex may be their primary locus of action. These pharmacological interventions are examined in terms of their mechanism of action and why these agents may be effective in tinnitus treatment. This article is part of a Special Issue entitled: Tinnitus Neuroscience.
Collapse
Affiliation(s)
- Ben D Richardson
- Department of Pharmacology, Southern Illinois University School of Medicine, 801 N Rutledge St, Rm. 3234, PO Box 19629, Springfield, IL 62794, USA.
| | | | | | | |
Collapse
|
104
|
Escudero C, Casas S, Giuliani F, Bazzocchini V, García S, Yunes R, Cabrera R. Allopregnanolone prevents memory impairment: Effect on mRNA expression and enzymatic activity of hippocampal 3-α hydroxysteroid oxide-reductase. Brain Res Bull 2012; 87:280-5. [DOI: 10.1016/j.brainresbull.2011.11.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 11/03/2011] [Accepted: 11/25/2011] [Indexed: 12/22/2022]
|
105
|
Gunn BG, Brown AR, Lambert JJ, Belelli D. Neurosteroids and GABA(A) Receptor Interactions: A Focus on Stress. Front Neurosci 2011; 5:131. [PMID: 22164129 PMCID: PMC3230140 DOI: 10.3389/fnins.2011.00131] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 11/14/2011] [Indexed: 11/13/2022] Open
Abstract
Since the pioneering discovery of the rapid CNS depressant actions of steroids by the "father of stress," Hans Seyle 70 years ago, brain-derived "neurosteroids" have emerged as powerful endogenous modulators of neuronal excitability. The majority of the intervening research has focused on a class of naturally occurring steroids that are metabolites of progesterone and deoxycorticosterone, which act in a non-genomic manner to selectively augment signals mediated by the main inhibitory receptor in the CNS, the GABA(A) receptor. Abnormal levels of such neurosteroids associate with a variety of neurological and psychiatric disorders, suggesting that they serve important physiological and pathophysiological roles. A compelling case can be made to implicate neurosteroids in stress-related disturbances. Here we will critically appraise how brain-derived neurosteroids may impact on the stress response to acute and chronic challenges, both pre- and postnatally through to adulthood. The pathological implications of such actions in the development of psychiatric disturbances will be discussed, with an emphasis on the therapeutic potential of neurosteroids for the treatment of stress-associated disorders.
Collapse
Affiliation(s)
- Benjamin G Gunn
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital and Medical School, Ninewells Hospital, University of Dundee Dundee, UK
| | | | | | | |
Collapse
|
106
|
Neurosteroid biosynthetic pathways changes in prefrontal cortex in Alzheimer's disease. Neurobiol Aging 2011; 32:1964-76. [DOI: 10.1016/j.neurobiolaging.2009.12.014] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 12/10/2009] [Accepted: 12/17/2009] [Indexed: 12/21/2022]
|
107
|
Effect of acute ethanol and acute allopregnanolone on spatial memory in adolescent and adult rats. Alcohol 2011; 45:473-83. [PMID: 21600728 DOI: 10.1016/j.alcohol.2011.03.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 02/17/2011] [Accepted: 03/02/2011] [Indexed: 11/20/2022]
Abstract
The effects of ethanol differ in adolescent and adult rats on a number of measures. The evidence of the effects of ethanol on spatial memory in adolescents and adults is equivocal. Whether adolescents are more or less sensitive to ethanol-induced impairment of spatial memory acquisition remains unclear; with regard to the effects of acute ethanol on spatial memory retrieval there is almost no research looking into any age difference. Thus, we examined the effects of acute ethanol on spatial memory in the Morris Watermaze in adolescents and adults. Allopregnanolone (ALLO) is a modulator of the GABA(A) receptor and has similar behavioral effects as ethanol. We sought to also determine the effects of allopreganolone on spatial memory in adolescent and adults. Male adolescent (post natal [PN]28-30) and adult (PN70-72) rats were trained in the Morris Watermaze for 6 days and acute doses of ethanol (saline, 1.5 and 2.0 g/kg) or ALLO (vehicle, 9 and 18 mg/kg) were administered on Day 7. A probe trial followed on Day 8. As expected, there were dose effects; higher doses of both ethanol and ALLO impaired spatial memory. However, in both the ethanol and ALLO conditions adolescents and adults had similar spatial memory impairments. The current results suggest that ethanol and ALLO both impair hippocampal-dependent spatial memory regardless of age in that once learning has occurred, ethanol or ALLO does not differentially impair the retrieval of spatial memory in adolescents and adults. Given the mixed results on the effect of ethanol on cognition in adolescent rats, additional research is needed to ascertain the factors critical for the reported differential results.
Collapse
|
108
|
Abstract
GABA is the major inhibitory neurotransmitter in the adult mammalian CNS. The ionotropic GABA type A receptors (GABA(A)Rs) belong to the Cys-loop family of receptors. Each member of the family is a large pentameric protein in which each subunit traverses the cell membrane four times. Within this family, the GABA type A receptors are particularly important for their rich pharmacology as they are targets for a range of therapeutically important drugs, including the benzodiazepines, barbiturates, neuroactive steroids and anesthetics. This review discusses new insights into receptor properties that allow us to begin to relate the structure of an individual receptor to its functional and pharmacological properties.
Collapse
|
109
|
Ramaker MJ, Ford MM, Fretwell AM, Finn DA. Alteration of ethanol drinking in mice via modulation of the GABA(A) receptor with ganaxolone, finasteride, and gaboxadol. Alcohol Clin Exp Res 2011; 35:1994-2007. [PMID: 21649668 DOI: 10.1111/j.1530-0277.2011.01551.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Neurosteroids and other γ-aminobutyric acid(A) (GABA(A) ) receptor-modulating compounds have been shown to affect ethanol intake, although their mechanism remains unclear. This study examined how patterns of 24-hour ethanol drinking in mice were altered with the synthetic GABAergic neurosteroid ganaxolone (GAN), with an inhibitor of neurosteroid synthesis (finasteride [FIN]), or a GABA(A) receptor agonist with some selectivity at extrasynaptic receptors (gaboxadol HCL [THIP]). METHODS Male C57BL/6J mice had continuous access to a 10% v/v ethanol solution (10E) or water. Using lickometer chambers, drinking patterns were analyzed among mice treated in succession to GAN (0, 5, and 10 mg/kg), FIN (0 or 100 mg/kg), and THIP (0, 2, 4, 8, and 16 mg/kg). RESULTS GAN shifted drinking in a similar but extended manner to previous reports using low doses of the neurosteroid allopregnanolone (ALLO); drinking was increased in hour 1, decreased in hours 2 and 3, and increased in hours 4 and 5 postinjection. THIP (8 mg/kg) and FIN both decreased 10E drinking during the first 5 hours postinjection by 30 and 53%, respectively, while having no effect on or increasing water drinking, respectively. All 3 drugs altered the initiation of drinking sessions in a dose-dependent fashion. FIN increased and GAN decreased time to first lick and first bout. THIP (8 mg/kg) decreased time to first lick but increased time to first bout and attenuated first bout size. CONCLUSIONS The present findings support a role for the modulation of ethanol intake by neurosteroids and GABA(A) receptor-acting compounds and provide hints as to how drinking patterns are shifted. The ability of THIP to alter 10E drinking suggests that extrasynaptic GABA(A) receptors may be involved in the modulation of ethanol intake. Further, the consistent results with THIP to that seen previously with high doses of ALLO suggest that future studies should further examine the relationship between neurosteroids and extrasynaptic GABA(A) receptors, which could provide a better understanding of the mechanism by which neurosteroids influence ethanol intake.
Collapse
Affiliation(s)
- Marcia J Ramaker
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA.
| | | | | | | |
Collapse
|
110
|
Luchetti S, Huitinga I, Swaab DF. Neurosteroid and GABA-A receptor alterations in Alzheimer's disease, Parkinson's disease and multiple sclerosis. Neuroscience 2011; 191:6-21. [PMID: 21514366 DOI: 10.1016/j.neuroscience.2011.04.010] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 04/03/2011] [Accepted: 04/05/2011] [Indexed: 01/17/2023]
Abstract
Steroid hormones (e.g. estrogens, androgens, progestagens) which are synthesized de novo or metabolized within the CNS are called neurosteroids. There is substantial evidence from animal studies suggesting that these steroids can affect brain function by modulating neurotransmission, and influence neuronal survival, neuronal and glial differentiation and myelination in the CNS by regulating gene expression of neurotrophic factors and anti-inflammatory molecules. Indeed, evidence is emerging that expression of the enzymes responsible for the synthesis of neurosteroids changes in neurodegenerative diseases. Some of these changes may contribute to the pathology, while others, conversely, may represent an attempted rescue program in the diseased brain. Here we review the data on changes in neurosteroid levels and neurosteroid synthesis pathways in the human brain in three neurodegenerative conditions, Alzheimers's (AD) and Parkinson's (PD) diseases and Multiple Sclerosis (MS) and the extent to which these findings may implicate protective or pathological roles for neurosteroids in the course of these diseases.Some neurosteroids can modulate neurotransmitter activity, for example, the pregnane steroids allopregnanolone and 3α5α-tetrahydro-deoxycorticosterone which are potent positive allosteric modulators of ionotropic GABA-A receptors. Therefore, neurosteroid-modulated GABA-A receptor subunit alterations found in AD and PD will also be discussed. These data imply an involvement of neurosteroid changes in the neurodegenerative and neuroinflammatory processes and suggest that they may deserve further investigation as potential therapeutic agents in AD, PD and MS. Finally, suggestions for therapeutic strategies will be included. This article is part of a Special Issue entitled: Neuroactive Steroids: Focus on Human Brain.
Collapse
Affiliation(s)
- S Luchetti
- Netherlands Institute for Neuroscience (NIN), an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
111
|
Abstract
This review focuses on the unique clinical and molecular pharmacologic features of etomidate. Among general anesthesia induction drugs, etomidate is the only imidazole, and it has the most favorable therapeutic index for single-bolus administration. It also produces a unique toxicity among anesthetic drugs: inhibition of adrenal steroid synthesis that far outlasts its hypnotic action and that may reduce survival of critically ill patients. The major molecular targets mediating anesthetic effects of etomidate in the central nervous system are specific γ-aminobutyric acid type A receptor subtypes. Amino acids forming etomidate binding sites have been identified in transmembrane domains of these proteins. Etomidate binding site structure models for the main enzyme mediating etomidate adrenotoxicity have also been developed. Based on this deepening understanding of molecular targets and actions, new etomidate derivatives are being investigated as potentially improved sedative-hypnotics or for use as highly selective inhibitors of adrenal steroid synthesis.
Collapse
|
112
|
Abstract
Increasing evidence points to an association between major depressive disorders (MDDs) and diverse types of GABAergic deficits. In this review, we summarize clinical and preclinical evidence supporting a central and causal role of GABAergic deficits in the etiology of depressive disorders. Studies of depressed patients indicate that MDDs are accompanied by reduced brain concentration of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) and by alterations in the subunit composition of the principal receptors (GABA(A) receptors) mediating GABAergic inhibition. In addition, there is abundant evidence that suggests that GABA has a prominent role in the brain control of stress, the most important vulnerability factor in mood disorders. Furthermore, preclinical evidence suggests that currently used antidepressant drugs (ADs) designed to alter monoaminergic transmission and nonpharmacological therapies may ultimately act to counteract GABAergic deficits. In particular, GABAergic transmission has an important role in the control of hippocampal neurogenesis and neural maturation, which are now established as cellular substrates of most if not all antidepressant therapies. Finally, comparatively modest deficits in GABAergic transmission in GABA(A) receptor-deficient mice are sufficient to cause behavioral, cognitive, neuroanatomical and neuroendocrine phenotypes, as well as AD response characteristics expected of an animal model of MDD. The GABAergic hypothesis of MDD suggests that alterations in GABAergic transmission represent fundamentally important aspects of the etiological sequelae of MDDs that are reversed by monoaminergic AD action.
Collapse
|
113
|
A mutant residue in the third transmembrane region of the GABA(A) alpha1 subunit causes increased agonistic neurosteroid responses. Neurochem Int 2011; 58:794-803. [PMID: 21397651 DOI: 10.1016/j.neuint.2011.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 03/02/2011] [Accepted: 03/05/2011] [Indexed: 11/24/2022]
Abstract
Pregnane derived steroids have agonistic and antagonistic actions at GABA(A) receptors. Putative binding sites for agonistic neurosteroids are located within the transmembrane (TM) regions. A mutation within the rat α(1) TM3 region, S299C, caused the expressed receptors to have unusual and extreme sensitivity to agonistic neurosteroids. For mutant α1S299C receptors, with wild type β and γ subunits, expressed in Xenopus oocytes, steroids activated the GABA(A) receptors in the absence of GABA. Maximal steroid induced currents were about half of maximal GABA currents. The steroid activation was biphasic with EC(50)'s much lower than wild type, in subnanomolar and nanomolar concentrations, while the wild type had only one activation peak with near micromolar EC(50). These currents could be blocked by both picrotoxin and an antagonist neurosteroid. The steroids did not seem to potentiate significantly submaximal GABA currents. The α1S299C mutation did not affect responses to the extracellularly acting partial agonist piperidine-4-sulfate. Substituted cysteine experiments indicate that this mutant can be modified by pCMBS(-) when the sulfhydryl reagent is added with the higher steroid concentration for activation but not the lower steroid concentration. The pCMBS(-) will also immediately block the high concentration steroid current. Taken together the data suggest that α1S299 is important in at least the in transduction of the steroid binding to the rest of the receptor.
Collapse
|
114
|
Gannon RL, Lungwitz E, Batista N, Hester I, Huntley C, Peacock A, Delagrange P, Millan MJ. The benzodiazepine diazepam demonstrates the usefulness of Syrian hamsters as a model for anxiety testing: Evaluation of other classes of anxiolytics in comparison to diazepam. Behav Brain Res 2011; 218:8-14. [DOI: 10.1016/j.bbr.2010.11.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 11/11/2010] [Accepted: 11/12/2010] [Indexed: 12/16/2022]
|
115
|
Foy MR. Ovarian hormones, aging and stress on hippocampal synaptic plasticity. Neurobiol Learn Mem 2011; 95:134-44. [PMID: 21081173 PMCID: PMC3045646 DOI: 10.1016/j.nlm.2010.11.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Revised: 10/13/2010] [Accepted: 11/04/2010] [Indexed: 01/28/2023]
Abstract
The ovarian steroid hormones estradiol and progesterone regulate a wide variety of non-reproductive functions in the central nervous system by interacting with molecular and cellular processes. A growing literature from studies using rodent models suggests that 17β-estradiol, the most potent of the biologically relevant estrogens, enhances synaptic transmission and the magnitude of long-term potentiation recorded from in vitro hippocampal slices. In contrast, progesterone has been shown to decrease synaptic transmission and reduce hippocampal long-term potentiation in this model system. Hippocampal long-term depression, another form of synaptic plasticity, occurs more prominently in slices from aged rats. A decrease in long-term potentiation magnitude has been recorded in hippocampal slices from both adult and aged rats behaviorally stressed just prior to hippocampal slice tissue preparation and electrophysiological recording. 17β-estradiol modifies synaptic plasticity in both adult and aged rats, whether behaviorally stressed or not by enhancing long-term potentiation and attenuating long-term depression. The studies discussed in this review provide an understanding of new approaches used to investigate the protective effects of ovarian hormones against aging and stress, and how these hormones impact age and stress-related learning and memory dysfunction.
Collapse
Affiliation(s)
- Michael R Foy
- Department of Psychology, Loyola Marymount University, 1 LMU Drive, Los Angeles, CA 90045, USA.
| |
Collapse
|
116
|
Bortolato M, Devoto P, Roncada P, Frau R, Flore G, Saba P, Pistritto G, Soggiu A, Pisanu S, Zappala A, Ristaldi MS, Tattoli M, Cuomo V, Marrosu F, Barbaccia ML. Isolation rearing-induced reduction of brain 5α-reductase expression: relevance to dopaminergic impairments. Neuropharmacology 2011; 60:1301-8. [PMID: 21256141 DOI: 10.1016/j.neuropharm.2011.01.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 01/05/2011] [Accepted: 01/10/2011] [Indexed: 11/16/2022]
Abstract
Isolation rearing (IR), a well-established rat model of early chronic psychosocial stress, engenders marked behavioral alterations related to changes of dopamine (DA) neurotransmission in cortical and subcortical brain regions. Stress-induced shifts in γ-aminobutyric acid (GABA)-ergic signaling have been implicated in the dysregulation of DA release. The neurosteroid 3α-hydroxy-5α-pregnan-20-one (allopregnanolone/AP), synthesized from progesterone by the action of the rate-limiting enzyme 5α-reductase (5AR), is a potent positive allosteric modulator of GABA(A) receptor function. Thus, alterations of 5AR activity/expression may impact upon DA neurotransmission. We studied the effects of IR on the 5AR expression/function and extracellular concentrations of DA and its metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) in the rat nucleus accumbens (NAcc) and medial prefrontal cortex (mPFC). Immediately after weaning, male rats were subjected to either IR or social rearing (SR) conditions for 5-8 weeks. Compared to SR, IR rats exhibited significantly lower protein expression of 5AR isoforms (1 and 2) in both brain regions and reduced brain, but not plasma, content of AP and allotetrahydrodeoxycorticosterone, the 5α-reduced metabolite of deoxycorticosterone. IR-exposed rats also exhibited higher levels of DA and DOPAC in the NAcc shell, but not in mPFC, when compared to SR rats. The 5AR inhibitor finasteride (FIN, 100 mg/kg, i.p.) enhanced DA and DOPAC content in the NAcc shell of SR, but not IR rats. FIN, however, elicited equivalent increases in DA and DOPAC levels in the mPFC of both groups. These results show that IR induces changes in expression/activity of brain 5AR which, in a brain-region specific manner, may partially underlie the alterations in DA signaling induced by this manipulation. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'.
Collapse
Affiliation(s)
- Marco Bortolato
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90031, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Micevych P, Sinchak K. The Neurosteroid Progesterone Underlies Estrogen Positive Feedback of the LH Surge. Front Endocrinol (Lausanne) 2011; 2:90. [PMID: 22654832 PMCID: PMC3356049 DOI: 10.3389/fendo.2011.00090] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 11/16/2011] [Indexed: 01/25/2023] Open
Abstract
Our understanding the steroid regulation of neural function has rapidly evolved in the past decades. Not long ago the prevailing thoughts were that peripheral steroid hormones carried information to the brain which passively responded to these steroids. These steroid actions were slow, taking hours to days to be realized because they regulated gene expression. Over the past three decades, discoveries of new steroid receptors, rapid membrane-initiated signaling mechanisms, and de novo neurosteroidogenesis have shed new light on the complexity of steroids actions within the nervous system. Sexual differentiation of the brain during development occurs predominately through timed steroid-mediated expression of proteins and long term epigenetic modifications. In contrast across the estrous cycle, estradiol release from developing ovarian follicles initially increases slowly and then at proestrus increases rapidly. This pattern of estradiol release acts through both classical genomic mechanisms and rapid membrane-initiated signaling in the brain to coordinate reproductive behavior and physiology. This review focuses on recently discovered estrogen receptor-α membrane signaling mechanisms that estradiol utilizes during estrogen positive feedback to stimulate de novo progesterone synthesis within the hypothalamus to trigger the luteinizing hormone (LH) surge important for ovulation and estrous cyclicity. The activation of these signaling pathways appears to be coordinated by the rising and waning of estradiol throughout the estrous cycle and integral to the negative and positive feedback mechanisms of estradiol. This differential responsiveness is part of the timing mechanism triggering the LH surge.
Collapse
Affiliation(s)
- Paul Micevych
- Laboratory of Neuroendocrinology, Department of Neurobiology, David Geffen School of Medicine, Brain Research Institute, University of CaliforniaLos Angeles, CA, USA
- *Correspondence: Paul Micevych, Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095-1763, USA. e-mail:
| | - Kevin Sinchak
- Department of Biological Sciences, California State UniversityLong Beach, CA, USA
| |
Collapse
|
118
|
Vaudry H, Do Rego JL, Burel D, Luu-The V, Pelletier G, Vaudry D, Tsutsui K. Neurosteroid biosynthesis in the brain of amphibians. Front Endocrinol (Lausanne) 2011; 2:79. [PMID: 22649387 PMCID: PMC3355965 DOI: 10.3389/fendo.2011.00079] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 11/08/2011] [Indexed: 01/29/2023] Open
Abstract
Amphibians have been widely used to investigate the synthesis of biologically active steroids in the brain and the regulation of neurosteroid production by neurotransmitters and neuropeptides. The aim of the present review is to summarize the current knowledge regarding the neuroanatomical distribution and biochemical activity of steroidogenic enzymes in the brain of anurans and urodeles. The data accumulated over the past two decades demonstrate that discrete populations of neurons and/or glial cells in the frog and newt brains express the major steroidogenic enzymes and are able to synthesize de novo a number of neurosteroids from cholesterol/pregnenolone. Since neurosteroidogenesis has been conserved during evolution from amphibians to mammals, it appears that neurosteroids must play important physiological functions in the central nervous system of vertebrates.
Collapse
Affiliation(s)
- Hubert Vaudry
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM U982, European Institute for Peptide Research, IFRMP23, Regional Platform for Cell Imaging, PRIMACEN, University of RouenMont-Saint-Aignan, France
- *Correspondence: Hubert Vaudry, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (INSERM U982), European Institute for Peptide Research (IFRMP23), International Associated Laboratory Samuel de Champlain, Regional Platform for Cell Imaging (PRIMACEN), University of Rouen, 76821 Mont-Saint-Aignan, France. e-mail:
| | - Jean-Luc Do Rego
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM U982, European Institute for Peptide Research, IFRMP23, Regional Platform for Cell Imaging, PRIMACEN, University of RouenMont-Saint-Aignan, France
| | - Delphine Burel
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM U982, European Institute for Peptide Research, IFRMP23, Regional Platform for Cell Imaging, PRIMACEN, University of RouenMont-Saint-Aignan, France
| | - Van Luu-The
- Research Center in Molecular Endocrinology, Oncology and Genetics, Laval University Hospital CenterQuébec, QC, Canada
| | - Georges Pelletier
- Research Center in Molecular Endocrinology, Oncology and Genetics, Laval University Hospital CenterQuébec, QC, Canada
| | - David Vaudry
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM U982, European Institute for Peptide Research, IFRMP23, Regional Platform for Cell Imaging, PRIMACEN, University of RouenMont-Saint-Aignan, France
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Science, Department of Biology, Center for Medical Life Science of Waseda University, Waseda UniversityTokyo, Japan
| |
Collapse
|
119
|
Increase in formalin-induced tonic pain by 5alpha-reductase and aromatase inhibition in female rats. Pharmacol Biochem Behav 2010; 98:62-6. [PMID: 21184774 DOI: 10.1016/j.pbb.2010.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 12/10/2010] [Accepted: 12/14/2010] [Indexed: 11/20/2022]
Abstract
Little is known about the role of steroidogenic enzymes in pain modulation. This study examined the effects of 5α-reductase and aromatase inhibition on formalin-induced tonic pain (FITP) in adult female rats. The animals received subcutaneous injection (5 mg/kg) of finasteride (an inhibitor of 5α-reductase) and letrozole (an inhibitor of aromatase), either separately or in combination, 15 min before formalin injection at a low (0.25%) and high (2.5%) concentration. Pretreatment with inhibitors increased FITP evoked by injection of 0.25% formalin, but they were not effective on 2.5% formalin pain. The enhancing effects of finasteride and letrozole on FITP induced by 2.5% formalin was demonstrated by inhibitory actions of these drugs on morphine (7 and 10 mg/kg, intraperitoneal) induced antinociception. The nervous system could be considered as the main target of the enzymes inhibition, since the pronociceptive effect was also observed after administration of inhibitors to ovariectomized rats. Altogether, these findings suggest that the biological activity of the enzymes 5α-reductase and aromatase modulates FITP and may help to develop effective therapeutic strategies to counteract pain.
Collapse
|
120
|
Progress report on new antiepileptic drugs: A summary of the Tenth Eilat Conference (EILAT X). Epilepsy Res 2010; 92:89-124. [DOI: 10.1016/j.eplepsyres.2010.09.001] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 08/25/2010] [Accepted: 09/12/2010] [Indexed: 01/09/2023]
|
121
|
Park HM, Choi IS, Nakamura M, Cho JH, Lee MG, Jang IS. Multiple effects of allopregnanolone on GABAergic responses in single hippocampal CA3 pyramidal neurons. Eur J Pharmacol 2010; 652:46-54. [PMID: 21118679 DOI: 10.1016/j.ejphar.2010.10.097] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 10/16/2010] [Accepted: 10/31/2010] [Indexed: 11/27/2022]
Abstract
3α-Hydroxy, 5α-reduced pregnane steroids, such as allopregnanolone, are potent modulators of GABA(A) receptors and have many biological responses including sedative, anxiolytic, anticonvulsant and anesthetic actions. In the present study, we have investigated the effects of allopregnanolone on GABA(A) receptors in acutely isolated single hippocampal CA3 pyramidal neurons using the whole cell patch-clamp technique. Allopregnanolone induced membrane Cl(-) currents in a concentration-dependent manner, and the allopregnanolone-induced currents (I(AlloP)) were blocked by noncompetitive GABA(A) receptor antagonists. The I(AlloP) was not affected by the intracellular loading of γ-cyclodextrin (γ-CD), which efficiently sequesters several kinds of endogenous neurosteroids including allopregnanolone, suggesting that allopregnanolone accesses extracellular but not intracellular sites to activate GABA(A) receptors. Allopregnanolone prolonged the decay time constant of GABAergic spontaneous inhibitory postsynaptic currents (sIPSCs), suggesting that allopregnanolone modulates the desensitization kinetics of postsynaptic GABA(A) receptors. The picrotoxin-sensitive tonic currents (I(tonic)), which were mediated by extrasynaptic GABA(A) receptors, were recorded from CA3 pyramidal neurons. The intracellular loading of γ-CD or allopregnanolone significantly decreased or increased the amplitude of picrotoxin-sensitive I(tonic), respectively, suggesting that endogenous neurosteroids might, at least in part, be involved in the generation of picrotoxin-sensitive I(tonic). Allopregnanolone also increased the frequency of GABAergic sIPSCs, in a manner dependent on the integrity of voltage-dependent Na(+) and Ca(2+) channels, suggesting that allopregnanolone activates presynaptic GABA(A) receptors to depolarize GABAergic nerve terminals. The present results suggest that allopregnanolone exerts its pharmacological and pathophysiological actions via the modulation of multiple types of GABA(A) receptor-mediated responses.
Collapse
Affiliation(s)
- Hye-Mi Park
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 700-412, Republic of Korea
| | | | | | | | | | | |
Collapse
|
122
|
Heesch CM. Neurosteroid modulation of arterial baroreflex function in the rostral ventrolateral medulla. Auton Neurosci 2010; 161:28-33. [PMID: 21071286 DOI: 10.1016/j.autneu.2010.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 10/06/2010] [Accepted: 10/10/2010] [Indexed: 02/07/2023]
Abstract
Through both genomic and nongenomic actions, ovarian hormones and their metabolites have significant effects on the central nervous system to modulate a variety of regulatory systems, including the cardiovascular system. The major metabolite of progesterone, 3α-hydroxy-dihydroprogesterone, is the most potent endogenous positive modulator of GABA(A) receptors known and central nervous system levels of this progesterone metabolite fluctuate with the ovarian cycle and are elevated in pregnant animals. Pregnancy is associated with attenuated arterial baroreflex sympathoexcitation and increased tonic GABAergic inhibition of the rostral ventrolateral medulla (RVLM) likely contributes. The current experiments were performed to determine if the effects of pregnancy on arterial baroreflex control of renal sympathetic nerve activity could be mimicked by microinjection of the neuroactive progesterone metabolite into the RVLM. Compared to control values, 15 min after microinjection of 3α-hydroxy-dihydroprogesterone into the RVLM (n=10), baseline renal sympathetic nerve activity was decreased to 82% of baseline, and the range (157±10 to 131±11%) and maximum nerve activity (164±9 to 136±12%) for the arterial baroreflex curves were decreased. In contrast, microinjection of the inactive isomer, 3β-hydroxy-dihydroprogesterone into the RVLM (n=9), had no effect on baseline nerve activity or the arterial baroreflex nerve activity range or maximum. Thus, although multiple mechanisms likely contribute to pregnancy associated changes in baroreflex function, these experiments suggest that increased levels of 3α-hydroxy-dihydroprogesterone in the RVLM might contribute.
Collapse
Affiliation(s)
- Cheryl M Heesch
- Department of Biomedical Sciences & Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
123
|
Dijk DJ, James LM, Peters S, Walsh JK, Deacon S. Sex differences and the effect of gaboxadol and zolpidem on EEG power spectra in NREM and REM sleep. J Psychopharmacol 2010; 24:1613-8. [PMID: 19487320 DOI: 10.1177/0269881109105788] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hypnotics that interact with the GABA(A) receptor have marked effects on the electroencephalogram (EEG) during sleep. It is not known whether the effects of hypnotics on EEG power spectra differ between the sexes. The effects of 5, 10 and 15 mg of gaboxadol (GBX) and 10 mg of zolpidem (ZOL) on EEG power spectra were assessed in a randomized, double-blind, placebo-controlled, 5-way cross-over design study using a phase-advance model of transient insomnia. Sleep stage specific EEG power spectra were computed in 36 men and 45 women. GBX enhanced power density in delta and theta activity in non-rapid eye movement (NREM) and rapid eye movement (REM) sleep, and suppressed sleep spindle activity in NREM sleep. The increase of delta and theta activity in NREM and REM sleep was significantly larger for women than for men but the suppression of spindle activity did not differ between the sexes. After ZOL administration, no sex differences were observed in the reduction of delta and theta activity in NREM sleep, but the increase in sleep spindle activity in NREM sleep was greater in women than in men. These sex dependent and differential effects of GBX and ZOL may be related to their differential affinity for GABA(A) receptor subtypes and their modulation by neurosteroids.
Collapse
Affiliation(s)
- D J Dijk
- Surrey Sleep Research Centre, University of Surrey, Guildford, UK.
| | | | | | | | | |
Collapse
|
124
|
Reddy DS, Gangisetty O, Briyal S. Disease-modifying activity of progesterone in the hippocampus kindling model of epileptogenesis. Neuropharmacology 2010; 59:573-81. [PMID: 20804775 DOI: 10.1016/j.neuropharm.2010.08.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 08/02/2010] [Accepted: 08/19/2010] [Indexed: 11/26/2022]
Abstract
Progesterone (P) is an endogenous anticonvulsant hormone. P is being evaluated as a treatment for epilepsy, traumatic brain injury, and other complex neurological conditions. Preclinical and clinical studies suggest that P appears to interrupt epileptogenic events. However, the potential disease-modifying effect of P in epileptogenic models is not widely investigated. In this study, we examined the effects of P on the development of hippocampus kindling in female mice. In addition, we determined the role of progesterone receptors (PR) in the P's effect on the kindling epileptogenesis utilizing PR knockout (PRKO) mice. P, at 25 mg/kg, did not affect seizures and did not exert sedative/motor effects in fully-kindled mice. P treatment (25 mg/kg, twice daily for 2 weeks) significantly suppressed the rate of development of behavioral kindled seizure activity evoked by daily hippocampus stimulation in wild-type (WT) mice, indicating a disease-modifying effect of P on limbic epileptogenesis. There was a significant increase in the rate of 'rebound or withdrawal' kindling during drug-free stimulation sessions following abrupt discontinuation of P treatment. A washout period after termination of P treatment prevented such acceleration in kindling. PRKO mice were kindled significantly slower than WT mice, indicating a modulatory role of PRs in seizure susceptibility. P's effects on early kindling progression was partially decreased in PRKO mice, but the overall (˜2-fold) delay in the rate of kindling for the induction of stage 5 seizures was unchanged in PRKO mice. Moreover, the acute anticonvulsant effect of P was undiminished in fully-kindled PRKO mice. These studies suggest that P exerts disease-modifying effects in the hippocampus kindling model at doses that do not significantly affect seizure expression and motor performance, and the kindling-retarding effects of P may occur partly through a complex PR-dependent and PR-independent mechanism.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, College Station, TX 77843, USA.
| | | | | |
Collapse
|
125
|
Rajasekaran K, Joshi S, Sun C, Mtchedlishvilli Z, Kapur J. Receptors with low affinity for neurosteroids and GABA contribute to tonic inhibition of granule cells in epileptic animals. Neurobiol Dis 2010; 40:490-501. [PMID: 20682339 DOI: 10.1016/j.nbd.2010.07.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 07/22/2010] [Accepted: 07/26/2010] [Indexed: 01/24/2023] Open
Abstract
Neurosteroid sensitivity of GABA(A) receptor mediated inhibition of the hippocampal dentate granule cells (DGCs) is reduced in animal models of temporal lobe epilepsy. However, the properties and subunit composition of GABA(A) receptors mediating tonic inhibition in DGCs of epileptic animals have not been described. In the DGCs of epileptic animals, allopregnanolone and L-655708 sensitivity of holding current was diminished and δ subunit was retained in the endoplasmic reticulum and its surface expression was decreased the in the hippocampus. Ro15-4513 and lanthanum had distinct effects on holding current recorded from DGCs of control and epileptic animals suggesting that the pharmacological properties of GABA(A) receptors maintaining tonic inhibition in DGCs of epileptic animals were similar to those containing the α4βxγ2 subunits. Furthermore, surface expression of the α4 subunit increased and a larger fraction of the subunit co-immunoprecipitated with theγ2 subunit in hippocampi of epileptic animals. Together, these studies revealed that functional α4βxδ and α5βxγ2 receptors were reduced in the hippocampi of epileptic animals and that novel α4bxγ2 receptors contributed to the maintenance of tonic inhibition. The presence of α4βxγ2 receptors resulted in low GABA affinity and neurosteroid sensitivity of tonic currents in the DGCs of epileptic animals that could potentially increase seizure vulnerability. These receptors may represent a novel therapeutic target for anticonvulsant drugs without sedative actions.
Collapse
Affiliation(s)
- Karthik Rajasekaran
- Department of Neurology, University of Virginia, Health Sciences Center, Charlottesville, VA 22908-0394, USA
| | | | | | | | | |
Collapse
|
126
|
Chisari M, Eisenman LN, Covey DF, Mennerick S, Zorumski CF. The sticky issue of neurosteroids and GABA(A) receptors. Trends Neurosci 2010; 33:299-306. [PMID: 20409596 DOI: 10.1016/j.tins.2010.03.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 03/10/2010] [Accepted: 03/25/2010] [Indexed: 01/01/2023]
Abstract
Endogenous neurosteroids and their synthetic analogs (neuroactive steroids) are potent modulators of GABA(A) receptors. Thus, they are of physiological and clinical relevance for their ability to modulate inhibitory function in the CNS. Despite their importance, fundamental issues of neurosteroid actions remain unresolved. Recent evidence suggests that glutamatergic principal neurons, rather than glia, are the major sources of neurosteroid synthesis. Other recent studies have identified putative neurosteroid binding sites on GABA(A) receptors. In this Opinion, we argue that neurosteroids require a membranous route of access to transmembrane-domain binding sites within GABA(A) receptors. This has implications for the design of future neuroactive steroids because the lipid solubility and related accessibility properties of the ligand are likely to be key determinants of receptor modulation.
Collapse
Affiliation(s)
- Mariangela Chisari
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
127
|
Baker C, Sturt BL, Bamber BA. Multiple roles for the first transmembrane domain of GABAA receptor subunits in neurosteroid modulation and spontaneous channel activity. Neurosci Lett 2010; 473:242-7. [PMID: 20193738 DOI: 10.1016/j.neulet.2010.02.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 01/26/2010] [Accepted: 02/23/2010] [Indexed: 01/02/2023]
Abstract
Neurosteroids exert potent physiological effects by allosterically modulating synaptic and extrasynaptic GABA(A) receptors. Some endogenous neurosteroids, such as 3alpha, 21-dihydroxy-5beta-pregnan-20-one (5alpha, 3alpha-THDOC), potentiate GABA(A) receptor function by interacting with a binding pocket defined by conserved residues in the first and fourth transmembrane (TM) domains of alpha subunits. Others, such as pregnenolone sulfate (PS), inhibit GABA(A) receptor function through as-yet unidentified binding sites. Here we investigate the mechanisms of PS inhibition of mammalian GABA(A) receptors, based on studies of PS inhibition of the UNC-49 GABA receptor, a GABA(A)-like receptor from Caenorhabditis elegans. In UNC-49, a 19 residue segment of TM1 can be mutated to increase or decrease PS sensitivity over a 20-fold range. Surprisingly, substituting these UNC-49 sequences into mammalian alpha(1), beta(2), and gamma(2) subunits did not produce the corresponding effects on PS sensitivity of the resulting chimeric receptors. Therefore, it is unlikely that a conserved PS binding pocket is formed at this site. However we observed several interesting unexpected effects. First, chimeric gamma2 subunits caused increased efficacy of 5alpha, 3alpha-THDOC potentiation; second, spontaneous gating of alpha(6)beta(2)delta receptors was blocked by PS, and reduced by chimeric beta(2) subunits; and third, direct activation of alpha(6)beta(2)delta receptors by 5alpha, 3alpha-THDOC was reduced by chimeric beta(2) subunits. These results reveal novel roles for non-alpha subunits in neurosteroid modulation and direct activation, and show that the beta subunit TM1 domain is important for spontaneous activity of extrasynaptic GABA(A) receptors.
Collapse
Affiliation(s)
- Carrie Baker
- Department of Bioengineering, University of Toledo, 2801 W Bancroft Street, Toledo, OH 43606, United States
| | | | | |
Collapse
|
128
|
Wang B, Yang LP, Zhang XZ, Huang SQ, Bartlam M, Zhou SF. New insights into the structural characteristics and functional relevance of the human cytochrome P450 2D6 enzyme. Drug Metab Rev 2010; 41:573-643. [PMID: 19645588 DOI: 10.1080/03602530903118729] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To date, the crystal structures of at least 12 human CYPs (1A2, 2A6, 2A13, 2C8, 2C9, 2D6, 2E1, 2R1, 3A4, 7A1, 8A1, and 46A1) have been determined. CYP2D6 accounts for only a small percentage of all hepatic CYPs (< 2%), but it metabolizes approximately 25% of clinically used drugs with significant polymorphisms. CYP2D6 also metabolizes procarcinogens and neurotoxins, such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, 1,2,3,4-tetrahydroquinoline, and indolealkylamines. Moreover, the enzyme utilizes hydroxytryptamines and neurosteroids as endogenous substrates. Typical CYP2D6 substrates are usually lipophilic bases with an aromatic ring and a nitrogen atom, which can be protonated at physiological pH. Substrate binding is generally followed by oxidation (5-7 A) from the proposed nitrogen-Asp301 interaction. A number of homology models have been constructed to explore the structural features of CYP2D6, while antibody studies also provide useful structural information. Site-directed mutagenesis studies have demonstrated that Glu216, Asp301, Phe120, Phe481, and Phe483 play important roles in determining the binding of ligands to CYP2D6. The structure of human CYP2D6 has been recently determined and shows the characteristic CYP fold observed for other members of the CYP superfamily. The lengths and orientations of the individual secondary structural elements in the CYP2D6 structure are similar to those seen in other human CYP2 members, such as CYP2C9 and 2C8. The 2D6 structure has a well-defined active-site cavity located above the heme group with a volume of approximately 540 A(3), which is larger than equivalent cavities in CYP2A6 (260 A(3)), 1A2 (375 A(3)), and 2E1 (190 A(3)), but smaller than those in CYP3A4 (1385 A(3)) and 2C8 (1438 A(3)). Further studies are required to delineate the molecular mechanisms involved in CYP2D6 ligand interactions and their implications for drug development and clinical practice.
Collapse
Affiliation(s)
- Bo Wang
- Department of Pediatrics, Guangdong Women and Children's Hospital, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
129
|
Regulation of hippocampal synaptic plasticity by estrogen and progesterone. VITAMINS AND HORMONES 2010; 82:219-39. [PMID: 20472141 DOI: 10.1016/s0083-6729(10)82012-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Accumulating evidence indicates that the ovarian steroid hormones estrogen and progesterone regulate a wide variety of nonreproductive functions in the central nervous system by interacting with several molecular and cellular processes. A growing literature reporting results obtained in rodent models suggests that 17beta-estradiol, the most potent of the biologically relevant estrogens, facilitates some forms of learning and memory, and in particular, those involving hippocampus-dependent tasks. Hippocampal long-term potentiation and long-term depression of synaptic transmission are types of synaptic plasticity that have been extensively studied, as they are considered as cellular models of memory formation in the brain. In this chapter, we review the literature that analyzes and compares the effects of estrogen and progesterone on synaptic transmission and synaptic plasticity in rodents. Understanding the nonreproductive functions of estrogen and progesterone in the hippocampus has far-reaching implications not only for our basic understanding of neuroendocrinology and neurobiology, but also for developing better treatment of age-related diseases such as Alzheimer's disease.
Collapse
|
130
|
Akk G, Covey DF, Evers AS, Steinbach JH, Zorumski CF, Mennerick S. The influence of the membrane on neurosteroid actions at GABA(A) receptors. Psychoneuroendocrinology 2009; 34 Suppl 1:S59-66. [PMID: 19541427 PMCID: PMC2794963 DOI: 10.1016/j.psyneuen.2009.05.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 05/26/2009] [Accepted: 05/26/2009] [Indexed: 11/27/2022]
Abstract
Modern views of anesthetic neurosteroid interaction with the GABA(A) receptor conceptualize steroid ligands interacting with a protein binding site on the receptor. It has generally been assumed that the steroid interaction/binding site is contained in an extracellular domain of the receptor, and that steroid interactions are of high potency, evidenced by the low aqueous ligand concentrations required to achieve potentiation of channel function. We have been considering implications of the observations that steroids are quite lipophilic and that recently identified putative steroid binding sites are in transmembrane domains of the receptor. Accordingly, we expect that both the effective plasma membrane steroid concentration and steroid pharmacophore properties will contribute to steady-state potency and to the lifetime of steroid actions following removal of free aqueous steroid. Here we review our recent studies that address the evidence that membrane partitioning and intracellular accumulation are non-specific contributors to the effects of anesthetic steroids at GABA(A) receptors. We compare and contrast the profile of anesthetic steroids with that of sulfated steroids that negatively regulate GABA(A) receptor function. These studies give rise to the view that the inherent affinity of anesthetic steroid for GABA(A) receptors is very low; low effective aqueous concentrations are accounted for by lipid partitioning. This yields a very different picture of the interaction of neurosteroids with the GABA(A) receptor than that of steroid interactions with classical intracellular steroid receptors, which exhibit inherently high affinity. These considerations have practical implications for actions of endogenous neurosteroids. Lipophilicity will tend to promote autocrine actions of neurosteroids at GABA(A) receptors within cells that synthesize neurosteroids, and lipophilic retention will limit intercellular diffusion from the source of steroid synthesis. Lipophilicity and steroid access to the receptor binding sites also must be considerations in drug design if drugs are to effectively reach the target GABA(A) receptor site.
Collapse
Affiliation(s)
- Gustav Akk
- Department of Anesthesiology, Washington University School of Medicine 660 S. Euclid Ave. St. Louis, MO 63110
| | - Douglas F. Covey
- Department of Developmental Biology, Washington University School of Medicine 660 S. Euclid Ave. St. Louis, MO 63110
| | - Alex S. Evers
- Department of Anesthesiology, Washington University School of Medicine 660 S. Euclid Ave. St. Louis, MO 63110,Department of Developmental Biology, Washington University School of Medicine 660 S. Euclid Ave. St. Louis, MO 63110
| | - Joe Henry Steinbach
- Department of Anesthesiology, Washington University School of Medicine 660 S. Euclid Ave. St. Louis, MO 63110,Department of Anatomy & Neurobiology, Washington University School of Medicine 660 S. Euclid Ave. St. Louis, MO 63110
| | - Charles F. Zorumski
- Department of Anatomy & Neurobiology, Washington University School of Medicine 660 S. Euclid Ave. St. Louis, MO 63110,Department of Psychiatry, Washington University School of Medicine 660 S. Euclid Ave. St. Louis, MO 63110
| | - Steven Mennerick
- Department of Anatomy & Neurobiology, Washington University School of Medicine 660 S. Euclid Ave. St. Louis, MO 63110,Department of Psychiatry, Washington University School of Medicine 660 S. Euclid Ave. St. Louis, MO 63110
| |
Collapse
|
131
|
Jevtovic-Todorovic V, Covey DF, Todorovic SM. Are neuroactive steroids promising therapeutic agents in the management of acute and chronic pain? Psychoneuroendocrinology 2009; 34 Suppl 1:S178-85. [PMID: 19577375 PMCID: PMC2795041 DOI: 10.1016/j.psyneuen.2009.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 04/28/2009] [Accepted: 06/02/2009] [Indexed: 10/20/2022]
Abstract
Neuroactive steroids with potentiating effects on GABA(A) channels and inhibitory effects on T-type Ca2+ channels which are located in peripheral sensory neurons are potent modulators of pain perception. The focus of this review is on peripheral anti-nociceptive properties of 5alpha- and 5beta-reduced neuroactive steroids with either selective or combined modulatory action on GABA(A) and T-type Ca2+ channel-mediated neurotransmission. We report that these neuroactive steroids are very effective in alleviating peripheral nociception in both acute and chronic pain conditions in animal models of pain. We believe that promising animal data warrant the exploration of their usefulness in clinical settings especially considering the fact that chronic pain sufferers are often young and otherwise healthy people.
Collapse
Affiliation(s)
- Vesna Jevtovic-Todorovic
- Department of Anesthesiology, University of Virginia Health System, PO Box 800710, Charlottesville, VA, USA.
| | - Douglas F. Covey
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Slobodan M. Todorovic
- Department of Anesthesiology, University of Virginia Health System, PO Box 800710, Charlottesville, VA
| |
Collapse
|
132
|
Neurosteroids' effects and mechanisms for social, cognitive, emotional, and physical functions. Psychoneuroendocrinology 2009; 34 Suppl 1:S143-61. [PMID: 19656632 PMCID: PMC2898141 DOI: 10.1016/j.psyneuen.2009.07.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 07/03/2009] [Accepted: 07/08/2009] [Indexed: 12/23/2022]
Abstract
Hormones are trophic factors that integrate central and peripheral nervous system functions, and can influence social, cognitive, emotional and physical (SCEP) processes. Greater understanding of behavioral and neurobiological underpinnings of mental, cognitive, and/or physical changes with maturation is becoming increasingly important as the world's population ages. There are individual differences in how people age, but the factors that influence these differences are not well understood. Social supports are one factor that may influence the trajectory of age-related processes. The loss of close relationships, especially among older persons, is one of the greatest risk factors for mental and physical decline. Progesterone, secreted by the ovaries, or produced de novo in the brain, is readily converted centrally to 5alpha-pregnan-3alpha-ol-20-one (3alpha,5alpha-THP), and can influence SCEP, through rapid, non-classical steroid-mediated actions. Our hypothesis is that 3alpha,5alpha-THP is a key trophic factor in SCEP and development. Our research has demonstrated that 3alpha,5alpha-THP facilitates social and sexual behavior of rodents, which evokes further increases in 3alpha,5alpha-THP in midbrain and hippocampus, brain areas involved in SCEP. The role of 3alpha,5alpha-THP to influence social and/or sexual experience, and thereby SCEP, is discussed in this review. Further understanding of these neurobiological and/or behavioral factors may lead to findings that ultimately can promote health and prevent disease.
Collapse
|
133
|
Lambert JJ, Cooper MA, Simmons RDJ, Weir CJ, Belelli D. Neurosteroids: endogenous allosteric modulators of GABA(A) receptors. Psychoneuroendocrinology 2009; 34 Suppl 1:S48-58. [PMID: 19758761 DOI: 10.1016/j.psyneuen.2009.08.009] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 08/04/2009] [Accepted: 08/05/2009] [Indexed: 11/16/2022]
Abstract
In the mammalian central nervous system activation of the ionotropic GABA(A) receptor by the neurotransmitter GABA plays a crucial role in controlling neuronal excitability. This essential form of neuronal regulation may be subject to "fine tuning" by particular metabolites of progesterone and deoxycorticosterone, which bind directly to the GABA(A) receptor to enhance the actions of GABA. Originally such steroids were considered to act as endocrine messengers, being synthesised in peripheral glands such as the adrenals and ovaries and crossing the blood brain barrier to influence neuronal signalling. However, it is now evident that certain neurons and glia may produce such "neurosteroids" and that these locally synthesised modulators may act in a paracrine, or indeed an autocrine manner to influence neuronal activity. Neurosteroid synthesis may change dynamically in a variety of physiological situations (e.g. stress, pregnancy) and perturbations in their levels are implicated in a variety of neurological and psychiatric disorders. Here we will consider (1) evidence supporting the concept that neurosteroids act as local regulators of neuronal inhibition, (2) that extrasynaptic GABA(A) receptors appear to be a particularly important neurosteroid target and (3) recent advances in defining the neurosteroid binding site(s) on the GABA(A) receptor.
Collapse
Affiliation(s)
- Jeremy J Lambert
- Centre for Neuroscience, Division of Medical Sciences, Ninewells Hospital & Medical School, University of Dundee, Ninewells Avenue, Dundee DD19SY, Scotland, UK.
| | | | | | | | | |
Collapse
|
134
|
Maguire J, Mody I. Steroid hormone fluctuations and GABA(A)R plasticity. Psychoneuroendocrinology 2009; 34 Suppl 1:S84-90. [PMID: 19632051 PMCID: PMC3399241 DOI: 10.1016/j.psyneuen.2009.06.019] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 05/29/2009] [Accepted: 06/27/2009] [Indexed: 11/29/2022]
Abstract
Conditions of changing steroid hormone levels are a particularly vulnerable time for the manifestation of neurological disorders, including catamenial epilepsy, premenstrual syndrome (PMS), and postpartum depression. The pathophysiology of these disorders may be related to changes in neurosteroid levels, which can dramatically impact neuronal excitability. Robust changes in neurosteroid levels, such as those that occur following stress, over the ovarian cycle, and throughout pregnancy, profoundly alter GABAA receptor (GABAAR) structure and function and underlie the associated changes in neuronal excitability. A moderate and brief exposure to elevated neurosteroids, such as those that occur over the ovarian cycle and following an acute stressful episode, result in a decrease in GABAAR gamma2 subunit expression and an increase in GABAAR delta subunit expression. These changes are accompanied by a decrease in seizure susceptibility and decreased anxiety-like behavior in mice, demonstrating altered neuronal excitability associated with changes in the receptor composition. More robust changes in steroid hormone levels, such as those that occur throughout pregnancy, result in a decrease in both GABAAR gamma2 and delta subunit expression and are associated with an increase in neuronal excitability evident from the shift in the input-output relationship. Alterations in GABAAR subunit composition may represent a homeostatic mechanism to maintain an ideal level of inhibition in the face of fluctuating neurosteroid levels. Neurosteroids potentiate the effects of GABA on GABAARs, particularly those containing the delta subunit, and reorganization of these receptors may be necessary to prevent sedation and/or anaesthesia in the face of high levels of neurosteroids or to prevent hyperexcitability in the absence of these compounds. Alterations in GABAARs under conditions of altered steroid hormone levels result in measurable changes in neuronal excitability and dysregulation of GABAARs may play a role in steroid hormone-associated neurological disorders.
Collapse
Affiliation(s)
- Jamie Maguire
- Department of Neurology, The David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | |
Collapse
|
135
|
Chesnoy-Marchais D. Progesterone and allopregnanolone enhance the miniature synaptic release of glycine in the rat hypoglossal nucleus. Eur J Neurosci 2009; 30:2100-11. [PMID: 19930400 DOI: 10.1111/j.1460-9568.2009.07013.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
It is well known that progesterone is synthesised and metabolised within the nervous system, and that one of its metabolites, allopregnanolone, potentiates the activity of GABA receptor anionic channels and modulates GABAergic neurotransmission. Progesterone is now under clinical trial for its neuroprotective properties, but its possible effects on neurotransmission have not yet been fully explored. The present study investigated acute effects of progesterone on the other major type of synaptic inhibition, glycinergic neurotransmission. Spontaneous glycinergic miniature currents were recorded in hypoglossal motoneurons, using the whole-cell patch-clamp technique in rat brainstem slices. A 20-min superfusion with progesterone (1 mum) triggered an increase in the frequency of glycinergic miniatures, whereas no effect of progesterone was observed after block with finasteride (5 mum) of 5alpha -reductase, the first enzymatic step leading from progesterone to allopregnanolone. The effect of progesterone could be mimicked by superfusion with allopregnanolone (0.3 mum), whereas no effect was induced by epiallopregnanolone. Thus, progesterone can increase the synaptic miniature release of glycine and this effect appears to be indirect, resulting from its metabolism into 5alpha-reduced derivatives, in particular into allopregnanolone. A low concentration of an exogenous GABA(A) agonist can also increase the frequency of inhibitory miniature currents in hypoglossal motoneurons. Thus, the effects of progesterone and allopregnanolone on glycine release can be at least partly explained by the potentiation of the activity of depolarizing presynaptic GABA receptor channels. The increase in the tonic synaptic release of a major inhibitory neurotransmitter should reduce the excitability of the neurons and contribute to their protection against excitotoxicity.
Collapse
Affiliation(s)
- Dominique Chesnoy-Marchais
- UMR 788 INSERM-University Paris-Sud 11 Steroids, neuroprotection and neuroregeneration, Bâtiment Grégory Pincus, 80 rue du Général Leclerc, 94276 Le Kremlin-Bicêtre Cedex, France.
| |
Collapse
|
136
|
Belelli D, Harrison NL, Maguire J, Macdonald RL, Walker MC, Cope DW. Extrasynaptic GABAA receptors: form, pharmacology, and function. J Neurosci 2009; 29:12757-63. [PMID: 19828786 PMCID: PMC2784229 DOI: 10.1523/jneurosci.3340-09.2009] [Citation(s) in RCA: 364] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 08/20/2009] [Accepted: 08/21/2009] [Indexed: 11/21/2022] Open
Abstract
GABA is the principal inhibitory neurotransmitter in the CNS and acts via GABA(A) and GABA(B) receptors. Recently, a novel form of GABA(A) receptor-mediated inhibition, termed "tonic" inhibition, has been described. Whereas synaptic GABA(A) receptors underlie classical "phasic" GABA(A) receptor-mediated inhibition (inhibitory postsynaptic currents), tonic GABA(A) receptor-mediated inhibition results from the activation of extrasynaptic receptors by low concentrations of ambient GABA. Extrasynaptic GABA(A) receptors are composed of receptor subunits that convey biophysical properties ideally suited to the generation of persistent inhibition and are pharmacologically and functionally distinct from their synaptic counterparts. This mini-symposium review highlights ongoing work examining the properties of recombinant and native extrasynaptic GABA(A) receptors and their preferential targeting by endogenous and clinically relevant agents. In addition, it emphasizes the important role of extrasynaptic GABA(A) receptors in GABAergic inhibition throughout the CNS and identifies them as a major player in both physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Delia Belelli
- Division of Medical Sciences, Centre for Neuroscience, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, United Kingdom
| | - Neil L. Harrison
- Department of Anesthesiology, Columbia University, New York, New York 10032-3784
| | - Jamie Maguire
- Department of Neurology, University of California, Los Angeles, Los Angeles, California 90095-73352
| | - Robert L. Macdonald
- Departments of Neurology
- Molecular Physiology and Biophysics, and
- Pharmacology, Vanderbilt University, Nashville, Tennessee 37212
| | - Matthew C. Walker
- Institute of Neurology, University College London, London WC1N 2BG, United Kingdom, and
| | - David W. Cope
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom
| |
Collapse
|
137
|
Pettersson H, Lundqvist J, Oliw E, Norlin M. CYP7B1-mediated metabolism of 5alpha-androstane-3alpha,17beta-diol (3alpha-Adiol): a novel pathway for potential regulation of the cellular levels of androgens and neurosteroids. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:1206-15. [PMID: 19732851 DOI: 10.1016/j.bbalip.2009.08.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 08/18/2009] [Accepted: 08/24/2009] [Indexed: 10/20/2022]
Abstract
The current study presents data indicating that 5alpha-androstane-3alpha,17beta-diol (3alpha-Adiol) undergoes a previously unknown metabolism into hydroxymetabolites, catalyzed by CYP7B1. 3alpha-Adiol is an androgenic steroid which serves as a source for the potent androgen dihydrotestosterone and also can modulate gamma-amino butyric acid A (GABA(A)) receptor function in the brain. The steroid hydroxylase CYP7B1 is known to metabolize cholesterol derivatives, sex hormone precursors and certain estrogens, but has previously not been thought to act on androgens or 3alpha-hydroxylated steroids. 3alpha-Adiol was found to undergo NADPH-dependent metabolism into 6- and 7-hydroxymetabolites in incubations with porcine microsomes and human kidney-derived HEK293 cells, which are high in CYP7B1 content. This metabolism was suppressed by addition of steroids known to be metabolized by CYP7B1. In addition, 3alpha-Adiol significantly suppressed CYP7B1-mediated catalytic reactions, in a way as would be expected for substrates that compete for the same enzyme. Recombinant expression of human CYP7B1 in HEK293 cells significantly increased the rate of 3alpha-Adiol hydroxylation. Furthermore, the observed hydroxylase activity towards 3alpha-Adiol was very low or undetectable in livers of Cyp7b1(-/-) knockout mice. The present results indicate that CYP7B1-mediated catalysis may play a role for control of the cellular levels of androgens, not only of estrogens. These findings suggest a previously unknown mechanism for metabolic elimination of 3alpha-Adiol which may impact intracellular levels of dihydrotestosterone and GABA(A)-modulating steroids.
Collapse
Affiliation(s)
- Hanna Pettersson
- Department of Pharmaceutical Biosciences, Division of Biochemistry, University of Uppsala, Biomedical Centre Box 578, S-751 23 Uppsala, Sweden
| | | | | | | |
Collapse
|
138
|
Li P, Bandyopadhyaya AK, Covey DF, Steinbach JH, Akk G. Hydrogen bonding between the 17beta-substituent of a neurosteroid and the GABA(A) receptor is not obligatory for channel potentiation. Br J Pharmacol 2009; 158:1322-9. [PMID: 19702782 DOI: 10.1111/j.1476-5381.2009.00390.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Potentiating neurosteroids are some of the most efficacious modulators of the mammalian GABA(A) receptor. One of the crucial interactions may be between the C20 ketone group (D-ring substituent at C17) of the neurosteroid, and the N407 and Y410 residues in the M4 domain of the receptor. In this study, we examined the contribution of hydrogen bonding between 17beta-substituents on the steroid D-ring and the GABA(A) receptor to potentiation by neurosteroids. EXPERIMENTAL APPROACH Whole-cell and single-channel recordings were made from HEK 293 cells transiently expressing wild-type and mutant alpha1beta2gamma2L GABA(A) receptors. KEY RESULTS A steroid with a 17beta-carbonitrile group (3alpha5alpha18nor17betaCN) was a potent and efficacious potentiator of the GABA(A) receptor. Potentiation was also shown by a cyclosteroid in which C21 and the C18 methyl group of (3alpha,5alpha)-3-hydroxypregnan-20-one are connected within a six-membered ring containing a double bond as a hydrogen bond acceptor (3alpha5alphaCDNC12), a steroid containing a 17beta-ethyl group on the D-ring (3alpha5alpha17betaEt) and a steroid lacking a 17beta-substituent on the D-ring (3alpha5alpha17H). Single-channel kinetic analysis indicates that the kinetic mechanism of action is the same for the neurosteroid 3alpha5alphaP, 3alpha5alpha18nor17betaCN, 3alpha5alphaCDNC12, 3alpha5alpha17betaEt and 3alpha5alpha17H. Interestingly, 3alpha5alpha17betaEt, at up to 3 microM, was incapable of potentiating the alpha1N407A/Y410F double mutant receptor. CONCLUSIONS AND IMPLICATIONS Hydrogen bonding between the steroid 17beta-substituent and the GABA(A) receptor is not a critical requirement for channel potentiation. The alpha1N407/Y410 residues are important for neurosteroid potentiation for reasons other than hydrogen bonding between steroid and receptor.
Collapse
Affiliation(s)
- Ping Li
- Department of Anesthesiology, Washington University in St Louis, St Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
139
|
Reddy DS. The role of neurosteroids in the pathophysiology and treatment of catamenial epilepsy. Epilepsy Res 2009; 85:1-30. [PMID: 19406620 PMCID: PMC2696558 DOI: 10.1016/j.eplepsyres.2009.02.017] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 02/23/2009] [Accepted: 02/25/2009] [Indexed: 01/14/2023]
Abstract
Catamenial epilepsy is a multifaceted neuroendocrine condition in which seizures are clustered around specific points in the menstrual cycle, most often around perimenstrual or periovulatory period. Generally, a twofold or greater increase in seizure frequency during a particular phase of the menstrual cycle could be considered as catamenial epilepsy. Based on this criteria, recent clinical studies indicate that catamenial epilepsy affects 31-60% of the women with epilepsy. Three types of catamenial seizures (perimenstrual, periovulatory and inadequate luteal) have been identified. However, there is no specific drug available today for catamenial epilepsy, which has not been successfully treated with conventional antiepileptic drugs. Elucidation of the pathophysiology of catamenial epilepsy is a prerequisite to develop specific targeted approaches for treatment or prevention of the disorder. Cyclical changes in the circulating levels of estrogens and progesterone play a central role in the development of catamenial epilepsy. There is emerging evidence that endogenous neurosteroids with anticonvulsant or proconvulsant effects could play a critical role in catamenial epilepsy. It is thought that perimenstrual catamenial epilepsy is associated with the withdrawal of anticonvulsant neurosteroids. Progesterone and other hormonal agents have been shown in limited trials to be moderately effective in catamenial epilepsy, but may cause endocrine side effects. Synthetic neurosteroids, which enhance the tonic GABA-A receptor function, might provide an effective approach for the catamenial epilepsy therapy without producing hormonal side effects.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, 228 Reynolds Medical Building, College Station, TX 77843-1114, USA.
| |
Collapse
|
140
|
Zhan RZ, Nadler JV. Enhanced tonic GABA current in normotopic and hilar ectopic dentate granule cells after pilocarpine-induced status epilepticus. J Neurophysiol 2009; 102:670-81. [PMID: 19474175 DOI: 10.1152/jn.00147.2009] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In temporal lobe epilepsy, loss of inhibitory neurons and circuit changes in the dentate gyrus promote hyperexcitability. This hyperexcitability is compensated to the point that dentate granule cells exhibit normal or even subnormal excitability under some conditions. This study explored the possibility that compensation involves enhanced tonic GABA inhibition. Whole cell patch-clamp recordings were made from normotopic granule cells in hippocampal slices from control rats and from both normotopic and hilar ectopic granule cells in slices from rats subjected to pilocarpine-induced status epilepticus. After status epilepticus, tonic GABA current was an order of magnitude greater than control in normotopic granule cells and was significantly greater in hilar ectopic than in normotopic granule cells. These differences could be observed whether or not the extracellular GABA concentration was increased by adding GABA to the superfusion medium or blocking plasma membrane transport. The enhanced tonic GABA current had both action potential-dependent and action potential-independent components. Pharmacological studies suggested that the small tonic GABA current of granule cells in control rats was mediated largely by high-affinity alpha(4)beta(x)delta GABA(A) receptors but that the much larger current recorded after status epilepticus was mediated largely by the lower-affinity alpha(5)beta(x)gamma(2) GABA(A) receptors. A large alpha(5)beta(x)gamma(2)-mediated tonic current could be recorded from controls only when the extracellular GABA concentration was increased. Status epilepticus seemed not to impair the control of extracellular GABA concentration by plasma membrane transport substantially. Upregulated tonic GABA inhibition may account for the unexpectedly modest excitability of the dentate gyrus in epileptic brain.
Collapse
Affiliation(s)
- Ren-Zhi Zhan
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
141
|
Brunton PJ, McKay AJ, Ochedalski T, Piastowska A, Rebas E, Lachowicz A, Russell JA. Central opioid inhibition of neuroendocrine stress responses in pregnancy in the rat is induced by the neurosteroid allopregnanolone. J Neurosci 2009; 29:6449-60. [PMID: 19458216 PMCID: PMC6665894 DOI: 10.1523/jneurosci.0708-09.2009] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 04/08/2009] [Accepted: 04/09/2009] [Indexed: 12/31/2022] Open
Abstract
The hypothalamus-pituitary-adrenal (HPA) axis is the major neuroendocrine stress response system. Corticotropin-releasing hormone (CRH) neurons in the parvocellular paraventricular nucleus (pPVN) play a key role in coordinating responses of this system to stressors. The cytokine interleukin-1beta (IL-1beta), mimicking infection, robustly activates these CRH neurons via a noradrenergic input arising from the nucleus tractus solitarii (NTS). In late pregnancy, HPA axis responses to stressors, including IL-1beta, are attenuated by a central opioid mechanism that auto-inhibits noradrenaline release in the PVN. Here we show that the neuroactive progesterone metabolite allopregnanolone induces these changes in HPA responsiveness to IL-1beta in pregnancy. In late pregnancy, inhibition of 5alpha-reductase (an allopregnanolone-synthesizing enzyme) with finasteride restored HPA axis responses (rapidly increased pPVN CRH mRNA expression, ACTH, and corticosterone secretion) to IL-1beta. Conversely, allopregnanolone reduced HPA responses in virgin rats. In late pregnancy, activity of the allopregnanolone-synthesizing enzymes (5alpha-reductase and 3alpha-hydroxysteroid dehydrogenase) was increased in the hypothalamus as was mRNA expression in the NTS and PVN. Naloxone, an opioid antagonist, restores HPA axis responses to IL-1beta in pregnancy but had no additional effect after finasteride, indicating a causal connection between allopregnanolone and the endogenous opioid mechanism. Indeed, allopregnanolone induced opioid inhibition over HPA responses to IL-1beta in virgin rats. Furthermore, in virgin rats, allopregnanolone treatment increased, whereas in pregnant rats finasteride decreased proenkephalin-A mRNA expression in the NTS. Thus, in pregnancy, allopregnanolone induces opioid inhibition over HPA axis responses to immune challenge. This novel opioid-mediated mechanism of allopregnanolone action may alter regulation of other brain systems in pregnancy.
Collapse
Affiliation(s)
- Paula J Brunton
- Laboratory of Neuroendocrinology, Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
142
|
Papadopoulos V, Lecanu L. Translocator protein (18 kDa) TSPO: an emerging therapeutic target in neurotrauma. Exp Neurol 2009; 219:53-7. [PMID: 19409385 DOI: 10.1016/j.expneurol.2009.04.016] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 04/22/2009] [Indexed: 12/11/2022]
Abstract
Traumatic brain injury (TBI) induces physical, cognitive, and psychosocial deficits that affect millions of patients. TBI activates numerous cellular mechanisms and molecular cascades that produce detrimental outcomes, including neuronal death and loss of function. The mitochondrion is one of the major targets of TBI, as seen by increased mitochondrial activity in activated and proliferating microglia (due to high energy requirements and/or calcium overload) as well as increased reactive oxygen species, changes in mitochondrial permeability transition, release of cytochrome c, caspase activation, reduced ATP levels, and cell death in neurons. Translocator protein (TSPO) is an 18-kDa outer mitochondrial membrane protein that interacts with the mitochondria permeability transition pore and binds with high affinity to cholesterol and various classes of drug ligands, including some benzodiazepines such as 4'-chlorodiazepam (Ro5-4864). Although TSPO levels in the brain are low, they are increased after brain injury and inflammation. This finding has led to the proposed use of TSPO expression as a marker of brain injury and repair. TSPO drug ligands have been shown to participate in the control of mitochondrial respiration and function, mitochondrial steroid and neurosteroid formation, as well as apoptosis. This review and commentary will outline our current knowledge of the benefits of targeting TSPO for TBI treatment and the mechanisms underlying the neuroprotective effects of TSPO drug ligands in neurotrauma.
Collapse
Affiliation(s)
- Vassilios Papadopoulos
- The Research Institute of the McGill University Health Centre and Department of Medicine, McGill University, 1650 Cedar Avenue, Montreal, Quebec, Canada H3G 1A4.
| | | |
Collapse
|
143
|
Abstract
Most sedative-hypnotics used in insomnia treatment target the gamma-aminobutyric acid (GABA)(A) receptors. A vast repertoire of GABA(A) receptor subtypes has been identified and displays specific electrophysiological and functional properties. GABA(A)-mediated inhibition traditionally refers to 'phasic' inhibition, arising from synaptic GABA(A) receptors which transiently inhibit neurons. However, there is growing evidence that peri- or extra-synaptic GABA(A) receptors are continuously activated by low GABA concentrations and mediate a 'tonic' conductance. This slower type of signaling appears to play a key role in controlling cell excitability. This review aims at summarizing recent knowledge on GABA transmission, including the emergence of tonic conductance, and highlighting the importance of GABA(A) receptor heterogeneity. The mechanism of action of sedative-hypnotic drugs and their effects on sleep and the electroencephalogram will be reported. Furthermore, studies using genetically engineered mice will be emphasized, providing insights into the role of GABA(A) receptors in mechanisms underlying physiological and pharmacological sleep. Finally, we will address the potential of GABA(A) receptor pharmacology for the treatment of insomnia.
Collapse
Affiliation(s)
- Raphaëlle Winsky-Sommerer
- Section for Chronobiology and Sleep Research, Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
144
|
Petrovic M, Sedlacek M, Cais O, Horak M, Chodounska H, Vyklicky L. Pregnenolone sulfate modulation of N-methyl-D-aspartate receptors is phosphorylation dependent. Neuroscience 2009; 160:616-28. [PMID: 19272423 DOI: 10.1016/j.neuroscience.2009.02.052] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 02/24/2009] [Accepted: 02/25/2009] [Indexed: 11/24/2022]
Abstract
Pregnenolone sulfate (PS), an endogenously occurring neurosteroid, has been shown to modulate the activity of several neurotransmitter-gated channels, including the N-methyl-D-aspartate receptor (NMDAR). NMDARs are glutamate-gated ion channels involved in excitatory synaptic transmission, synaptic plasticity, and excitotoxicity. To determine the mechanism that controls PS sensitivity of NMDARs, we measured NMDAR responses induced by exogenous agonist application in voltage-clamped HEK293 cells expressing NR1/NR2B NMDARs and cultured rat hippocampal neurons. We report that PS potentiates the amplitude of whole-cell recorded NMDAR responses in cultured hippocampal neurons and HEK293 cells; however, the potentiating effect of PS on NMDAR in outside-out patches isolated from cultured hippocampal neurons and HEK293 cells was lost within 2 min after patch isolation in a neurosteroid-specific manner. The rate of diminution of the PS potentiating effect was slowed by protein phosphatase inhibitors. Treatment of cultured hippocampal neurons with a nonspecific protein kinase inhibitor and a specific protein kinase A (PKA) inhibitor diminished PS-induced potentiation, which was recovered by adding a PKA, but not a protein kinase C (PKC), activator. These results suggest that the effect of PS on NMDARs is controlled by cellular mechanisms that are mediated by dephosphorylation/phosphorylation pathways.
Collapse
Affiliation(s)
- M Petrovic
- Institute of Physiology, Academy of Sciences of the Czech Republic, Videnska, Prague 4, Czech Republic
| | | | | | | | | | | |
Collapse
|
145
|
Kaur KH, Baur R, Sigel E. Unanticipated structural and functional properties of delta-subunit-containing GABAA receptors. J Biol Chem 2009; 284:7889-96. [PMID: 19141615 DOI: 10.1074/jbc.m806484200] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GABA(A) receptors mediate inhibitory neurotransmission in the mammalian brain via synaptic and extrasynaptic receptors. The delta (delta)-subunit-containing receptors are expressed exclusively extra-synaptically and mediate tonic inhibition. In the present study, we were interested in determining the architecture of receptors containing the delta-subunit. To investigate this, we predefined the subunit arrangement by concatenation. We prepared five dual and three triple concatenated subunit constructs. These concatenated dual and triple constructs were used to predefine nine different GABA(A) receptor pentamers. These pentamers composed of alpha(1)-, beta(3)-, and delta-subunits were expressed in Xenopus oocytes and maximal currents elicited in response to 1 mm GABA were determined in the presence and absence of THDOC (3alpha, 21-dihydroxy-5alpha-pregnane-20-one). beta(3)-alpha(1)-delta/alpha(1)-beta(3) and beta(3)-alpha(1)-delta/beta(3)-alpha(1) resulted in the expression of large currents in response to GABA. Interestingly, the presence of the neurosteroid THDOC uncovered alpha(1)-beta(3)-alpha(1)/beta(3)-delta receptors, additionally. The functional receptors were characterized in detail using the agonist GABA, THDOC, Zn(2+), and ethanol and their properties were compared with those of non-concatenated alpha(1)beta(3) and alpha(1)beta(3)delta receptors. Each concatenated receptor isoform displayed a specific set of properties, but none of them responded to 30 mm ethanol. We conclude from the investigated receptors that delta can assume multiple positions in the receptor pentamer. The GABA dose-response properties of alpha(1)-beta(3)-alpha(1)/beta(3)-delta and beta(3)-alpha(1)-delta/alpha(1)-beta(3) match most closely the properties of non-concatenated alpha(1)beta(3)delta receptors. Furthermore, we show that the delta-subunit can contribute to the formation of an agonist site in alpha(1)-beta(3)-alpha(1)/beta(3)-delta receptors.
Collapse
Affiliation(s)
- Kuldeep H Kaur
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012 Bern, Switzerland
| | | | | |
Collapse
|
146
|
The effect of the neuroactive steroid 5beta-pregnane-3beta, 20(R)-diol on the time course of GABA evoked currents is different to that of pregnenolone sulphate. Eur J Pharmacol 2009; 605:78-86. [PMID: 19168059 DOI: 10.1016/j.ejphar.2008.12.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 12/02/2008] [Accepted: 12/18/2008] [Indexed: 01/19/2023]
Abstract
The endogenous progesterone metabolite allopregnanolone has a number of properties including anesthetic, sedative, antiepileptic, anxiolytic, impaired memory function and negative mood symptoms. Allopregnanolone is a potent positive GABA(A) receptor function modulators. In contrast, 3beta-hydroxy-steroids (3beta-steroids) usually modulate the GABA(A) receptor negatively. They have attracted some interest for their possible use as therapeutic agents that could counteract the negative symptoms induced by allopregnanolone. Two hypotheses for the action of 3beta-steroids have been proposed: 1) 3beta-steroids act in a similar way to pregnenolone sulphate, which non-competitively reduces GABA(A) receptor activity. 2) 3beta-steroids specifically antagonize the effect of allopregnanolone. We have therefore tried to clarify this issue by comparing the effect of pregnenolone sulphate and 5beta-pregnane-3beta, 20(R)-diol on the GABA-evoked currents by the patch clamp technique on neurons from the medial preoptic nucleus. Both pregnenolone sulphate and 5beta-pregnane-3beta, 20(R)-diol increase the desensitization rate of the current response evoked by a 2 s GABA application. However, their effects on other parameters of the GABA evoked currents differed in degree and sometimes even in direction. The actions of pregnenolone sulphate and 5beta-pregnane-3beta, 20(R)-diol were not altered in the presence of allopregnanolone, which indicates that they do not directly interact with allopregnanolone. In addition, when 5beta-pregnane-3beta, 20(R)-diol was tested on spontaneous inhibitory postsynaptic currents (sIPSCs), it dramatically reduced the allopregnanolone-induced prolongation of the decay time constant but it had no effect on the decay under control conditions. In conclusion, the effect of 5beta-pregnane-3beta, 20(R)-diol on GABA-evoked currents is different to that of pregnenolone sulphate in medial preoptic nucleus neurons.
Collapse
|
147
|
Jin X, Covey DF, Steinbach JH. Kinetic analysis of voltage-dependent potentiation and block of the glycine alpha 3 receptor by a neuroactive steroid analogue. J Physiol 2009; 587:981-97. [PMID: 19124545 DOI: 10.1113/jphysiol.2008.159343] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We examined the actions of a carboxylated analogue of pregnanolone ((3alpha,5beta)-20-oxopregnane-3-carboxylic acid; 3alphaCOOH5betaP) on receptors composed of glycine receptor alpha3 subunits, expressed in Xenopus oocytes. This analogue both inhibits and potentiates this receptor; potentiation increases with more negative membrane potentials while block increases with less negative membrane potentials. We used a second analogue ((3alpha,5beta)-3-hydroxymethylpregnan-20-one; 3alphaCH(2)OH5betaP) to examine the mechanism for voltage-dependent potentiation. This analogue potentiates but does not block the glycine alpha3 receptor. Steady-state responses and current relaxations following voltage jumps support the idea that the voltage dependence of potentiation indirectly arises from a voltage dependence for channel activation by glycine, rather than an intrinsic voltage dependence for potentiation. Potentiation results from a slowing of the channel deactivation rate. In the absence of steroid, at a low [glycine] current relaxations after a voltage jump show two exponential components, with a weighted average time constant of approximately 425 ms (-50 mV, 22 degrees C). The rate for channel deactivation increases at more negative potentials (e-fold per 170 mV) whereas activation decreases (e-fold per 230 mV). The probability a channel is active at a high [glycine] is greater than 0.9. The addition of 10 microM 3alphaCH(2)OH5betaP decreases the deactivation rate by 6.3-fold (-50 mV). Voltage-dependent block by 3alphaCOOH5betaP is consistent with simple open-channel block, with voltage dependence reflecting interactions of the charge on the analogue with the electrical field. Block and unblock have equal but opposite dependence on membrane potential, and the charge on 3alphaCOOH5betaP senses approximately 70% of the membrane field at the blocking site. The apparent forward rate for block, however, is very slow (2 x 10(5) m(-1) s(-1)).
Collapse
Affiliation(s)
- Xiaochun Jin
- Department of Anesthesiology, Washington University, 660 South Euclid Ave, St Louis, MO 63110, USA
| | | | | |
Collapse
|
148
|
Wafford KA, van Niel MB, Ma QP, Horridge E, Herd MB, Peden DR, Belelli D, Lambert JJ. Novel compounds selectively enhance delta subunit containing GABA A receptors and increase tonic currents in thalamus. Neuropharmacology 2009; 56:182-9. [PMID: 18762200 DOI: 10.1016/j.neuropharm.2008.08.004] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 08/04/2008] [Accepted: 08/05/2008] [Indexed: 10/21/2022]
Abstract
Inhibition in the brain is dominated by the neurotransmitter gamma-aminobutyric acid (GABA); operating through GABA(A) receptors. This form of neural inhibition was presumed to be mediated by synaptic receptors, however recent evidence has highlighted a previously unappreciated role for extrasynaptic GABA(A) receptors in controlling neuronal activity. Synaptic and extrasynaptic GABA(A) receptors exhibit distinct pharmacological and biophysical properties that differentially influence brain physiology and behavior. Here we used a fluorescence-based assay and cell lines expressing recombinant GABA(A) receptors to identify a novel series of benzamide compounds that selectively enhance, or activate alpha4beta3delta GABA(A) receptors (cf. alpha4beta3gamma2 and alpha1beta3gamma2). Utilising electrophysiological methods, we illustrate that one of these compounds, 4-chloro-N-[6,8-dibromo-2-(2-thienyl)imidazo[1,2-a]pyridine-3-yl benzamide (DS1) potently (low nM) enhances GABA-evoked currents mediated by alpha4beta3delta receptors. At similar concentrations DS1 directly activates this receptor and is the most potent known agonist of alpha4beta3delta receptors. 4-chloro-N-[2-(2-thienyl)imidazo[1,2-a]pyridine-3-yl benzamide (DS2) selectively potentiated GABA responses mediated by alpha4beta3delta receptors, but was not an agonist. Recent studies have revealed a tonic form of inhibition in thalamus mediated by the alpha4beta2delta extrasynaptic GABA(A) receptors that may contribute to the regulation of thalamocortical rhythmic activity associated with sleep, wakefulness, vigilance and seizure disorders. In mouse thalamic relay cells DS2 enhanced the tonic current mediated by alpha4beta2delta receptors with no effect on their synaptic GABA(A) receptors. Similarly, in mouse cerebellar granule cells DS2 potentiated the tonic current mediated by alpha6betadelta receptors. DS2 is the first selective positive allosteric modulator of delta-GABA(A) receptors and such compounds potentially offer novel therapeutic opportunities as analgesics and in the treatment of sleep disorders. Furthermore, these drugs may be valuable in elucidating the physiological and pathophysiological roles played by these extrasynaptic GABA(A) receptors.
Collapse
Affiliation(s)
- K A Wafford
- Department of Molecular and Cellular Neuroscience, Merck Sharp & Dohme Research Laboratories, The Neuroscience Research Centre, Harlow, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
149
|
Büttner A, Thieme D. Side effects of anabolic androgenic steroids: pathological findings and structure-activity relationships. Handb Exp Pharmacol 2009:459-84. [PMID: 20020376 DOI: 10.1007/978-3-540-79088-4_19] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Side effects of anabolic steroids with relevance in forensic medicine are mainly due to life-threatening health risks with potential fatal outcome and cases of uncertain limitations of criminal liability after steroid administration. Both problems are typically associated with long-term abuse and excessive overdose of anabolic steroids. Side effects may be due to direct genomic or nongenomic activities (myotrophic, hepatotoxic), can result from down-regulation of endogenous biosynthesis (antiandrogenic) or be indirect consequence of steroid biotransformation (estrogenic).Logically, there are no systematic clinical studies available and the number of causally determined fatalities is fairly limited. The following compilation reviews typical abundant observations in cases where nonnatural deaths (mostly liver failure and sudden cardiac death) were concurrent with steroid abuse. Moreover, frequent associations between structural characteristics and typical side effects are summarized.
Collapse
Affiliation(s)
- Andreas Büttner
- Institute of Legal Medicine, St.-Georg-Str. 108, 18055, Rostock, Germany
| | | |
Collapse
|
150
|
Wang JM, Brinton RD. Allopregnanolone-induced rise in intracellular calcium in embryonic hippocampal neurons parallels their proliferative potential. BMC Neurosci 2008; 9 Suppl 2:S11. [PMID: 19090984 PMCID: PMC2604895 DOI: 10.1186/1471-2202-9-s2-s11] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background Factors that regulate intracellular calcium concentration are known to play a critical role in brain function and neural development, including neural plasticity and neurogenesis. We previously demonstrated that the neurosteroid allopregnanolone (APα; 5α-pregnan-3α-ol-20-one) promotes neural progenitor proliferation in vitro in cultures of rodent hippocampal and human cortical neural progenitors, and in vivo in triple transgenic Alzheimer's disease mice dentate gyrus. We also found that APα-induced proliferation of neural progenitors is abolished by a calcium channel blocker, nifedipine, indicating a calcium dependent mechanism for the proliferation. Methods In the present study, we investigated the effect of APα on the regulation of intracellular calcium concentration in E18 rat hippocampal neurons using ratiometric Fura2-AM imaging. Results Results indicate that APα rapidly increased intracellular calcium concentration in a dose-dependent and developmentally regulated manner, with an EC50 of 110 ± 15 nM and a maximal response occurring at three days in vitro. The stereoisomers 3β-hydroxy-5α-hydroxy-pregnan-20-one, and 3β-hydroxy-5β-hydroxy-pregnan-20-one, as well as progesterone, were without significant effect. APα-induced intracellular calcium concentration increase was not observed in calcium depleted medium and was blocked in the presence of the broad spectrum calcium channel blocker La3+, or the L-type calcium channel blocker nifedipine. Furthermore, the GABAA receptor blockers bicuculline and picrotoxin abolished APα-induced intracellular calcium concentration rise. Conclusion Collectively, these data indicate that APα promotes a rapid, dose-dependent, stereo-specific, and developmentally regulated increase of intracellular calcium concentration in rat embryonic hippocampal neurons via a mechanism that requires both the GABAA receptor and L-type calcium channel. These data suggest that APα-induced intracellular calcium concentration increase serves as the initiation mechanism whereby APα promotes neurogenesis.
Collapse
Affiliation(s)
- Jun Ming Wang
- Department of Pharmacology and Pharmaceutical Sciences and Program in Neuroscience, University of Southern California, Los Angeles, CA 90089, USA.
| | | |
Collapse
|