101
|
Zhou Y, Zhang X, Yang S, Li Y, Qing Z, Zheng J, Li J, Yang R. Ratiometric Visualization of NO/H 2S Cross-Talk in Living Cells and Tissues Using a Nitroxyl-Responsive Two-Photon Fluorescence Probe. Anal Chem 2017; 89:4587-4594. [PMID: 28343380 DOI: 10.1021/acs.analchem.7b00073] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
It is of scientific significance to explore the intricate relationship between two crucial gasotransmitters nitric oxide (NO) and hydrogen sulfide (H2S) because they exert similar and interdependent biological actions within the living organisms. Nevertheless, visualization of the NO/H2S crosstalk using effective molecular imaging tools remains challenging. To address this issue, and given that nitroxyl (HNO) has been implicated as the interdependent production of NO and H2S via a network of cascading chemical reactions, we herein design a ratiometric two-photon fluorescent probe for HNO, termed TP-Rho-HNO, which consists of benzo[h]chromene-rhodol scaffold as two-photon energy transfer cassette with phosphine moiety as specific HNO recognition unit. The newly proposed probe has been successfully applied in ratiometric two-photon bioimaging of endogenous HNO derived from NO and H2S interaction in the human umbilical vein cells (HUVECs) and as well as in rat brain tissues. Intriguingly, the imaging results consistently demonstrate that the mutually dependent upgeneration of H2S and NO are present in living biosystems, indicating that this molecular probe would provide a powerful approach to elucidate the chemical foundation for the anfractuous cross-talk between the NO and H2S signaling pathways in biology.
Collapse
Affiliation(s)
- Yibo Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, and Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University , Changsha, 410082, P. R. China
| | - Xiufang Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, and Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University , Changsha, 410082, P. R. China
| | - Sheng Yang
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Biological Engineering, Changsha University of Science and Technology , Changsha 410114, P. R. China
| | - Yuan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, and Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University , Changsha, 410082, P. R. China
| | - Zhihe Qing
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Biological Engineering, Changsha University of Science and Technology , Changsha 410114, P. R. China
| | - Jing Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, and Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University , Changsha, 410082, P. R. China
| | - Jishan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, and Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University , Changsha, 410082, P. R. China
| | - Ronghua Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, and Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University , Changsha, 410082, P. R. China.,Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Biological Engineering, Changsha University of Science and Technology , Changsha 410114, P. R. China
| |
Collapse
|
102
|
Li XH, Xue WL, Wang MJ, Zhou Y, Zhang CC, Sun C, Zhu L, Liang K, Chen Y, Tao BB, Tan B, Yu B, Zhu YC. H 2S regulates endothelial nitric oxide synthase protein stability by promoting microRNA-455-3p expression. Sci Rep 2017; 7:44807. [PMID: 28322298 PMCID: PMC5359669 DOI: 10.1038/srep44807] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/15/2017] [Indexed: 12/11/2022] Open
Abstract
The aims of the present study are to determine whether hydrogen sulfide (H2S) is involved in the expression of endothelial nitric oxide synthase (eNOS) and nitric oxide (NO) production, and to identify the role of microRNA-455-3p (miR-455-3p) during those processes. In cultured human umbilical vein endothelial cells (HUVECs), the expression of miR-455-3p, eNOS protein and the NO production was detected after administration with 50 μM NaHS. The results indicated that H2S could augment the expression of miR-455-3p and eNOS protein, leading to the increase of NO level. We also found that overexpression of miR-455-3p in HUVECs increased the protein levels of eNOS whereas inhibition of miR-455-3p decreased it. Moreover, H2S and miR-455-3p could no longer increase the protein level of eNOS in the presence of proteasome inhibitor, MG-132. In vivo, miR-455-3p and eNOS expression were considerably increased in C57BL/6 mouse aorta, muscle and heart after administration with 50 μmol/kg/day NaHS for 7 days. We also identified that H2S levels and miR-455-3p expression increased in human atherosclerosis plaque while H2S levels decreased in plasma of atherosclerosis patients. Our data suggest that the stability of eNOS protein and the NO production could be regulated by H2S through miR-455-3p.
Collapse
Affiliation(s)
- Xing-Hui Li
- Research Center on Aging and Medicine, Fudan University, Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wen-Long Xue
- Research Center on Aging and Medicine, Fudan University, Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ming-Jie Wang
- Research Center on Aging and Medicine, Fudan University, Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu Zhou
- Research Center on Aging and Medicine, Fudan University, Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cai-Cai Zhang
- Research Center on Aging and Medicine, Fudan University, Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of physiology, Hainan Medical College, Haikou, Hainan 571101, China
| | - Chen Sun
- Research Center on Aging and Medicine, Fudan University, Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lei Zhu
- Department of Vascular Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Kun Liang
- Department of Vascular Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Ying Chen
- Research Center on Aging and Medicine, Fudan University, Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bei-Bei Tao
- Research Center on Aging and Medicine, Fudan University, Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bo Tan
- Department of Clinical Pharmacology, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bo Yu
- Department of Vascular Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yi-Chun Zhu
- Research Center on Aging and Medicine, Fudan University, Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
103
|
Donnarumma E, Trivedi RK, Lefer DJ. Protective Actions of H2S in Acute Myocardial Infarction and Heart Failure. Compr Physiol 2017; 7:583-602. [PMID: 28333381 DOI: 10.1002/cphy.c160023] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hydrogen sulfide (H2S) was identified as the third gasotransmitter in 1996 following the discoveries of the biological importance of nitric oxide and carbon monoxide. Although H2S has long been considered a highly toxic gas, the discovery of its presence and enzymatic production in mammalian tissues supports a critical role for this physiological signaling molecule. H2S is synthesized endogenously by three enzymes: cystathionine β-synthase, cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase. H2S plays a pivotal role in the regulation of cardiovascular function as H2S has been shown to modulate: vasodilation, angiogenesis, inflammation, oxidative stress, and apoptosis. Perturbation of endogenous production of H2S has been associated with many pathological conditions of the cardiovascular system such as diabetes, heart failure, and hypertension. As such, modulation of the endogenous H2S signaling pathway or administration of exogenous H2S has been shown to be cytoprotective. This review article will provide a summary of the current body of evidence on the role of H2S signaling in the setting of myocardial ischemia and heart failure. © 2017 American Physiological Society. Compr Physiol 7:583-602, 2017.
Collapse
Affiliation(s)
- Erminia Donnarumma
- Cardiovascular Center of Excellence Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Rishi K Trivedi
- Cardiovascular Center of Excellence Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - David J Lefer
- Cardiovascular Center of Excellence Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| |
Collapse
|
104
|
Stojanovic M, Zivkovic V, Srejovic I, Jakovljevic V, Jeremic N, Djuric D. The role of hydrogen sulfide in homocysteine-induced cardiodynamic effects and oxidative stress markers in the isolated rat heart. Physiol Int 2016; 103:428-438. [DOI: 10.1556/2060.103.2016.4.3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This study aimed to assess the role of H2S in homocysteine-induced cardiodynamic effects in the isolated rat heart. The hearts were retrogradely perfused according to the Langendorff technique. The maximum and minimum rates of pressure in the left ventricle (dp/dt max, dp/dt min), systolic and diastolic left ventricular pressures (SLVP, DLVP), heart rate (HR), and coronary flow (CF) were measured. A spectrophotometrical method was used to measure the following oxidative stress markers: index of lipid peroxidation (thiobarbituric acid reactive substances, TBARS), nitrite level (NO2−), superoxide anion radicals (O2•−), and hydrogen peroxide (H2O2) concentrations. The administration of 10 µmol/l DL-homocysteine (DL-Hcy) alone decreased dp/dt max, SLVP, and CF but did not change any oxidative stress parameters. The administration of 10 µmol/l DL-propargylglycine (DL-PAG) decreased all cardiodynamic parameters and increased the concentration of O2•−. The co-administration of DL-Hcy and DL-PAG induced a significant decrease in all estimated cardiodynamic parameters and decreased the concentration of NO2− and O2•− but increased the levels of TBARS and H2O2. Homocysteine shows a lower pro-oxidative effect in the presence of hydrogen sulfide (H2S), which indicates a potential anti-oxidative capacity of H2S.
Collapse
Affiliation(s)
- M Stojanovic
- 1 Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - V Zivkovic
- 1 Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - I Srejovic
- 1 Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - V Jakovljevic
- 1 Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - N Jeremic
- 2 Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - D Djuric
- 3 Institute of Medical Physiology “Richard Burian”, School of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
105
|
Gupta V, Kapopara PR, Khan AA, Arige V, Subramanian L, Sonawane PJ, Sasi BK, Mahapatra NR. Functional promoter polymorphisms direct the expression of cystathionine gamma-lyase gene in mouse models of essential hypertension. J Mol Cell Cardiol 2016; 102:61-73. [PMID: 27865915 DOI: 10.1016/j.yjmcc.2016.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 10/21/2016] [Accepted: 11/11/2016] [Indexed: 11/28/2022]
Abstract
Despite the well-known role of cystathionine γ-lyase (Cth) in cardiovascular pathophysiology, transcriptional regulation of Cth remains incompletely understood. Sequencing of the Cth promoter region in mouse models of genetic/essential hypertension (viz. Blood Pressure High [BPH], Blood Pressure Low [BPL] and Blood Pressure Normal [BPN] mice) identified several genetic variations. Transient transfections of BPH/BPL-Cth promoter-reporter plasmids into various cell types revealed higher promoter activity of BPL-Cth than that of BPH-Cth. Corroboratively, endogenous Cth mRNA levels in kidney and liver tissues were also elevated in BPL mice. Computational analysis of the polymorphic Cth promoter region predicted differential binding affinity of c-Rel, HOXA3 and IRF1 with BPL/BPH-Cth promoter domains. Over-expression of c-Rel/HOXA3/IRF1 modulated BPL/BPH-Cth promoter activities in a consistent manner. Gel shift assays using BPH/BPL-Cth-promoter oligonucleotides with/without binding sites for c-Rel/HOXA3/IRF1 displayed formation of specific complexes with c-Rel/HOXA3/IRF1; addition of antibodies to reaction mixtures resulted in supershifts/inhibition of Cth promoter-transcription factor complexes. Furthermore, chromatin immunoprecipitation (ChIP) assays proved differential binding of c-Rel, HOXA3 and IRF1 with the polymorphic promoter region of BPL/BPH-Cth. Tumor necrosis factor-α (TNF-α) reduced the activities of BPL/BPH-Cth promoters to different extents that were further declined by ectopic expression of IRF1; on the other hand, siRNA-mediated down-regulation of IRF1 rescued the TNF-α-mediated suppression of the BPL/BPH-Cth promoter activities. In corroboration, ChIP analysis revealed enhanced binding of IRF1 with BPH/BPL-Cth promoter following TNF-α treatment. BPL/BPH-Cth promoter activity was diminished upon exposure of hepatocytes and cardiomyoblasts to ischemia-like pathological condition due to reduced binding of c-Rel with BPL/BPH-Cth-promoter. Taken together, this study reveals the molecular basis for the differential expression of Cth in mouse models of essential hypertension under basal and pathophysiological conditions.
Collapse
Affiliation(s)
- Vinayak Gupta
- Cardiovascular Genetics Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Piyushkumar R Kapopara
- Cardiovascular Genetics Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Abrar A Khan
- Cardiovascular Genetics Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Vikas Arige
- Cardiovascular Genetics Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Lakshmi Subramanian
- Cardiovascular Genetics Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Parshuram J Sonawane
- Cardiovascular Genetics Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Binu K Sasi
- Cardiovascular Genetics Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Nitish R Mahapatra
- Cardiovascular Genetics Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
106
|
Testai L, Marino A, Piano I, Brancaleone V, Tomita K, Di Cesare Mannelli L, Martelli A, Citi V, Breschi MC, Levi R, Gargini C, Bucci M, Cirino G, Ghelardini C, Calderone V. The novel H 2 S-donor 4-carboxyphenyl isothiocyanate promotes cardioprotective effects against ischemia/reperfusion injury through activation of mitoK ATP channels and reduction of oxidative stress. Pharmacol Res 2016; 113:290-299. [DOI: 10.1016/j.phrs.2016.09.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/07/2016] [Indexed: 10/21/2022]
|
107
|
Cao X, Bian JS. The Role of Hydrogen Sulfide in Renal System. Front Pharmacol 2016; 7:385. [PMID: 27803669 PMCID: PMC5067532 DOI: 10.3389/fphar.2016.00385] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/03/2016] [Indexed: 12/21/2022] Open
Abstract
Hydrogen sulfide has gained recognition as the third gaseous signaling molecule after nitric oxide and carbon monoxide. This review surveys the emerging role of H2S in mammalian renal system, with emphasis on both renal physiology and diseases. H2S is produced redundantly by four pathways in kidney, indicating the abundance of this gaseous molecule in the organ. In physiological conditions, H2S was found to regulate the excretory function of the kidney possibly by the inhibitory effect on sodium transporters on renal tubular cells. Likewise, it also influences the release of renin from juxtaglomerular cells and thereby modulates blood pressure. A possible role of H2S as an oxygen sensor has also been discussed, especially at renal medulla. Alternation of H2S level has been implicated in various pathological conditions such as renal ischemia/reperfusion, obstructive nephropathy, diabetic nephropathy, and hypertensive nephropathy. Moreover, H2S donors exhibit broad beneficial effects in renal diseases although a few conflicts need to be resolved. Further research reveals that multiple mechanisms are underlying the protective effects of H2S, including anti-inflammation, anti-oxidation, and anti-apoptosis. In the review, several research directions are also proposed including the role of mitochondrial H2S in renal diseases, H2S delivery to kidney by targeting D-amino acid oxidase/3-mercaptopyruvate sulfurtransferase (DAO/3-MST) pathway, effect of drug-like H2S donors in kidney diseases and understanding the molecular mechanism of H2S. The completion of the studies in these directions will not only improves our understanding of renal H2S functions but may also be critical to translate H2S to be a new therapy for renal diseases.
Collapse
Affiliation(s)
| | - Jin-Song Bian
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore
| |
Collapse
|
108
|
Li W, Wang Y, Wang X, He Z, Liu F, Zhi W, Zhang H, Niu X. Esculin attenuates endotoxin shock induced by lipopolysaccharide in mouse and NO production in vitro through inhibition of NF-κB activation. Eur J Pharmacol 2016; 791:726-734. [PMID: 27746168 DOI: 10.1016/j.ejphar.2016.10.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 10/08/2016] [Accepted: 10/12/2016] [Indexed: 11/25/2022]
Abstract
Esculin, a coumarin compound derived from the traditional Chinese herbs such as Cortex Fraxini, has long been used for treating inflammatory and vascular diseases. In present study, we analyzed the role of esculin against macrophages and endotoxin shock induced by lipopolysaccharide (LPS) in mice. Here, we demonstrated that esculin suppressed inflammatory reactions in macrophages and protected mice from LPS-induced endotoxin shock. We found that esculin significantly inhibited the production of nitric oxide (NO) production via the inhibition of nuclear factor-κB (NF-κB) activation in macrophages. In animal model, esculin pretreatment significantly improved the survival rate of mice. LPS-induced increase of tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) in serum, lung, liver and kidney were markedly inhibited by esculin. IL-10, an anti-inflammatory cytokine, was up-regulated by esculin. Moreover, the histopathological analyses showed that esculin significantly attenuated the tissues injury of lung, liver, kidney in endotoxic mice. In addition, esculin significantly diminished the protein expression of NF-κB p65 in lung, liver, kidney, which resulted in lower levels of inflammatory mediators. These results suggest that esculin may be a potential drug for treatment of various inflammatory diseases.
Collapse
Affiliation(s)
- Weifeng Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China.
| | - Yu Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Xiumei Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Zehong He
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Fang Liu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Wenbing Zhi
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Hailin Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Xiaofeng Niu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China.
| |
Collapse
|
109
|
Hu Q, Wu D, Ma F, Yang S, Tan B, Xin H, Gu X, Chen X, Chen S, Mao Y, Zhu YZ. Novel Angiogenic Activity and Molecular Mechanisms of ZYZ-803, a Slow-Releasing Hydrogen Sulfide-Nitric Oxide Hybrid Molecule. Antioxid Redox Signal 2016; 25:498-514. [PMID: 27174595 DOI: 10.1089/ars.2015.6607] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AIMS Revascularization strategies and gene therapy for treatment of ischemic diseases remain to be fully optimized for use in human and veterinary clinical medicine. The continued evolution of such strategies must take into consideration two compounds, which act as critical effectors of angiogenesis by endothelial cells. Nevertheless, the nature of interaction between hydrogen sulfide (H2S) and nitric oxide (NO) remained undefined at the time of this writing. RESULTS The present study uses ZYZ-803, a novel synthetic H2S-NO hybrid molecule, which, under physiological conditions, slowly decomposes to release H2S and NO. This is observed to dose dependently mediate cell proliferation, migration, and tube-like structure formation in vitro along with increased angiogenesis in rat aortic rings, Matrigel plug in vivo, and a murine ischemic hind limb model. The effects of ZYZ-803 exhibited significantly greater potency than those of H2S and/or NO donor alone. The compound stimulated cystathionine γ-lyase (CSE) expression and endothelial NO synthase (eNOS) activity to produce H2S and NO. Blocking CSE and/or eNOS suppressed both H2S and NO generation as well as the proangiogenic effect of ZYZ-803. Sirtuin-1 (SIRT1), CSE, and/or eNOS small interfering RNA (siRNA) suppressed the angiogenic effect of ZYZ-803-induced SIRT1 expression, VEGF, and cyclic guanosine 5'-monophosphate (cGMP) levels. These gasotransmitters cooperatively regulated angiogenesis through an SIRT1/VEGF/cGMP pathway. INNOVATION AND CONCLUSION H2S and NO exert mutual influence on biological functions mediated by both compounds. Functional convergence occurs in the SIRT1-dependent proangiogenic processes. These two gasotransmitters are mutually required for physiological regulation of endothelial homeostasis. These ongoing characterizations of mechanisms by which ZYZ-803 influences angiogenesis provide expanding insight into strategies for treatment of ischemic diseases. Antioxid. Redox Signal. 25, 498-514.
Collapse
Affiliation(s)
- Qingxun Hu
- 1 Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University , Shanghai, China
| | - Dan Wu
- 1 Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University , Shanghai, China .,2 Department of Pharmacy, Tongji Hospital, Tongji University School of Medicine , Shanghai, China
| | - Fenfen Ma
- 1 Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University , Shanghai, China
| | - Suna Yang
- 1 Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University , Shanghai, China
| | - Bo Tan
- 1 Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University , Shanghai, China
| | - Hong Xin
- 1 Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University , Shanghai, China
| | - Xianfeng Gu
- 3 Department of Medicinal Chemistry, School of Pharmacy, Fudan University , Shanghai, China
| | - Xu Chen
- 4 School of Pharmacy, Guilin Medical University , Guilin, China
| | - Siyao Chen
- 5 Department of Cardiac Surgery, Guangdong Cardiovascular Institute , Guangdong General Hospital, Guangdong Academy of Medical Science, Guangzhou, China
| | - Yicheng Mao
- 1 Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University , Shanghai, China
| | - Yi Zhun Zhu
- 6 School of Pharmacy, Macau University of Science and Technology , Macau, China
| |
Collapse
|
110
|
Chertok VM, Kotsyuba AE. The neurochemical features of intranuclear neurons of the medulla oblongata in normo- and hypertensive rats. NEUROCHEM J+ 2016. [DOI: 10.1134/s1819712416030053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
111
|
Dvořáková M, Heroutová I, Němeček D, Adámková K, Krejčová T, Nevoral J, Kučerová Chrpová V, Petr J, Sedmíková M. The antioxidative properties of S-allyl cysteine not only influence somatic cells but also improve early embryo cleavage in pigs. PeerJ 2016; 4:e2280. [PMID: 27602268 PMCID: PMC4991846 DOI: 10.7717/peerj.2280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 07/02/2016] [Indexed: 01/31/2023] Open
Abstract
In vitro cultivation systems for oocytes and embryos are characterised by increased levels of reactive oxygen species (ROS), which can be balanced by the addition of suitable antioxidants. S-allyl cysteine (SAC) is a sulfur compound naturally occurring in garlic (Allium sativum), which is responsible for its high antioxidant properties. In this study, we demonstrated the capacity of SAC (0.1, 0.5 and 1.0 mM) to reduce levels of ROS in maturing oocytes significantly after 24 (reduced by 90.33, 82.87 and 91.62%, respectively) and 48 h (reduced by 86.35, 94.42 and 99.05%, respectively) cultivation, without leading to a disturbance of the standard course of meiotic maturation. Oocytes matured in the presence of SAC furthermore maintained reduced levels of ROS even 22 h after parthenogenic activation (reduced by 66.33, 61.64 and 57.80%, respectively). In these oocytes we also demonstrated a growth of early embryo cleavage rate (increased by 33.34, 35.00 and 35.00%, respectively). SAC may be a valuable supplement to cultivation media.
Collapse
Affiliation(s)
- Markéta Dvořáková
- Department of Veterinary Sciences, Czech University of Life Sciences , Prague , Czech Republic
| | - Ivona Heroutová
- Department of Veterinary Sciences, Czech University of Life Sciences , Prague , Czech Republic
| | - David Němeček
- Department of Veterinary Sciences, Czech University of Life Sciences , Prague , Czech Republic
| | - Kateřina Adámková
- Department of Veterinary Sciences, Czech University of Life Sciences , Prague , Czech Republic
| | - Tereza Krejčová
- Department of Veterinary Sciences, Czech University of Life Sciences , Prague , Czech Republic
| | - Jan Nevoral
- Department of Veterinary Sciences, Czech University of Life Sciences, Prague, Czech Republic; Biomedical center, Faculty of Medicine in Pilsen, Charles University in Prague, Plzen, Czech Republic
| | | | - Jaroslav Petr
- Institute of Animal Science , Prague , Czech Republic
| | - Markéta Sedmíková
- Department of Veterinary Sciences, Czech University of Life Sciences , Prague , Czech Republic
| |
Collapse
|
112
|
Katsouda A, Bibli SI, Pyriochou A, Szabo C, Papapetropoulos A. Regulation and role of endogenously produced hydrogen sulfide in angiogenesis. Pharmacol Res 2016; 113:175-185. [PMID: 27569706 DOI: 10.1016/j.phrs.2016.08.026] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 08/05/2016] [Accepted: 08/24/2016] [Indexed: 01/16/2023]
Abstract
Recent studies have implicated endogenously produced H2S in the angiogenic process. On one hand, pharmacological inhibition and silencing of the enzymes involved in H2S synthesis attenuate the angiogenic properties of endothelial cells, including proliferation, migration and tube-like structure network formation. On the other hand, enhanced production of H2S by substrate supplementation or over-expression of H2S-producing enzymes leads to enhanced angiogenic responses in cultured endothelial cells. Importantly, H2S up-regulates expression of the key angiogenic factor vascular endothelial growth factor (VEGF) and contributes to the angiogenic signaling in response to VEGF. The signaling pathways mediating H2S-induced angiogenesis include mitogen-activated protein kinases, phosphoinositide-3 kinase, nitric oxide/cGMP-regulated cascades and ATP-sensitive potassium channels. Endogenously produced H2S has also been shown to facilitate neovascularization in prototypical model systems in vivo, and to contribute to wound healing, post-ischemic angiogenesis in the heart and other tissues, as well as in tumor angiogenesis. Targeting of H2S synthesizing enzymes might offer novel therapeutic opportunities for angiogenesis-related diseases.
Collapse
Affiliation(s)
- Antonia Katsouda
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece, Greece; Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Greece
| | - Sofia-Iris Bibli
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece, Greece
| | - Anastasia Pyriochou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Greece
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece, Greece; Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Greece.
| |
Collapse
|
113
|
Ji L, Li L, Qu F, Zhang G, Wang Y, Bai X, Pan S, Xue D, Wang G, Sun B. Hydrogen sulphide exacerbates acute pancreatitis by over-activating autophagy via AMPK/mTOR pathway. J Cell Mol Med 2016; 20:2349-2361. [PMID: 27419805 PMCID: PMC5134374 DOI: 10.1111/jcmm.12928] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 06/12/2016] [Indexed: 01/14/2023] Open
Abstract
Previously, we have shown that hydrogen sulphide (H2 S) might be pro-inflammatory during acute pancreatitis (AP) through inhibiting apoptosis and subsequently favouring a predominance of necrosis over apoptosis. In this study, we sought to investigate the detrimental effects of H2 S during AP specifically with regard to its regulation on the impaired autophagy. The incubated levels of H2 S were artificially intervened by an administration of sodium hydrosulphide (NaHS) or DL-propargylglycine (PAG) after AP induction. Accumulation of autophagic vacuoles and pre-mature activation of trypsinogen within acini, which indicate the impairment of autophagy during AP, were both exacerbated by treatment with NaHS but attenuated by treatment with PAG. The regulation that H2 S exerted on the impaired autophagy during AP was further attributed to over-activation of autophagy rather than hampered autophagosome-lysosome fusion. To elucidate the molecular mechanism that underlies H2 S-mediated over-activation of autophagy during AP, we evaluated phosphorylations of AMP-activated protein kinase (AMPK), AKT and mammalian target of rapamycin (mTOR). Furthermore, Compound C (CC) was introduced to determine the involvement of mTOR signalling by evaluating phosphorylations of downstream effecters including p70 S6 kinase (P70S6k) and UNC-51-Like kinase 1 (ULK1). Our findings suggested that H2 S exacerbated taurocholate-induced AP by over-activating autophagy via activation of AMPK and subsequently, inhibition of mTOR. Thus, an active suppression of H2 S to restore over-activated autophagy might be a promising therapeutic approach against AP-related injuries.
Collapse
Affiliation(s)
- Liang Ji
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Le Li
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fengzhi Qu
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guangquan Zhang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongwei Wang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuewei Bai
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shangha Pan
- Central Laboratory, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dongbo Xue
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Gang Wang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bei Sun
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
114
|
Miao Z, King SB. Recent advances in the chemical biology of nitroxyl (HNO) detection and generation. Nitric Oxide 2016; 57:1-14. [PMID: 27108951 PMCID: PMC4910183 DOI: 10.1016/j.niox.2016.04.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 04/18/2016] [Indexed: 01/01/2023]
Abstract
Nitroxyl or azanone (HNO) represents the redox-related (one electron reduced and protonated) relative of the well-known biological signaling molecule nitric oxide (NO). Despite the close structural similarity to NO, defined biological roles and endogenous formation of HNO remain unclear due to the high reactivity of HNO with itself, soft nucleophiles and transition metals. While significant work has been accomplished in terms of the physiology, biology and chemistry of HNO, important and clarifying work regarding HNO detection and formation has occurred within the last 10 years. This review summarizes advances in the areas of HNO detection and donation and their application to normal and pathological biology. Such chemical biological tools allow a deeper understanding of biological HNO formation and the role that HNO plays in a variety of physiological systems.
Collapse
Affiliation(s)
- Zhengrui Miao
- Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109, USA
| | - S Bruce King
- Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109, USA.
| |
Collapse
|
115
|
Fullerton JN, Gilroy DW. Resolution of inflammation: a new therapeutic frontier. Nat Rev Drug Discov 2016; 15:551-67. [PMID: 27020098 DOI: 10.1038/nrd.2016.39] [Citation(s) in RCA: 628] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dysregulated inflammation is a central pathological process in diverse disease states. Traditionally, therapeutic approaches have sought to modulate the pro- or anti-inflammatory limbs of inflammation, with mixed success. However, insight into the pathways by which inflammation is resolved has highlighted novel opportunities to pharmacologically manipulate these processes - a strategy that might represent a complementary (and perhaps even superior) therapeutic approach. This Review discusses the state of the art in the biology of resolution of inflammation, highlighting the opportunities and challenges for translational research in this field.
Collapse
Affiliation(s)
- James N Fullerton
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, 5 University Street, University College London, London WC1E 6JJ, UK
| | - Derek W Gilroy
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, 5 University Street, University College London, London WC1E 6JJ, UK
| |
Collapse
|
116
|
Wang C, Xia G, Liu X, Zhang R, Chai Y, Zhang J, Li X, Yang Y, Wang J, Liu M. Synthesis and antitumor activity of ATB-429 derivatives containing a nitric oxide-releasing moiety. Bioorg Med Chem Lett 2016; 26:2355-9. [PMID: 26995527 DOI: 10.1016/j.bmcl.2016.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 02/25/2016] [Accepted: 03/04/2016] [Indexed: 01/08/2023]
Abstract
A series of novel ATB-429 (an anti-inflammatory candidate) derivatives containing a nitric oxide (NO)-releasing moiety were designed, synthesized and evaluated for their in vitro activity against six human cancer cell lines. Our results reveal that phenylsulfonylfuroxan-based derivatives have considerable antitumor activity, and compounds 7-9 (IC50s: 0.256-3.024 μM) against HT-29 and PANC-1, 8a,b (IC50s: 2.677-3.051 μM) against MCF-7 and 8a (IC50: 1.270 μM) against DU145 are more active than Vandetanib (IC50s: 1.925-4.107 μM).
Collapse
Affiliation(s)
- Chunlan Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Guimin Xia
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiujun Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Rui Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yun Chai
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jun Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Zhejiang Starry Pharmaceutical Co. Ltd, Xianju 317300, China
| | - Xiaoning Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yang Yang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Juxian Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Mingliang Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
117
|
Qu Z, Zhang J, Gao W, Chen H, Huang H, Huo L, Li H. Antihypertensive and cardioprotective effects of Cerebralcare granule® on spontaneously hypertensive rats from the perspective of the gaseous triumvirate NO-CO-H2S system. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 41:22-31. [PMID: 26650795 DOI: 10.1016/j.etap.2015.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 11/12/2015] [Accepted: 11/16/2015] [Indexed: 06/05/2023]
Abstract
Cerebralcare granule(®) (CG) has been reported to have hypotensive effect. However, several pathways involved in the mechanism of hypotension are still unclear. This study was designed to verify the antihypertensive effect of CG and to characterize its mechanism of action, especially from the perspective of gasotrasmmiter NO/cGMP, CO/HO and H2S/CSE systems. By using the widely used in vitro model of rat isolated thoracic aortic rings, the vasorelaxant effect of CG were studied. Furthermore, we assessed the chronic hypotensive effect of CG on spontaneously hypertensive rats (SHRs) and further to explore the potential mechanisms of its antihypertensive activity. Data in the present study demonstrated that oral treatment with CG could induce a potent antihypertensive effect. CG could reduce the intima-media thickness (IMT) of thoracic aorta significantly and increase the serum NO and H2S levels. In addition, the present results indicated that CG played a critical protective role against pressure overload-induced cardiac hypertrophy. CG not only inhibited the development of cardiac hypertrophy but also improved ventricular function. In vitro, the results showed that CG induced relaxation in rat aortic rings through an endothelium-dependent pathway mediated by NO/cGMP, CO/HO and H2S/CSE systems. Taken together, the present study demonstrated that CG could induce a potent antihypertensive effect that was partly due to the improvement of endothelial function. Also CG played a critical protective role against pressure overload-induced cardiac hypertrophy. In addition, CG could induce relaxation in rat aortic rings.
Collapse
Affiliation(s)
- Zhuo Qu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Jingze Zhang
- Department of Pharmacy, Logistics College of Chinese People's Armed Police Forces, Tianjin 300162, China
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Hong Chen
- Department of Pharmacy, Logistics College of Chinese People's Armed Police Forces, Tianjin 300162, China
| | - Hanhan Huang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Liqin Huo
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Hongfa Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
118
|
HNO/Thiol Biology as a Therapeutic Target. OXIDATIVE STRESS IN APPLIED BASIC RESEARCH AND CLINICAL PRACTICE 2016. [DOI: 10.1007/978-3-319-30705-3_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
119
|
Calderone V, Martelli A, Testai L, Citi V, Breschi MC. Using hydrogen sulfide to design and develop drugs. Expert Opin Drug Discov 2015; 11:163-75. [PMID: 26593865 DOI: 10.1517/17460441.2016.1122590] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Hydrogen sulfide (H2S) is an endogenous gasotransmitter, involved in the regulation of several biological functions. Conversely, impaired biosynthesis of H2S is associated with important diseases. This paves the way for exciting pharmacological perspectives for drugs acting on the 'H2S system'. AREAS COVERED At the beginning of this manuscript, the authors present the biological roles and mechanisms of action of hydrogen sulfide. The authors then discuss the developments in the modulation of the H2S system via heterogeneous molecules, which behave as sources of exogenous H2S, and are promising drugs for a number of diseases. EXPERT OPINION The rate of H2S generation, the physicochemical characteristics and the bioavailability greatly affect the overall pharmacological profile of each H2S-releasing compound. Therefore, the development of broad collections of original moieties endowed with heterogeneous rates/mechanisms of H2S release and a variety of physicochemical, biological and pharmacological features is the most timely and compelling issue in the field of H2S-based drug discovery.
Collapse
Affiliation(s)
| | - Alma Martelli
- a Dipartimento di Farmacia , Università di Pisa , Pisa , Italy
| | - Lara Testai
- a Dipartimento di Farmacia , Università di Pisa , Pisa , Italy
| | - Valentina Citi
- a Dipartimento di Farmacia , Università di Pisa , Pisa , Italy
| | - Maria C Breschi
- a Dipartimento di Farmacia , Università di Pisa , Pisa , Italy
| |
Collapse
|
120
|
El-Sayed AS, Abdel-Azeim S, Ibrahim HM, Yassin MA, Abdel-Ghany SE, Esener S, Ali GS. Biochemical stability and molecular dynamic characterization of Aspergillus fumigatus cystathionine γ-lyase in response to various reaction effectors. Enzyme Microb Technol 2015; 81:31-46. [DOI: 10.1016/j.enzmictec.2015.08.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 06/28/2015] [Accepted: 08/10/2015] [Indexed: 01/28/2023]
|
121
|
Li S, Ping NN, Cao L, Mi YN, Cao YX. H2S induces vasoconstriction of rat cerebral arteries via cAMP/adenylyl cyclase pathway. Toxicol Appl Pharmacol 2015; 289:389-96. [PMID: 26524654 DOI: 10.1016/j.taap.2015.10.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 10/28/2015] [Accepted: 10/28/2015] [Indexed: 11/19/2022]
Abstract
Hydrogen sulfide (H2S), traditionally known for its toxic effects, is now involved in regulating vascular tone. Here we investigated the vasoconstrictive effect of H2S on cerebral artery and the underlying mechanism. Sodium hydrosulfide (NaHS), a donor of H2S, concentration-dependently induced vasoconstriction on basilar artery, which was enhanced in the presence of isoprenaline, a β-adrenoceptor agonist or forskolin, an adenylyl cyclase activator. Administration of NaHS attenuated the vasorelaxant effects of isoprenaline or forskolin. Meanwhile, the NaHS-induced vasoconstriction was diminished in the presence of 8B-cAMP, an analog of cAMP, but was not affected by Bay K-8644, a selective L-type Ca(2+) channel agonist. These results could be explained by the revised effects of NaHS on isoprenaline-induced cAMP elevation and forskolin-stimulated adenylyl cyclase activity. Additionally, NaHS-induced vasoconstriction was enhanced by removing the endothelium or in the presence of L-NAME, an inhibitor of nitric oxide synthase. L-NAME only partially attenuated the effect of NaHS which was given together with forskolin on the pre-contracted artery. In conclusion, H2S induces vasoconstriction of cerebral artery via, at least in part, cAMP/adenylyl cyclase pathway.
Collapse
Affiliation(s)
- Sen Li
- Department of Pharmacology, Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Na-Na Ping
- Department of Pharmacology, Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Lei Cao
- Department of Pharmacology, Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Yan-Ni Mi
- Department of Pharmacology, Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yong-Xiao Cao
- Department of Pharmacology, Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
122
|
Guo Z, Chen G, Zeng G, Li Z, Chen A, Wang J, Jiang L. Fluorescence chemosensors for hydrogen sulfide detection in biological systems. Analyst 2015; 140:1772-86. [PMID: 25529122 DOI: 10.1039/c4an01909a] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A comprehensive review of the development of H2S fluorescence-sensing strategies, including sensors based on chemical reactions and fluorescence resonance energy transfer (FRET), is presented. The advantages and disadvantages of fluorescence-sensing strategies are compared with those of traditional methods. Fluorescence chemosensors, especially those used in FRET sensing, are highly promising because of their low cost, technical simplicity, and their use in real-time sulfide imaging in living cells. Potential applications based on sulfate reduction to H2S, the relationship between sulfate-reducing bacteria activity and H2S yield, and real-time detection of sulfate-reducing bacteria activity using fluorescence sensors are described. The current challenges, such as low sensitivity and poor stability, are discussed.
Collapse
Affiliation(s)
- Zhi Guo
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China.
| | | | | | | | | | | | | |
Collapse
|
123
|
dl-propargylglycine reduces blood pressure and renal injury but increases kidney weight in angiotensin-II infused rats. Nitric Oxide 2015; 49:56-66. [DOI: 10.1016/j.niox.2015.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/19/2015] [Accepted: 07/07/2015] [Indexed: 12/21/2022]
|
124
|
Liang D, Wu H, Wong MW, Huang D. Diallyl Trisulfide Is a Fast H2S Donor, but Diallyl Disulfide Is a Slow One: The Reaction Pathways and Intermediates of Glutathione with Polysulfides. Org Lett 2015; 17:4196-9. [DOI: 10.1021/acs.orglett.5b01962] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dong Liang
- Food
Science and Technology Program, Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Haixia Wu
- Food
Science and Technology Program, Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Ming Wah Wong
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Dejian Huang
- Food
Science and Technology Program, Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou
Industrial Park, Jiangsu 215123, China
| |
Collapse
|
125
|
Rashid S, Heer JK, Garle MJ, Alexander SPH, Roberts RE. Hydrogen sulphide-induced relaxation of porcine peripheral bronchioles. Br J Pharmacol 2015; 168:1902-10. [PMID: 23215842 DOI: 10.1111/bph.12084] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 10/29/2012] [Accepted: 11/26/2012] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Hydrogen sulphide (H2S) is an endogenous gasotransmitter. Although it has been shown to elicit responses in vascular and other smooth muscle preparations, a role for endogenously produced H2S in mediating airway tone has yet to be demonstrated. Therefore, the aim of this study was to determine whether H2S is produced within the airways and to determine the functional effect on airway tone. EXPERIMENTAL APPROACH Small peripheral airways (<5 mm in diameter) from porcine lungs were set up in isolated tissue baths, pre-contracted with the muscarinic agonist carbachol, and then exposed to either the H2S donor sodium hydrosulphide (NaHS), or the precursor L-cysteine. H2S production from L-cysteine or 3-mercaptopyruvate in tissue homogenates was measured by the methylene blue assay. Expression of the H2S-synthesizing enzymes cystathionine β-synthase (CBS), cystathionine γ lyase (CSE) and 3-mercaptopyruvate sulphurtransferase (3-MST) were measured by Western blotting. KEY RESULTS NaHS caused a large relaxation of the airways, which was inhibited partially by pre-contraction with KCl or exposure to tetraethylammonium, but not glibenclamide, paxilline or 4-aminopyridine. L-cysteine also caused a relaxation of the airways which was inhibited by the CBS inhibitor aminooxyacetic acid. Tissue homogenates from airways exposed to L-cysteine or 3-mercaptopyruvate in vitro showed a significant production of H2S. Western blotting demonstrated immunoreactivity to CBS, CSE and 3-MST enzymes in the airways. CONCLUSIONS AND IMPLICATIONS These data demonstrate that H2S can be produced endogenously within porcine airways causing relaxation. The mechanism of relaxation depends, in part, on K(+) channel activity.
Collapse
Affiliation(s)
- S Rashid
- Cardiovascular Research Group, School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, UK
| | | | | | | | | |
Collapse
|
126
|
Yoo D, Jupiter RC, Pankey EA, Reddy VG, Edward JA, Swan KW, Peak TC, Mostany R, Kadowitz PJ. Analysis of cardiovascular responses to the H2S donors Na2S and NaHS in the rat. Am J Physiol Heart Circ Physiol 2015; 309:H605-14. [PMID: 26071540 DOI: 10.1152/ajpheart.00171.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 06/05/2015] [Indexed: 02/04/2023]
Abstract
Hydrogen sulfide (H2S) is an endogenous gaseous molecule formed from L-cysteine in vascular tissue. In the present study, cardiovascular responses to the H2S donors Na2S and NaHS were investigated in the anesthetized rat. The intravenous injections of Na2S and NaHS 0.03-0.5 mg/kg produced dose-related decreases in systemic arterial pressure and heart rate, and at higher doses decreases in cardiac output, pulmonary arterial pressure, and systemic vascular resistance. H2S infusion studies show that decreases in systemic arterial pressure, heart rate, cardiac output, and systemic vascular resistance are well-maintained, and responses to Na2S are reversible. Decreases in heart rate were not blocked by atropine, suggesting that the bradycardia was independent of parasympathetic activation and was mediated by an effect on the sinus node. The decreases in systemic arterial pressure were not attenuated by hexamethonium, glybenclamide, N(w)-nitro-L-arginine methyl ester hydrochloride, sodium meclofenamate, ODQ, miconazole, 5-hydroxydecanoate, or tetraethylammonium, suggesting that ATP-sensitive potassium channels, nitric oxide, arachidonic acid metabolites, cyclic GMP, p450 epoxygenase metabolites, or large conductance calcium-activated potassium channels are not involved in mediating hypotensive responses to the H2S donors in the rat and that responses are not centrally mediated. The present data indicate that decreases in systemic arterial pressure in response to the H2S donors can be mediated by decreases in vascular resistance and cardiac output and that the donors have an effect on the sinus node independent of the parasympathetic system. The present data indicate that the mechanism of the peripherally mediated hypotensive response to the H2S donors is uncertain in the intact rat.
Collapse
Affiliation(s)
- Daniel Yoo
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Ryan C Jupiter
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Edward A Pankey
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Vishwaradh G Reddy
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Justin A Edward
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Kevin W Swan
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Taylor C Peak
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Ricardo Mostany
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Philip J Kadowitz
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
127
|
Kramkowski K, Leszczynska A, Buczko W. Pharmacological modulation of fibrinolytic response - In vivo and in vitro studies. Pharmacol Rep 2015; 67:695-703. [PMID: 26321270 DOI: 10.1016/j.pharep.2015.05.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/22/2015] [Accepted: 05/26/2015] [Indexed: 11/19/2022]
Abstract
Fibrinolysis is an action of converting plasminogen by its activators, like tissue- or urokinase-type plasminogen activators (t-PA, u-PA), to plasmin, which in turn cleaves fibrin, thereby causing clot dissolution and restoration of blood flow. Endothelial cells release t-PA, prostacyclin (PGI2) and nitric oxide (NO), the potent factors playing a crucial role in regulation of the fibrinolytic system. Since blood platelets can release not only prothrombotic, but also antifibrinolytic factors, like plasminogen activator inhibitor type-1 (PAI-1), they are involved in fibrynolysis regulation. Therefore agents enhancing fibrinolysis can be preferred pharmacologicals in many cardiovascular diseases. This review describes mechanisms by which major cardiovascular drugs (renin-angiotensin-aldosterone system inhibitors, statins, adrenergic receptors and calcium channel blockers, aspirin and 1-methylnicotinamide) influence fibrinolysis. The presented data indicate, that the influence of these drugs on endothelium-blood platelets interactions via NO/PGI2 pathway is fundamental for its antithrombotic and profibrinolytic action. We also described new approaches for intravital confocal real-time imaging as a tool useful to investigate mechanisms of thrombus formation and the effects of drugs affecting haemostasis and mechanisms of their action in the circulation.
Collapse
Affiliation(s)
- Karol Kramkowski
- Department of Biopharmacy, Medical University of Białystok, Białystok, Poland.
| | | | - Wlodzimierz Buczko
- Department of Pharmacodynamics, Medical University of Białystok, Białystok, Poland; Higher Vocational School, Suwałki, Poland
| |
Collapse
|
128
|
Kakavas S, Papanikolaou A, Ballis E, Tatsis N, Goga C, Tatsis G. Carboxyhemoglobin and methemoglobin levels as prognostic markers in acute pulmonary embolism. Am J Emerg Med 2015; 33:563-8. [DOI: 10.1016/j.ajem.2015.01.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/23/2015] [Accepted: 01/27/2015] [Indexed: 10/24/2022] Open
|
129
|
Abstract
Hydrogen sulfide (H₂S) has emerged as an important signaling molecule with beneficial effects on various cellular processes affecting, for example, cardiovascular and neurological functions. The physiological importance of H₂S is motivating efforts to develop strategies for modulating its levels. However, advancement in the field of H₂S-based therapeutics is hampered by fundamental gaps in our knowledge of how H₂S is regulated, its mechanism of action, and its molecular targets. This review provides an overview of sulfur metabolism; describes recent progress that has shed light on the mechanism of H₂S as a signaling molecule; and examines nutritional regulation of sulfur metabolism, which pertains to health and disease.
Collapse
Affiliation(s)
- Omer Kabil
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0600;
| | | | | |
Collapse
|
130
|
Li Q, Hu Q, Wang X, Zong Y, Zhao L, Xing J, Zhou J, Zhang H. Discovery of Novel 2-(piperidin-4-yl)-1H-benzo[d]imidazole Derivatives as Potential Anti-Inflammatory Agents. Chem Biol Drug Des 2015; 86:509-16. [DOI: 10.1111/cbdd.12513] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/04/2014] [Accepted: 01/08/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Qing Li
- Center of Drug Discovery; China Pharmaceutical University; Nanjing 210009 China
| | - Qinghua Hu
- State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing 210009 China
| | - Xinning Wang
- Center of Drug Discovery; China Pharmaceutical University; Nanjing 210009 China
| | - Yang Zong
- Center of Drug Discovery; China Pharmaceutical University; Nanjing 210009 China
| | - Leilei Zhao
- Center of Drug Discovery; China Pharmaceutical University; Nanjing 210009 China
| | - Junhao Xing
- Center of Drug Discovery; China Pharmaceutical University; Nanjing 210009 China
| | - Jinpei Zhou
- Department of Medicinal Chemistry; China Pharmaceutical University; 24 Tongjia Xiang Nanjing 210009 China
| | - Huibin Zhang
- Center of Drug Discovery; China Pharmaceutical University; Nanjing 210009 China
- State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing 210009 China
| |
Collapse
|
131
|
Park SS, Hong M, Ha Y, Sim J, Jhon GJ, Lee Y, Suh M. The real-time in vivo electrochemical measurement of nitric oxide and carbon monoxide release upon direct epidural electrical stimulation of the rat neocortex. Analyst 2015; 140:3415-21. [PMID: 25751504 DOI: 10.1039/c5an00122f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This study reports real-time, in vivo functional measurement of nitric oxide (NO) and carbon monoxide (CO), two gaseous mediators in controlling cerebral blood flow. A dual electrochemical NO/CO microsensor enables us to probe the complex relationship between NO and CO in regulating cerebrovascular tone. Utilizing this dual sensor, we monitor in vivo change of NO and CO simultaneously during direct epidural electrical stimulation of a living rat brain cortex. Both NO and CO respond quickly to meet physiological needs. The neural system instantaneously increases the released amounts of NO and CO to compensate the abrupt, yet transient hypoxia that results from epidural electrical stimulation. Intrinsic-signal optical imaging confirms that direct electrical stimulation elicits robust, dynamic changes in cerebral blood flow, which must accompany NO and CO signaling. The addition of l-arginine (a substrate for NO synthase, NOS) results in increased NO generation and decreased CO production compared to control stimulation. On the other hand, application of the NOS inhibitor, l-N(G)-nitroarginine methyl ester (l-NAME), results in decreased NO release but increased CO production of greater magnitude. This observation suggests that the interaction between NO and CO release is likely not linear and yet, they are tightly linked vasodilators.
Collapse
Affiliation(s)
- Sarah S Park
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 120-750, Republic of Korea.
| | | | | | | | | | | | | |
Collapse
|
132
|
Chen T, Mou Y, Tan J, Wei L, Qiao Y, Wei T, Xiang P, Peng S, Zhang Y, Huang Z, Ji H. The protective effect of CDDO-Me on lipopolysaccharide-induced acute lung injury in mice. Int Immunopharmacol 2015; 25:55-64. [PMID: 25614226 DOI: 10.1016/j.intimp.2015.01.011] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/10/2014] [Accepted: 01/12/2015] [Indexed: 12/29/2022]
Abstract
CDDO-Me, initiated in a phase II clinical trial, is a potential useful therapeutic agent for cancer and inflammatory dysfunctions, whereas the therapeutic efficacy of CDDO-Me on LPS-induced acute lung injury (ALI) has not been reported as yet. The purpose of the present study was to explore the protective effect of CDDO-Me on LPS-induced ALI in mice and to investigate its possible mechanism. BalB/c mice received CDDO-Me (0.5mg/kg, 2mg/kg) or dexamethasone (5mg/kg) intraperitoneally 1h before LPS stimulation and were sacrificed 6h later. W/D ratio, lung MPO activity, number of total cells and neutrophils, pulmonary histopathology, IL-6, IL-1β, and TNF-α in the BALF were assessed. Furthermore, we estimated iNOS, IL-6, IL-1β, and TNF-α mRNA expression and NO production as well as the activation of the three main MAPKs, AkT, IκB-α and p65. Pretreatment with CDDO-Me significantly ameliorated W/D ratio, lung MPO activity, inflammatory cell infiltration, and inflammatory cytokine production in BALF from the in vivo study. Additionally, CDDO-Me had beneficial effects on the intervention for pathogenesis process at molecular, protein and transcriptional levels in vitro. These analytical results provided evidence that CDDO-Me could be a potential therapeutic candidate for treating LPS-induced ALI.
Collapse
Affiliation(s)
- Tong Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, Jiangsu, China
| | - Yi Mou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, Jiangsu, China
| | - Jiani Tan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, Jiangsu, China
| | - Linlin Wei
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, Jiangsu, China
| | - Yixue Qiao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, Jiangsu, China
| | - Tingting Wei
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, Jiangsu, China
| | - Pengjun Xiang
- School of Pharmacy, China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing 210009, Jiangsu, China
| | - Sixun Peng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, Jiangsu, China
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, Jiangsu, China
| | - Zhangjian Huang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, Jiangsu, China.
| | - Hui Ji
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, Jiangsu, China.
| |
Collapse
|
133
|
Thorson MK, Van Wagoner RM, Harper MK, Ireland CM, Majtan T, Kraus JP, Barrios AM. Marine natural products as inhibitors of cystathionine beta-synthase activity. Bioorg Med Chem Lett 2015; 25:1064-6. [PMID: 25666819 DOI: 10.1016/j.bmcl.2015.01.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 01/05/2015] [Accepted: 01/07/2015] [Indexed: 10/24/2022]
Abstract
A library consisting of characterized marine natural products as well as synthetic derivatives was screened for compounds capable of inhibiting the production of hydrogen sulfide (H2S) by cystathionine beta-synthase (CBS). Eight hits were validated and shown to inhibit CBS activity with IC50 values ranging from 83 to 187μM. The majority of hits came from a series of synthetic polyandrocarpamine derivatives. In addition, a modified fluorogenic probe for H2S detection with improved solubility in aqueous solutions is reported.
Collapse
Affiliation(s)
- Megan K Thorson
- Department of Medicinal Chemistry, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112, USA
| | - Ryan M Van Wagoner
- Department of Medicinal Chemistry, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112, USA
| | - Mary Kay Harper
- Department of Medicinal Chemistry, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112, USA
| | - Chris M Ireland
- Department of Medicinal Chemistry, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112, USA
| | - Tomas Majtan
- Department of Pediatrics, University of Colorado, Aurora, CO 80045, USA
| | - Jan P Kraus
- Department of Pediatrics, University of Colorado, Aurora, CO 80045, USA
| | - Amy M Barrios
- Department of Medicinal Chemistry, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112, USA.
| |
Collapse
|
134
|
Hasegawa U, van der Vlies AJ. Polymeric micelles for hydrogen sulfide delivery. MEDCHEMCOMM 2015. [DOI: 10.1039/c4md00373j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen sulfide-releasing polymeric micelles enhanced pro-inflammatory responses induced by gardiquimod, a toll-like receptor 7 ligand, showing potential in immunotherapy and vaccine development.
Collapse
Affiliation(s)
- Urara Hasegawa
- Frontier Research Base for Young Researchers
- Graduate School of Engineering
- Osaka University
- Osaka
- Japan
| | | |
Collapse
|
135
|
Hensley K, Denton TT. Alternative functions of the brain transsulfuration pathway represent an underappreciated aspect of brain redox biochemistry with significant potential for therapeutic engagement. Free Radic Biol Med 2015; 78:123-34. [PMID: 25463282 PMCID: PMC4280296 DOI: 10.1016/j.freeradbiomed.2014.10.581] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/23/2014] [Accepted: 10/23/2014] [Indexed: 12/31/2022]
Abstract
Scientific appreciation for the subtlety of brain sulfur chemistry has lagged, despite understanding that the brain must maintain high glutathione (GSH) to protect against oxidative stress in tissue that has both a high rate of oxidative respiration and a high content of oxidation-prone polyunsaturated fatty acids. In fact, the brain was long thought to lack a complete transsulfuration pathway (TSP) for cysteine synthesis. It is now clear that not only does the brain possess a functional TSP, but brain TSP enzymes catalyze a rich array of alternative reactions that generate novel species including the gasotransmitter hydrogen sulfide (H2S) and the atypical amino acid lanthionine (Lan). Moreover, TSP intermediates can be converted to unusual cyclic ketimines via transamination. Cell-penetrating derivatives of one such compound, lanthionine ketimine (LK), have potent antioxidant, neuroprotective, neurotrophic, and antineuroinflammatory actions and mitigate diverse neurodegenerative conditions in preclinical rodent models. This review will explore the source and function of alternative TSP products, and lanthionine-derived metabolites in particular. The known biological origins of lanthionine and its ketimine metabolite will be described in detail and placed in context with recent discoveries of a GSH- and LK-binding brain protein called LanCL1 that is proving essential for neuronal antioxidant defense; and a related LanCL2 homolog now implicated in immune sensing and cell fate determinations. The review will explore possible endogenous functions of lanthionine metabolites and will discuss the therapeutic potential of lanthionine ketimine derivatives for mitigating diverse neurological conditions including Alzheimer׳s disease, stroke, motor neuron disease, and glioma.
Collapse
Affiliation(s)
- Kenneth Hensley
- Department of Pathology and Department of Neurosciences, University of Toledo Health Science Campus, 3000 Arlington Avenue, Toledo, OH 43614, USA.
| | - Travis T Denton
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, P.O. Box 1495, Spokane, WA 99201, USA.
| |
Collapse
|
136
|
Abstract
The past decade has witnessed the discovery of hydrogen sulfide (H2S) as a new signalling molecule. Its ability to act as a neurotransmitter, regulator of blood pressure, immunomodulator or anti-apoptotic agent, together with its great pharmacological potential, is now well established. Notwithstanding the growing body of evidence showing the biological roles of H2S, the gap between the macroscopic descriptions and the actual mechanism(s) behind these processes is getting larger. The reactivity towards reactive oxygen and nitrogen species and/or metal centres cannot explain this plethora of biological effects. Therefore, a mechanism involving modification of protein cysteine residues to form protein persulfides is proposed. It is alternatively called S-sulfhydration. Persulfides are not particularly stable and show increased reactivity when compared to free thiols. Detection of protein persulfides is still facing methodological limitations, and mechanisms by which H2S causes this modification are still largely scarce. Persulfidation of protein such as KATP could contribute to H2S-induced vasodilation, while S-sulfhydration of GAPDH and NF-κB inhibits apoptosis. H2S regulates endoplasmic reticulum stress by causing persulfidation of PTP-1B. Several other proteins have been found to be regulated by this posttranslational modification of cysteine. This review article provides a critical overview of the current state of the literature addressing protein S-sulfhydration, with particular emphasis on the challenges and future research directions in this particular field.
Collapse
|
137
|
Emilova R, Dimitrova D, Mladenov M, Daneva T, Schubert R, Gagov H. Cystathionine gamma-lyase of perivascular adipose tissue with reversed regulatory effect in diabetic rat artery. BIOTECHNOL BIOTEC EQ 2014; 29:147-151. [PMID: 26019628 PMCID: PMC4433913 DOI: 10.1080/13102818.2014.991565] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 07/17/2014] [Indexed: 12/03/2022] Open
Abstract
The aim of this study is to reveal the regulatory role of cystathionine gamma-lyase (CSE), the main source of hydrogen sulphide (H2S) in perivascular adipose tissue (PVAT), of diabetic rats. Diabetes was induced in male rats by a single intraperitoneal injection of streptozotocin. Animals with glucose levels above 20 mmol/L were determined as diabetic. The rat gracilis arteries (a. gracilis) were dissected with or without PVAT. In all in vitro experiments endothelium-denuded preparations were used for isometric contraction measurements. Increasing concentrations of 5-hydroxytryptamine (5-HT) from 10−10 to 10−5 mol/L were applied to induce gradual increase in force of contractions of circular artery segments. The relaxing effect of CSE was inhibited by DL-propargyl glycine (PGG). The presence of PVAT decreases the contractile response to 5-HT of a. gracilis from control rats. This response is reversed in contraction studies in the same rat artery from diabetic rats. DL-PPG (1 mmol/L) induced significant increase of the force of contraction in artery preparations with PVAT from control rats in the whole range of 5-HT. In contrast, PGG had a relaxing effect in high concentrations of 5-HT (10−6 and 10−5 mol/L) in diabetic rat arteries with PVAT. It is concluded that in skeletal muscle artery from diabetic rats, a mediator related to H2S is released from PVAT. This paracrine mediator increases the maximal force of contraction of endothelium-denuded preparations at higher concentrations of 5-HT.
Collapse
Affiliation(s)
- Radoslava Emilova
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University St. Kliment Ohridski , Sofia , Bulgaria
| | - Daniela Dimitrova
- Department of Excitable Structures, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences , Sofia , Bulgaria
| | - Mitko Mladenov
- Institute of Biology, Faculty of Natural Sciences and Mathematics, University of Skopje Sts. Cyril and Methodius , Skopje , Macedonia
| | - Teodora Daneva
- Department of Immunobiology of Reproduction, Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences , Sofia , Bulgaria
| | - Rudolf Schubert
- Centre for Biomedicine and Medical Technology, Cardiovascular Physiology, Medical Faculty Mannheim, Ruprecht-Karls-University Heidelberg , Mannheim , Germany
| | - Hristo Gagov
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University St. Kliment Ohridski , Sofia , Bulgaria
| |
Collapse
|
138
|
Park JH, Jun JG, Kim JK. (E)-3-(3,4-dihydroxy-2-methoxyphenyl)-1-(2,4-dihydroxyphenyl)prop-2-en-1-one, a novel licochalcone B derivative compound, suppresses lipopolysaccharide-stimulated inflammatory reactions in RAW264.7 cells and endotoxin shock in mice. Chem Biol Interact 2014; 224:142-8. [DOI: 10.1016/j.cbi.2014.10.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/09/2014] [Accepted: 10/15/2014] [Indexed: 12/22/2022]
|
139
|
Scuffi D, Álvarez C, Laspina N, Gotor C, Lamattina L, García-Mata C. Hydrogen sulfide generated by L-cysteine desulfhydrase acts upstream of nitric oxide to modulate abscisic acid-dependent stomatal closure. PLANT PHYSIOLOGY 2014; 166:2065-76. [PMID: 25266633 PMCID: PMC4256879 DOI: 10.1104/pp.114.245373] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 09/23/2014] [Indexed: 05/20/2023]
Abstract
Abscisic acid (ABA) is a well-studied regulator of stomatal movement. Hydrogen sulfide (H2S), a small signaling gas molecule involved in key physiological processes in mammals, has been recently reported as a new component of the ABA signaling network in stomatal guard cells. In Arabidopsis (Arabidopsis thaliana), H2S is enzymatically produced in the cytosol through the activity of l-cysteine desulfhydrase (DES1). In this work, we used DES1 knockout Arabidopsis mutant plants (des1) to study the participation of DES1 in the cross talk between H2S and nitric oxide (NO) in the ABA-dependent signaling network in guard cells. The results show that ABA did not close the stomata in isolated epidermal strips of des1 mutants, an effect that was restored by the application of exogenous H2S. Quantitative reverse transcription polymerase chain reaction analysis demonstrated that ABA induces DES1 expression in guard cell-enriched RNA extracts from wild-type Arabidopsis plants. Furthermore, stomata from isolated epidermal strips of Arabidopsis ABA receptor mutant pyrabactin-resistant1 (pyr1)/pyrabactin-like1 (pyl1)/pyl2/pyl4 close in response to exogenous H2S, suggesting that this gasotransmitter is acting downstream, although acting independently of the ABA receptor cannot be ruled out with this data. However, the Arabidopsis clade-A PROTEIN PHOSPHATASE2C mutant abscisic acid-insensitive1 (abi1-1) does not close the stomata when epidermal strips were treated with H2S, suggesting that H2S required a functional ABI1. Further studies to unravel the cross talk between H2S and NO indicate that (1) H2S promotes NO production, (2) DES1 is required for ABA-dependent NO production, and (3) NO is downstream of H2S in ABA-induced stomatal closure. Altogether, data indicate that DES1 is a unique component of ABA signaling in guard cells.
Collapse
Affiliation(s)
- Denise Scuffi
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 7600 Mar del Plata, Argentina (D.S., N.L., L.L., C.G.-M.); andInstituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas y Universidad de Sevilla, 41092 Seville, Spain (C.Á., C.G.)
| | - Consolación Álvarez
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 7600 Mar del Plata, Argentina (D.S., N.L., L.L., C.G.-M.); andInstituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas y Universidad de Sevilla, 41092 Seville, Spain (C.Á., C.G.)
| | - Natalia Laspina
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 7600 Mar del Plata, Argentina (D.S., N.L., L.L., C.G.-M.); andInstituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas y Universidad de Sevilla, 41092 Seville, Spain (C.Á., C.G.)
| | - Cecilia Gotor
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 7600 Mar del Plata, Argentina (D.S., N.L., L.L., C.G.-M.); andInstituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas y Universidad de Sevilla, 41092 Seville, Spain (C.Á., C.G.)
| | - Lorenzo Lamattina
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 7600 Mar del Plata, Argentina (D.S., N.L., L.L., C.G.-M.); andInstituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas y Universidad de Sevilla, 41092 Seville, Spain (C.Á., C.G.)
| | - Carlos García-Mata
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 7600 Mar del Plata, Argentina (D.S., N.L., L.L., C.G.-M.); andInstituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas y Universidad de Sevilla, 41092 Seville, Spain (C.Á., C.G.)
| |
Collapse
|
140
|
El-Gowelli HM, El-Mas MM. Central modulation of cyclosporine-induced hypertension. Naunyn Schmiedebergs Arch Pharmacol 2014; 388:351-61. [DOI: 10.1007/s00210-014-1074-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 11/18/2014] [Indexed: 12/25/2022]
|
141
|
Ibargüen C, Guerra D, Hadad CZ, Restrepo A. Very weak interactions: structures, energies and bonding in the tetramers and pentamers of hydrogen sulfide. RSC Adv 2014. [DOI: 10.1039/c4ra09430a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
142
|
Kabil O, Motl N, Banerjee R. H2S and its role in redox signaling. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1844:1355-66. [PMID: 24418393 PMCID: PMC4048824 DOI: 10.1016/j.bbapap.2014.01.002] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/19/2013] [Accepted: 01/02/2014] [Indexed: 02/08/2023]
Abstract
Hydrogen sulfide (H2S) has emerged as an important gaseous signaling molecule that is produced endogenously by enzymes in the sulfur metabolic network. H2S exerts its effects on multiple physiological processes important under both normal and pathological conditions. These functions include neuromodulation, regulation of blood pressure and cardiac function, inflammation, cellular energetics and apoptosis. Despite the recognition of its biological importance and its beneficial effects, the mechanism of H2S action and the regulation of its tissue levels remain unclear in part owing to its chemical and physical properties that render handling and analysis challenging. Furthermore, the multitude of potential H2S effects has made it difficult to dissect its signaling mechanism and to identify specific targets. In this review, we focus on H2S metabolism and provide an overview of the recent literature that sheds some light on its mechanism of action in cellular redox signaling in health and disease. This article is part of a Special Issue entitled: Thiol-Based Redox Processes.
Collapse
Affiliation(s)
- Omer Kabil
- University of Michigan Medical School, Ann Arbor, MI 48109-0600, USA
| | - Nicole Motl
- University of Michigan Medical School, Ann Arbor, MI 48109-0600, USA
| | - Ruma Banerjee
- University of Michigan Medical School, Ann Arbor, MI 48109-0600, USA.
| |
Collapse
|
143
|
Wesseling S, Fledderus JO, Verhaar MC, Joles JA. Beneficial effects of diminished production of hydrogen sulfide or carbon monoxide on hypertension and renal injury induced by NO withdrawal. Br J Pharmacol 2014; 172:1607-19. [PMID: 24597655 DOI: 10.1111/bph.12674] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/27/2014] [Accepted: 03/01/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE Whether NO, carbon monoxide (CO) and hydrogen sulfide (H2 S) compensate for each other when one or more is depleted is unclear. Inhibiting NOS causes hypertension and kidney injury. Both global depletion of H2 S by cystathionine γ-lyase (CSE) gene deletion and low levels of exogenous H2 S cause hypertension. Inhibiting CO-producing enzyme haeme oxygenase-1 (HO-1) makes rodents hypersensitive to hypertensive stimuli. We hypothesized that combined inhibition of NOS and HO-1 exacerbates hypertension and renal injury, but how combined inhibition of NOS and CSE affect hypertension and renal injury was unclear. EXPERIMENTAL APPROACH Rats were treated with inhibitors of NOS (L-nitroarginine; LNNA), CSE (DL-propargylglycine; PAG), or HO-1 (tin protoporphyrin; SnPP) singly for 1 or 4 weeks or in combinations for 4 weeks. KEY RESULTS LNNA always reduced NO, decreased H2 S and increased CO after 4 weeks. PAG abolished H2 S, always enhanced CO and reduced NO, but not when used in combination with other inhibitors. SnPP always increased NO, enhanced H2 S and inhibited CO after 1 week. Rats treated with LNNA, but not PAG and SnPP, rapidly developed hypertension followed by renal dysfunction. LNNA-induced hypertension was ameliorated and renal dysfunction prevented by all additional treatments. Renal HO-1 expression was increased by LNNA in injured tubules and increased in all tubules by all other treatments. CONCLUSIONS AND IMPLICATIONS The amelioration of LNNA-induced hypertension and renal injury by additional inhibition of H2 S and/or CO-producing enzymes appeared to be associated with secondary increases in renal CO or NO production.
Collapse
Affiliation(s)
- Sebastiaan Wesseling
- Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
144
|
Working with "H2S": facts and apparent artifacts. Nitric Oxide 2014; 41:85-96. [PMID: 24932545 DOI: 10.1016/j.niox.2014.06.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 05/09/2014] [Accepted: 06/06/2014] [Indexed: 01/19/2023]
Abstract
Hydrogen sulfide (H2S) is an important signaling molecule with physiological endpoints similar to those of nitric oxide (NO). Growing interest in its physiological roles and pharmacological potential has led to large sets of contradictory data. The principle cause of these discrepancies can be the common neglect of some of the basic H2S chemistry. This study investigates how the experimental outcome when working with H2S depends on its source and dose and the methodology employed. We show that commercially available NaHS should be avoided and that traces of metal ions should be removed because these can reduce intramolecular disulfides and change protein structure. Furthermore, high H2S concentrations may lead to a complete inhibition of cell respiration, mitochondrial membrane potential depolarization and superoxide generation, which should be considered when discussing the biological effects observed upon treatment with high concentrations of H2S. In addition, we provide chemical evidence that H2S can directly react with superoxide. H2S is also capable of reducing cytochrome c(3+) with the concomitant formation of superoxide. H2S does not directly react with nitrite but with NO electrodes that detect H2S. In addition, H2S interferes with the Griess reaction and should therefore be removed from the solution by Cd(2+) or Zn(2+) precipitation prior to nitrite quantification. 2-Phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO) is reduced by H2S, and its use should be avoided in combination with H2S. All these constraints must be taken into account when working with H2S to ensure valid data.
Collapse
|
145
|
Fouda MA, El-Gowelli HM, El-Gowilly SM, Rashed L, El-Mas MM. Impairment of nitric oxide synthase but not heme oxygenase accounts for baroreflex dysfunction caused by chronic nicotine in female rats. PLoS One 2014; 9:e98681. [PMID: 24870610 PMCID: PMC4037226 DOI: 10.1371/journal.pone.0098681] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 05/07/2014] [Indexed: 12/31/2022] Open
Abstract
We recently reported that chronic nicotine impairs reflex chronotropic activity in female rats. Here, we sought evidence to implicate nitric oxide synthase (NOS) and/or heme oxygenase (HO) in the nicotine-baroreflex interaction. Baroreflex curves relating changes in heart rate to increases (phenylephrine) or decreases (sodium nitroprusside) in blood pressure were generated in conscious female rats treated with nicotine or saline in absence and presence of pharmacological modulators of NOS or HO activity. Compared with saline-treated rats, nicotine (2 mg/kg/day i.p., for 14 days) significantly reduced the slopes of baroreflex curves, a measure of baroreflex sensitivity (BRS). Findings that favor the involvement of NOS inhibition in the nicotine effect were (i) NOS inhibition (Nω-Nitro-L-arginine methyl ester, L-NAME) reduced BRS in control rats but failed to do so in nicotine-treated rats, (ii) L-arginine, NO donor, reversed the BRS inhibitory effect of nicotine. Alternatively, HO inhibition (zinc protoporphyrin IX, ZnPP) had no effect on BRS in nicotine- or control rats and failed to reverse the beneficial effect of L-arginine on nicotine-BRS interaction. Similar to female rats, BRS was reduced by L-NAME, but not ZnPP, in male rats and the L-NAME effect was not accentuated after concomitant administration of nicotine. Baroreflex dysfunction caused by nicotine in female rats was blunted after supplementation with hemin (HO inducer) but not tricarbonyldichlororuthenium(II) dimer (CORM-2), a carbon monoxide (CO) releasing molecule, or bilirubin, the breakdown product of heme catabolism. The facilitatory effect of hemin was abolished upon simultaneous treatment with L-NAME or 1H-[1], [2], [4] oxadiazolo[4,3-a] quinoxalin-1-one (inhibitor of soluble guanylate cyclase, sGC). The activities of HO and NOS in brainstem tissues were also significantly increased by hemin. Thus, the inhibition of NOS, but not HO, accounts for the baroreflex depressant of chronic nicotine. Further, hemin alleviates the nicotine effect through a mechanism that is NOS/sGC but not CO or bilirubin-dependent.
Collapse
Affiliation(s)
- Mohamed A. Fouda
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Hanan M. El-Gowelli
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Sahar M. El-Gowilly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Laila Rashed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mahmoud M. El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
146
|
Liu F, Chen DD, Sun X, Xie HH, Yuan H, Jia WP, Chen AF. Hydrogen sulfide improves wound healing via restoration of endothelial progenitor cell functions and activation of angiopoietin-1 in type 2 diabetes. Diabetes 2014; 63:1763-78. [PMID: 24487028 PMCID: PMC3994958 DOI: 10.2337/db13-0483] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Impaired angiogenesis and its induced refractory wound lesions are common complications of diabetes. Hydrogen sulfide (H2S) has been reported to have proangiogenic effects. We hypothesize that H2S improves diabetic wound healing by restoring endothelial progenitor cell (EPC) function in type 2 diabetes. db/db Mice were treated with sodium hydrosulfide (NaHS), 4-hydro-xythiobenzamide group (HTB), or saline for 18 days. db/+ Mice were treated with dl-propargylglycine (PAG) or saline for 18 days. Plasma H2S levels were significantly decreased in db/db mice and restored in the NaHS and HTB mice compared with the diabetic control group. Wound-closure rates were significantly faster in the NaHS and HTB groups than in the db/db group, in which the PAG group had slower wound-closure rates. Wound skin capillary densities were enhanced in the NaHS and HTB groups. EPC functions were significantly preserved in the NaHS and HTB groups but were decreased in the PAG group. Meanwhile, EPC functions of the db/+ mice were significantly reduced after in vitro PAG treatment or cystathionine-γ-lyase (CSE) silencing; EPC functions of db/db mice were significantly improved after in vitro NaHS treatment. The expressions of Ang-1 in wound skin tissue and in EPCs were upregulated in the NaHS and HTB groups compared with db/db controls, but were downregulated by in vivo PAG and in vitro siCSE treatment compared with normal controls. Diabetic EPC tube formation capacity was significantly inhibited by Ang-1 small interfering RNA before NaHS treatment compared with db/db EPCs treated with NaHS only. Taken together, these results show that H2S improves wound healing by restoration of EPC functions and activation of Ang-1 in type 2 diabetic mice.
Collapse
Affiliation(s)
- Fang Liu
- Department of Cardiology and Center of Clinical Pharmacology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dan-Dan Chen
- Department of Endocrinology & Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Clinical Center of Diabetes, Shanghai Institute of Diabetes, Shanghai, China
| | - Xin Sun
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - He-Hui Xie
- Department of Endocrinology & Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Clinical Center of Diabetes, Shanghai Institute of Diabetes, Shanghai, China
| | - Hong Yuan
- Department of Endocrinology & Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Clinical Center of Diabetes, Shanghai Institute of Diabetes, Shanghai, China
| | - Wei-Ping Jia
- Department of Endocrinology & Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Clinical Center of Diabetes, Shanghai Institute of Diabetes, Shanghai, China
- Corresponding authors: Alex F. Chen, ; and Wei-Ping Jia,
| | - Alex F. Chen
- Department of Endocrinology & Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Clinical Center of Diabetes, Shanghai Institute of Diabetes, Shanghai, China
- Corresponding authors: Alex F. Chen, ; and Wei-Ping Jia,
| |
Collapse
|
147
|
Kumar A. Correlation between anthropometric measurement, lipid profile, dietary vitamins, serum antioxidants, lipoprotein (a) and lipid peroxides in known cases of 345 elderly hypertensive South Asian aged 56-64 y-A hospital based study. Asian Pac J Trop Biomed 2014; 4:S189-97. [PMID: 25183079 PMCID: PMC4025308 DOI: 10.12980/apjtb.4.2014d153] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 02/22/2014] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE To address the association of dietary vitamins, anthropometric profile, lipid profile, antioxidant enzymes and lipid peroxidation in hypertensive participant compared with normotensive healthy controls. METHODS Dietary intake of vitamins was assessed by 131 food frequency questionnaire items in both hypertensive participants and normotensive age-sex matched healthy controls. The associated changes in serum antioxidants and lipid peroxidation were also assessed along with lipid profile and anthropometric measurements in both groups of subjects under study. RESULTS Dietary vitamins intake was higher in hypertensive participants excepting for vitamin B2 and ascorbic acid compared to normotensive controls. Anthropometric variables in the hypertensive showed significant differences in weight, body mass index, waist circumference, hip circumference, waist-hip ratio and mid-arm circumference. The total cholesterol, low-density lipoprotein cholesterol, triglyceride were significantly higher (P<0.001) in hypertensive except high-density lipoprotein cholesterol which was significantly higher (P<0.001) in normotensive. The serum endogenous antioxidants and enzyme antioxidants were significantly decreased in hypertensive except serum albumin levels compared to normotensive along with concomitant increase in serum lipoprotein (a) malondialdehyde and conjugated diene levels. CONCLUSIONS Based on the observations, our study concludes that hypertension is caused due to interplay of several confounding factors namely anthropometry, lipid profile, depletion of endogenous antioxidants and rise in oxidative stress.
Collapse
Affiliation(s)
- Arun Kumar
- *Corresponding author: Dr. Arun Kumar, Associate Professor, Department of Biochemistry, International Medical School, Management and Science University, Shah Alam Campus, Selangor, Malaysia. Tel: +601116280732 E-mail:
| |
Collapse
|
148
|
Metformin raises hydrogen sulfide tissue concentrations in various mouse organs. Pharmacol Rep 2014; 65:737-42. [PMID: 23950598 DOI: 10.1016/s1734-1140(13)71053-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 12/11/2012] [Indexed: 11/20/2022]
Abstract
BACKGROUND The epidemic of diabetes mellitus type 2 forces to intensive work on the disease medication. Metformin, the most widely prescribed insulin sensitizer, exerts pleiotropic actions on different tissues by not fully recognized mechanisms. Hydrogen sulfide (H2S) is involved in physiology and pathophysiology of various systems in mammals and is perceived as a potential agent in the treatment of different disorders. The interaction between biguanides and H2S is unknown. The aim of the study is to assess the influence of metformin on the H2S tissue concentrations in different mouse organs. METHODS Adult SJL female mice were administered intraperitoneally 100 mg/kg b.w. per day of metformin (group D1, n = 6) or 200 mg/kg b.w. per day of metformin (group D2, n = 7). The control group (n = 6) received physiological saline. The measurements of the free and acid-labile H2S tissue concentrations were performed with Siegel spectrophotometric modified method. RESULTS There was a significant progressive increase in the H2S concentration along with the rising metformin doses as compared to the control group in the brain (D1 by 103.6%, D2 by 113.5%), in the heart (D1 by 11.7%, D2 by 27.5%) and in the kidney (D1 by 7.1%, D2 by 9.6%). In the liver, massive H2S accumulation was observed in the group D1 (increase by 420.4%), while in the D2 group only slight H2S level enhancement was noted (by 12.5%). CONCLUSION Our experiment has shown that metformin administration is followed by H2S tissue concentrations increase in mouse brain, heart, kidney and liver.
Collapse
|
149
|
Deng J, Lei C, Chen Y, Fang Z, Yang Q, Zhang H, Cai M, Shi L, Dong H, Xiong L. Neuroprotective gases – Fantasy or reality for clinical use? Prog Neurobiol 2014; 115:210-45. [DOI: 10.1016/j.pneurobio.2014.01.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/03/2014] [Accepted: 01/03/2014] [Indexed: 12/17/2022]
|
150
|
Peh MT, Anwar AB, Ng DSW, Atan MSBM, Kumar SD, Moore PK. Effect of feeding a high fat diet on hydrogen sulfide (H2S) metabolism in the mouse. Nitric Oxide 2014; 41:138-45. [PMID: 24637018 DOI: 10.1016/j.niox.2014.03.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 02/20/2014] [Accepted: 03/06/2014] [Indexed: 12/18/2022]
Abstract
Hydrogen sulfide (H2S) has complex effects in inflammation with both pro- and anti-inflammatory actions of this gas reported. Recent work suggests that a deficiency of H2S occurs in, and may contribute to, the chronic inflammation which underpins ongoing atherosclerotic disease. However, whether a high fat diet, predisposing to atherosclerosis, affects H2S metabolism is not known. In this study we assessed H2S metabolism in different tissues of mice fed a high fat diet for up to 16 weeks. Ex vivo biosynthesis of H2S was reduced in liver, kidney and lung of high fat fed mice. Western blotting revealed deficiency of cystathionine γ lyase (CSE) in liver and lung with increased expression of cystathionine β synthetase (CBS) in liver and kidney. Expression of 3-mercaptopyruvate sulfurtransferase (3-MST) was reduced in liver but not other tissues. Aortic endothelial cell CSE was also reduced in high fat fed animals as determined immunohistochemically. Plasma H2S concentration was not changed in these animals. No evidence of lipid deposition was apparent in aortae from high fat fed animals and plasma serum amyloid A (SAA) and C-reactive protein (CRP) were also unchanged suggesting lack of frank atherosclerotic disease. Plasma IL-6, IL12p40 and G-CSF levels were increased by high fat feeding whilst other cytokines including IL-1α, IL-1b and TNF-α were not altered. These results suggest that deficiency of tissue CSE and H2S occurs in mice fed a high fat diet and that this change takes place prior to development of frank atherosclerotic disease.
Collapse
Affiliation(s)
- Meng Teng Peh
- Neurobiology Group, Life Sciences Institute and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Azzahra Binti Anwar
- Neurobiology Group, Life Sciences Institute and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - David S W Ng
- Neurobiology Group, Life Sciences Institute and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Mohamed Shirhan Bin Mohamed Atan
- Neurobiology Group, Life Sciences Institute and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Srinivasan Dinesh Kumar
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 637553, Singapore
| | - Philip K Moore
- Neurobiology Group, Life Sciences Institute and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|