101
|
Hashemi M, Shakiba M, Sanaei S, Shahkar G, Rezaei M, Mojahed A, Bahari G. Evaluation of prodynorphin gene polymorphisms and their association with heroin addiction in a sample of the southeast Iranian population. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2018; 7:1-6. [PMID: 29911117 PMCID: PMC5991531 DOI: 10.22099/mbrc.2017.27182.1294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Genetic factors are supposed to account for about 30-50% of the predisposition to cocaine and heroin addiction. This study aims at investigating the effect of rs2281285, rs2235749, rs910080 and 68bp VNTR polymorphisms of prodynorphin (PDYN) gene on heroin dependence risk in a sample of the southeast Iranian population. This case-control study was done on 216 heroin dependence subjects and 219 healthy subjects. Genomic DNA was extracted from peripheral blood cells using salting out method. Genotyping of PDYN polymorphisms were performed using polymerase chain reaction (PCR) or PCR-RFLP method. The findings showed that PDYN rs910080 T>C variant significantly increased the risk of heroin dependence (OR=7.91, 95%CI=3.36-18.61, P<0.0001, CC vs TT; OR=7.53, 95%CI=3.30-17.16, P<0.0001, CC vs TT+TC; OR=1.75, 95%CI=1.33-2.32, p<0.0001, C vs T). The rs2235749 C>T, rs2281285 A>G and 68bp VNTR variants of PDYN gene were not associated with heroin dependence. Altogether, our results provide an association between rs910080 polymorphism of PDYN gene and risk of heroin dependence in a sample of the southeast Iranian population.
Collapse
Affiliation(s)
- Mohammad Hashemi
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mansour Shakiba
- Department of Psychiatry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Sara Sanaei
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ghazaleh Shahkar
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Maryam Rezaei
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Azizolla Mojahed
- Department of Clinical Psychology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Gholamreza Bahari
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
102
|
Alvarez B, Barrientos T, Gac L, Teske J, Perez-Leighton C. Effects on Hedonic Feeding, Energy Expenditure and Balance of the Non-opioid Peptide DYN-A2-17. Neuroscience 2018; 371:337-345. [DOI: 10.1016/j.neuroscience.2017.11.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 11/11/2017] [Accepted: 11/27/2017] [Indexed: 11/28/2022]
|
103
|
Liu Y, Li S, Wang Q, Chen Y, Qi X, Liu Y, Liu X, Lin H, Zhang Y. Molecular identification of the Dyn/Kor system and its potential role in the reproductive axis of goldfish. Gen Comp Endocrinol 2018; 257:29-37. [PMID: 28242307 DOI: 10.1016/j.ygcen.2017.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/21/2017] [Accepted: 02/23/2017] [Indexed: 12/12/2022]
Abstract
To ascertain the significance of the dynorphin/kappa-opioid receptor (Dyn/Kor) system in fish reproduction, prodynorphin (pdyn) cDNA was cloned from goldfish. Two Dyn peptides (DynA and DynB) are present in the goldfish prodynorphin precursor. Both DynA and DynB are biologically active as they are able to functionally interact with the goldfish Kor expressed in cultured eukaryotic cells to suppress forskolin-induced CRE promoter activity. RT-PCR analysis showed that pdyn is widely expressed in brain regions, with the highest expression in hypothalamus. During ovarian development, hypothalamic pdyn and kor mRNA levels are lower in the early vitellogenic stage. Then the biological effects of Dyn peptides on salmon gonadotropin releasing hormone (sgnrh), luteinizing hormone beta (lhb) and follicle stimulating hormone beta (fshb) mRNA synthesis were further investigated in goldfish. Intraperitoneal injections of DynA and DynB significantly reduced hypothalamic sgnrh and pituitary lhb and fshb mRNA levels in male goldfish, but these two peptides only down-regulated sgnrh and lhb mRNA expression in female goldfish. In vitro studies revealed that DynA also decreased lhb mRNA levels in primary cultures of pituitary cells, indicating that this peptide can exert its actions at the pituitary level. Our findings suggest that the Dyn/Kor system plays a negative role in regulating the reproductive axis in goldfish.
Collapse
Affiliation(s)
- Yali Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Shuisheng Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Qing Wang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yu Chen
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xin Qi
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yun Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiaochun Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yong Zhang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
104
|
|
105
|
Almatroudi A, Ostovar M, Bailey CP, Husbands SM, Bailey SJ. Antidepressant-like effects of BU10119, a novel buprenorphine analogue with mixed κ/μ receptor antagonist properties, in mice. Br J Pharmacol 2017; 175:2869-2880. [PMID: 28967123 DOI: 10.1111/bph.14060] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/28/2017] [Accepted: 08/07/2017] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND AND PURPOSE The κ receptor antagonists have potential for treating neuropsychiatric disorders. We have investigated the in vivo pharmacology of a novel buprenorphine analogue, BU10119, for the first time. EXPERIMENTAL APPROACH To determine the opioid pharmacology of BU10119 (0.3-3 mg·kg-1 , i.p.) in vivo, the warm-water tail-withdrawal assay was applied in adult male CD1 mice. A range of behavioural paradigms was used to investigate the locomotor effects, rewarding properties and antidepressant or anxiolytic potential of BU10119. Additional groups of mice were exposed to a single (1 × 2 h) or repeated restraint stress (3× daily 2 h) to determine the ability of BU10119 to block stress-induced analgesia. KEY RESULTS BU10119 alone was without any antinociceptive activity. BU10119 (1 mg·kg-1 ) was able to block U50,488, buprenorphine and morphine-induced antinociception. The κ antagonist effects of BU10119 in the tail-withdrawal assay reversed between 24 and 48 h. BU10119 was without significant locomotor or rewarding effects. BU10119 (1 mg·kg-1 ) significantly reduced the latency to feed in the novelty-induced hypophagia task and reduced immobility time in the forced swim test, compared to saline-treated animals. There were no significant effects of BU10119 in either the elevated plus maze or the light-dark box. Both acute and repeated restraint stress-induced analgesia were blocked by pretreatment with BU10119 (1 mg·kg-1 ). Parallel stress-induced increases in plasma corticosterone were not affected. CONCLUSIONS AND IMPLICATIONS BU10119 is a mixed κ/μ receptor antagonist with relatively short-duration κ antagonist activity. Based on these preclinical data, BU10119 has therapeutic potential for the treatment of depression and other stress-induced conditions. LINKED ARTICLES This article is part of a themed section on Emerging Areas of Opioid Pharmacology. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.14/issuetoc.
Collapse
Affiliation(s)
| | - Mehrnoosh Ostovar
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| | | | | | - Sarah J Bailey
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| |
Collapse
|
106
|
Thompson MD, Sakurai T, Rainero I, Maj MC, Kukkonen JP. Orexin Receptor Multimerization versus Functional Interactions: Neuropharmacological Implications for Opioid and Cannabinoid Signalling and Pharmacogenetics. Pharmaceuticals (Basel) 2017; 10:ph10040079. [PMID: 28991183 PMCID: PMC5748636 DOI: 10.3390/ph10040079] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/29/2017] [Accepted: 09/29/2017] [Indexed: 12/17/2022] Open
Abstract
Orexins/hypocretins are neuropeptides formed by proteolytic cleavage of a precursor peptide, which are produced by neurons found in the lateral hypothalamus. The G protein-coupled receptors (GPCRs) for these ligands, the OX₁ and OX₂ orexin receptors, are more widely expressed throughout the central nervous system. The orexin/hypocretin system has been implicated in many pathways, and its dysregulation is under investigation in a number of diseases. Disorders in which orexinergic mechanisms are being investigated include narcolepsy, idiopathic sleep disorders, cluster headache and migraine. Human narcolepsy has been associated with orexin deficiency; however, it has only rarely been attributed to mutations in the gene encoding the precursor peptide. While gene variations within the canine OX₂ gene hcrtr2 have been directly linked with narcolepsy, the majority of human orexin receptor variants are weakly associated with diseases (the idiopathic sleep disorders, cluster headache and polydipsia-hyponatremia in schizophrenia) or are of potential pharmacogenetic significance. Evidence for functional interactions and/or heterodimerization between wild-type and variant orexin receptors and opioid and cannabinoid receptors is discussed in the context of its relevance to depression and epilepsy.
Collapse
Affiliation(s)
- Miles D Thompson
- Department of Pediatrics, University of California, San Diego 92093, CA, USA.
| | - Takeshi Sakurai
- Department of Molecular Neuroscience and Integrative Physiology, Faculty of Medicine, Kanazawa University, Kanazawa 920-8620, Japan.
| | - Innocenzo Rainero
- Department of Neuroscience, University of Turin, Torino 10124, Italy.
| | - Mary C Maj
- Department of Biochemistry, School of Medicine, Saint George's University, Saint George's 11739, Grenada.
| | - Jyrki P Kukkonen
- Biochemistry and Cell Biology, Department of Veterinary Biosciences, University of Helsinki, Helsinki 11739, Finland.
- Department of Physiology, Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Helsinki 00100, Finland.
| |
Collapse
|
107
|
Erli F, Guerrieri E, Ben Haddou T, Lantero A, Mairegger M, Schmidhammer H, Spetea M. Highly Potent and Selective New Diphenethylamines Interacting with the κ-Opioid Receptor: Synthesis, Pharmacology, and Structure-Activity Relationships. J Med Chem 2017; 60:7579-7590. [PMID: 28825813 PMCID: PMC5601360 DOI: 10.1021/acs.jmedchem.7b00981] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Indexed: 12/26/2022]
Abstract
We previously reported on a series of small molecules targeting the κ-opioid (KOP) receptor featuring a diphenethylamine scaffold and showed the promise of these ligands as effective analgesics with reduced liability for adverse effects. This study expands the structure-activity relationships on our original series by presenting several modifications in the lead compounds 1 (HS665) and 2 (HS666). A library of new diphenethylamines was designed, synthesized, and pharmacologically evaluated. In comparison with 1 and 2, the KOP receptor affinity, selectivity, and agonist activity were modulated by introducing bulkier N-substituents, a 2-fluoro substitution, and additional hydroxyl groups at positions 3' and 4'. Several analogues showed subnanomolar affinity and excellent KOP receptor selectivity acting as full or partial agonists, and one as an antagonist. The new diphenethylamines displayed antinociceptive efficacies with increased potencies than U50,488, 1 and 2 in the writhing assay and without inducing motor dysfunction after sc administration in mice.
Collapse
Affiliation(s)
| | | | - Tanila Ben Haddou
- Department of Pharmaceutical
Chemistry, Institute of Pharmacy and Center for Molecular Biosciences
Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Aquilino Lantero
- Department of Pharmaceutical
Chemistry, Institute of Pharmacy and Center for Molecular Biosciences
Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Michael Mairegger
- Department of Pharmaceutical
Chemistry, Institute of Pharmacy and Center for Molecular Biosciences
Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Helmut Schmidhammer
- Department of Pharmaceutical
Chemistry, Institute of Pharmacy and Center for Molecular Biosciences
Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Mariana Spetea
- Department of Pharmaceutical
Chemistry, Institute of Pharmacy and Center for Molecular Biosciences
Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
108
|
Gunn BG, Baram TZ. Stress and Seizures: Space, Time and Hippocampal Circuits. Trends Neurosci 2017; 40:667-679. [PMID: 28916130 DOI: 10.1016/j.tins.2017.08.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/11/2017] [Accepted: 08/23/2017] [Indexed: 10/18/2022]
Abstract
Stress is a major trigger of seizures in people with epilepsy. Exposure to stress results in the release of several stress mediators throughout the brain, including the hippocampus, a region sensitive to stress and prone to seizures. Stress mediators interact with their respective receptors to produce distinct effects on the excitability of hippocampal neurons and networks. Crucially, these stress mediators and their actions exhibit unique spatiotemporal profiles, generating a complex combinatorial output with time- and space-dependent effects on hippocampal network excitability and seizure generation.
Collapse
Affiliation(s)
- B G Gunn
- Department of Pediatrics, University of California, Irvine, CA, USA
| | - T Z Baram
- Department of Pediatrics, University of California, Irvine, CA, USA; Department of Anatomy & Neurobiology, University of California, Irvine, CA, USA; Department of Neurology, University of California, Irvine, CA, USA.
| |
Collapse
|
109
|
Burtscher J, Schwarzer C. The Opioid System in Temporal Lobe Epilepsy: Functional Role and Therapeutic Potential. Front Mol Neurosci 2017; 10:245. [PMID: 28824375 PMCID: PMC5545604 DOI: 10.3389/fnmol.2017.00245] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/24/2017] [Indexed: 12/13/2022] Open
Abstract
Temporal lobe epilepsy is considered to be one of the most common and severe forms of focal epilepsies. Patients often develop cognitive deficits and emotional blunting along the progression of the disease. The high incidence of resistance to antiepileptic drugs and a frequent lack of admissibility to surgery poses an unmet medical challenge. In the urgent quest of novel treatment strategies, neuropeptides are interesting candidates, however, their therapeutic potential has not yet been exploited. This review focuses on the functional role of the endogenous opioid system with respect to temporal lobe epilepsy, specifically in the hippocampus. The role of dynorphins and kappa opioid receptors (KOPr) as modulators of neuronal excitability is well understood: both the reduced release of glutamate as well of postsynaptic hyperpolarization were shown in glutamatergic neurons. In line with this, low levels of dynorphin in humans and mice increase the risk of epilepsy development. The role of enkephalins is not understood so well. On one hand, some agonists of the delta opioid receptors (DOPr) display pro-convulsant properties probably through inhibition of GABAergic interneurons. On the other hand, enkephalins play a neuro-protective role under hypoxic or anoxic conditions, most probably through positive effects on mitochondrial function. Despite the supposed absence of endorphins in the hippocampus, exogenous activation of the mu opioid receptors (MOPr) induces pro-convulsant effects. Recently-expanded knowledge of the complex ways opioid receptors ligands elicit their effects (including biased agonism, mixed binding, and opioid receptor heteromers), opens up exciting new therapeutic potentials with regards to seizures and epilepsy. Potential adverse side effects of KOPr agonists may be minimized through functional selectivity. Preclinical data suggest a high potential of such compounds to control seizures, with a strong predictive validity toward human patients. The discovery of DOPr-agonists without proconvulsant potential stimulates the research on the therapeutic use of neuroprotective potential of the enkephalin/DOPr system.
Collapse
Affiliation(s)
| | - Christoph Schwarzer
- Department of Pharmacology, Medical University of InnsbruckInnsbruck, Austria
| |
Collapse
|
110
|
Anderson RI, Becker HC. Role of the Dynorphin/Kappa Opioid Receptor System in the Motivational Effects of Ethanol. Alcohol Clin Exp Res 2017; 41:1402-1418. [PMID: 28425121 DOI: 10.1111/acer.13406] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 04/13/2017] [Indexed: 12/20/2022]
Abstract
Evidence has demonstrated that dynorphin (DYN) and the kappa opioid receptor (KOR) system contribute to various psychiatric disorders, including anxiety, depression, and addiction. More recently, this endogenous opioid system has received increased attention as a potential therapeutic target for treating alcohol use disorders. In this review, we provide an overview and synthesis of preclinical studies examining the influence of alcohol (ethanol [EtOH]) exposure on DYN/KOR expression and function, as well as studies examining the effects of DYN/KOR manipulation on EtOH's rewarding and aversive properties. We then describe work that has characterized effects of KOR activation and blockade on EtOH self-administration and EtOH dependence/withdrawal-related behaviors. Finally, we address how the DYN/KOR system may contribute to stress-EtOH interactions. Despite an apparent role for the DYN/KOR system in motivational effects of EtOH, support comes from relatively few studies. Nevertheless, review of this literature reveals several common themes: (i) rodent strains genetically predisposed to consume more EtOH generally appear to have reduced DYN/KOR tone in brain reward circuitry; (ii) acute and chronic EtOH exposure typically up-regulate the DYN/KOR system; (iii) KOR antagonists reduce behavioral indices of negative affect associated with stress and chronic EtOH exposure/withdrawal; and (iv) KOR antagonists are effective in reducing EtOH consumption, but are often more efficacious under conditions that engender high levels of consumption, such as dependence or stress exposure. These results support the contention that the DYN/KOR system plays a significant role in contributing to dependence- and stress-induced elevation in EtOH consumption. Overall, more comprehensive analyses (on both behavioral and mechanistic levels) are needed to provide additional insight into how the DYN/KOR system is engaged and adapts to influence the motivation effects of EtOH. This information will be critical for the development of new pharmacological agents targeting KORs as promising novel therapeutics for alcohol use disorders and comorbid affective disorders.
Collapse
Affiliation(s)
- Rachel I Anderson
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Howard C Becker
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina.,Department of Neuroscience , Medical University of South Carolina, Charleston, South Carolina.,RHJ Department of Veterans Affairs Medical Center , Charleston, South Carolina
| |
Collapse
|
111
|
Fluegge K. Correspondence: Periodontal Health among Non-Hospitalized Chronic Psychiatric Patients in Mangaluru City-India. J Clin Diagn Res 2017; 11:ZL01. [PMID: 28274083 DOI: 10.7860/jcdr/2017/24900.9208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 11/16/2016] [Indexed: 11/24/2022]
Affiliation(s)
- Keith Fluegge
- Keith Fluegge, B.A., Institute of Health and Environmental Research Cleveland, Ohio, USA
| |
Collapse
|
112
|
Age-dependent regulation of GABA transmission by kappa opioid receptors in the basolateral amygdala of Sprague-Dawley rats. Neuropharmacology 2017; 117:124-133. [PMID: 28163104 DOI: 10.1016/j.neuropharm.2017.01.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 01/26/2017] [Accepted: 01/29/2017] [Indexed: 12/17/2022]
Abstract
Anxiety disorders are one of the most common and debilitating mental illnesses worldwide. Growing evidence indicates an age-dependent rise in the incidence of anxiety disorders from adolescence through adulthood, suggestive of underlying neurodevelopmental mechanisms. Kappa opioid receptors (KORs) are known to contribute to the development and expression of anxiety; however, the functional role of KORs in the basolateral amygdala (BLA), a brain structure critical in mediating anxiety, particularly across ontogeny, are unknown. Using whole-cell patch-clamp electrophysiology in acute brain slices from adolescent (postnatal day (P) 30-45) and adult (P60+) male Sprague-Dawley rats, we found that the KOR agonist, U69593, increased the frequency of GABAA-mediated spontaneous inhibitory postsynaptic currents (sIPSCs) in the adolescent BLA, without an effect in the adult BLA or on sIPSC amplitude at either age. The KOR effect was blocked by the KOR antagonist, nor-BNI, which alone did not alter GABA transmission at either age, and the effect of the KOR agonist was TTX-sensitive. Additionally, KOR activation did not alter glutamatergic transmission in the BLA at either age. In contrast, U69593 inhibited sIPSC frequency in the central amygdala (CeA) at both ages, without altering sIPSC amplitude. Western blot analysis of KOR expression indicated that KOR levels were not different between the two ages in either the BLA or CeA. This is the first study to provide compelling evidence for a novel and unique neuromodulatory switch in one of the primary brain regions involved in initiating and mediating anxiety that may contribute to the ontogenic rise in anxiety disorders.
Collapse
|
113
|
Ji B, Liu H, Zhang R, Jiang Y, Wang C, Li S, Chen J, Bai B. Novel signaling of dynorphin at κ-opioid receptor/bradykinin B2 receptor heterodimers. Cell Signal 2017; 31:66-78. [PMID: 28069442 DOI: 10.1016/j.cellsig.2017.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/19/2016] [Accepted: 01/04/2017] [Indexed: 01/06/2023]
Abstract
The κ-opioid receptor (KOR) and bradykinin B2 receptor (B2R) are involved in a variety of important physiological processes and share many similar characteristics in terms of their distribution and functions in the nervous system. We first demonstrated the endogenous expression of KOR and B2R in human SH-SY5Y cells and their co-localization on the membrane of human embryonic kidney 293 (HEK293) cells. Bioluminescence and fluorescence resonance energy transfer and the proximity ligation assay were exploited to demonstrate the formation of functional KOR and B2R heteromers in transfected cells. KOR/B2R heteromers triggered dynorphin A (1-13)-induced Gαs/protein kinase A signaling pathway activity, including upregulation of intracellular cAMP levels and cAMP-response element luciferase reporter activity, resulting in increased cAMP-response element-binding protein (CREB) phosphorylation, which could be dampened by the protein kinase A (PKA) inhibitor H89. This indicated that the co-existence of KOR and B2R is critical for CREB phosphorylation. In addition, dynorphin A (1-13) induced a significantly higher rate of proliferation in HEK293-KOR/B2R and human SH-SY5Y cells than in the control group. These results indicate that KOR can form a heterodimer with B2R and this leads to increased protein kinase A activity by the CREB signaling pathway, leading to a significant increase in cell proliferation. The nature of this signaling pathway has significant implications for the role of dynorphin in the regulation of neuroprotective effects.
Collapse
Affiliation(s)
- Bingyuan Ji
- School of Life Science, Shandong Agricultural University, Taian 271018, PR China; Neurobiology Institute, Jining Medical University, Jining 272067, PR China
| | - Haiqing Liu
- Department of Physiology, Taishan Medical College, Taian 271000, PR China
| | - Rumin Zhang
- Neurobiology Institute, Jining Medical University, Jining 272067, PR China
| | - Yunlu Jiang
- Neurobiology Institute, Jining Medical University, Jining 272067, PR China
| | - Chunmei Wang
- Neurobiology Institute, Jining Medical University, Jining 272067, PR China
| | - Sheng Li
- Neurobiology Institute, Jining Medical University, Jining 272067, PR China
| | - Jing Chen
- Neurobiology Institute, Jining Medical University, Jining 272067, PR China; Division of Translational and Systems Medicine, Warwick Medical School, University of Warwick, Coventry, UK.
| | - Bo Bai
- Neurobiology Institute, Jining Medical University, Jining 272067, PR China.
| |
Collapse
|
114
|
Taylor GT, Manzella F. Kappa Opioids, Salvinorin A and Major Depressive Disorder. Curr Neuropharmacol 2016; 14:165-76. [PMID: 26903446 PMCID: PMC4825947 DOI: 10.2174/1570159x13666150727220944] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/11/2015] [Accepted: 07/24/2015] [Indexed: 12/13/2022] Open
Abstract
Opioids are traditionally associated with pain, analgesia and drug abuse. It is now clear,
however, that the opioids are central players in mood. The implications for mood disorders, particularly
clinical depression, suggest a paradigm shift from the monoamine neurotransmitters to the opioids either
alone or in interaction with monoamine neurons. We have a special interest in dynorphin, the last of
the major endogenous opioids to be isolated and identified. Dynorphin is derived from the Greek word
for power, dynamis, which hints at the expectation that the neuropeptide held for its discoverers. Yet,
dynorphin and its opioid receptor subtype, kappa, has always taken a backseat to the endogenous b-endorphin and the
exogenous morphine that both bind the mu opioid receptor subtype. That may be changing as the dynorphin/ kappa system
has been shown to have different, often opposite, neurophysiological and behavioral influences. This includes major
depressive disorder (MDD). Here, we have undertaken a review of dynorphin/ kappa neurobiology as related to behaviors,
especially MDD. Highlights include the unique features of dynorphin and kappa receptors and the special relation of a
plant-based agonist of the kappa receptor salvinorin A. In addition to acting as a kappa opioid agonist, we conclude that
salvinorin A has a complex pharmacologic profile, with potential additional mechanisms of action. Its unique neurophysiological
effects make Salvinorina A an ideal candidate for MDD treatment research.
Collapse
Affiliation(s)
| | - Francesca Manzella
- Behavioral Neuroscience/ Psychology Univ. Missouri - St. Louis, One University Blvd, St. Louis, MO 63121 USA.
| |
Collapse
|
115
|
Nicotinic and opioid receptor regulation of striatal dopamine D2-receptor mediated transmission. Sci Rep 2016; 6:37834. [PMID: 27886263 PMCID: PMC5122907 DOI: 10.1038/srep37834] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 11/02/2016] [Indexed: 12/28/2022] Open
Abstract
In addition to dopamine neuron firing, cholinergic interneurons (ChIs) regulate dopamine release in the striatum via presynaptic nicotinic receptors (nAChRs) on dopamine axon terminals. Synchronous activity of ChIs is necessary to evoke dopamine release through this pathway. The frequency-dependence of disynaptic nicotinic modulation has led to the hypothesis that nAChRs act as a high-pass filter in the dopaminergic microcircuit. Here, we used optogenetics to selectively stimulate either ChIs or dopamine terminals directly in the striatum. To measure the functional consequence of dopamine release, D2-receptor synaptic activity was assessed via virally overexpressed potassium channels (GIRK2) in medium spiny neurons (MSNs). We found that nicotinic-mediated dopamine release was blunted at higher frequencies because nAChRs exhibit prolonged desensitization after a single pulse of synchronous ChI activity. However, when dopamine neurons alone were stimulated, nAChRs had no effect at any frequency. We further assessed how opioid receptors modulate these two mechanisms of release. Bath application of the κ opioid receptor agonist U69593 decreased D2-receptor activation through both pathways, whereas the μ opioid receptor agonist DAMGO decreased D2-receptor activity only as a result of cholinergic-mediated dopamine release. Thus the release of dopamine can be independently modulated when driven by either dopamine neurons or cholinergic interneurons.
Collapse
|
116
|
Trofimova IN, Sulis W. A Study of the Coupling of FET Temperament Traits with Major Depression. Front Psychol 2016; 7:1848. [PMID: 27933018 PMCID: PMC5123189 DOI: 10.3389/fpsyg.2016.01848] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 11/08/2016] [Indexed: 01/21/2023] Open
Abstract
Objective: Temperament and mental illness have been linked to the same systems of behavioral regulation. A temperament model, carefully structured to respond to subtle differences within systems of behavior regulation, should exhibit distinct temperament patterns in the presence of mental illness. Previous comparisons of temperament profiles in mental disorders used mostly emotionality-related traits. In contrast, the Functional Ensemble of Temperament (FET) model differentiates not only between emotionality traits, but also between traits related to physical, verbal, and mental aspects of behavior and maps 12 functional aspects of behavior to temperament traits as well as to symptoms of mental illnesses. This article reports on the coupling of sex, age, and temperament traits with Major Depression (MD) using the FET framework. Method: Intake records of 467 subjects, ages 17-24, 25-45, 46-65, 66-84 were examined, with temperament assessed by the Structure of Temperament Questionnaire (based on the FET). Results: The presence of MD was associated with changes in mean temperament scores on 9 of the 12 traits. The results were in line with the DSM-5 criteria of fatigue (patients with MD reported a significant decrease in three types of endurance - motor-physical, social-verbal, and mental), of psychomotor retardation (a significant decrease in physical and social-verbal tempo) and of worthlessness (as low Self-Confidence). The results also showed that three new symptoms, high Impulsivity, high Neuroticism, and diminished Plasticity, should be considered as depressive symptoms in future versions of the DSM. As a significant negative result, no interaction of age or sex (with the exception of the Self-Confidence scale) with MD was found for temperament traits. Conclusion: The value of differentiating between physical, social, and mental aspects of behavior is demonstrated in the differential effects of major depression and gender. The value of differentiating between endurance, dynamical and orientation-related aspects of behavior is also demonstrated. The deleterious impact of MD on temperament scores appeared to be similar across all age groups. The appearance of high impulsivity, neuroticism, and low plasticity deserve further study as associated factors in future versions of the DSM/ICD.
Collapse
Affiliation(s)
- Irina N Trofimova
- Collective Intelligence Laboratory, Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton ON, Canada
| | - William Sulis
- Collective Intelligence Laboratory, Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton ON, Canada
| |
Collapse
|
117
|
Liu H, Tian Y, Ji B, Lu H, Xin Q, Jiang Y, Ding L, Zhang J, Chen J, Bai B. Heterodimerization of the kappa opioid receptor and neurotensin receptor 1 contributes to a novel β-arrestin-2-biased pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2719-2738. [PMID: 27523794 DOI: 10.1016/j.bbamcr.2016.07.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 07/28/2016] [Accepted: 07/29/2016] [Indexed: 12/17/2022]
Abstract
Together with its endogenous ligands (dynorphin), the kappa opioid receptor (KOR) plays an important role in modulating various physiological and pharmacological responses, with a classical G protein-coupled pathway mediating analgesia and non-G protein-dependent pathway, especially the β-arrestin-dependent pathway, eliciting side effects of dysphoria, aversion, drug-seeking in addicts, or even relapse to addiction. Although mounting evidence has verified a functional overlap between dynorphin/KOR and neurotensin/neurotensin receptor 1 (NTSR1) systems, little is known about direct interaction between the two receptors. Here, we showed that KOR and NTSR1 form a heterodimer that functions as a novel pharmacological entity, and this heterodimer, in turn, brings about a switch in KOR-mediated signal transduction, from G protein-dependent to β-arrestin-2-dependent. This was simultaneously verified by analyzing a KOR mutant (196th residue) that lost the ability to dimerize with NTSR1. We also found that dual occupancy of the heterodimer forced the β-arrestin-2-dependent pathway back into Gi protein-dependent signaling, according to KOR activation. These data provide new insights into the interaction between KOR and NTSR1, and the newly discovered role of NTSR1 acting as a switch between G protein- and β-arrestin-dependent pathways of KOR also suggests a new approach for utilizing pathologically elevated dynorphin/KOR system into full play for its analgesic effect with limited side effects.
Collapse
Affiliation(s)
- Haiqing Liu
- School of Life Science, Shandong Agricultural University, Taian, Shandong 271018, PR China; Department of Physiology, Taishan Medical College, Taian, Shandong 271000, PR China.
| | - Yanjun Tian
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, PR China.
| | - Bingyuan Ji
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, PR China.
| | - Hai Lu
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, PR China.
| | - Qing Xin
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, PR China.
| | - Yunlu Jiang
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, PR China.
| | - Liangcai Ding
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, PR China.
| | - Jingmei Zhang
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, PR China.
| | - Jing Chen
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, PR China; Division of Translational and Systems, Warwick Medical School, University of Warwick, Coventry, UK.
| | - Bo Bai
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, PR China.
| |
Collapse
|
118
|
Guerrieri E, Bermudez M, Wolber G, Berzetei-Gurske IP, Schmidhammer H, Spetea M. Structural determinants of diphenethylamines for interaction with the κ opioid receptor: Synthesis, pharmacology and molecular modeling studies. Bioorg Med Chem Lett 2016; 26:4769-4774. [PMID: 27567368 DOI: 10.1016/j.bmcl.2016.08.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/10/2016] [Accepted: 08/11/2016] [Indexed: 10/21/2022]
Abstract
The κ opioid (KOP) receptor crystal structure in an inactive state offers nowadays a valuable platform for inquiry into receptor function. We describe the synthesis, pharmacological evaluation and docking calculations of KOP receptor ligands from the class of diphenethylamines using an active-like structure of the KOP receptor attained by molecular dynamics simulations. The structure-activity relationships derived from computational studies was in accordance with pharmacological activities of targeted diphenethylamines at the KOP receptor established by competition binding and G protein activation in vitro assays. Our analysis identified that agonist binding results in breaking of the Arg156-Thr273 hydrogen bond, which stabilizes the inactive receptor conformation, and a crucial hydrogen bond with His291 is formed. Compounds with a phenolic 4-hydroxy group do not form the hydrogen bond with His291, an important residue for KOP affinity and agonist activity. The size of the N-substituent hosted by the hydrophobic pocket formed by Val108, Ile316 and Tyr320 considerably influences binding and selectivity, with the n-alkyl size limit being five carbon atoms, while bulky substituents turn KOP agonists in antagonists. Thus, combination of experimental and molecular modeling strategies provides an initial framework for understanding the structural features of diphenethylamines that are essential to promote binding affinity and selectivity for the KOP receptor, and may be involved in transduction of the ligand binding event into molecular changes, ultimately leading to receptor activation.
Collapse
Affiliation(s)
- Elena Guerrieri
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Marcel Bermudez
- Institute of Pharmacy, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Gerhard Wolber
- Institute of Pharmacy, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Ilona P Berzetei-Gurske
- Biosciences Division, SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025, United States
| | - Helmut Schmidhammer
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Mariana Spetea
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria.
| |
Collapse
|
119
|
Smeets CJLM, Zmorzyńska J, Melo MN, Stargardt A, Dooley C, Bakalkin G, McLaughlin J, Sinke RJ, Marrink SJ, Reits E, Verbeek DS. Altered secondary structure of Dynorphin A associates with loss of opioid signalling and NMDA-mediated excitotoxicity in SCA23. Hum Mol Genet 2016; 25:2728-2737. [PMID: 27260403 DOI: 10.1093/hmg/ddw130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/31/2016] [Accepted: 04/24/2016] [Indexed: 11/13/2022] Open
Abstract
Spinocerebellar ataxia type 23 (SCA23) is caused by missense mutations in prodynorphin, encoding the precursor protein for the opioid neuropeptides α-neoendorphin, Dynorphin (Dyn) A and Dyn B, leading to neurotoxic elevated mutant Dyn A levels. Dyn A acts on opioid receptors to reduce pain in the spinal cord, but its cerebellar function remains largely unknown. Increased concentration of or prolonged exposure to Dyn A is neurotoxic and these deleterious effects are very likely caused by an N-methyl-d-aspartate-mediated non-opioid mechanism as Dyn A peptides were shown to bind NMDA receptors and potentiate their glutamate-evoked currents. In the present study, we investigated the cellular mechanisms underlying SCA23-mutant Dyn A neurotoxicity. We show that SCA23 mutations in the Dyn A-coding region disrupted peptide secondary structure leading to a loss of the N-terminal α-helix associated with decreased κ-opioid receptor affinity. Additionally, the altered secondary structure led to increased peptide stability of R6W and R9C Dyn A, as these peptides showed marked degradation resistance, which coincided with decreased peptide solubility. Notably, L5S Dyn A displayed increased degradation and no aggregation. R6W and wt Dyn A peptides were most toxic to primary cerebellar neurons. For R6W Dyn A, this is likely because of a switch from opioid to NMDA- receptor signalling, while for wt Dyn A, this switch was not observed. We propose that the pathology of SCA23 results from converging mechanisms of loss of opioid-mediated neuroprotection and NMDA-mediated excitotoxicity.
Collapse
Affiliation(s)
- Cleo J L M Smeets
- Department of Genetics, University of Groningen, University Medical Centre GroningenGroningen, the Netherlands
| | - Justyna Zmorzyńska
- Department of Genetics, University of Groningen, University Medical Centre GroningenGroningen, the Netherlands
| | - Manuel N Melo
- Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Anita Stargardt
- Department of Cell Biology and Histology, Academic Medical Centre, Amsterdam, The Netherlands
| | - Colette Dooley
- Torrey Pines Institute for Molecular Studies, Port St Lucie, FL, USA
| | - Georgy Bakalkin
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Jay McLaughlin
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | - Richard J Sinke
- Department of Genetics, University of Groningen, University Medical Centre GroningenGroningen, the Netherlands
| | - Siewert-Jan Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Eric Reits
- Department of Cell Biology and Histology, Academic Medical Centre, Amsterdam, The Netherlands
| | - Dineke S Verbeek
- Department of Genetics, University of Groningen, University Medical Centre GroningenGroningen, the Netherlands
| |
Collapse
|
120
|
Zangrandi L, Burtscher J, MacKay JP, Colmers WF, Schwarzer C. The G-protein biased partial κ opioid receptor agonist 6'-GNTI blocks hippocampal paroxysmal discharges without inducing aversion. Br J Pharmacol 2016; 173:1756-67. [PMID: 26928671 PMCID: PMC4867738 DOI: 10.1111/bph.13474] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 02/05/2016] [Accepted: 02/09/2016] [Indexed: 11/29/2022] Open
Abstract
Background and Purpose With a prevalence of 1–2%, epilepsies belong to the most frequent neurological diseases worldwide. Although antiepileptic drugs are available since several decades, the incidence of patients that are refractory to medication is still over 30%. Antiepileptic effects of κ opioid receptor (κ receptor) agonists have been proposed since the 1980s. However, their clinical use was hampered by dysphoric side effects. Recently, G‐protein biased κ receptor agonists were developed, suggesting reduced aversive effects. Experimental Approach We investigated the effects of the κ receptor agonist U‐50488H and the G‐protein biased partial κ receptor agonist 6′‐GNTI in models of acute seizures and drug‐resistant temporal lobe epilepsy and in the conditioned place avoidance (CPA) test. Moreover, we performed slice electrophysiology to understand the functional mechanisms of 6′‐GNTI. Key Results As previously shown for U‐50488H, 6′‐GNTI markedly increased the threshold for pentylenetetrazole‐induced seizures. All treated mice displayed reduced paroxysmal activity in response to U‐50488H (20 mg·kg−1) or 6′‐GNTI (10–30 nmoles) treatment in the mouse model of intra‐hippocampal injection of kainic acid. Single cell recordings on hippocampal pyramidal cells revealed enhanced inhibitory signalling as potential mechanisms causing the reduction of paroxysmal activity. Effects of 6′‐GNTI were blocked in both seizure models by the κ receptor antagonist 5′‐GNTI. Moreover, 6′‐GNTI did not induce CPA, a measure of aversive effects, while U‐50488H did. Conclusions and Implications Our data provide the proof of principle that anticonvulsant/antiseizure and aversive effects of κ receptor activation can be pharmacologically separated in vivo.
Collapse
Affiliation(s)
- Luca Zangrandi
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Burtscher
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - James P MacKay
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - William F Colmers
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Christoph Schwarzer
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
121
|
Functional Stability of the Human Kappa Opioid Receptor Reconstituted in Nanodiscs Revealed by a Time-Resolved Scintillation Proximity Assay. PLoS One 2016; 11:e0150658. [PMID: 27035823 PMCID: PMC4817975 DOI: 10.1371/journal.pone.0150658] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 02/16/2016] [Indexed: 11/19/2022] Open
Abstract
Long-term functional stability of isolated membrane proteins is crucial for many in vitro applications used to elucidate molecular mechanisms, and used for drug screening platforms in modern pharmaceutical industry. Compared to soluble proteins, the understanding at the molecular level of membrane proteins remains a challenge. This is partly due to the difficulty to isolate and simultaneously maintain their structural and functional stability, because of their hydrophobic nature. Here we show, how scintillation proximity assay can be used to analyze time-resolved high-affinity ligand binding to membrane proteins solubilized in various environments. The assay was used to establish conditions that preserved the biological function of isolated human kappa opioid receptor. In detergent solution the receptor lost high-affinity ligand binding to a radiolabelled ligand within minutes at room temperature. After reconstitution in Nanodiscs made of phospholipid bilayer the half-life of high-affinity ligand binding to the majority of receptors increased 70-fold compared to detergent solubilized receptors—a level of stability that is appropriate for further downstream applications. Time-resolved scintillation proximity assay has the potential to screen numerous conditions in parallel to obtain high levels of stable and active membrane proteins, which are intrinsically unstable in detergent solution, and with minimum material consumption.
Collapse
|
122
|
Trofimova I, Sulis W. Benefits of Distinguishing between Physical and Social-Verbal Aspects of Behavior: An Example of Generalized Anxiety. Front Psychol 2016; 7:338. [PMID: 27014146 PMCID: PMC4789559 DOI: 10.3389/fpsyg.2016.00338] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 02/23/2016] [Indexed: 12/31/2022] Open
Abstract
Temperament traits and mental illness have been linked to varying degrees of imbalances in neurotransmitter systems of behavior regulation. If a temperament model has been carefully structured to reflect weak imbalances within systems of behavior regulation, then in the presence of mental illness, these profiles should exhibit distinct patterns consistent with symptoms of mental illness. In contrast to other temperament models used in studies of anxiety disorders, the Functional Ensemble of Temperament (FET) model differentiates not only between emotionality traits, but also between traits related to physical, social-verbal and mental aspects of behavior. This paper analyzed the predictions of the FET model, which maps 12 functional aspects of behavior to symptoms of generalized anxiety disorder (GAD) as described in the DSM/ICD. As an example, the paper describes a study of the coupling of sex, age and temperament traits with GAD using the FET framework. The intake records of 116 clients in treatment with confirmed diagnosis of GAD in a private psychological practice were compared using ANOVA against records of 146 healthy clients using their scores on the FET-based questionnaire, in age groups 17–24, 25–45, 46–65. Patients with GAD in all age groups reported significantly lower Social Endurance, Social Tempo, Probabilistic reasoning (but not in physical aspects of behavior) and higher Neuroticism than healthy individuals, however, no effects on the scales of Motor Endurance or Tempo were found. These findings show the benefits of differentiation between motor-physical and social-verbal aspects of behavior in psychological assessment of mental disorders.
Collapse
Affiliation(s)
- Irina Trofimova
- Collective Intelligence Laboratory, Department of Psychiatry and Behavioral Neurosciences, McMaster University Hamilton, ON, Canada
| | - William Sulis
- Collective Intelligence Laboratory, Department of Psychiatry and Behavioral Neurosciences, McMaster University Hamilton, ON, Canada
| |
Collapse
|
123
|
Trofimova I, Robbins TW. Temperament and arousal systems: A new synthesis of differential psychology and functional neurochemistry. Neurosci Biobehav Rev 2016; 64:382-402. [PMID: 26969100 DOI: 10.1016/j.neubiorev.2016.03.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 11/15/2015] [Accepted: 03/05/2016] [Indexed: 10/22/2022]
Abstract
This paper critically reviews the unidimensional construct of General Arousal as utilised by models of temperament in differential psychology for example, to underlie 'Extraversion'. Evidence suggests that specialization within monoamine neurotransmitter systems contrasts with the attribution of a "general arousal" of the Ascending Reticular Activating System. Experimental findings show specialized roles of noradrenaline, dopamine, and serotonin systems in hypothetically mediating three complementary forms of arousal that are similar to three functional blocks described in classical models of behaviour within kinesiology, clinical neuropsychology, psychophysiology and temperament research. In spite of functional diversity of monoamine receptors, we suggest that their functionality can be classified using three universal aspects of actions related to expansion, to selection-integration and to maintenance of chosen behavioural alternatives. Monoamine systems also differentially regulate analytic vs. routine aspects of activities at cortical and striatal neural levels. A convergence between main temperament models in terms of traits related to described functional aspects of behavioural arousal also supports the idea of differentiation between these aspects analysed here in a functional perspective.
Collapse
Affiliation(s)
- Irina Trofimova
- CILab, Department of Psychiatry and Behavioral Neurosciences, McMaster University, 92 Bowman St., Hamilton L8S2T6, Canada.
| | - Trevor W Robbins
- Department of Psychology and the Behavioural and Clinical Neuroscience Institute, Downing St., Cambridge CB23EB, UK.
| |
Collapse
|
124
|
Gac L, Butterick TA, Duffy CM, Teske JA, Perez-Leighton CE. Role of the non-opioid dynorphin peptide des-Tyr-dynorphin (DYN-A(2-17)) in food intake and physical activity, and its interaction with orexin-A. Peptides 2016; 76:14-8. [PMID: 26654796 DOI: 10.1016/j.peptides.2015.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 12/01/2015] [Accepted: 12/01/2015] [Indexed: 02/06/2023]
Abstract
Food intake and physical activity are regulated by multiple neuropeptides, including orexin and dynorphin (DYN). Orexin-A (OXA) is one of two orexin peptides with robust roles in regulation of food intake and spontaneous physical activity (SPA). DYN collectively refers to several peptides, some of which act through opioid receptors (opioid DYN) and some whose biological effects are not mediated by opioid receptors (non-opioid DYN). While opioid DYN is known to increase food intake, the effects of non-opioid DYN peptides on food intake and SPA are unknown. Neurons that co-express and release OXA and DYN are located within the lateral hypothalamus. Limited evidence suggests that OXA and opioid DYN peptides can interact to modulate some aspects of behaviors classically related to orexin peptide function. The paraventricular hypothalamic nucleus (PVN) is a brain area where OXA and DYN peptides might interact to modulate food intake and SPA. We demonstrate that injection of des-Tyr-dynorphin (DYN-A(2-17), a non opioid DYN peptide) into the PVN increases food intake and SPA in adult mice. Co-injection of DYN-A(2-17) and OXA in the PVN further increases food intake compared to DYN-A(2-17) or OXA alone. This is the first report describing the effects of non-opioid DYN-A(2-17) on food intake and SPA, and suggests that DYN-A(2-17) interacts with OXA in the PVN to modulate food intake. Our data suggest a novel function for non-opioid DYN-A(2-17) on food intake, supporting the concept that some behavioral effects of the orexin neurons result from combined actions of the orexin and DYN peptides.
Collapse
Affiliation(s)
- L Gac
- Center for Integrative Medicine and Innovative Science, Facultad de Medicina, Universidad Andres Bello, Santiago, Region Metropolitana, Chile
| | - T A Butterick
- Minneapolis VA Health Care System, Minneapolis, MN, USA; Minnesota Obesity Center, University of Minnesota, Saint Paul, MN, USA; Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN, USA
| | - C M Duffy
- Minneapolis VA Health Care System, Minneapolis, MN, USA; Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN, USA
| | - J A Teske
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, USA; Minneapolis VA Health Care System, Minneapolis, MN, USA; Minnesota Obesity Center, University of Minnesota, Saint Paul, MN, USA; Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN, USA
| | - C E Perez-Leighton
- Center for Integrative Medicine and Innovative Science, Facultad de Medicina, Universidad Andres Bello, Santiago, Region Metropolitana, Chile; Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN, USA.
| |
Collapse
|
125
|
Abstract
Chronic pain is one of the most ubiquitous diseases in the world, but treatment is difficult with conventional methods, due to undesirable side effects of treatments and unknown mechanisms of pathological pain states. The endogenous peptide, dynorphin A has long been established as a target for the treatment of pain. Interestingly, this unique peptide has both inhibitory (opioid in nature) and excitatory activities (nonopioid) in the CNS. Both of these effects have been found to play a role in pain and much work has been done to develop therapeutics to enhance the inhibitory effects. Here we will review the dynorphin A compounds that have been designed for the modulation of pain and will discuss where the field stands today.
Collapse
|
126
|
Spasov AA, Kalitin KY, Grechko OY, Anisimova VA. Antiepileptic Activity of a New Derivative of Benzimidazole RU-1205. Bull Exp Biol Med 2016; 160:336-9. [DOI: 10.1007/s10517-016-3164-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Indexed: 10/22/2022]
|
127
|
Kissler JL, Walker BM. Dissociating Motivational From Physiological Withdrawal in Alcohol Dependence: Role of Central Amygdala κ-Opioid Receptors. Neuropsychopharmacology 2016; 41:560-7. [PMID: 26105136 PMCID: PMC5130131 DOI: 10.1038/npp.2015.183] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 05/30/2015] [Accepted: 06/19/2015] [Indexed: 11/09/2022]
Abstract
Chronic intermittent alcohol vapor exposure leads to increased dynorphin (DYN) A-like peptide expression and heightened kappa-opioid receptor (KOR) signaling in the central nucleus of the amygdala (CeA) and these neuroadaptive responses differentiate alcohol-dependent from non-dependent phenotypes. Important for therapeutic development efforts is understanding the nature of the stimulus that drives dependence-like phenotypes such as escalated alcohol self-administration. Accordingly, the present study examined the impact of intra-CeA KOR antagonism on escalated operant alcohol self-administration and physiological withdrawal symptoms during acute withdrawal and protracted abstinence in rats previously exposed to chronic intermittent alcohol vapor. Following operant training, rats were implanted with intra-CeA guide cannula and exposed to long-term intermittent alcohol vapor exposure that resulted in escalated alcohol self-administration and elevated physiological withdrawal signs during acute withdrawal. Animals received intra-CeA infusions of the KOR antagonist nor-binaltorphimine (nor-BNI; 0, 2, 4, or 6 μg) prior to operant alcohol self-administration sessions and physiological withdrawal assessment during acute withdrawal and protracted abstinence. The results indicated that site-specific KOR antagonism in the CeA ameliorated escalated alcohol self-administration during both acute withdrawal and protracted abstinence test sessions, whereas KOR antagonism had no effect on physiological withdrawal scores at either time point. These results dissociate escalated alcohol self-administration from physiological withdrawal symptoms in relation to KOR signaling in the CeA and help clarify the nature of the stimulus that drives escalated alcohol self-administration during acute withdrawal and protracted abstinence.
Collapse
Affiliation(s)
- Jessica L Kissler
- Laboratory of Alcoholism and Addictions Neuroscience, Translational Addiction Research Center, Department of Psychology, Washington State University, Pullman, WA, USA
| | - Brendan M Walker
- Laboratory of Alcoholism and Addictions Neuroscience, Translational Addiction Research Center, Department of Psychology, Washington State University, Pullman, WA, USA,Laboratory of Alcoholism and Addictions Neuroscience, Department of Psychology, Washington State University, 100 Dairy Road, Mail code: 644820, Pullman, WA 99164-4820 USA, Tel: +1 509 335 8526, Fax: +1 509 335 5324, E-mail:
| |
Collapse
|
128
|
Immediate and Persistent Effects of Salvinorin A on the Kappa Opioid Receptor in Rodents, Monitored In Vivo with PET. Neuropsychopharmacology 2015; 40:2865-72. [PMID: 26058662 PMCID: PMC4864638 DOI: 10.1038/npp.2015.159] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 05/18/2015] [Accepted: 06/02/2015] [Indexed: 11/08/2022]
Abstract
Monitoring changes in opioid receptor binding with positron emission tomography (PET) could lead to a better understanding of tolerance and addiction because altered opioid receptor dynamics following agonist exposure has been linked to tolerance mechanisms. We have studied changes in kappa opioid receptor (KOR) binding availability in vivo with PET following kappa opioid agonist administration. Male Sprague-Dawley rats (n=31) were anesthetized and treated with the (KOR) agonist salvinorin A (0.01-1.8 mg/kg, i.v.) before administration of the KOR selective radiotracer [(11)C]GR103545. When salvinorin A was administered 1 min prior to injection of the radiotracer, [(11)C]GR103545 binding potential (BPND) was decreased in a dose-dependent manner, indicating receptor binding competition. In addition, the unique pharmacokinetics of salvinorin A (half-life ~8 min in non-human primates) allowed us to study the residual impact on KOR after the drug had eliminated from the brain. Salvinorin A was administered up to 5 h prior to [(11)C]GR103545, and the changes in BPND were compared with baseline, 2.5 h, 1 h, and 1 min pretreatment times. At lower doses (0.18 mg/kg and 0.32 mg/kg) we observed no prolonged effect on KOR binding but at 0.60 mg/kg salvinorin A induced a sustained decrease in KOR binding (BPND decreased by 40-49%) which persisted up to 2.5 h post administration, long after salvinorin A had been eliminated from the brain. These data point towards an agonist-induced adaptive response by KOR, the dynamics of which have not been previously studied in vivo with PET.
Collapse
|
129
|
Ota VK, Noto C, Santoro ML, Spindola LM, Gouvea ES, Carvalho CM, Santos CM, Xavier G, Higuchi CH, Yonamine C, Moretti PN, Abílio VC, Hayashi MAF, Brietzke E, Gadelha A, Cordeiro Q, Bressan RA, Belangero SI. Increased expression of NDEL1 and MBP genes in the peripheral blood of antipsychotic-naïve patients with first-episode psychosis. Eur Neuropsychopharmacol 2015; 25:2416-25. [PMID: 26476704 DOI: 10.1016/j.euroneuro.2015.09.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/12/2015] [Accepted: 09/24/2015] [Indexed: 01/22/2023]
Abstract
Schizophrenia is a multifactorial neurodevelopmental disorder with high heritability. First-episode psychosis (FEP) is a critical period for determining the disease prognosis and is especially helpful for identifying potential biomarkers associated with the onset and progression of the disorder. We investigated the mRNA expression of 12 schizophrenia-related genes in the blood of antipsychotic-naïve FEP patients (N=73) and healthy controls (N=73). To evaluate the influences of antipsychotic treatment and progression of the disorder, we compared the gene expression within patients before and after two months of treatment with risperidone (N=64). We observed a significantly increased myelin basic protein (MBP) and nuclear distribution protein nudE-like 1 (NDEL1) mRNA levels in FEP patients compared with controls. Comparing FEP before and after risperidone treatment, no significant differences were identified; however; a trend of relatively low NDEL1 expression was observed after risperidone treatment. Animals chronically treated with saline or risperidone exhibited no significant change in Ndel1 expression levels in the blood or the prefrontal cortex (PFC), suggesting that the trend of low NDEL1 expression observed in FEP patients after treatment is likely due to factors other than risperidone treatment (i.e., disease progression). In addition to the recognized association with schizophrenia, MBP and NDEL1 gene products also play an essential role in the functions that are deregulated in schizophrenia, such as neurodevelopment. Our data strengthen the importance of these biological processes in psychotic disorders, indicating that these changes can be detected peripherally and potentially represent putative novel blood biomarkers of susceptibility and disorder progression.
Collapse
Affiliation(s)
- Vanessa Kiyomi Ota
- Genetics Division of Department of Morphology and Genetics of Universidade Federal de Sao Paulo (UNIFESP), Brazil; LiNC - Interdisciplinary Laboratory of Clinical Neurosciences of UNIFESP, Brazil; Department of Psychiatry of UNIFESP, Brazil
| | - Cristiano Noto
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences of UNIFESP, Brazil; Department of Psychiatry of UNIFESP, Brazil; Department of Psychiatry of Irmandade da Santa Casa de Misericórdia de São Paulo (ISCMSP), Brazil
| | - Marcos Leite Santoro
- Genetics Division of Department of Morphology and Genetics of Universidade Federal de Sao Paulo (UNIFESP), Brazil; LiNC - Interdisciplinary Laboratory of Clinical Neurosciences of UNIFESP, Brazil
| | - Leticia Maria Spindola
- Genetics Division of Department of Morphology and Genetics of Universidade Federal de Sao Paulo (UNIFESP), Brazil; LiNC - Interdisciplinary Laboratory of Clinical Neurosciences of UNIFESP, Brazil; Department of Psychiatry of UNIFESP, Brazil
| | - Eduardo Sauerbronn Gouvea
- Department of Psychiatry of UNIFESP, Brazil; Department of Psychiatry of Irmandade da Santa Casa de Misericórdia de São Paulo (ISCMSP), Brazil
| | - Carolina Muniz Carvalho
- Genetics Division of Department of Morphology and Genetics of Universidade Federal de Sao Paulo (UNIFESP), Brazil; LiNC - Interdisciplinary Laboratory of Clinical Neurosciences of UNIFESP, Brazil
| | - Camila Maurício Santos
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences of UNIFESP, Brazil; Department of Psychiatry of UNIFESP, Brazil
| | - Gabriela Xavier
- Genetics Division of Department of Morphology and Genetics of Universidade Federal de Sao Paulo (UNIFESP), Brazil; LiNC - Interdisciplinary Laboratory of Clinical Neurosciences of UNIFESP, Brazil
| | - Cinthia Hiroko Higuchi
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences of UNIFESP, Brazil; Department of Psychiatry of UNIFESP, Brazil
| | - Camila Yonamine
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences of UNIFESP, Brazil; Department of Pharmacology of UNIFESP, Brazil
| | - Patricia Natalia Moretti
- Genetics Division of Department of Morphology and Genetics of Universidade Federal de Sao Paulo (UNIFESP), Brazil; LiNC - Interdisciplinary Laboratory of Clinical Neurosciences of UNIFESP, Brazil; Department of Psychiatry of UNIFESP, Brazil
| | - Vanessa Costhek Abílio
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences of UNIFESP, Brazil; Department of Psychiatry of UNIFESP, Brazil; Department of Pharmacology of UNIFESP, Brazil
| | - Mirian Akemi F Hayashi
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences of UNIFESP, Brazil; Department of Pharmacology of UNIFESP, Brazil
| | - Elisa Brietzke
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences of UNIFESP, Brazil; Department of Psychiatry of UNIFESP, Brazil
| | - Ary Gadelha
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences of UNIFESP, Brazil; Department of Psychiatry of UNIFESP, Brazil
| | - Quirino Cordeiro
- Department of Psychiatry of UNIFESP, Brazil; Department of Psychiatry of Irmandade da Santa Casa de Misericórdia de São Paulo (ISCMSP), Brazil
| | - Rodrigo Affonseca Bressan
- LiNC - Interdisciplinary Laboratory of Clinical Neurosciences of UNIFESP, Brazil; Department of Psychiatry of UNIFESP, Brazil
| | - Sintia Iole Belangero
- Genetics Division of Department of Morphology and Genetics of Universidade Federal de Sao Paulo (UNIFESP), Brazil; LiNC - Interdisciplinary Laboratory of Clinical Neurosciences of UNIFESP, Brazil; Department of Psychiatry of UNIFESP, Brazil.
| |
Collapse
|
130
|
Prodynorphin gene promoter polymorphism and temporal lobe epilepsy: A meta-analysis. ACTA ACUST UNITED AC 2015; 35:635-639. [PMID: 26489614 DOI: 10.1007/s11596-015-1482-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 06/15/2015] [Indexed: 10/22/2022]
Abstract
Previous studies have reported the association of prodynorphin (PDYN) promoter polymorphism with temporal lobe epilepsy (TLE) susceptibility, but the results remain inconclusive. To further precisely evaluate this association, we performed a meta-analysis. Published studies of TLE and PDYN polymorphism up to February 2015 were identified. Subgroup analysis by TLE subtype was performed. Moreover, sensitivity, heterogeneity, and publication bias were also analyzed. Seven case-control studies were finally included in this meta-analysis with 875 TLE cases and 1426 controls. We did not find synthetic evidence of association between PDYN promoter polymorphism and TLE susceptibility (OR=1.184, 95% CI: 0.873-1.606, P=0.277). Similar results were also obtained in non-familial-risk TLE subgroup. However, in the familial-risk TLE subgroup analysis, a significant association was observed (OR=1.739, 95% CI: 1.154-2.619, P=0.008). In summary, this meta-analysis suggests that PDYN gene promoter polymorphism might contribute to familial-risk TLE.
Collapse
|
131
|
Schmidlin T, Boender AJ, Frese CK, Heck AJR, Adan RAH, Altelaar AFM. Diet-Induced Neuropeptide Expression: Feasibility of Quantifying Extended and Highly Charged Endogenous Peptide Sequences by Selected Reaction Monitoring. Anal Chem 2015; 87:9966-73. [DOI: 10.1021/acs.analchem.5b03334] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Thierry Schmidlin
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University and Netherlands Proteomics Centre, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Arjen J. Boender
- Department
of Translational Neuroscience, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Christian K. Frese
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University and Netherlands Proteomics Centre, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University and Netherlands Proteomics Centre, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Roger A. H. Adan
- Department
of Translational Neuroscience, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - A. F. Maarten Altelaar
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University and Netherlands Proteomics Centre, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| |
Collapse
|
132
|
Zan GY, Wang Q, Wang YJ, Liu Y, Hang A, Shu XH, Liu JG. Antagonism of κ opioid receptor in the nucleus accumbens prevents the depressive-like behaviors following prolonged morphine abstinence. Behav Brain Res 2015; 291:334-341. [DOI: 10.1016/j.bbr.2015.05.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/25/2015] [Accepted: 05/30/2015] [Indexed: 01/10/2023]
|
133
|
Maillet EL, Milon N, Heghinian MD, Fishback J, Schürer SC, Garamszegi N, Mash DC. Noribogaine is a G-protein biased κ-opioid receptor agonist. Neuropharmacology 2015; 99:675-88. [PMID: 26302653 DOI: 10.1016/j.neuropharm.2015.08.032] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 08/18/2015] [Accepted: 08/19/2015] [Indexed: 10/23/2022]
Abstract
Noribogaine is the long-lived human metabolite of the anti-addictive substance ibogaine. Noribogaine efficaciously reaches the brain with concentrations up to 20 μM after acute therapeutic dose of 40 mg/kg ibogaine in animals. Noribogaine displays atypical opioid-like components in vivo, anti-addictive effects and potent modulatory properties of the tolerance to opiates for which the mode of action remained uncharacterized thus far. Our binding experiments and computational simulations indicate that noribogaine may bind to the orthosteric morphinan binding site of the opioid receptors. Functional activities of noribogaine at G-protein and non G-protein pathways of the mu and kappa opioid receptors were characterized. Noribogaine was a weak mu antagonist with a functional inhibition constants (Ke) of 20 μM at the G-protein and β-arrestin signaling pathways. Conversely, noribogaine was a G-protein biased kappa agonist 75% as efficacious as dynorphin A at stimulating GDP-GTP exchange (EC50=9 μM) but only 12% as efficacious at recruiting β-arrestin, which could contribute to the lack of dysphoric effects of noribogaine. In turn, noribogaine functionally inhibited dynorphin-induced kappa β-arrestin recruitment and was more potent than its G-protein agonistic activity with an IC50 of 1 μM. This biased agonist/antagonist pharmacology is unique to noribogaine in comparison to various other ligands including ibogaine, 18-MC, nalmefene, and 6'-GNTI. We predict noribogaine to promote certain analgesic effects as well as anti-addictive effects at effective concentrations>1 μM in the brain. Because elevated levels of dynorphins are commonly observed and correlated with anxiety, dysphoric effects, and decreased dopaminergic tone, a therapeutically relevant functional inhibition bias to endogenously released dynorphins by noribogaine might be worthy of consideration for treating anxiety and substance related disorders.
Collapse
Affiliation(s)
- Emeline L Maillet
- DemeRx, Inc., R&D Laboratory, Life Science & Technology Park, 1951 NW 7th Ave, Suite 300, Miami, FL 33136, USA.
| | - Nicolas Milon
- DemeRx, Inc., R&D Laboratory, Life Science & Technology Park, 1951 NW 7th Ave, Suite 300, Miami, FL 33136, USA
| | - Mari D Heghinian
- DemeRx, Inc., R&D Laboratory, Life Science & Technology Park, 1951 NW 7th Ave, Suite 300, Miami, FL 33136, USA
| | - James Fishback
- DemeRx, Inc., R&D Laboratory, Life Science & Technology Park, 1951 NW 7th Ave, Suite 300, Miami, FL 33136, USA
| | - Stephan C Schürer
- University of Miami, Center for Computational Science, 1320 S, Dixie Highway, Gables One Tower #600.H, Locator Code 2965, Coral Gables, FL 33146-2926, USA; Miller School of Medicine, Molecular and Cellular Pharmacology, 14th Street CRB 650 (M-857), Miami, FL 33136, USA
| | - Nandor Garamszegi
- DemeRx, Inc., R&D Laboratory, Life Science & Technology Park, 1951 NW 7th Ave, Suite 300, Miami, FL 33136, USA
| | - Deborah C Mash
- DemeRx, Inc., R&D Laboratory, Life Science & Technology Park, 1951 NW 7th Ave, Suite 300, Miami, FL 33136, USA
| |
Collapse
|
134
|
Zhou L, Stahl EL, Lovell KM, Frankowski KJ, Prisinzano TE, Aubé J, Bohn LM. Characterization of kappa opioid receptor mediated, dynorphin-stimulated [35S]GTPγS binding in mouse striatum for the evaluation of selective KOR ligands in an endogenous setting. Neuropharmacology 2015; 99:131-41. [PMID: 26160155 DOI: 10.1016/j.neuropharm.2015.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/07/2015] [Accepted: 07/03/2015] [Indexed: 11/29/2022]
Abstract
Differential modulation of kappa opioid receptor (KOR) signaling has been a proposed strategy for developing therapies for drug addiction and depression by either activating or blocking this receptor. Hence, there have been significant efforts to generate ligands with diverse pharmacological properties including partial agonists, antagonists, allosteric modulators as well as ligands that selectively activate some pathways while not engaging others (biased agonists). It is becoming increasingly evident that G protein coupled receptor signaling events are context dependent and that what may occur in cell based assays may not be fully indicative of signaling events that occur in the naturally occurring environment. As new ligands are developed, it is important to assess their signaling capacity in relevant endogenous systems in comparison to the performance of endogenous agonists. Since KOR is considered the cognate receptor for dynorphin peptides we have evaluated the selectivity profiles of dynorphin peptides in wild-type (WT), KOR knockout (KOR-KO), and mu opioid receptor knockout (MOR-KO) mice using [35S]GTPγS binding assay in striatal membrane preparations. We find that while the small molecule KOR agonist U69,593, is very selective for KOR, dynorphin peptides promiscuously stimulate G protein signaling in striatum. Furthermore, our studies demonstrate that norBNI and 5'GNTI are highly nonselective antagonists as they maintain full potency and efficacy against dynorphin signaling in the absence of KOR. Characterization of a new KOR antagonist, which may be more selective than NorBNI and 5'GNTI, is presented using this approach.
Collapse
Affiliation(s)
- Lei Zhou
- Department of Molecular Therapeutics, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA; Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Edward L Stahl
- Department of Molecular Therapeutics, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA; Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Kimberly M Lovell
- Department of Molecular Therapeutics, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA; Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Kevin J Frankowski
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Thomas E Prisinzano
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Jeffrey Aubé
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Laura M Bohn
- Department of Molecular Therapeutics, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA; Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| |
Collapse
|
135
|
The role of the dynorphin/κ opioid receptor system in anxiety. Acta Pharmacol Sin 2015; 36:783-90. [PMID: 25982631 DOI: 10.1038/aps.2015.32] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 04/02/2015] [Indexed: 01/26/2023]
Abstract
Anxiety disorders are the most common and prevalent forms of psychiatric disease, although the biological basis of anxiety is not well understood. The dynorphin/κ opioid receptor system is widely distributed in the central nervous system and has been shown to play a critical role in modulating mood and emotional behaviors. In the present review, we summarize current literature relating to the role played by the dynorphin/κ opioid receptor system in anxiety and κ opioid receptor antagonists as potential therapeutic agents for the treatment of anxiety disorders.
Collapse
|
136
|
Saify K, Saadat M. Association between VNTR Polymorphism in Promoter Region of Prodynorphin (PDYN) Gene and Methamphetamine Dependence. Open Access Maced J Med Sci 2015; 3:371-3. [PMID: 27275252 PMCID: PMC4877821 DOI: 10.3889/oamjms.2015.079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 12/04/2022] Open
Abstract
AIM: Prodynorphin (PDYN; OMIM: 131340) is the precursor of the dynorphin related peptides which plays an important role in drug abuse. Previous studies have been shown that the expression of PDYN is regulated by a genetic polymorphism of VNTR in the promoter region of the gene. MATERIALS AND METHODS: The present case-control study was performed on 52 (41 males, 11 females) methamphetamine dependence patients and 635 (525 males, 110 females) healthy blood donors frequency matched with the patients according to age and gender, as a control group was participated in the study. RESULTS: The genotypes of VNTR PDYN polymorphism were determined using PCR method. The HL (OR = 1.22, 95%CI: 0.67-2.20, P = 0.500) and LL (OR = 0.86, 95%CI: 0.28-2.57, P = 0.792) genotypes does not alter the risk of methamphetamine dependence, in comparison with the HH genotypes. CONCLUSION: The present study revealed no association between the VNTR polymorphism in the promoter region of the PDYN gene and methamphetamine dependence risk.
Collapse
|
137
|
Maqueda AE, Valle M, Addy PH, Antonijoan RM, Puntes M, Coimbra J, Ballester MR, Garrido M, González M, Claramunt J, Barker S, Johnson MW, Griffiths RR, Riba J. Salvinorin-A Induces Intense Dissociative Effects, Blocking External Sensory Perception and Modulating Interoception and Sense of Body Ownership in Humans. Int J Neuropsychopharmacol 2015; 18:pyv065. [PMID: 26047623 PMCID: PMC4675976 DOI: 10.1093/ijnp/pyv065] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 06/02/2015] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Salvinorin-A is a terpene with agonist properties at the kappa-opioid receptor, the binding site of endogenous dynorphins. Salvinorin-A is found in Salvia divinorum, a psychoactive plant traditionally used by the Mazatec people of Oaxaca, Mexico, for medicinal and spiritual purposes. Previous studies with the plant and salvinorin-A have reported psychedelic-like changes in perception, but also unusual changes in body awareness and detachment from external reality. Here we comprehensively studied the profiles of subjective effects of increasing doses of salvinorin-A in healthy volunteers, with a special emphasis on interoception. METHODS A placebo and three increasing doses of vaporized salvinorin-A (0.25, 0.50, and 1mg) were administered to eight healthy volunteers with previous experience in the use of psychedelics. Drug effects were assessed using a battery of questionnaires that included, among others, the Hallucinogen Rating Scale, the Altered States of Consciousness, and a new instrument that evaluates different aspects of body awareness: the Multidimensional Assessment for Interoceptive Awareness. RESULTS Salvinorin-A led to a disconnection from external reality, induced elaborate visions and auditory phenomena, and modified interoception. The lower doses increased somatic sensations, but the highest dose led to a sense of a complete loss of contact with the body. CONCLUSIONS Salvinorin-A induced intense psychotropic effects characterized by a dose-dependent gating of external audio-visual information and an inverted-U dose-response effect on body awareness. These results suggest a prominent role for the kappa opioid receptor in the regulation of sensory perception, interoception, and the sense of body ownership in humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Jordi Riba
- Human Neuropsychopharmacology Group. Sant Pau Institute of Biomedical Research (IIB-Sant Pau). Sant Antoni María Claret, Barcelona, Spain (Drs Maqueda and Riba); Centre d'Investigació de Medicaments, Servei de Farmacologia Clínica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (Drs Valle, Antonijoan, Puntes, Coimbra, Ballester, Garrido, González, Claramunt, and Riba); Departament de Farmacologia i Terapèutica, Universitat Autònoma de Barcelona, Spain (Drs Valle, Antonijoan, and Riba); Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Barcelona, Spain (Drs Valle, Antonijoan, and Riba); Pharmacokinetic and Pharmacodynamic Modelling and Simulation, IIB Sant Pau. Sant Antoni María Claret, 167, 08025 Barcelona, Spain (Dr Valle); Medical Informatics, VA Connecticut Healthcare System, West Haven, CT (Dr Addy); Medical Informatics, Yale University School of Medicine, New Haven, CT (Dr Addy); Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive at River Road, Baton Rouge, LA (Dr Barker); Behavioral Pharmacology Research Unit, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 5510 Nathan Shock Drive, Baltimore, MD (Drs Johnson and Griffiths); Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD (Dr Griffiths).
| |
Collapse
|
138
|
Luiz AP, Schroeder SD, Rae GA, Calixto JB, Chichorro JG. Contribution and interaction of kinin receptors and dynorphin A in a model of trigeminal neuropathic pain in mice. Neuroscience 2015; 300:189-200. [PMID: 25982562 DOI: 10.1016/j.neuroscience.2015.05.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 01/29/2023]
Abstract
Infraorbital nerve constriction (CION) causes hypersensitivity to facial mechanical, heat and cold stimulation in rats and mice and is a reliable model to study trigeminal neuropathic pain. In this model there is evidence that mechanisms operated by kinin B1 and B2 receptors contribute to heat hyperalgesia in both rats and mice. Herein we further explored this issue and assessed the role of kinin receptors in mechanical hyperalgesia after CION. Swiss and C57Bl/6 mice that underwent CION or sham surgery or dynorphin A (1-17) administration were repeatedly submitted to application of either heat stimuli to the snout or mechanical stimuli to the forehead. Treatment of the animals on the fifth day after CION surgery with DALBK (B1 receptor antagonist) or HOE-140 (B2 receptor antagonist), both at 0.01-1μmol/kg (i.p.), effectively reduced CION-induced mechanical hyperalgesia. Knockout mice for kinin B1, B2 or B1/B2 receptors did not develop heat or mechanical hyperalgesia in response to CION. Subarachnoid dynorphin A (1-17) delivery (15nmol/5μL) also resulted in orofacial heat hyperalgesia, which was attenuated by post-treatment with DALBK (1 and 3μmol/kg, i.p.), but was not affected by HOE-140. Additionally, treatment with an anti-dynorphin A antiserum (200μg/5μL, s.a.) reduced CION-induced heat hyperalgesia for up to 2h. These results suggest that both kinin B1 and B2 receptors are relevant in orofacial sensory nociceptive changes induced by CION. Furthermore, they also indicate that dynorphin A could stimulate kinin receptors and this effect seems to contribute to the maintenance of trigeminal neuropathic pain.
Collapse
Affiliation(s)
- A P Luiz
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil.
| | - S D Schroeder
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - G A Rae
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - J B Calixto
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil; Center of Innovation and Pre-clinical Trials, Florianopolis, SC, Brazil
| | - J G Chichorro
- Department of Pharmacology, Federal University of Parana, Curitiba, PR, Brazil
| |
Collapse
|
139
|
Chen J, Zhang R, Chen X, Wang C, Cai X, Liu H, Jiang Y, Liu C, Bai B. Heterodimerization of human orexin receptor 1 and kappa opioid receptor promotes protein kinase A/cAMP-response element binding protein signaling via a Gαs-mediated mechanism. Cell Signal 2015; 27:1426-38. [PMID: 25866368 DOI: 10.1016/j.cellsig.2015.03.027] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/26/2015] [Accepted: 03/27/2015] [Indexed: 01/14/2023]
Abstract
Orexin and dynorphin are co-expressed in the same synaptic vesicles of hypothalamic neurons and play opposing roles in cocaine self-administration, brain stimulation reward, and impulsivity in ventral tegmental area (VTA), where dopamine neurons express both OX1R and KORs. However, detailed mechanisms of how the coreleased peptides and both receptors fine-tune their signalings and physiological/behavioral effects together remain unclear. Here we explore the possibility of heterodimerization between OX1R and KOR and reveal novel signal transduction mechanisms. First, we demonstrated co-expression of OX1R and KOR in rat hippocampal neurons by single-cell PCR. Furthermore, heterodimerization between OX1R and KOR was examined using bioluminescence and fluorescence resonance energy transfer (BRET and FRET). Our data revealed that human OX1R and KOR heterodimerize, and this heterodimer associates with Gαs, leading to increased protein kinase A (PKA) signaling pathway activity, including upregulation of intracellular cAMP levels and cAMP-response element (CRE) luciferase reporter activity, resulting in increased cAMP-response element binding protein (CREB) phosphorylation. These results support the view that OX1R and KOR heterodimerization might have an anti-depressive role.
Collapse
Affiliation(s)
- Jing Chen
- Division of Translational and Systems Medicine, Warwick Medical School, University of Warwick, Coventry, UK; Neurobiology Institute, Jining Medical University, Jining 272067, PR China.
| | - Rumin Zhang
- Neurobiology Institute, Jining Medical University, Jining 272067, PR China
| | - Xiaoyu Chen
- Department of Physiology, Taishan Medical University, Taian 271000, PR China
| | - Chunmei Wang
- Neurobiology Institute, Jining Medical University, Jining 272067, PR China
| | - Xin Cai
- Neurobiology Institute, Jining Medical University, Jining 272067, PR China
| | - Haiqing Liu
- Department of Physiology, Taishan Medical University, Taian 271000, PR China
| | - Yunlu Jiang
- Neurobiology Institute, Jining Medical University, Jining 272067, PR China
| | - Chuanxin Liu
- Neurobiology Institute, Jining Medical University, Jining 272067, PR China
| | - Bo Bai
- Neurobiology Institute, Jining Medical University, Jining 272067, PR China.
| |
Collapse
|
140
|
Mamiya T, Hasegawa Y, Hiramatsu M. Dynorphin a (1-13) alleviated stress-induced behavioral impairments in mice. Biol Pharm Bull 2015; 37:1269-73. [PMID: 25087948 DOI: 10.1248/bpb.b14-00006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study we investigated whether κ-opioid receptor stimulation by dynorphin A (1-13), a potent fragment of endogenous peptide, attenuated repeated stress-induced behavioral impairments in mice. In order to reduce the motivation to escape, mice were preexposed to inescapable electric footshock (day 0), and then dynorphin A (1-13) was administered to mice prior to the stress from the next day for 4 d (days 1-4). Dynorphin A (1-13) (1500 pmol/5 µL intracerebroventricular (i.c.v.)) attenuated the repeated stress-induced escape failures from the shock, and this improvement was inhibited by the pretreatment of nor-binaltorphimine (4.9 nmol/kg subcutaneously (s.c.)), a κ-opioid receptor antagonist. In the neurochemical experiments, we detected an increase in 5-hydroxyindoleacetic acid (5-HIAA) content, but not in serotonin (5-HT) content, and an increase in the 5-HIAA/5-HT ratio was observed in the amygdala of the group with footshock compared with the group without shock. Additionally, the changes in 5-HIAA content and the ratio were reversed by dynorphin A (1-13). However, there were no differences in 5-HT or 5-HIAA content or their ratios in the hippocampus among the three groups. These results suggest that dynorphin might alleviate the stress-induced behavioral impairments accompanied by regulation of the 5-HTergic system in the brain.
Collapse
Affiliation(s)
- Takayoshi Mamiya
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University
| | | | | |
Collapse
|
141
|
Plasma membrane poration by opioid neuropeptides: a possible mechanism of pathological signal transduction. Cell Death Dis 2015; 6:e1683. [PMID: 25766322 PMCID: PMC4385918 DOI: 10.1038/cddis.2015.39] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/11/2014] [Accepted: 12/15/2014] [Indexed: 12/18/2022]
Abstract
Neuropeptides induce signal transduction across the plasma membrane by acting through cell-surface receptors. The dynorphins, endogenous ligands for opioid receptors, are an exception; they also produce non-receptor-mediated effects causing pain and neurodegeneration. To understand non-receptor mechanism(s), we examined interactions of dynorphins with plasma membrane. Using fluorescence correlation spectroscopy and patch-clamp electrophysiology, we demonstrate that dynorphins accumulate in the membrane and induce a continuum of transient increases in ionic conductance. This phenomenon is consistent with stochastic formation of giant (~2.7 nm estimated diameter) unstructured non-ion-selective membrane pores. The potency of dynorphins to porate the plasma membrane correlates with their pathogenic effects in cellular and animal models. Membrane poration by dynorphins may represent a mechanism of pathological signal transduction. Persistent neuronal excitation by this mechanism may lead to profound neuropathological alterations, including neurodegeneration and cell death.
Collapse
|
142
|
Zhou X, Wang D, Zhang Y, Zhang J, Xiang D, Wang H. Activation of κ-opioid receptor by U50,488H improves vascular dysfunction in streptozotocin-induced diabetic rats. BMC Endocr Disord 2015; 15:7. [PMID: 25887435 PMCID: PMC4355970 DOI: 10.1186/s12902-015-0004-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 02/18/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Evidence suggests that activation of κ-opioid receptor (KOR) by U50,488H exhibits potential cardiovascular protective properties. However, the effects of U50,488H on vascular dysfunction in diabetes mellitus (DM) are still not clear. The present study was designed to investigate the effects of U50,488H on vascular dysfunction in diabetic rats and explore the underlying mechanisms involved. METHODS Rats were randomly divided into control, DM, DM + vehicle, DM + U50,488H and DM + nor-binaltorphimine (nor-BNI) groups. Streptozotocin injection was used to induce DM. Weight, blood glucose, blood pressure and plasma insulin for each group were measured. Arterial functions were assessed with isolated vessels mounted for isometric tension recordings. Angiotensin II (ANG II), soluble intercellular adhesion molecule-1 (sICAM-1), interleukin (IL)-6 and IL-8 levels were measured by ELISA, and endothelial nitric oxide synthase (eNOS) phosphorylation and NF-κB p65 translocation were measured by Western blot. RESULTS Activation of KOR by U50,488H reduced the enhanced contractility of aortas to KCl and noradrenaline and increased acetylcholine-induced vascular relaxation, which could also protect the aortal ultrastructure in DM. U50,488H treatment resulted in reduction in ANG II, sICAM-1, IL-6 and IL-8 levels and elevation in NO levels, while these effects were abolished by nor-BNI treatment. Further more, eNOS phosphorylation was increased, and NF-κB p65 translocation was decreased after U50,488H treatment. CONCLUSIONS Our study demonstrated that U50,488H may have therapeutic effects on diabetic vascular dysfunction by improving endothelial dysfunction and attenuating chronic inflammation, which may be dependent on phosphorylation of eNOS and downstream inhibition of NF-кB.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/therapeutic use
- Animals
- Antihypertensive Agents/pharmacology
- Antihypertensive Agents/therapeutic use
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/physiopathology
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/physiopathology
- Diabetic Angiopathies/physiopathology
- Diabetic Angiopathies/prevention & control
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/physiopathology
- Male
- Pulmonary Artery/drug effects
- Pulmonary Artery/physiopathology
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, kappa/agonists
- Streptozocin
- Vasoconstriction/drug effects
Collapse
Affiliation(s)
- Xuan Zhou
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
- Department of Cardiology, General Hospital of Guang Zhou Military Command, Guangzhou, Guangdong, 510011, China.
| | - Dongjuan Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
- Department of Cardiology, PLA Navy General Hospital, Beijing, 100048, China.
| | - Yuyang Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Jinxia Zhang
- Department of Cardiology, General Hospital of Guang Zhou Military Command, Guangzhou, Guangdong, 510011, China.
| | - Dingcheng Xiang
- Department of Cardiology, General Hospital of Guang Zhou Military Command, Guangzhou, Guangdong, 510011, China.
| | - Haichang Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
143
|
Gein SV. Dynorphins in regulation of immune system functions. BIOCHEMISTRY (MOSCOW) 2015; 79:397-405. [PMID: 24954590 DOI: 10.1134/s0006297914050034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Dynorphins constitute a family of opioid peptides manifesting the highest affinity for κ-opiate receptors. Immune system cells are known to express a κ-receptor similar to that in the central nervous system, and as a consequence dynorphins are involved in the interaction between cells of the nervous and immune systems. In this review, data on dynorphin structure are analyzed and generalized, the κ-opiate receptor is characterized, and data on the regulation by dynorphins of functioning of the innate and adaptive immunity cells are summarized.
Collapse
Affiliation(s)
- S V Gein
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Perm, 614081, Russia.
| |
Collapse
|
144
|
Low dosage of rimonabant leads to anxiolytic-like behavior via inhibiting expression levels and G-protein activity of kappa opioid receptors in a cannabinoid receptor independent manner. Neuropharmacology 2015; 89:298-307. [DOI: 10.1016/j.neuropharm.2014.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/19/2014] [Accepted: 10/04/2014] [Indexed: 12/15/2022]
|
145
|
Murphy NP. Dynamic measurement of extracellular opioid activity: status quo, challenges, and significance in rewarded behaviors. ACS Chem Neurosci 2015; 6:94-107. [PMID: 25585132 DOI: 10.1021/cn500295q] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Opioid peptides are the endogenous ligands of opioid receptors, which are also the molecular target of naturally occurring and synthetic opiates, such as morphine and heroin. Since their discovery in the 1970s, opioid peptides, which are found widely throughout the central nervous system and the periphery, have been intensely studied because of their involvement in pain and pleasure. Over the years, our understanding of opioid peptides has widened to cover a multitude of functions, including learning and memory, affective state, gastrointestinal transit, feeding, immune function, and metabolism. Unsurprisingly, aberrant opioid activity is implicated in numerous pathologies, including drug addiction, overeating, pain, depression, and obesity. To date, virtually all preclinical and clinical studies aimed at understanding the function of endogenous opioids have relied upon manipulating endogenous opioid fluxes using opioid receptor ligands or genetic manipulations of opioid receptors and endogenous opioids. Difficulties in directly monitoring endogenous opioid fluxes, particularly in the central nervous system, have presented a major obstacle to fully understanding endogenous opioid function. This review summarizes these challenges and offers suggestions for future goals while focusing on the neurobiology of reward, specifically drawing attention to studies that have succeeded in dynamically measuring opioid peptides.
Collapse
Affiliation(s)
- Niall P. Murphy
- Department of Psychiatry
and Biobehavioral Sciences, Univesity of California, Los Angeles, 2579 MacDonald
Research Laboratories, 675 Charles E. Young Drive
South Los Angeles, California 90095, United States
| |
Collapse
|
146
|
Gein SV, Baeva TA, Nebogatikov VO. Effects of β-Endorphin on Functional Activity of Mouse Splenocytes under Conditions of In Vivo Blockade of μ,δ-Opioid Receptors. Bull Exp Biol Med 2015; 158:356-60. [DOI: 10.1007/s10517-015-2761-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Indexed: 11/30/2022]
|
147
|
Ménard C, Gaudreau P, Quirion R. Signaling pathways relevant to cognition-enhancing drug targets. Handb Exp Pharmacol 2015; 228:59-98. [PMID: 25977080 DOI: 10.1007/978-3-319-16522-6_3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aging is generally associated with a certain cognitive decline. However, individual differences exist. While age-related memory deficits can be observed in humans and rodents in the absence of pathological conditions, some individuals maintain intact cognitive functions up to an advanced age. The mechanisms underlying learning and memory processes involve the recruitment of multiple signaling pathways and gene expression, leading to adaptative neuronal plasticity and long-lasting changes in brain circuitry. This chapter summarizes the current understanding of how these signaling cascades could be modulated by cognition-enhancing agents favoring memory formation and successful aging. It focuses on data obtained in rodents, particularly in the rat as it is the most common animal model studied in this field. First, we will discuss the role of the excitatory neurotransmitter glutamate and its receptors, downstream signaling effectors [e.g., calcium/calmodulin-dependent protein kinase II (CaMKII), protein kinase C (PKC), extracellular signal-regulated kinases (ERK), mammalian target of rapamycin (mTOR), cAMP response element-binding protein (CREB)], associated immediate early gene (e.g., Homer 1a, Arc and Zif268), and growth factors [insulin-like growth factors (IGFs) and brain-derived neurotrophic factor (BDNF)] in synaptic plasticity and memory formation. Second, the impact of the cholinergic system and related modulators on memory will be briefly reviewed. Finally, since dynorphin neuropeptides have recently been associated with memory impairments in aging, it is proposed as an attractive target to develop novel cognition-enhancing agents.
Collapse
Affiliation(s)
- Caroline Ménard
- Douglas Mental Health University Institute, McGill University, Perry Pavilion, 6875 LaSalle Boulevard, Montreal, QC, Canada, H4H 1R3
| | | | | |
Collapse
|
148
|
Singewald N, Schmuckermair C, Whittle N, Holmes A, Ressler KJ. Pharmacology of cognitive enhancers for exposure-based therapy of fear, anxiety and trauma-related disorders. Pharmacol Ther 2014; 149:150-90. [PMID: 25550231 PMCID: PMC4380664 DOI: 10.1016/j.pharmthera.2014.12.004] [Citation(s) in RCA: 275] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 12/24/2014] [Indexed: 12/20/2022]
Abstract
Pathological fear and anxiety are highly debilitating and, despite considerable advances in psychotherapy and pharmacotherapy they remain insufficiently treated in many patients with PTSD, phobias, panic and other anxiety disorders. Increasing preclinical and clinical evidence indicates that pharmacological treatments including cognitive enhancers, when given as adjuncts to psychotherapeutic approaches [cognitive behavioral therapy including extinction-based exposure therapy] enhance treatment efficacy, while using anxiolytics such as benzodiazepines as adjuncts can undermine long-term treatment success. The purpose of this review is to outline the literature showing how pharmacological interventions targeting neurotransmitter systems including serotonin, dopamine, noradrenaline, histamine, glutamate, GABA, cannabinoids, neuropeptides (oxytocin, neuropeptides Y and S, opioids) and other targets (neurotrophins BDNF and FGF2, glucocorticoids, L-type-calcium channels, epigenetic modifications) as well as their downstream signaling pathways, can augment fear extinction and strengthen extinction memory persistently in preclinical models. Particularly promising approaches are discussed in regard to their effects on specific aspects of fear extinction namely, acquisition, consolidation and retrieval, including long-term protection from return of fear (relapse) phenomena like spontaneous recovery, reinstatement and renewal of fear. We also highlight the promising translational value of the preclinial research and the clinical potential of targeting certain neurochemical systems with, for example d-cycloserine, yohimbine, cortisol, and L-DOPA. The current body of research reveals important new insights into the neurobiology and neurochemistry of fear extinction and holds significant promise for pharmacologically-augmented psychotherapy as an improved approach to treat trauma and anxiety-related disorders in a more efficient and persistent way promoting enhanced symptom remission and recovery.
Collapse
Affiliation(s)
- N Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy and CMBI, Leopold-Franzens University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria.
| | - C Schmuckermair
- Department of Pharmacology and Toxicology, Institute of Pharmacy and CMBI, Leopold-Franzens University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - N Whittle
- Department of Pharmacology and Toxicology, Institute of Pharmacy and CMBI, Leopold-Franzens University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - A Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - K J Ressler
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
149
|
Saify K, Saadat I, Saadat M. Association between VNTR polymorphism in promoter region of prodynorphin (PDYN) gene and heroin dependence. Psychiatry Res 2014; 219:690-692. [PMID: 25048760 DOI: 10.1016/j.psychres.2014.06.048] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 06/17/2014] [Accepted: 06/26/2014] [Indexed: 10/25/2022]
Abstract
Within the core promoter region of prodynorphin (PDYN), a 68-bp sequence was found to occur as a polymorphism element, either singular or as tandemly repeated two, three or four times. We report the sequence of a novel allele (5-repeats). Our study revealed the existence of an ancestral nucleotide (A) at 29th position of the VNTR in human. In total, 442 heroin addicts and 799 controls were included in this study. The present findings revealed a male-limited association between VNTR polymorphism and heroin dependence risk.
Collapse
Affiliation(s)
- Khyber Saify
- Department of Biology, College of Sciences, Shiraz University, Shiraz 71454, Iran
| | - Iraj Saadat
- Department of Biology, College of Sciences, Shiraz University, Shiraz 71454, Iran; Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | - Mostafa Saadat
- Department of Biology, College of Sciences, Shiraz University, Shiraz 71454, Iran; Institute of Biotechnology, Shiraz University, Shiraz, Iran.
| |
Collapse
|
150
|
Révy D, Jaouen F, Salin P, Melon C, Chabbert D, Tafi E, Concetta L, Langa F, Amalric M, Kerkerian-Le Goff L, Marie H, Beurrier C. Cellular and behavioral outcomes of dorsal striatonigral neuron ablation: new insights into striatal functions. Neuropsychopharmacology 2014; 39:2662-72. [PMID: 24903652 PMCID: PMC4207346 DOI: 10.1038/npp.2014.121] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 04/18/2014] [Accepted: 05/16/2014] [Indexed: 01/31/2023]
Abstract
The striatum is the input structure of the basal ganglia network that contains heterogeneous neuronal populations, including two populations of projecting neurons called the medium spiny neurons (MSNs), and different types of interneurons. We developed a transgenic mouse model enabling inducible ablation of the striatonigral MSNs constituting the direct pathway by expressing the human diphtheria toxin (DT) receptor under the control of the Slc35d3 gene promoter, a gene enriched in striatonigral MSNs. DT injection into the striatum triggered selective elimination of the majority of striatonigral MSNs. DT-mediated ablation of striatonigral MSNs caused selective loss of cholinergic interneurons in the dorsal striatum but not in the ventral striatum (nucleus accumbens), suggesting a region-specific critical role of the direct pathway in striatal cholinergic neuron homeostasis. Mice with DT injection into the dorsal striatum showed altered basal and cocaine-induced locomotion and dramatic reduction of L-DOPA-induced dyskinesia in the parkinsonian condition. In addition, these mice exhibited reduced anxiety, revealing a role of the dorsal striatum in the modulation of behaviors involving an emotional component, behaviors generally associated with limbic structures. Altogether, these results highlight the implication of the direct striatonigral pathway in the regulation of heterogeneous functions from cell survival to regulation of motor and emotion-associated behaviors.
Collapse
Affiliation(s)
- Delphine Révy
- Institut de Biologie du Développement de Marseille (IBDM), Aix-Marseille University (AMU), Centre National de la Recherche Scientifique (CNRS), UMR 7288, Marseille Cedex 9, France
| | - Florence Jaouen
- Institut de Biologie du Développement de Marseille (IBDM), Aix-Marseille University (AMU), Centre National de la Recherche Scientifique (CNRS), UMR 7288, Marseille Cedex 9, France
| | - Pascal Salin
- Institut de Biologie du Développement de Marseille (IBDM), Aix-Marseille University (AMU), Centre National de la Recherche Scientifique (CNRS), UMR 7288, Marseille Cedex 9, France
| | - Christophe Melon
- Institut de Biologie du Développement de Marseille (IBDM), Aix-Marseille University (AMU), Centre National de la Recherche Scientifique (CNRS), UMR 7288, Marseille Cedex 9, France
| | - Dorian Chabbert
- Institut de Biologie du Développement de Marseille (IBDM), Aix-Marseille University (AMU), Centre National de la Recherche Scientifique (CNRS), UMR 7288, Marseille Cedex 9, France
| | | | | | - Francina Langa
- Institut Pasteur, Mouse Genetics Engineering Center, Paris Cedex 15, France
| | - Marianne Amalric
- Laboratoire de Neurosciences Cognitives, Aix-Marseille University, Centre National de la Recherche Scientifique (CNRS), UMR 7291, Marseille Cedex 3, France
| | - Lydia Kerkerian-Le Goff
- Institut de Biologie du Développement de Marseille (IBDM), Aix-Marseille University (AMU), Centre National de la Recherche Scientifique (CNRS), UMR 7288, Marseille Cedex 9, France
| | - Hélène Marie
- The European Brain Research Institute, Roma, Italy
| | - Corinne Beurrier
- Institut de Biologie du Développement de Marseille (IBDM), Aix-Marseille University (AMU), Centre National de la Recherche Scientifique (CNRS), UMR 7288, Marseille Cedex 9, France,Institut de Biologie du Développement de Marseille (IBDM), Aix-Marseille University (AMU), Centre National de la Recherche Scientifique (CNRS), UMR 7288, Parc Scientifique de Luminy, Case 907, Marseille 13288, France, Tel: +33 491 26 92 48, Fax: +33 491 26 92 44, E-mail:
| |
Collapse
|