101
|
Zhang J, Zhu M, Zhang S, Xie S, Gao Y, Wang Y. Triptolide attenuates renal damage by limiting inflammatory responses in DOCA-salt hypertension. Int Immunopharmacol 2020; 89:107035. [PMID: 33045566 DOI: 10.1016/j.intimp.2020.107035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/07/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Triptolide (TP), a principal bioactive component of traditional Chinese medicine Tripterygium wilfordii Hook. F., has been shown to have immunosuppressive/anti-inflammatory actions in vitro. Moreover, it is well established that inflammatory mechanisms contribute to the progression of hypertension-induced renal injury. Therefore, this study was performed to determine the protective effects of TP on renal injury in salt-sensitive hypertension and to identify the possible mechanisms for TP-induced protection. METHODS Ten-week-old male C57BL/6 mice were subjected to uninephrectomy and deoxycorticosterone acetate (DOCA)-salt treatment with or without intraperitoneal administration of various concentrations of TP. RESULTS Five weeks after the treatment, systolic blood pressure measured by tail-cuff plethysmography increased in DOCA-salt-treated mice, but no difference was found between DOCA-salt-treated mice with or without TP treatment. Treatment with TP dose-dependently attenuated increments in urinary albumin and 8-isoprostane excretion, and glomerulosclerosis and tubulointerstitial injury and fibrosis in DOCA-salt-treated mice. Moreover, our data showed that treatment with TP dose-dependently inhibited DOCA-salt-induced interstitial monocyte/macrophage infiltration associated with decreases in renal levels of proinflammatory cytokine/chemokine and adhesion molecule, as well as renal activated NF-κB concentrations. Our results also demonstrated that suppression of inflammatory responses with dexamethasone, an immunosuppressive agent, alleviated DOCA-salt hypertension-induced renal injury. CONCLUSIONS TP treatment induced renal protection associated with inhibition of monocyte/macrophage-mediated inflammatory responses without lowering blood pressure. Thus, our data for the first time indicate that TP treatment ameliorates renal injury possibly via attenuating inflammatory responses in salt-sensitive hypertension.
Collapse
Affiliation(s)
- Jing Zhang
- Central Laboratory and Division of Cardiology, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou 450000, China
| | - Mingjun Zhu
- Central Laboratory and Division of Cardiology, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou 450000, China
| | - Shiyu Zhang
- Central Laboratory and Division of Cardiology, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou 450000, China
| | - Shiyang Xie
- Central Laboratory and Division of Cardiology, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou 450000, China
| | - Yuan Gao
- Central Laboratory and Division of Cardiology, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou 450000, China
| | - Youping Wang
- Central Laboratory and Division of Cardiology, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou 450000, China.
| |
Collapse
|
102
|
Melatonin potentials against viral infections including COVID-19: Current evidence and new findings. Virus Res 2020; 287:198108. [PMID: 32768490 PMCID: PMC7405774 DOI: 10.1016/j.virusres.2020.198108] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022]
Abstract
Viral infections are dangerous diseases for human health worldwide, which lead to significant morbidity and mortality each year. Because of their importance and the lack of effective therapeutic approaches, further attempts should be made to discover appropriate alternative or complementary treatments. Melatonin, a multifunctional neurohormone mainly synthesized and secreted by the pineal gland, plays some roles in the treatment of viral infections. Regarding a deadly outbreak of COVID-19 across the world, we decided to discuss melatonin functions against various viral infections including COVID-19. Therefore, in this review, we summarize current evidence on melatonin therapy for viral infections with focus on possible underlying mechanisms of melatonin actions.
Collapse
|
103
|
Gawałko M, Kapłon-Cieślicka A, Hohl M, Dobrev D, Linz D. COVID-19 associated atrial fibrillation: Incidence, putative mechanisms and potential clinical implications. IJC HEART & VASCULATURE 2020; 30:100631. [PMID: 32904969 PMCID: PMC7462635 DOI: 10.1016/j.ijcha.2020.100631] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/14/2020] [Accepted: 08/25/2020] [Indexed: 01/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a novel, highly transmittable and severe strain disease, which has rapidly spread worldwide. Despite epidemiological evidence linking COVID-19 with cardiovascular diseases, little is known about whether and how COVID-19 influences atrial fibrillation (AF), the most prevalent arrhythmia in clinical practice. Here, we review the available evidence for prevalence and incidence of AF in patients infected with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and discuss disease management approaches and potential treatment options for COVID-19 infected AF patients.
Collapse
Affiliation(s)
- Monika Gawałko
- 1st Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
- Department of Cardiology, Maastricht University Medical Centre and Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands
| | | | - Mathias Hohl
- Klinik für Innere Medizin III, Universität des Saarlandes, Homburg/Saar, Germany
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Dominik Linz
- Department of Cardiology, Maastricht University Medical Centre and Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands
- Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
- Department of Cardiology, Radboud University Medical Centre, Nijmegen, The Netherlands
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
104
|
Ibarra-Lara L, Sánchez-Aguilar M, Del Valle-Mondragón L, Soria-Castro E, Cervantes-Pérez LG, Pastelín-Hernández G, Sánchez-Mendoza A. Clofibrate improves myocardial ischemia-induced damage through regulation of renin-angiotensin system and favours a pro-vasodilator profile in left ventricle. J Pharmacol Sci 2020; 144:218-228. [PMID: 33070841 DOI: 10.1016/j.jphs.2020.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/03/2020] [Accepted: 09/16/2020] [Indexed: 12/25/2022] Open
Abstract
Myocardial ischemia initiates a chain of pathological conditions leading to cardiomyocyte death. Therefore, pharmacological treatment to stop ischemia-induced damage is necessary. Fibrates, have been reported to decrease inflammatory markers and to modulate the renin-angiotensin system (RAS). Our aim was to explore if clofibrate treatment, administered one week after myocardial event, decreases MI-induced cardiac damage. Wistar rats were assigned to: 1. Sham or 2. Coronary artery ligation (MI). Seven days after, rats were subdivided to receive vehicle (V) or clofibrate [100 mg/kg (C)] daily for 7 days. Blood samples and left ventricle were analyzed. RAS components [angiotensin II, angiotensin converting enzyme (ACE), and AT1-receptor] decreased in MI-C compared to MI-V, while [Ang-(1-7), bradykinin, ACE-2, and AT2-receptor] raised in response to clofibrate treatment. Oxidative stress markers increased in MI-V rats, a profile reverted in MI-C rats. Nitric oxide (NO) pathway (Akt, eNOS, and NO) exhibits a lower participation in MI-V, but clofibrate raised NO-pathway components and its production. MI-induced fibrosis and structural damage was also improved by clofibrate-treatment. In conclusion, clofibrate administration to 7 days MI-rats exerts an antioxidant, pro-vasodilator expression profile, and anti-fibrotic effect suggesting that PPARα activation can be considered a therapeutic target to improve cardiac condition posterior to ischemia.
Collapse
Affiliation(s)
- L Ibarra-Lara
- Department of Pharmacology, National Institute of Cardiology Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, 14080, Mexico City, Mexico
| | - M Sánchez-Aguilar
- Department of Pharmacology, National Institute of Cardiology Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, 14080, Mexico City, Mexico
| | - L Del Valle-Mondragón
- Department of Pharmacology, National Institute of Cardiology Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, 14080, Mexico City, Mexico
| | - E Soria-Castro
- Department of Cardiovascular Biomedicine, National Institute of Cardiology Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, 14080, Mexico City, Mexico
| | - L G Cervantes-Pérez
- Department of Pharmacology, National Institute of Cardiology Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, 14080, Mexico City, Mexico
| | - G Pastelín-Hernández
- Department of Pharmacology, National Institute of Cardiology Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, 14080, Mexico City, Mexico
| | - A Sánchez-Mendoza
- Department of Pharmacology, National Institute of Cardiology Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, 14080, Mexico City, Mexico.
| |
Collapse
|
105
|
Costa LB, Perez LG, Palmeira VA, Macedo e Cordeiro T, Ribeiro VT, Lanza K, Simões e Silva AC. Insights on SARS-CoV-2 Molecular Interactions With the Renin-Angiotensin System. Front Cell Dev Biol 2020; 8:559841. [PMID: 33042994 PMCID: PMC7525006 DOI: 10.3389/fcell.2020.559841] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/25/2020] [Indexed: 12/15/2022] Open
Abstract
The emergence of SARS-CoV-2/human/Wuhan/X1/2019, a virus belonging to the species Severe acute respiratory syndrome-related coronavirus, and the recognition of Coronavirus Disease 2019 (COVID-19) as a pandemic have highly increased the scientific research regarding the pathogenesis of COVID-19. The Renin Angiotensin System (RAS) seems to be involved in COVID-19 natural course, since studies suggest the membrane-bound Angiotensin-converting enzyme 2 (ACE2) works as SARS-CoV-2 cellular receptor. Besides the efforts of the scientific community to understand the virus' molecular interactions with human cells, few studies summarize what has been so far discovered about SARS-CoV-2 signaling mechanisms and its interactions with RAS molecules. This review aims to discuss possible SARS-CoV-2 intracellular signaling pathways, cell entry mechanism and the possible consequences of the interaction with RAS components, including Angiotensin II (Ang II), Angiotensin-(1-7) [Ang-(1-7)], Angiotensin-converting enzyme (ACE), ACE2, Angiotensin II receptor type-1 (AT1), and Mas Receptor. We also discuss ongoing clinical trials and treatment based on RAS cascade intervention. Data were obtained independently by the two authors who carried out a search in the PubMed, Embase, LILACS, Cochrane, Scopus, SciELO and the National Institute of Health databases using Medical Subject Heading terms as "SARS-CoV-2," "COVID-19," "Renin Angiotensin System," "ACE2," "Angiotensin II," "Angiotensin-(1-7)," and "AT1 receptor." Similarly to other members of Coronaviridae family, the molecular interactions between the pathogen and the membrane-bound ACE2 are based on the cleavage of the spike glycoprotein (S) in two subunits. Following the binding of the S1 receptor-binding domain (RBD) to ACE2, transmembrane protease/serine subfamily 2 (TMPRSS2) cleaves the S2 domain to facilitate membrane fusion. It is very likely that SARS-CoV-2 cell entry results in downregulation of membrane-bound ACE2, an enzyme that converts Ang II into Ang-(1-7). This mechanism can result in lung injury and vasoconstriction. In addition, Ang II activates pro-inflammatory cascades when binding to the AT1 Receptor. On the other hand, Ang-(1-7) promotes anti-inflammatory effects through its interactions with the Mas Receptor. These molecules might be possible therapeutic targets for treating COVID-19. Thus, the understanding of SARS-CoV-2 intracellular pathways and interactions with the RAS may clarify COVID-19 physiopathology and open perspectives for new treatments and strategies.
Collapse
|
106
|
de Miranda AS, Teixeira AL. Coronavirus Disease-2019 Conundrum: RAS Blockade and Geriatric-Associated Neuropsychiatric Disorders. Front Med (Lausanne) 2020; 7:515. [PMID: 32850927 PMCID: PMC7431869 DOI: 10.3389/fmed.2020.00515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/24/2020] [Indexed: 01/08/2023] Open
Abstract
Coronavirus Disease 2019 (COVID-19) is caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which primarily targets the human respiratory system and may lead to severe pneumonia and ultimately death. Mortality rate is particurlarly high among people beyond the sixth decade of life with cardiovascular and metabolic diseases. The discovery that the SARS-CoV-2 uses the renin-angiotensin system (RAS) component ACE2 as a receptor to invade host epithelial cells and cause organs damage resulted in a debate regarding the role of ACE inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) therapies during COVID-19 pandemic. Some authors proposed the discontinuation of ACEIs and ARBs for cardiovascular, kidney, and metabolic diseases, while expert opinions have discouraged that due to limited empirical evidence of their negative effect on COVID-19 outcomes, and that withdrawing treatment may contribute to clinical decompensation in high-risk patients. Moreover, as cardiovascular and metabolic diseases are associated with neurodegenerative and psychiatric disorders, especially among older adults, a critical appraisal of the potential positive effects of ACEIs and ARBs is highly needed. Herein, we aim to discuss the conundrum of ACEIs and ARBs use in high-risk patients for COVID-19, and their potential protective role on the development and/or progression of geriatric neuropsychiatric disorders.
Collapse
Affiliation(s)
- Aline Silva de Miranda
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Laboratório de Neurobiologia, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Antonio Lucio Teixeira
- Instituto de Ensino e Pesquisa Santa Casa BH, Belo Horizonte, Brazil.,Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
107
|
Hu T, Liu Y, Zhao M, Zhuang Q, Xu L, He Q. A comparison of COVID-19, SARS and MERS. PeerJ 2020; 8:e9725. [PMID: 32879801 PMCID: PMC7443081 DOI: 10.7717/peerj.9725] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 07/24/2020] [Indexed: 12/19/2022] Open
Abstract
In mid-December 2019, a novel atypical pneumonia broke out in Wuhan, Hubei Province, China and was caused by a newly identified coronavirus, initially termed 2019 Novel Coronavirus and subsequently severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As of 19 May 2020, a total of 4,731,458 individuals were reported as infected with SARS-CoV-2 among 213 countries, areas or territories with recorded cases, and the overall case-fatality rate was 6.6% (316,169 deaths among 4,731,458 recorded cases), according to the World Health Organization. Studies have shown that SARS-CoV-2 is notably similar to (severe acute respiratory syndrome coronavirus) SARS-CoV that emerged in 2002–2003 and Middle East respiratory syndrome coronavirus (MERS-CoV) that spread during 2012, and these viruses all contributed to global pandemics. The ability of SARS-CoV-2 to rapidly spread a pneumonia-like disease from Hubei Province, China, throughout the world has provoked widespread concern. The main symptoms of coronavirus disease 2019 (COVID-19) include fever, cough, myalgia, fatigue and lower respiratory signs. At present, nucleic acid tests are widely recommended as the optimal method for detecting SARS-CoV-2. However, obstacles remain, including the global shortage of testing kits and the presentation of false negatives. Experts suggest that almost everyone in China is susceptible to SARS-CoV-2 infection, and to date, there are no effective treatments. In light of the references published, this review demonstrates the biological features, spread, diagnosis and treatment of SARS-CoV-2 as a whole and aims to analyse the similarities and differences among SARS-CoV-2, SARS-CoV and MERS-CoV to provide new ideas and suggestions for prevention, diagnosis and clinical treatment.
Collapse
Affiliation(s)
- Tingting Hu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ying Liu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Mingyi Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Quan Zhuang
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Linyong Xu
- Department of Biomedical Informatics, School of Life Sciences, Central South University, Changsha, China
| | - Qingnan He
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
108
|
Tao H, Bai J, Zhang W, Zheng K, Guan P, Ge G, Li M, Geng D. Bone biology and COVID-19 infection: Is ACE2 a potential influence factor? Med Hypotheses 2020; 144:110178. [PMID: 33254500 PMCID: PMC7416709 DOI: 10.1016/j.mehy.2020.110178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 08/09/2020] [Indexed: 12/21/2022]
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) has posed a severe threat to global health management system since it has been detected in the human body. This pandemic was prompted by severe acute respiratory syndrome coronaviruses 2 (SARS-CoV-2) and rapidly developed into a public emergency with an alarming increase in cases and deaths. The increasing explorations to SARS-CoV-2 infection guide us to consider whether bone lesion is followed by this pathologic process. We especially focus on the underlying pathobiology that SARS-CoV-2 possibly mediated in bone remodeling and analyze the association of bone destruction with ACE2 in COVID-19 incidence, for preferable understanding the pathogenesis and providing necessary clinical management in orthopedics.
Collapse
Affiliation(s)
- Huaqiang Tao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Weicheng Zhang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Kai Zheng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Pengfei Guan
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Gaoran Ge
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Meng Li
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215000, China.
| |
Collapse
|
109
|
Gupta I, Rizeq B, Elkord E, Vranic S, Al Moustafa AE. SARS-CoV-2 Infection and Lung Cancer: Potential Therapeutic Modalities. Cancers (Basel) 2020; 12:E2186. [PMID: 32764454 PMCID: PMC7464614 DOI: 10.3390/cancers12082186] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/07/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023] Open
Abstract
Human coronaviruses, especially SARS-CoV-2, are emerging pandemic infectious diseases with high morbidity and mortality in certain group of patients. In general, SARS-CoV-2 causes symptoms ranging from the common cold to severe conditions accompanied by lung injury, acute respiratory distress syndrome in addition to other organs' destruction. The main impact upon SARS-CoV-2 infection is damage to alveolar and acute respiratory failure. Thus, lung cancer patients are identified as a particularly high-risk group for SARS-CoV-2 infection and its complications. On the other hand, it has been reported that SARS-CoV-2 spike (S) protein binds to angiotensin-converting enzyme 2 (ACE-2), that promotes cellular entry of this virus in concert with host proteases, principally transmembrane serine protease 2 (TMPRSS2). Today, there are no vaccines and/or effective drugs against the SARS-CoV-2 coronavirus. Thus, manipulation of key entry genes of this virus especially in lung cancer patients could be one of the best approaches to manage SARS-CoV-2 infection in this group of patients. We herein provide a comprehensive and up-to-date overview of the role of ACE-2 and TMPRSS2 genes, as key entry elements as well as therapeutic targets for SARS-CoV-2 infection, which can help to better understand the applications and capacities of various remedial approaches for infected individuals, especially those with lung cancer.
Collapse
Affiliation(s)
- Ishita Gupta
- College of Medicine, QU Health, Qatar University, 2713 Doha, Qatar; (I.G.); (B.R.); (S.V.)
- Biomedical Research Center, Qatar University, 2713 Doha, Qatar
| | - Balsam Rizeq
- College of Medicine, QU Health, Qatar University, 2713 Doha, Qatar; (I.G.); (B.R.); (S.V.)
- Biomedical Research Center, Qatar University, 2713 Doha, Qatar
| | - Eyad Elkord
- Qatar Biomedical Research Institute & 4Hamad Bin Khalifa University, 34110 Doha, Qatar;
- Biomedical Research Center, School of Science, Engineering and Environment, University of Salford, Manchester M5 4WT, UK
| | - Semir Vranic
- College of Medicine, QU Health, Qatar University, 2713 Doha, Qatar; (I.G.); (B.R.); (S.V.)
| | - Ala-Eddin Al Moustafa
- College of Medicine, QU Health, Qatar University, 2713 Doha, Qatar; (I.G.); (B.R.); (S.V.)
- Biomedical Research Center, Qatar University, 2713 Doha, Qatar
| |
Collapse
|
110
|
Stein RA. COVID-19: Risk groups, mechanistic insights and challenges. Int J Clin Pract 2020; 74:e13512. [PMID: 32266754 PMCID: PMC7235495 DOI: 10.1111/ijcp.13512] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 01/22/2023] Open
Affiliation(s)
- Richard Albert Stein
- Chemical and Biomolecular Engineering, New York University, Tandon School of Engineering, Brooklyn, NY, USA
- Department of Natural Sciences, LaGuardia Community College, Long Island City, NY, USA
| |
Collapse
|
111
|
Verdiner RE, Choukalas CG, Siddiqui S, Stahl DL, Galvagno SM, Jabaley CS, Bartz RR, Lane-Fall M, Goff K, Sreedharan R, Bennett S, Williams GW, Khanna A. COVID-Activated Emergency Scaling of Anesthesiology Responsibilities Intensive Care Unit. Anesth Analg 2020; 131:365-377. [PMID: 32398432 PMCID: PMC7219847 DOI: 10.1213/ane.0000000000004957] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2020] [Indexed: 02/06/2023]
Abstract
In response to the rapidly evolving coronavirus disease 2019 (COVID-19) pandemic and the potential need for physicians to provide critical care services, the American Society of Anesthesiologists (ASA) has collaborated with the Society of Critical Care Anesthesiologists (SOCCA), the Society of Critical Care Medicine (SCCM), and the Anesthesia Patient Safety Foundation (APSF) to develop the COVID-Activated Emergency Scaling of Anesthesiology Responsibilities (CAESAR) Intensive Care Unit (ICU) workgroup. CAESAR-ICU is designed and written for the practicing general anesthesiologist and should serve as a primer to enable an anesthesiologist to provide limited bedside critical care services.
Collapse
Affiliation(s)
| | | | - Shahla Siddiqui
- Department of Anesthesiology, Pain, and Intensive Care, Beth Israel Deaconess Medical Center, Harvard Medical School
| | | | - Samuel M. Galvagno
- Multi Trauma Critical Care Unit, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine
| | | | - Raquel R. Bartz
- Departments of Anesthesia and Medicine, Duke University School of Medicine
| | - Meghan Lane-Fall
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania
| | - Kristina Goff
- Department of Anesthesiology and Pain Management, UT Southwestern Medical Center
| | - Roshni Sreedharan
- Center for Excellence in Healthcare Communication, Anesthesiology Institute, Cleveland Clinic
| | - Suzanne Bennett
- Department of Anesthesiology, University of Cincinnati College of Medicine
| | - George W. Williams
- Department of Anesthesiology, UT Health McGovern Medical School at Houston
| | - Ashish Khanna
- Department of Anesthesiology, Section on Critical Care Medicine, Wake Forest School of Medicine
| |
Collapse
|
112
|
Shi C, Lu K, Xia H, Zhang P, Zhang B. Alteration and association between serum ACE2/ angiotensin(1-7)/Mas axis and oxidative stress in chronic kidney disease: A pilot study. Medicine (Baltimore) 2020; 99:e21492. [PMID: 32756181 PMCID: PMC7402882 DOI: 10.1097/md.0000000000021492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Activation of the renin angiotensin system and renal oxidative stress (OS) are critical contributors in the progression of chronic kidney disease(CKD). Recent studies have confirmed that the angiotensin-converting enzyme 2-angiotensin (1-7)-Mas(ACE2/Ang(1-7)/Mas) axis, the important components of renin angiotensin system, protected kidneys against damage by antagonizing angiotensin II and attenuating OS in rats with several nephropathy models, but its effect needs to be further evaluated in clinic. In this study, we aimed to detected serum ACE2/Ang (1-7)/Mas axis, OS conditions and described its clinical associations in patients with CKD at different stages.A total of 48 patients with CKD and 6 healthy controls (CT) were enrolled, and serum angiotensin converting enzyme (ACE), ACE2, Ang (1-7), 8-hydroxy-2'-deoxyguanosine (8-OHdG) were determined by ELISA. Serum extracellular glutathione peroxidase(eGSH-Px) activity and renal functions were determined by the biochemical method.Serum ACE and ACE2 levels in CKD stages 3 to 5 and serum Ang(1-7) levels in CKD stages 4 to 5 without Ang II receptor blockers treatment significantly increased compared to those in the CT group. However, ACE2 was decreased and Ang(1-7) level increased in early CKD stage with Ang II receptor blockers treatment. Higher serum 8-OHdG levels and lower eGSH-Px activity were noted in CKD stages 4 to 5. Serum 8-OHdG level was correlated with serum ACE2, Ang(1-7) expression. Estimated glomerular filtration rate (eGFR) was correlated with serum ACE, ACE2, Ang(1-7), 8-OHdG, Hcy levels and serum eGSH-Px activity. Multiple-regression analysis eGFR was predicted by ACE, Hcy, eGSH-Px, and also can be predicted by ACE2, Ang(1-7), Hcy in CT subgroup.The ACE2/Ang(1-7)/Mas axis is associated with OS, and both them were associated with eGFR in the progression of CKD. Activation of ACE2/Ang(1-7)/Mas axis may have renoprotective effect and can be a potential therapeutic target in patients with early CKD stages.
Collapse
Affiliation(s)
- Chengqian Shi
- First clinical medical college
- The Second Affiliated Hospital
| | - Keda Lu
- The First Affiliated Hospital
| | | | | | - Bingbing Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
113
|
Sablerolles RSG, Hogenhuis FEF, Lafeber M, van de Loo BPA, Borgsteede SD, Boersma E, Versmissen J, van der Kuy HM. COvid MEdicaTion (COMET) study: protocol for a cohort study. Eur J Hosp Pharm 2020; 27:191-193. [PMID: 32587077 PMCID: PMC7335622 DOI: 10.1136/ejhpharm-2020-002329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 04/28/2020] [Accepted: 05/05/2020] [Indexed: 01/22/2023] Open
Abstract
Various theories about drugs such as ACE inhibitors or angiotensin II receptor blockers (ARBs) in relation to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and clinical outcomes of COVID-19 are circulating in both mainstream media and medical literature. These are based on the fact that ACE2 facilitates SARS-CoV-2 cell invasion via binding of a viral spike protein to ACE2. However, the effect of ACE inhibitors, ARBs and other drugs on ACE2 is unclear and all theories are based on conflicting evidence mainly from animal studies. Therefore, clinical evidence is urgently needed. The aim of this study is to investigate the relationship between use of these drugs on clinical outcome of patients with COVID-19. Patients will be included from several hospitals in Europe. Data will be collected in a user-friendly database (Digitalis) on an external server. Analyses will be adjusted for sex, age and presence of cardiovascular disease, hypertension and diabetes. These results will enable more rational choices for randomised controlled trials for preventive and therapeutic strategies in COVID-19.
Collapse
Affiliation(s)
- Roos S G Sablerolles
- Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Freija E F Hogenhuis
- Department of Hospital Pharmacy, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Melvin Lafeber
- Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | | | - Sander D Borgsteede
- Department of Clinical Decision Support, Health Base Foundation, Houten, Utrecht, The Netherlands
| | - Eric Boersma
- Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Jorie Versmissen
- Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Department of Hospital Pharmacy, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Hugo M van der Kuy
- Department of Hospital Pharmacy, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | | |
Collapse
|
114
|
Kalra RS, Tomar D, Meena AS, Kandimalla R. SARS-CoV-2, ACE2, and Hydroxychloroquine: Cardiovascular Complications, Therapeutics, and Clinical Readouts in the Current Settings. Pathogens 2020; 9:E546. [PMID: 32645974 PMCID: PMC7400328 DOI: 10.3390/pathogens9070546] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/30/2020] [Accepted: 07/05/2020] [Indexed: 01/08/2023] Open
Abstract
The rapidly evolving coronavirus disease 2019 (COVID-19, caused by severe acute respiratory syndrome coronavirus 2- SARS-CoV-2), has greatly burdened the global healthcare system and led it into crisis in several countries. Lack of targeted therapeutics led to the idea of repurposing broad-spectrum drugs for viral intervention. In vitro analyses of hydroxychloroquine (HCQ)'s anecdotal benefits prompted its widespread clinical repurposing globally. Reports of emerging cardiovascular complications due to its clinical prescription are revealing the crucial role of angiotensin-converting enzyme 2 (ACE2), which serves as a target receptor for SARS-CoV-2. In the present settings, a clear understanding of these targets, their functional aspects and physiological impact on cardiovascular function are critical. In an up-to-date format, we shed light on HCQ's anecdotal function in stalling SARS-CoV-2 replication and immunomodulatory activities. While starting with the crucial role of ACE2, we here discuss the impact of HCQ on systemic cardiovascular function, its associated risks, and the scope of HCQ-based regimes in current clinical settings. Citing the extent of HCQ efficacy, the key considerations and recommendations for the use of HCQ in clinics are further discussed. Taken together, this review provides crucial insights into the role of ACE2 in SARS-CoV-2-led cardiovascular activity, and concurrently assesses the efficacy of HCQ in contemporary clinical settings.
Collapse
Affiliation(s)
- Rajkumar Singh Kalra
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Higashi 1-1-1, Tsukuba 305 8565, Japan
| | - Dhanendra Tomar
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Avtar Singh Meena
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Habsiguda, Uppal Road, Hyderabad 500 007, Telangana State, India;
| | - Ramesh Kandimalla
- Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India;
- Department of Biochemistry, Kakatiya Medical College, Warangal 506007, Telangana State, India
| |
Collapse
|
115
|
South AM, Brady TM, Flynn JT. ACE2 (Angiotensin-Converting Enzyme 2), COVID-19, and ACE Inhibitor and Ang II (Angiotensin II) Receptor Blocker Use During the Pandemic: The Pediatric Perspective. Hypertension 2020; 76:16-22. [PMID: 32367746 PMCID: PMC7289676 DOI: 10.1161/hypertensionaha.120.15291] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Potential but unconfirmed risk factors for coronavirus disease 2019 (COVID-19) in adults and children may include hypertension, cardiovascular disease, and chronic kidney disease, as well as the medications commonly prescribed for these conditions, ACE (angiotensin-converting enzyme) inhibitors, and Ang II (angiotensin II) receptor blockers. Coronavirus binding to ACE2 (angiotensin-converting enzyme 2), a crucial component of the renin-angiotensin-aldosterone system, underlies much of this concern. Children are uniquely impacted by the coronavirus, but the reasons are unclear. This review will highlight the relationship of COVID-19 with hypertension, use of ACE inhibitors and Ang II receptor blockers, and lifetime risk of cardiovascular disease from the pediatric perspective. We briefly summarize the renin-angiotensin-aldosterone system and comprehensively review the literature pertaining to the ACE 2/Ang-(1-7) pathway in children and the clinical evidence for how ACE inhibitors and Ang II receptor blockers affect this important pathway. Given the importance of the ACE 2/Ang-(1-7) pathway and the potential differences between adults and children, it is crucial that children are included in coronavirus-related research, as this may shed light on potential mechanisms for why children are at decreased risk of severe COVID-19.
Collapse
Affiliation(s)
- Andrew M. South
- Section of Nephrology, Department of Pediatrics, Wake Forest School of Medicine and Brenner Children’s Hospital
- Department of Surgery-Hypertension and Vascular Research, Wake Forest School of Medicine
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest School of Medicine
- Cardiovascular Sciences Center, Wake Forest School of Medicine, Winston Salem, NC
| | - Tammy M. Brady
- Division of Nephrology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Joseph T. Flynn
- Department of Pediatrics, University of Washington School of Medicine and Division of Nephrology, Seattle Children’s Hospital, Seattle, WA, USA
| |
Collapse
|
116
|
Tomasoni D, Italia L, Adamo M, Inciardi RM, Lombardi CM, Solomon SD, Metra M. COVID-19 and heart failure: from infection to inflammation and angiotensin II stimulation. Searching for evidence from a new disease. Eur J Heart Fail 2020; 22:957-966. [PMID: 32412156 PMCID: PMC7273093 DOI: 10.1002/ejhf.1871] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
Patients with cardiovascular disease and, namely, heart failure are more susceptible to coronavirus disease 2019 (COVID‐19) and have a more severe clinical course once infected. Heart failure and myocardial damage, shown by increased troponin plasma levels, occur in at least 10% of patients hospitalized for COVID‐19 with higher percentages, 25% to 35% or more, when patients critically ill or with concomitant cardiac disease are considered. Myocardial injury may be elicited by multiple mechanisms, including those occurring with all severe infections, such as fever, tachycardia, adrenergic stimulation, as well as those caused by an exaggerated inflammatory response, endotheliitis and, in some cases, myocarditis that have been shown in patients with COVID‐19. A key role may be that of the renin–angiotensin–aldosterone system. Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) infects human cells binding to angiotensin‐converting enzyme 2 (ACE2), an enzyme responsible for the cleavage of angiotensin II into angiotensin 1–7, which has vasodilating and anti‐inflammatory effects. Virus‐mediated down‐regulation of ACE2 may increase angiotensin II stimulation and contribute to the deleterious hyper‐inflammatory reaction of COVID‐19. On the other hand, ACE2 may be up‐regulated in patients with cardiac disease and treated with ACE inhibitors or angiotensin receptor blockers. ACE2 up‐regulation may increase the susceptibility to COVID‐19 but may be also protective vs. angiotensin II‐mediated vasoconstriction and inflammatory activation. Recent data show the lack of untoward effects of ACE inhibitors or angiotensin receptor blockers for COVID‐19 infection and severity. Prospective trials are needed to ascertain whether these drugs may have protective effects.
Collapse
Affiliation(s)
- Daniela Tomasoni
- Institute of Cardiology, ASST Spedali Civili di Brescia, and Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Leonardo Italia
- Institute of Cardiology, ASST Spedali Civili di Brescia, and Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Marianna Adamo
- Institute of Cardiology, ASST Spedali Civili di Brescia, and Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Riccardo M Inciardi
- Institute of Cardiology, ASST Spedali Civili di Brescia, and Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Carlo M Lombardi
- Institute of Cardiology, ASST Spedali Civili di Brescia, and Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Scott D Solomon
- Cardiovascular Division, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Marco Metra
- Institute of Cardiology, ASST Spedali Civili di Brescia, and Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| |
Collapse
|
117
|
Current potential therapeutic strategies targeting the TGF-β/Smad signaling pathway to attenuate keloid and hypertrophic scar formation. Biomed Pharmacother 2020; 129:110287. [PMID: 32540643 DOI: 10.1016/j.biopha.2020.110287] [Citation(s) in RCA: 228] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/08/2020] [Accepted: 05/16/2020] [Indexed: 12/12/2022] Open
Abstract
Aberrant scar formation, which includes keloid and hypertrophic scars, is associated with a pathological disorganized wound healing process with chronic inflammation. The TGF-β/Smad signaling pathway is the most canonical pathway through which the formation of collagen in the fibroblasts and myofibroblasts is regulated. Sustained activation of the TGF-β/Smad signaling pathway results in the long-term overactivation of fibroblasts and myofibroblasts, which is necessary for the excessive collagen formation in aberrant scars. There are two categories of therapeutic strategies that aim to target the TGF-β/Smad signaling pathway in fibroblasts and myofibroblasts to interfere with their cellular functions and reduce cell proliferation. The first therapeutic strategy includes medications, and the second strategy is composed of genetic and cellular therapeutics. Therefore, the focus of this review is to critically evaluate these two main therapeutic strategies that target the TGF-β/Smad pathway to attenuate abnormal skin scar formation.
Collapse
|
118
|
Urwyler SA, Ebrahimi F, Burkard T, Schuetz P, Poglitsch M, Mueller B, Donath MY, Christ-Crain M. IL (Interleukin)-1 Receptor Antagonist Increases Ang (Angiotensin [1–7]) and Decreases Blood Pressure in Obese Individuals. Hypertension 2020; 75:1455-1463. [DOI: 10.1161/hypertensionaha.119.13982] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
IL (Interleukin)-1 antagonism decreases blood pressure in obese individuals. The underlying mechanisms are unknown. Based on experimental data, we hypothesized an effect of IL-1 antagonism via modulation of the renin-angiotensin-aldosterone system. In this explorative study, we examined shorter- (2 days) and longer-term effects (4 weeks) of IL-1 antagonism (anakinra/Kineret) on renin-angiotensin system peptide profiles and on hemodynamic parameters assessed by noninvasive measurement in obese (body mass index ≥30 kg/m
2
) individuals from 2 interventional trials (a prospective interventional trial [n=73] and a placebo controlled-double blinded interventional trial [n=67]). A total of 140 patients were included. Systolic blood pressure decreased after short-term (absolute difference −5.2 mm Hg [95% CI, −8.5 to −1.8];
P
=0.0006) and after longer-term treatment with anakinra (absolute difference −3.9 mm Hg [95% CI, −7.59 to −0.21];
P
=0.04), with no change in blood pressure in the placebo group. Upon IL-1 antagonism, equilibrium levels of Ang II (angiotensin II), Ang I, aldosterone, and renin remained unchanged. In contrast, Ang (1–7) peptide levels increased after 4 weeks (between-group difference 16.35 pmol/L [95% CI, 1.22–30.17],
P
=0.03), as well as the Ang (1–7)/Ang II ratio (between-group difference 0.42 [95% CI, 0.17–0.67],
P
=0.02) in comparison to placebo. Consistently, the stroke systemic vascular resistance index significantly decreased in the anakinra group (between-group difference of −62.65 dyn/sec per cm
−5
per m
2
[95% CI, −116.94 to −18.36],
P
=0.008, consistent with a 25% decrease). IL-1 antagonism increased the vasodilatory Ang (1–7) peptide after 4 weeks of treatment in obese individuals, paralleled by a decrease in peripheral vascular resistance. These findings point to an IL-1 mediated blood pressure-lowering mechanism via modulation of Ang (1–7).
Registration—
URL:
https://www.clinicaltrials.gov
. Unique identifiers: NCT02227420 and NCT02672592.
Collapse
Affiliation(s)
- Sandrine Andrea Urwyler
- From the Department of Endocrinology, Diabetology and Metabolism (S.A.U., F.E., M.Y.D., M.C.-C.), University Hospital Basel, Switzerland
- Department of Clinical Research (S.A.U., F.E., T.B., P.S., B.M., M.Y.D., M.C.-C.), University Hospital Basel, Switzerland
| | - Fahim Ebrahimi
- From the Department of Endocrinology, Diabetology and Metabolism (S.A.U., F.E., M.Y.D., M.C.-C.), University Hospital Basel, Switzerland
- Department of Clinical Research (S.A.U., F.E., T.B., P.S., B.M., M.Y.D., M.C.-C.), University Hospital Basel, Switzerland
| | - Thilo Burkard
- Department of Clinical Research (S.A.U., F.E., T.B., P.S., B.M., M.Y.D., M.C.-C.), University Hospital Basel, Switzerland
- Department of Internal Medicine, Medical Outpatient Department and Hypertension Clinic, ESH Hypertension Centre of Excellence (T.B.), University Hospital Basel, Switzerland
| | - Philipp Schuetz
- Department of Clinical Research (S.A.U., F.E., T.B., P.S., B.M., M.Y.D., M.C.-C.), University Hospital Basel, Switzerland
- Department of General Internal and Emergency Medicine, Medical University Clinic, Kantonsspital Aarau, Switzerland (P.S.)
| | - Marko Poglitsch
- Attoquant Diagnostics GmbH, Campus-Vienna-Biocenter, Vienna, Austria (M.P.)
| | - Beat Mueller
- Department of Clinical Research (S.A.U., F.E., T.B., P.S., B.M., M.Y.D., M.C.-C.), University Hospital Basel, Switzerland
- Department of Endocrinology, Diabetes and Metabolism, Medical University Clinic, Kantonsspital Aarau, Switzerland (B.M.)
| | - Marc Y. Donath
- From the Department of Endocrinology, Diabetology and Metabolism (S.A.U., F.E., M.Y.D., M.C.-C.), University Hospital Basel, Switzerland
- Department of Clinical Research (S.A.U., F.E., T.B., P.S., B.M., M.Y.D., M.C.-C.), University Hospital Basel, Switzerland
| | - Mirjam Christ-Crain
- From the Department of Endocrinology, Diabetology and Metabolism (S.A.U., F.E., M.Y.D., M.C.-C.), University Hospital Basel, Switzerland
- Department of Clinical Research (S.A.U., F.E., T.B., P.S., B.M., M.Y.D., M.C.-C.), University Hospital Basel, Switzerland
| |
Collapse
|
119
|
Kaltenecker CC, Domenig O, Kopecky C, Antlanger M, Poglitsch M, Berlakovich G, Kain R, Stegbauer J, Rahman M, Hellinger R, Gruber C, Grobe N, Fajkovic H, Eskandary F, Böhmig GA, Säemann MD, Kovarik JJ. Critical Role of Neprilysin in Kidney Angiotensin Metabolism. Circ Res 2020; 127:593-606. [PMID: 32418507 DOI: 10.1161/circresaha.119.316151] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
RATIONALE Kidney homeostasis is critically determined by the coordinated activity of the renin-angiotensin system (RAS), including the balanced synthesis of its main effector peptides Ang (angiotensin) II and Ang (1-7). The condition of enzymatic overproduction of Ang II relative to Ang (1-7) is termed RAS dysregulation and leads to cellular signals, which promote hypertension and organ damage, and ultimately progressive kidney failure. ACE2 (angiotensin-converting enzyme 2) and NEP (neprilysin) induce the alternative, and potentially reno-protective axis by enhancing Ang (1-7) production. However, their individual contribution to baseline RAS balance and whether their activities change in chronic kidney disease (CKD) has not yet been elucidated. OBJECTIVE To examine whether NEP-mediated Ang (1-7) generation exceeds Ang II formation in the healthy kidney compared with diseased kidney. METHODS AND RESULTS In this exploratory study, we used liquid chromatography-tandem mass spectrometry to measure Ang II and Ang (1-7) synthesis rates of ACE, chymase and NEP, ACE2, PEP (prolyl-endopeptidase), PCP (prolyl-carboxypeptidase) in kidney biopsy homogenates in 11 healthy living kidney donors, and 12 patients with CKD. The spatial expression of RAS enzymes was determined by immunohistochemistry. Healthy kidneys showed higher NEP-mediated Ang (1-7) synthesis than Ang II formation, thus displaying a strong preference towards the reno-protective alternative RAS axis. In contrast, in CKD kidneys higher levels of Ang II were recorded, which originated from mast cell chymase activity. CONCLUSIONS Ang (1-7) is the dominant RAS peptide in healthy human kidneys with NEP rather than ACE2 being essential for its generation. Severe RAS dysregulation is present in CKD dictated by high chymase-mediated Ang II formation. Kidney RAS enzyme analysis might lead to novel therapeutic approaches for CKD.
Collapse
Affiliation(s)
- Christopher C Kaltenecker
- From the Division of Nephrology and Dialysis, Department of Internal Medicine III (C.C.K., F.E., G.A.B., J.J.K.), Medical University of Vienna, Austria
| | - Oliver Domenig
- Attoquant Diagnostics GmbH, Vienna, Austria (O.D., M.P.)
| | - Chantal Kopecky
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia (C.K.)
| | - Marlies Antlanger
- 2nd Department of Internal Medicine, Kepler University Hospital, Med Campus III, Linz, Austria (M.A.)
| | | | - Gabriela Berlakovich
- Division of Transplantation, Department of Surgery (G.B.), Medical University of Vienna, Austria
| | - Renate Kain
- Department of Pathology (R.K.), Medical University of Vienna, Austria
| | - Johannes Stegbauer
- Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany (J.S., M.R.)
| | - Masudur Rahman
- Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany (J.S., M.R.)
| | - Roland Hellinger
- Center for Physiology and Pharmacology (R.H., C.G.), Medical University of Vienna, Austria
| | - Christian Gruber
- Center for Physiology and Pharmacology (R.H., C.G.), Medical University of Vienna, Austria
| | - Nadja Grobe
- Renal Research Institute, New York, NY (N.G.)
| | - Harun Fajkovic
- Department of Urology (H.F.), Medical University of Vienna, Austria
| | - Farsad Eskandary
- From the Division of Nephrology and Dialysis, Department of Internal Medicine III (C.C.K., F.E., G.A.B., J.J.K.), Medical University of Vienna, Austria
| | - Georg A Böhmig
- From the Division of Nephrology and Dialysis, Department of Internal Medicine III (C.C.K., F.E., G.A.B., J.J.K.), Medical University of Vienna, Austria
| | - Marcus D Säemann
- 6th Medical Department with Nephrology and Dialysis, Wilhelminenhospital, Vienna, Austria (M.D.S.).,Sigmund-Freud University, Vienna, Austria (M.D.S.)
| | - Johannes J Kovarik
- From the Division of Nephrology and Dialysis, Department of Internal Medicine III (C.C.K., F.E., G.A.B., J.J.K.), Medical University of Vienna, Austria
| |
Collapse
|
120
|
|
121
|
South AM, Diz DI, Chappell MC. COVID-19, ACE2, and the cardiovascular consequences. Am J Physiol Heart Circ Physiol 2020; 318:H1084-H1090. [PMID: 32228252 PMCID: PMC7191628 DOI: 10.1152/ajpheart.00217.2020] [Citation(s) in RCA: 515] [Impact Index Per Article: 103.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 01/08/2023]
Abstract
The novel SARS coronavirus SARS-CoV-2 pandemic may be particularly deleterious to patients with underlying cardiovascular disease (CVD). The mechanism for SARS-CoV-2 infection is the requisite binding of the virus to the membrane-bound form of angiotensin-converting enzyme 2 (ACE2) and internalization of the complex by the host cell. Recognition that ACE2 is the coreceptor for the coronavirus has prompted new therapeutic approaches to block the enzyme or reduce its expression to prevent the cellular entry and SARS-CoV-2 infection in tissues that express ACE2 including lung, heart, kidney, brain, and gut. ACE2, however, is a key enzymatic component of the renin-angiotensin-aldosterone system (RAAS); ACE2 degrades ANG II, a peptide with multiple actions that promote CVD, and generates Ang-(1-7), which antagonizes the effects of ANG II. Moreover, experimental evidence suggests that RAAS blockade by ACE inhibitors, ANG II type 1 receptor antagonists, and mineralocorticoid antagonists, as well as statins, enhance ACE2 which, in part, contributes to the benefit of these regimens. In lieu of the fact that many older patients with hypertension or other CVDs are routinely treated with RAAS blockers and statins, new clinical concerns have developed regarding whether these patients are at greater risk for SARS-CoV-2 infection, whether RAAS and statin therapy should be discontinued, and the potential consequences of RAAS blockade to COVID-19-related pathologies such as acute and chronic respiratory disease. The current perspective critically examines the evidence for ACE2 regulation by RAAS blockade and statins, the cardiovascular benefits of ACE2, and whether ACE2 blockade is a viable approach to attenuate COVID-19.
Collapse
Affiliation(s)
- Andrew M South
- Cardiovascular Sciences Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Debra I Diz
- Cardiovascular Sciences Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Mark C Chappell
- Cardiovascular Sciences Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
122
|
Braz NFT, Pinto MRC, Vieira ÉLM, Souza AJ, Teixeira AL, Simões-E-Silva AC, Kakehasi AM. Renin-angiotensin system molecules are associated with subclinical atherosclerosis and disease activity in rheumatoid arthritis. Mod Rheumatol 2020; 31:119-126. [PMID: 32149558 DOI: 10.1080/14397595.2020.1740418] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVES To compare serum levels of RAS components in women with RA versus healthy females and to investigate the association between these molecules and subclinical atherosclerosis. METHODS A cross-sectional study involving female RA patients without ischemic CVD. Disease activity was assessed using the DAS28 and the CDAI. IMT of the common carotid artery was evaluated by ultrasonography. Serum levels of Ang II, Ang-(1-7), ACE and ACE2 were determined by enzyme immunoassay. RESULTS Fifty women with RA, mean 48.2 (7.3) years, were compared to 30 healthy women, paired by age. RA patients had higher plasma levels of Ang II (p < .01), Ang-(1-7) (p < .01), and ACE (p < .01) than controls. The ratios of ACE to ACE2 were higher in RA patients, whereas Ang II/Ang-(1-7) ratios were lower in RA patients. The presence of hypertension and the treatment with ACE inhibitors did not significantly modify serum levels of Ang II, Ang-(1-7), ACE and ACE2 in patients with RA. Seven RA patients had altered IMT, and eight patients exhibited atherosclerotic plaque. There was a negative correlation between ACE2 levels and IMT (p = .041). IMT positively correlated with age (p = .022), disease duration (p = .012) and overall Framingham risk score (p = .008). Ang II concentrations positively correlated with DAS28 (p = .034) and CDAI (p = .040). CONCLUSION Patients with RA had an activation of the RAS, suggesting an association with disease activity and cardiovascular risk. Rheumatological key messages Imbalance of both RAS axes may be associated with cardiovascular risk and disease activity in rheumatoid arthritis. Ultrasonography of the carotid arteries can identify early, subclinical atherosclerotic disease in rheumatoid arthritis patients. Angiotensin-converting enzyme inhibition or angiotensin 1 receptor blockade may be beneficial for rheumatoid arthritis patients.
Collapse
Affiliation(s)
- Nayara Felicidade Tomaz Braz
- Interdisciplinary Laboratory of Medical Investigation, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Maria Raquel C Pinto
- Rheumatology Unit, Clinic Hospital, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Antonio Lucio Teixeira
- Interdisciplinary Laboratory of Medical Investigation, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ana C Simões-E-Silva
- Interdisciplinary Laboratory of Medical Investigation, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Adriana Maria Kakehasi
- Interdisciplinary Laboratory of Medical Investigation, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Locomotor Apparatus Department, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
123
|
Fang L, Karakiulakis G, Roth M. Antihypertensive drugs and risk of COVID-19? - Authors' reply. THE LANCET RESPIRATORY MEDICINE 2020; 8:e32-e33. [PMID: 32222169 PMCID: PMC7194912 DOI: 10.1016/s2213-2600(20)30159-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Lei Fang
- Pulmonary Cell Research and Pneumology, Department of Biomedicine and Internal Medicine, University Hospital Basel, CH-4031 Basel, Switzerland
| | - George Karakiulakis
- Department of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Michael Roth
- Pulmonary Cell Research and Pneumology, Department of Biomedicine and Internal Medicine, University Hospital Basel, CH-4031 Basel, Switzerland.
| |
Collapse
|
124
|
Choi HS, Kim IJ, Kim CS, Ma SK, Scholey JW, Kim SW, Bae EH. Angiotensin-[1-7] attenuates kidney injury in experimental Alport syndrome. Sci Rep 2020; 10:4225. [PMID: 32144368 PMCID: PMC7060323 DOI: 10.1038/s41598-020-61250-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/20/2020] [Indexed: 12/14/2022] Open
Abstract
Angiotensin-[1–7] (Ang-[1–7]) antagonize the actions of the renin-angiotensin-system via the Mas receptor and thereby exert renoprotective effects. Murine recombinant angiotensin-converting enzyme (ACE)2 was reported to show renoprotective effects in an experimental Alport syndrome model; however, the protective effect of direct administration of Ang-[1–7] is unknown. Here, we used Col4a3−/− mice as a model of Alport syndrome, which were treated with saline or Ang- [1–7]; saline-treated wild-type mice were used as a control group. The mice were continuously infused with saline or Ang-[1–7] (25 μg/kg/h) using osmotic mini-pumps. Col4a3−/− mice showed increased α-smooth muscle actin (SMA), collagen, and fibronectin expression levels, which were attenuated by Ang-[1–7] treatment. Moreover, Ang-[1–7] alleviated activation of transforming growth factor-β/Smad signaling, and attenuated the protein expression of ED-1 and heme oxygenase-1, indicating reduction of renal inflammation. Ang-[1–7] treatment further reduced the expression levels of inflammatory cytokines and adhesion molecules and attenuated apoptosis in human kidney cells. Finally, Ang-[1–7] downregulated TNF-α converting enzyme and upregulated ACE2 expression. Thus, treatment with Ang-[1–7] altered the ACE2-Ang-[1–7]-Mas receptor axis in the kidneys of Col4a3−/− mice to attenuate the nephropathy progression of Alport syndrome.
Collapse
Affiliation(s)
- Hong Sang Choi
- Departments of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - In Jin Kim
- Departments of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Chang Seong Kim
- Departments of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Seong Kwon Ma
- Departments of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - James W Scholey
- Department of Medicine and Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Soo Wan Kim
- Departments of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea.
| | - Eun Hui Bae
- Departments of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea.
| |
Collapse
|
125
|
de Souza P, da Silva LM, de Andrade SF, Gasparotto Junior A. Recent Advances in the Knowledge of Naturally-derived Bioactive Compounds as Modulating Agents of the Renin-angiotensin-aldosterone System: Therapeutic Benefits in Cardiovascular Diseases. Curr Pharm Des 2020; 25:670-684. [PMID: 30931846 DOI: 10.2174/1381612825666190329122443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/25/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND One of the biggest challenges to public health worldwide is to reduce the number of events and deaths related to the cardiovascular diseases. Numerous approaches have been applied to reach this goal, and drug treatment intervention has been indispensable along with an effective strategy for reducing both cardiovascular morbidity and mortality. Renin-angiotensin-aldosterone system (RAAS) blockade is currently one of the most important targets of cardiovascular drug therapy. Many studies have proven the valuable properties of naturally-derived bioactive compounds to treat cardiovascular diseases. METHODS The goal of this review, therefore, is to discuss the recent developments related to medicinal properties about natural compounds as modulating agents of the RAAS, which have made them an attractive alternative to be available to supplement the current therapy options. RESULTS Data has shown that bioactive compounds isolated from several natural products act either by inhibiting the angiotensin-converting enzyme or directly by modulating the AT1 receptors of angiotensin II, which consequently changes the entire classical axis of this system. CONCLUSION While there are a few evidence about the positive actions of different classes of secondary metabolites for the treatment of cardiovascular and renal diseases, data is scarce about the clinical assays established to demonstrate their value in humans.
Collapse
Affiliation(s)
- Priscila de Souza
- Programa de Pos-Graduacao em Ciencias Farmaceuticas, Nucleo de Investigacoes Quimico-Farmaceuticas (NIQFAR), Universidade do Vale do Itajai (UNIVALI), Rua Uruguai, 458, 88302-901 Itajai, SC, Brazil
| | - Luisa M da Silva
- Programa de Pos-Graduacao em Ciencias Farmaceuticas, Nucleo de Investigacoes Quimico-Farmaceuticas (NIQFAR), Universidade do Vale do Itajai (UNIVALI), Rua Uruguai, 458, 88302-901 Itajai, SC, Brazil
| | - Sérgio F de Andrade
- Programa de Pos-Graduacao em Ciencias Farmaceuticas, Nucleo de Investigacoes Quimico-Farmaceuticas (NIQFAR), Universidade do Vale do Itajai (UNIVALI), Rua Uruguai, 458, 88302-901 Itajai, SC, Brazil
| | - Arquimedes Gasparotto Junior
- Laboratorio de Eletrofisiologia e Farmacologia Cardiovascular, Faculdade de Ciencias da Saude, Universidade Federal da Grande Dourados, Dourados, MS, Brazil
| |
Collapse
|
126
|
She G, Ren YJ, Wang Y, Hou MC, Wang HF, Gou W, Lai BC, Lei T, Du XJ, Deng XL. K Ca3.1 Channels Promote Cardiac Fibrosis Through Mediating Inflammation and Differentiation of Monocytes Into Myofibroblasts in Angiotensin II -Treated Rats. J Am Heart Assoc 2020; 8:e010418. [PMID: 30563389 PMCID: PMC6405723 DOI: 10.1161/jaha.118.010418] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background Cardiac fibrosis is a core pathological process associated with heart failure. The recruitment and differentiation of primitive fibroblast precursor cells of bone marrow origin play a critical role in pathological interstitial cardiac fibrosis. The KC a3.1 channels are expressed in both ventricular fibroblasts and circulating mononuclear cells in rats and are upregulated by angiotensin II . We hypothesized that KC a3.1 channels mediate the inflammatory microenvironment in the heart, promoting the infiltrated bone marrow-derived circulating mononuclear cells to differentiate into myofibroblasts, leading to myocardial fibrosis. Methods and Results We established a cardiac fibrosis model in rats by infusing angiotensin II to evaluate the impact of the specific KC a3.1 channel blocker TRAM -34 on cardiac fibrosis. At the same time, mouse CD 4+ T cells and rat circulating mononuclear cells were separated to investigate the underlying mechanism of the TRAM -34 anti-cardiac fibrosis effect. TRAM -34 significantly attenuated cardiac fibrosis and the inflammatory reaction and reduced the number of fibroblast precursor cells and myofibroblasts. Inhibition of KC a3.1 channels suppressed angiotensin II -stimulated expression and secretion of interleukin-4 and interleukin-13 in CD 4+ T cells and interleukin-4- or interleukin-13-induced differentiation of monocytes into fibrocytes. Conclusions KC a3.1 channels facilitate myocardial inflammation and the differentiation of bone marrow-derived monocytes into myofibroblasts in cardiac fibrosis caused by angiotensin II infusion.
Collapse
Affiliation(s)
- Gang She
- 1 Department of Physiology and Pathophysiology School of Basic Medical Sciences Xi'an Jiaotong University Health Science Center Xi'an Shaanxi China
| | - Yu-Jie Ren
- 1 Department of Physiology and Pathophysiology School of Basic Medical Sciences Xi'an Jiaotong University Health Science Center Xi'an Shaanxi China.,5 Department of Pathology Xi'an Guangren Hospital Affiliated to Xi'an Jiaotong University Health Science Center Xi'an Shaanxi China
| | - Yan Wang
- 1 Department of Physiology and Pathophysiology School of Basic Medical Sciences Xi'an Jiaotong University Health Science Center Xi'an Shaanxi China
| | - Meng-Chen Hou
- 1 Department of Physiology and Pathophysiology School of Basic Medical Sciences Xi'an Jiaotong University Health Science Center Xi'an Shaanxi China
| | - Hui-Fang Wang
- 5 Department of Pathology Xi'an Guangren Hospital Affiliated to Xi'an Jiaotong University Health Science Center Xi'an Shaanxi China
| | - Wei Gou
- 3 Basic Experiment Teaching Center School of Basic Medical Sciences Xi'an Jiaotong University Health Science Center Xi'an Shaanxi China
| | - Bao-Chang Lai
- 4 Cardiovascular Research Centre School of Basic Medical Sciences Xi'an Jiaotong University Health Science Center Xi'an Shaanxi China
| | - Ting Lei
- 2 Department of Pathology School of Basic Medical Sciences Xi'an Jiaotong University Health Science Center Xi'an Shaanxi China
| | - Xiao-Jun Du
- 1 Department of Physiology and Pathophysiology School of Basic Medical Sciences Xi'an Jiaotong University Health Science Center Xi'an Shaanxi China.,6 Baker Heart and Diabetes Institute Melbourne Victoria Australia
| | - Xiu-Ling Deng
- 1 Department of Physiology and Pathophysiology School of Basic Medical Sciences Xi'an Jiaotong University Health Science Center Xi'an Shaanxi China.,4 Cardiovascular Research Centre School of Basic Medical Sciences Xi'an Jiaotong University Health Science Center Xi'an Shaanxi China
| |
Collapse
|
127
|
Belisário AR, Vieira ÉLM, de Almeida JA, Mendes FG, Miranda AS, Rezende PV, Viana MB, Simões e Silva AC. Evidence for interactions between inflammatory markers and renin-angiotensin system molecules in the occurrence of albuminuria in children with sickle cell anemia. Cytokine 2020; 125:154800. [DOI: 10.1016/j.cyto.2019.154800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 04/29/2019] [Accepted: 08/05/2019] [Indexed: 12/12/2022]
|
128
|
Potential of Renin-Angiotensin-Aldosterone System Modulations in Diabetic Kidney Disease: Old Players to New Hope! Rev Physiol Biochem Pharmacol 2020; 179:31-71. [PMID: 32979084 DOI: 10.1007/112_2020_50] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Due to a tragic increase in the incidences of diabetes globally, diabetic kidney disease (DKD) has emerged as one of the leading causes of end-stage renal diseases (ESRD). Hyperglycaemia-mediated overactivation of the renin-angiotensin-aldosterone system (RAAS) is key to the development and progression of DKD. Consequently, RAAS inhibition by angiotensin-converting enzyme inhibitors (ACEi) or angiotensin receptor blockers (ARBs) is the first-line therapy for the clinical management of DKD. However, numerous clinical and preclinical evidences suggested that RAAS inhibition can only halt the progression of the DKD to a certain extent, and they are inadequate to cure DKD completely. Recent studies have improved understanding of the complexity of the RAAS. It consists of two counter-regulatory arms, the deleterious pressor arm (ACE/angiotensin II/AT1 receptor axis) and the beneficial depressor arm (ACE2/angiotensin-(1-7)/Mas receptor axis). These advances have paved the way for the development of new therapies targeting the RAAS for better treatment of DKD. In this review, we aimed to summarise the involvement of the depressor arm of the RAAS in DKD. Moreover, in modern drug discovery and development, an advance approach is the bispecific therapeutics, targeting two independent signalling pathways. Here, we discuss available reports of these bispecific drugs involving the RAAS as well as propose potential treatments based on neurohormonal balance as credible therapeutic strategies for DKD.
Collapse
|
129
|
Bekpinar S, Karaca E, Yamakoğlu S, Alp-Yıldırım Fİ, Olgac V, Uydes-Doğan BS, Cibali E, Gultepe S, Uysal M. Resveratrol ameliorates the cyclosporine-induced vascular and renal impairments: possible impact of the modulation of renin–angiotensin system. Can J Physiol Pharmacol 2019; 97:1115-1123. [DOI: 10.1139/cjpp-2018-0753] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyclosporine, an immunosuppressive drug, exhibits a toxic effect on renal and vascular systems. The present study investigated whether resveratrol treatment alleviates renal and vascular injury induced by cyclosporine. Cyclosporine (25 mg/kg per day, s.c.) was given for 7 days to rats either alone or in combination with resveratrol (10 mg/kg per day, i.p.). Relaxation and contraction responses of aorta were examined. Serum levels of blood urea nitrogen, creatinine, angiotensin II, and angiotensin 1-7 were measured. Histopathological examinations as well as immunostaining for 4-hydroxynonenal and nitrotyrosine were performed in the kidney. RNA expressions of renin–angiotensin system components were also measured in renal and aortic tissues. Cyclosporine decreased the endothelium-dependent relaxation and increased vascular contraction in the aorta. It caused renal tubular degeneration and increased immunostaining for 4-hydroxynonenal, an oxidative stress marker. Cyclosporine also caused upregulations of the vasoconstrictive renin–angiotensin system components in renal (angiotensin-converting enzyme) and aortic (angiotensin II type 1 receptor) tissues. Resveratrol co-treatment prevented the cyclosporine-related deteriorations. Moreover, it induced the expressions of vasodilatory effective angiotensin-converting enzyme 2 and angiotensin II type 2 receptor in aorta and kidney, respectively. We conclude that resveratrol may be effective in preventing cyclosporine-induced renal tubular degeneration and vascular dysfunction at least in part by modulating the renin–angiotensin system.
Collapse
Affiliation(s)
- Seldag Bekpinar
- Department of Biochemistry, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Ece Karaca
- Department of Biochemistry, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Selin Yamakoğlu
- Department of Pharmacology, Faculty of Pharmacy, Istanbul, Turkey
| | | | - Vakur Olgac
- Department of Pathology, Institute of Oncology, Istanbul University, Istanbul, Turkey
| | | | | | - Suleyman Gultepe
- Department of Pharmacology, Faculty of Pharmacy, Istanbul, Turkey
| | - Mujdat Uysal
- Department of Biochemistry, Istanbul Faculty of Medicine, Istanbul, Turkey
| |
Collapse
|
130
|
Badreh F, Joukar S, Badavi M, Rashno M. Restoration of the Renin-Angiotensin System Balance Is a Part of the Effect of Fasting on Cardiovascular Rejuvenation: Role of Age and Fasting Models. Rejuvenation Res 2019; 23:302-312. [PMID: 31571520 DOI: 10.1089/rej.2019.2254] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Intermittent fasting (IF) is an intervention that can be beneficial for health span and mitigate the risk of developing age-related cardiovascular diseases; however, the involved mechanisms are not well understood. The present study investigated the effects of IF regimens on the plasma level of angiotensin II (Ang II), and the expression of Ang II receptors (AT1aR and AT2R) and angiotensin-converting enzyme 2 (ACE2) in the heart and aorta of male, 3-, 12-, and 24-month-old Wistar rats fed ad libitum (AL), fed ad libitum and fasted 1 day per week (FW), or fasted every other day (EOD) for 3 months. Aging was associated with high circulating levels of Ang II, high level of AT1aR protein expression in the heart and aorta, and low level of AT2R protein expression in the heart and aorta. Both FW and EOD decreased Ang II levels (p < 0.01, p < 0.001) and AT1aR protein expression in the heart (p < 0.01, p < 0.001) and aorta (p < 0.001) of old rats. Both FW and EOD increased the expression of AT2R protein in the heart (p < 0.05 and p < 0.001, respectively). However, only EOD increased the expression of AT2R protein (p < 0.05) in the aorta. In the old group, both the FW and EOD regimens induced a significant increase in the expression of ACE2 protein in the heart (p < 0.01, p < 0.001 vs. age-matched AL group, respectively). The results suggest that a part of the recovery effect of fasting on cardiovascular system in old rats is mediated through restoration of the balance of renin-angiotensin system.
Collapse
Affiliation(s)
- Firuzeh Badreh
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.,Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Science, Kerman, Iran
| | - Siyavash Joukar
- Neuroscience Research Center, Cardiovascular Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.,Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Badavi
- Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,The Persian Gulf Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Rashno
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
131
|
Wilkinson-Berka JL, Suphapimol V, Jerome JR, Deliyanti D, Allingham MJ. Angiotensin II and aldosterone in retinal vasculopathy and inflammation. Exp Eye Res 2019; 187:107766. [PMID: 31425690 DOI: 10.1016/j.exer.2019.107766] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/18/2022]
Abstract
Angiotensin II and aldosterone are the main effectors of the renin-angiotensin aldosterone system (RAAS) and have a central role in hypertension as well as cardiovascular and renal disease. The localization of RAAS components within the retina has led to studies investigating the roles of angiotensin II, aldosterone and the counter regulatory arm of the pathway in vision-threatening retinopathies. This review will provide a brief overview of RAAS components as well as the vascular pathology that develops in the retinal diseases, retinopathy of prematurity, diabetic retinopathy and neovascular age-related macular degeneration. The review will discuss pre-clinical and clinical evidence that modulation of the RAAS alters the development of vasculopathy and inflammation in the aforementioned retinopathies, as well as the emerging role of aldosterone and the mineralocorticoid receptor in central serous chorioretinopathy.
Collapse
Affiliation(s)
- Jennifer L Wilkinson-Berka
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia; Department of Diabetes, The Central Clinical School, Monash University, Melbourne, Victoria, Australia.
| | - Varaporn Suphapimol
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia; Department of Diabetes, The Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Jack R Jerome
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia; Department of Diabetes, The Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Devy Deliyanti
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia; Department of Diabetes, The Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | | |
Collapse
|
132
|
Zhang BN, Zhang X, Xu H, Gao XM, Zhang GZ, Zhang H, Yang F. Dynamic Variation of RAS on Silicotic Fibrosis Pathogenesis in Rats. Curr Med Sci 2019; 39:551-559. [DOI: 10.1007/s11596-019-2073-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 06/12/2019] [Indexed: 11/28/2022]
|
133
|
Wu Q, Li Y, Peng K, Wang XL, Ding Z, Liu L, Xu P, Liu GQ. Isolation and Characterization of Three Antihypertension Peptides from the Mycelia of Ganoderma Lucidum (Agaricomycetes). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8149-8159. [PMID: 31246442 DOI: 10.1021/acs.jafc.9b02276] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ganoderma lucidum (G. lucidum) has been widely used in Asia to treat hypertension, but the active substances responsible for its antihypertensive effects remain unclear. Using the well-established angiotensin I-converting enzyme (ACE) as a target, we identified three ACE inhibitory peptides (ACEIPs), Gln-Leu-Val-Pro (QLVP), Gln-Asp-Val-Leu (QDVL), and Gln-Leu-Asp-Leu (QLDL), which account for the antihypertensive activity of G. lucidum. Notably, QLVP worked in a mixed-type manner against ACE with an IC50 value of 127.9 μmol/L. Molecular dynamics simulation suggested that the potent charge energy of QLVP, which interacted with Gln242 and Lys472 of ACE via a hydrogen bond and a salt bridge, potentially contributed to ACE inhibitory activity. Moreover, QLVP markedly activated angiotensin I-mediated phosphorylation of endothelial nitric oxide synthase in human umbilical vein endothelial cells and partly reduced mRNA and protein expression of the vasoconstrictor factor endothelin-1. This is the first report of the antihypertensive activity of small ACEIPs originating from G. lucidum mycelia, paving the way for the possible application of these peptides as potent drug candidates for treating hypertension.
Collapse
Affiliation(s)
- Qiang Wu
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology , Central South University of Forestry and Technology , Changsha , 410004 , China
- College of Food and Chemical Engineering , Shaoyang University , Shaoyang , 422000 , China
| | - Yong Li
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology , Central South University of Forestry and Technology , Changsha , 410004 , China
| | - Kuan Peng
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology , Central South University of Forestry and Technology , Changsha , 410004 , China
| | - Xiao-Ling Wang
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology , Central South University of Forestry and Technology , Changsha , 410004 , China
| | - Zhongyang Ding
- National Engineering Laboratory for Cereal Fermentation Technology , Jiangnan University , Wuxi , 214122 , China
| | - Liming Liu
- National Engineering Laboratory for Cereal Fermentation Technology , Jiangnan University , Wuxi , 214122 , China
| | - Peng Xu
- College of Chemical, Biochemical and Environmental Engineering , University of Maryland Baltimore County , Baltimore , Maryland 21201 , United States
| | - Gao-Qiang Liu
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology , Central South University of Forestry and Technology , Changsha , 410004 , China
| |
Collapse
|
134
|
Romero A, San Hipólito‐Luengo Á, Villalobos LA, Vallejo S, Valencia I, Michalska P, Pajuelo‐Lozano N, Sánchez‐Pérez I, León R, Bartha JL, Sanz MJ, Erusalimsky JD, Sánchez‐Ferrer CF, Romacho T, Peiró C. The angiotensin-(1-7)/Mas receptor axis protects from endothelial cell senescence via klotho and Nrf2 activation. Aging Cell 2019; 18:e12913. [PMID: 30773786 PMCID: PMC6516147 DOI: 10.1111/acel.12913] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 12/03/2018] [Accepted: 01/06/2019] [Indexed: 12/25/2022] Open
Abstract
Endothelial cell senescence is a hallmark of vascular aging that predisposes to vascular disease. We aimed to explore the capacity of the renin–angiotensin system (RAS) heptapeptide angiotensin (Ang)‐(1‐7) to counteract human endothelial cell senescence and to identify intracellular pathways mediating its potential protective action. In human umbilical vein endothelial cell (HUVEC) cultures, Ang II promoted cell senescence, as revealed by the enhancement in senescence‐associated galactosidase (SA‐β‐gal+) positive staining, total and telomeric DNA damage, adhesion molecule expression, and human mononuclear adhesion to HUVEC monolayers. By activating the G protein‐coupled receptor Mas, Ang‐(1‐7) inhibited the pro‐senescence action of Ang II, but also of a non‐RAS stressor such as the cytokine IL‐1β. Moreover, Ang‐(1‐7) enhanced endothelial klotho levels, while klotho silencing resulted in the loss of the anti‐senescence action of the heptapeptide. Indeed, both Ang‐(1‐7) and recombinant klotho activated the cytoprotective Nrf2/heme oxygenase‐1 (HO‐1) pathway. The HO‐1 inhibitor tin protoporphyrin IX prevented the anti‐senescence action evoked by Ang‐(1‐7) or recombinant klotho. Overall, the present study identifies Ang‐(1‐7) as an anti‐senescence peptide displaying its protective action beyond the RAS by consecutively activating klotho and Nrf2/HO‐1. Ang‐(1‐7) mimetic drugs may thus prove useful to prevent endothelial cell senescence and its related vascular complications.
Collapse
Affiliation(s)
- Alejandra Romero
- Department of Pharmacology Faculty of Medicine Universidad Autónoma de Madrid Madrid Spain
| | | | - Laura A. Villalobos
- Department of Pharmacology Faculty of Medicine Universidad Autónoma de Madrid Madrid Spain
| | - Susana Vallejo
- Department of Pharmacology Faculty of Medicine Universidad Autónoma de Madrid Madrid Spain
- Instituto de Investigaciones Sanitarias IdiPAZ Madrid Spain
| | - Inés Valencia
- Department of Pharmacology Faculty of Medicine Universidad Autónoma de Madrid Madrid Spain
| | - Patrycja Michalska
- Department of Pharmacology Faculty of Medicine Universidad Autónoma de Madrid Madrid Spain
- Instituto Teófilo Hernando Universidad Autónoma de Madrid Madrid Spain
| | - Natalia Pajuelo‐Lozano
- Department of BiochemistryFaculty of MedicineUniversidad Autónoma de Madrid Madrid Spain
- Instituto de Investigaciones BiomédicasUAM-CSIC Madrid Spain
| | - Isabel Sánchez‐Pérez
- Department of BiochemistryFaculty of MedicineUniversidad Autónoma de Madrid Madrid Spain
- Instituto de Investigaciones BiomédicasUAM-CSIC Madrid Spain
- CIBER for Rare Diseases Valencia Spain
| | - Rafael León
- Instituto Teófilo Hernando Universidad Autónoma de Madrid Madrid Spain
- Servicio de Farmacología ClínicaInstituto de Investigación SanitariaHospital Universitario de la Princesa Madrid Spain
| | - José Luis Bartha
- Instituto de Investigaciones Sanitarias IdiPAZ Madrid Spain
- Department of Obstetrics and GynecologyFaculty of MedicineUniversidad Autónoma de Madrid Madrid Spain
| | - María Jesús Sanz
- Department of PharmacologyUniversidad de Valencia Valencia Spain
- Institute of Health Research INCLIVAUniversity Clinic Hospital of Valencia Valencia Spain
| | | | - Carlos F. Sánchez‐Ferrer
- Department of Pharmacology Faculty of Medicine Universidad Autónoma de Madrid Madrid Spain
- Instituto de Investigaciones Sanitarias IdiPAZ Madrid Spain
| | - Tania Romacho
- Department of Pharmacology Faculty of Medicine Universidad Autónoma de Madrid Madrid Spain
| | - Concepción Peiró
- Department of Pharmacology Faculty of Medicine Universidad Autónoma de Madrid Madrid Spain
- Instituto de Investigaciones Sanitarias IdiPAZ Madrid Spain
| |
Collapse
|
135
|
Mayerhofer A, Walenta L, Mayer C, Eubler K, Welter H. Human testicular peritubular cells, mast cells and testicular inflammation. Andrologia 2019; 50:e13055. [PMID: 30569646 DOI: 10.1111/and.13055] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/20/2018] [Accepted: 04/29/2018] [Indexed: 12/13/2022] Open
Abstract
In man, the wall of seminiferous tubules forms a testicular compartment, which contains several layers of smooth muscle-like, "myoid", peritubular cells and extracellular matrix. Its architecture and its cellular composition change in male infertility associated with impaired spermatogenesis. Increased deposits of extracellular matrix, changes in the smooth muscle-like phenotype of peritubular cells and accumulation of immune cells, especially mast cells, are among the striking alterations. Taken together, the changes indicate that inflammatory events take place in particular within this compartment. This short review summarises recent studies, which pinpoint possible mechanisms of the interplay between peritubular cells and mast cells, which may contribute to sterile inflammation and impairments of testicular function. These insights are based mainly on cellular studies, for which we used isolated human testicular peritubular cells (HTPCs), and on the examination of human testicular sections. Recent data on immunological properties of peritubular cells, unexpected roles of the extracellular matrix factor, biglycan, which is secreted by peritubular cells and functions of mast cell products (chymase, tryptase and ATP) are presented. We believe that the results may foster a better understanding of peritubular cells, their roles in the human testis and specifically their involvement in infertility.
Collapse
Affiliation(s)
- Artur Mayerhofer
- Anatomy III - Cell Biology, Biomedical Center Munich, LMU München, Planegg-Martinsried, Germany
| | - Lena Walenta
- Anatomy III - Cell Biology, Biomedical Center Munich, LMU München, Planegg-Martinsried, Germany
| | - Christine Mayer
- Anatomy III - Cell Biology, Biomedical Center Munich, LMU München, Planegg-Martinsried, Germany
| | - Katja Eubler
- Anatomy III - Cell Biology, Biomedical Center Munich, LMU München, Planegg-Martinsried, Germany
| | - Harald Welter
- Anatomy III - Cell Biology, Biomedical Center Munich, LMU München, Planegg-Martinsried, Germany
| |
Collapse
|
136
|
Abstract
BACKGROUND Henoch-Schonlein purpura (HSP) is a common hemorrhagic disease, which manifests the inflammation in the body's most microvasculars. Angiotensin II (Ang II) can induce the damage and apoptosis of vascular endothelial cells while angiotensin converting enzyme 2 (ACE2) can antagonist the action of Ang II. However, the effect of ACE2 on Ang II-induced endothelial damage remains unknown. OBJECTIVE To evaluate the effect of recombinant human angiotensin converting enzyme 2 (rhACE2) on the Ang II-induced damage of human umbilical vein endothelial cells (HUVECs) and the release of inflammatory mediator in vitro. METHODS Cultured HUVECs were randomly divided into 6 groups: the control group, rhACE2 group, Ang II group, and Ang II+ rhACE2 groups (3 subgroups). The cell vitality, cell cycle, apoptosis rate of the HUVECs and the levels of reactive oxygen species (ROS), interleukin 8 (IL-8), tumor necrosis factor-α (TNF-α), transforming growth factor-β1 (TGF-β1) and lactate dehydrogenase (LDH) were measured, respectively. RESULTS Compared with the control group, the cell viability and the rate of S phase cells in Ang II group significantly decreased (P < .05) while the apoptosis percentage and the levels of ROS, IL-8, TNF-α, TGF-β1, and LDH in Ang II group significantly increased (P < .05). There were no significant differences between the control group and rhACE2 group. Compared with the Ang II group, the cell viability and the rate of S phase cells in Ang II+rhACE2 groups were higher (P < .05) and the apoptosis percentage, the level of ROS, IL-8, TNF-α, TGF-β1, LDH in Ang II+rhACE2 groups were lower (P < .05). CONCLUSIONS Ang II can induce the apoptosis of HUVECs and the release of inflammatory mediator, while rhACE2 can inhibit the detrimental effects of Ang II. The results of this study suggest that rhACE2 has a protective effect on HSP, which is probably a new way for the prevention and treatment of HSP.
Collapse
|
137
|
Liao W, Fan H, Davidge ST, Wu J. Egg White-Derived Antihypertensive Peptide IRW (Ile-Arg-Trp) Reduces Blood Pressure in Spontaneously Hypertensive Rats via the ACE2/Ang (1-7)/Mas Receptor Axis. Mol Nutr Food Res 2019; 63:e1900063. [PMID: 30913349 PMCID: PMC6594022 DOI: 10.1002/mnfr.201900063] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/04/2019] [Indexed: 01/19/2023]
Abstract
Scope It is found in the previous study that egg‐white‐derived antihypertensive peptide Ile‐Arg‐Trp (IRW) upregulated angiotensin converting enzyme 2 (ACE2) in spontaneously hypertensive rats (SHRs). The objective of this study is to evaluate the contribution of ACE2 activation by IRW to blood‐pressure‐lowering activity in vivo. Methods and results Adult male SHRs (13–15 week old) are assigned into four groups: 1) untreated with saline infusion; 2) IRW administration (15 mg per kg body weight) with saline infusion; 3) Mas receptor (MasR) antagonist A779 (48 µg per kg body weight per h) infusion; 4) A779 infusion and IRW. Animals are implanted with telemetry transmitter first, and then an osmotic pump filled with saline or A779 is implanted. A779/saline is infused for 7 days, continued with an additional 7 days of treatments. Results indicate that blocking MasR abolished the blood‐pressure‐lowering effect of IRW. Akt/eNOS signaling in aorta is upregulated by IRW treatment but deactivated by A779 infusion. Circulating levels of interleukin 6 and monocyte chemoattractant protein 1, along with cyclooxygenase 2 in aorta are reduced by IRW but restored by A779 infusion. Conclusion IRW reduces blood pressure of SHR via the ACE2/Ang (1‐7)/MasR axis. Mechanisms pertaining to IRW as an ACE2 activator in vivo include enhanced endothelium‐dependent vasorelaxation and reduced vascular inflammation.
Collapse
Affiliation(s)
- Wang Liao
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada, T6G 2P5.,Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada, T6G 2R7
| | - Hongbing Fan
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada, T6G 2P5.,Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada, T6G 2R7
| | - Sandra T Davidge
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada, T6G 2R7.,Department of Obstetrics & Gynecology, University of Alberta, Edmonton, AB, Canada, T6G 2R7.,Department of Physiology, University of Alberta, Edmonton, AB, Canada, T6G 2R7.,Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada, T6G 2R7
| | - Jianping Wu
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada, T6G 2P5.,Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada, T6G 2R7
| |
Collapse
|
138
|
Circulating angiotensin peptides levels in Acute Respiratory Distress Syndrome correlate with clinical outcomes: A pilot study. PLoS One 2019; 14:e0213096. [PMID: 30845246 PMCID: PMC6405137 DOI: 10.1371/journal.pone.0213096] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 02/07/2019] [Indexed: 12/13/2022] Open
Abstract
Rationale We propose renin angiotensin system (RAS) peptides are critical in wound reparative processes such as in acute respiratory distress syndrome (ARDS). Their role in predicting clinical outcomes in ARDS has been unexplored; thus, we used a targeted metabolomics approach to investigate them as potential predictors of outcomes. Methods Thirty-nine ARDS patients were enrolled within 24 hours of ARDS diagnosis. Plasma RAS peptide levels were quantified at study entry and 24, 48 and 72 hours using a liquid chromatography-mass spectrometry based metabolomics assay. RAS peptide concentrations were compared between survivors and non-survivors, and were correlated with clinical and pulmonary measures. Measurements and main results Angiotensin I (Ang-I or A(1–10)) levels were significantly higher in non-survivors at study entry and 72 hours. ARDS survival was associated with lower A(1–10) concentration (OR 0.36, 95% CI 0.18–0.72, p = 0.004) but higher A(1–9) concentration (OR 2.24, 95% CI 1.15–4.39, p = 0.018), a biologically active metabolite of A(1–10) and an agonist of angiotensin II receptor type 2. Survivors had significantly higher median A(1–9)/A(1–10) and A(1–7)/A(1–10) ratios than the non-survivors (p = 0.001). Increased A(1–9)/A(1–10) ratio suggests that angiotensin converting enzyme II (ACE2) activity is higher in patients who survived their ARDS insult while an increase in A(1–7)/A(1–10) ratio suggests that ACE activity is also higher in survivors. Conclusion A(1–10) accumulation and reduced A(1–9) concentration in the non-survivor group suggest that ACE2 activities may be reduced in patients succumbing to ARDS. Plasma levels of both A(1–10) and A(1–9) and their ratio may serve as useful biomarkers for prognosis in ARDS patients.
Collapse
|
139
|
Badae NM, El Naggar AS, El Sayed SM. Is the cardioprotective effect of the ACE2 activator diminazene aceturate more potent than the ACE inhibitor enalapril on acute myocardial infarction in rats? Can J Physiol Pharmacol 2019; 97:638-646. [PMID: 30840489 DOI: 10.1139/cjpp-2019-0078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myocardial infarction is a major cause of cardiac dysfunction. All components of the cardiac renin-angiotensin system (RAS) are upregulated in myocardial infarction. Angiotensin-converting enzyme (ACE) and ACE2 are key enzymes involved in synthesis of components of RAS and provide a counter-regulatory mechanism within RAS. We compared the cardioprotective effect of the ACE2 activator diminazene aceturate (DIZE) versus the ACE inhibitor enalapril on post acute myocardial infarction (AMI) ventricular dysfunction in rats. Adult male rats received subcutaneous injections of either saline (control) or isoproterenol (85 mg/kg) to induce AMI. Rats with AMI confirmed biochemically and by ECG, were either left untreated (AMI) or administered DIZE (AMI + DIZE) or enalapril (AMI + enalapril) daily for 4 weeks. DIZE caused a significant activation of cardiac ACE2 compared with enalapril. DIZE caused a significantly greater enhancement of cardiac hemodynamics. DIZE also caused greater reductions in heart-type fatty acid binding protein (H-FABP), β-myosin heavy chain (β-MYH), and in heart mass to total body mass ratio. These results indicated that activation of cardiac ACE2 by DIZE enhanced the protective axis of RAS and improved myocardial function following AMI, whereas enalapril was not sufficient to restore all cardiac parameters back to normal.
Collapse
Affiliation(s)
- Noha Mohamed Badae
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt.,Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Asmaa Samy El Naggar
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt.,Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Samiha Mahmoud El Sayed
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt.,Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
140
|
Filha RDS, Pinheiro SVB, Macedo E Cordeiro T, Feracin V, Vieira ÉLM, Miranda AS, Simões E Silva AC. Evidence for a role of angiotensin converting enzyme 2 in proteinuria of idiopathic nephrotic syndrome. Biosci Rep 2019; 39:BSR20181361. [PMID: 30514826 PMCID: PMC6328887 DOI: 10.1042/bsr20181361] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/02/2018] [Accepted: 11/27/2018] [Indexed: 12/18/2022] Open
Abstract
Introduction: Renin angiotensin system (RAS) plays a role in idiopathic nephrotic syndrome (INS). Most studies investigated only the classical RAS axis. Therefore, the aims of the present study were to evaluate urinary levels of RAS molecules related to classical and to counter-regulatory axes in pediatric patients with INS, to compare the measurements with levels in healthy controls and to search for associations with inflammatory molecules, proteinuria and disease treatment. Subjects and methods: This cross-sectional study included 31 patients with INS and 19 healthy controls, matched for age and sex. Patients and controls were submitted to urine collection for measurement of RAS molecules [Ang II, Ang-(1-7), ACE and ACE2] by enzyme immunoassay and cytokines by Cytometric Bead Array. Findings in INS patients were compared according to proteinuria: absent (<150 mg/dl, n = 15) and present (≥150 mg/dl, n = 16). Results: In comparison to controls, INS patients had increased Ang II, Ang-(1-7) and ACE, levels while ACE2 was reduced. INS patients with proteinuria had lower levels of ACE2 than those without proteinuria. ACE2 levels were negatively correlated with 24-h-proteinuria. Urinary concentrations of MCP-1/CCL2 were significantly higher in INS patients, positively correlated with Ang II and negatively with Ang-(1-7). ACE2 concentrations were negatively correlated with IP-10/CXCL-10 levels, which, in turn, were positively correlated with 24-h-proteinuria. Conclusion: INS patients exhibited changes in RAS molecules and in chemokines. Proteinuria was associated with low levels of ACE2 and high levels of inflammatory molecules.
Collapse
Affiliation(s)
- Roberta da Silva Filha
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Universidade Federal de Minas Gerais (UFMG), Brazil
| | | | - Thiago Macedo E Cordeiro
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Victor Feracin
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Érica Leandro Marciano Vieira
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Aline Silva Miranda
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Universidade Federal de Minas Gerais (UFMG), Brazil
- Laboratory of Neurobiology, Department of Morphology, Institute of Biological Sciences, UFMG, Brazil
| | - Ana Cristina Simões E Silva
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Universidade Federal de Minas Gerais (UFMG), Brazil
- Unit of Pediatric Nephrology, Department of Pediatrics, Faculty of Medicine, UFMG, Brazil
| |
Collapse
|
141
|
Rachid MA, da Silva Camargos ER, Marzano LAS, da Silva Oliveira B, Ferreira RN, Martinelli PM, Teixeira AL, Miranda AS, Simões E Silva AC. Effect of blockade of nitric oxide in heart tissue levels of Renin Angiotensin System components in acute experimental Chagas disease. Life Sci 2019; 219:336-342. [PMID: 30684542 DOI: 10.1016/j.lfs.2019.01.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 11/19/2022]
Abstract
Chagas disease (CD) is an important cause of cardiomyopathy in South America. The pathophysiology of CD is still a matter of debate. Renin Angiotensin System (RAS) components are clearly involved in cardiovascular diseases. RAS molecules interact with nitric oxide (NO) pathway in blood vessel and heart tissue. Thus, the aim of this study is to investigate possible changes in RAS molecules during the infection with Y strain T. cruzi and in response to acute administration of an inhibitor of the enzyme NO synthase, l-NAME. Male Holtzman rats were inoculated intraperitoneally with Y strain T. cruzi and received l-NAME or tap water from one day before the infection until 13 or 17 days post infection (dpi). Angiotensin converting enzyme 1 (ACE1) levels were significantly higher at day 17 when compared to baseline in atrium, whereas, in ventricle, ACE2 levels were significantly higher in 13 dpi when compared to baseline. In response to l-NAME treatment, atrium tissue levels of ACE1 were significantly reduced in treated animals at day 17, while Angiotensin-(1-7) concentration in atrium significantly increased in this group at the same time-point. No changes were detected in RAS components in the ventricle. ACE2 levels in Soleus muscle were significantly reduced in treated animals at day 13. In conclusion, changes in RAS molecules were detected during acute phase of T. cruzi infection and the inhibition of NO synthesis clearly interfered with expression of ACE1 and Angiotensin-(1-7) in the atrium.
Collapse
Affiliation(s)
- Milene Alvarenga Rachid
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Bruna da Silva Oliveira
- Departamento de Morfologia, Instituto de Ciências Biológicas, UFMG, Belo Horizonte, Minas Gerais, Brazil
| | - Rodrigo Novaes Ferreira
- Departamento de Morfologia, Instituto de Ciências Biológicas, UFMG, Belo Horizonte, Minas Gerais, Brazil
| | | | - Antônio Lúcio Teixeira
- Neuropsychiatry Program, Department of Psychiatry & Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Aline Silva Miranda
- Departamento de Morfologia, Instituto de Ciências Biológicas, UFMG, Belo Horizonte, Minas Gerais, Brazil; Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, UFMG, Belo Horizonte, Minas Gerais, Brazil.
| | - Ana Cristina Simões E Silva
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, UFMG, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
142
|
Oliveira AC, Melo MB, Motta-Santos D, Peluso AA, Souza-Neto F, da Silva RF, Almeida JFQ, Canta G, Reis AM, Goncalves G, Cerri G, Coutinho D, Guedes de Jesus IC, Guatimosim S, Linhares ND, Alenina N, Bader M, Campagnole-Santos MJ, Santos RAS. Genetic deletion of the alamandine receptor MRGD leads to dilated cardiomyopathy in mice. Am J Physiol Heart Circ Physiol 2019; 316:H123-H133. [DOI: 10.1152/ajpheart.00075.2018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have recently described a new peptide of the renin-angiotensin system, alamandine, a derivative of angiotensin-(1–7). Mas-related G protein-coupled receptor member D (MrgD) was identified as its receptor. Although similar cardioprotective effects of alamandine to those of angiotensin-(1–7) have been described, the significance of this peptide in heart function is still elusive. We aimed to evaluate the functional role of the alamandine receptor MrgD in the heart using MrgD-deficient mice. MrgD was localized in cardiomyocytes by immunofluorescence using confocal microscopy. High-resolution echocardiography was performed in wild-type and MrgD-deficient mice (2 and 12 wk old) under isoflurane anesthesia. Standard B-mode images were obtained in the right and left parasternal long and short axes for morphological and functional assessment and evaluation of cardiac deformation. Additional heart function evaluation was performed using Langendorff isolated heart preparations and inotropic measurements of isolated cardiomyocytes. Immunofluorescence indicated that the MrgD receptor is expressed in cardiomyocytes, mainly in the membrane and perinuclear and nuclear regions. Echocardiography showed left ventricular remodeling and severe dysfunction in MrgD-deficient mice. Strikingly, MrgD-deficient mice presented a pronounced dilated cardiomyopathy with a marked decrease in systolic function. Echocardiographic changes were supported by the data obtained in isolated hearts and inotropic measurements in cardiomyocytes. Our data add new evidence for a major role for alamandine/MrgD in the heart. Furthermore, our results indicate that we have identified a new gene implicated in dilated cardiomyopathy, unveiling a new target for translational approaches aimed to treat heart diseases. NEW & NOTEWORTHY The renin-angiotensin system is a key target for cardiovascular therapy. We have recently identified a new vasodepressor/cardioprotective angiotensin, alamandine. Here, we unmasked a key role for its receptor, Mas-related G protein-coupled receptor member D (MrgD), in heart function. The severe dilated cardiomyopathy observed in MrgD-deficient mice warrants clinical and preclinical studies to unveil its potential use in cardiovascular therapy. Listen to this article’s corresponding podcast at https://ajpheart.podbean.com/e/mrgd-deficiency-leads-to-dilated-cardiomyopathy/ .
Collapse
Affiliation(s)
- Aline Cristina Oliveira
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- National Institute in Science and Technology NanoBioFar, Belo Horizonte, Minas Gerais, Brazil
| | - Marcos Barrouin Melo
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- National Institute in Science and Technology NanoBioFar, Belo Horizonte, Minas Gerais, Brazil
| | - Daisy Motta-Santos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- National Institute in Science and Technology NanoBioFar, Belo Horizonte, Minas Gerais, Brazil
| | - A. Augusto Peluso
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- National Institute in Science and Technology NanoBioFar, Belo Horizonte, Minas Gerais, Brazil
| | - Fernando Souza-Neto
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- National Institute in Science and Technology NanoBioFar, Belo Horizonte, Minas Gerais, Brazil
| | - Rafaela F. da Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- National Institute in Science and Technology NanoBioFar, Belo Horizonte, Minas Gerais, Brazil
| | - Jonathas F. Q. Almeida
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- National Institute in Science and Technology NanoBioFar, Belo Horizonte, Minas Gerais, Brazil
| | - Giovanni Canta
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- National Institute in Science and Technology NanoBioFar, Belo Horizonte, Minas Gerais, Brazil
| | - Adelina M. Reis
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- National Institute in Science and Technology NanoBioFar, Belo Horizonte, Minas Gerais, Brazil
| | - Gleisy Goncalves
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- National Institute in Science and Technology NanoBioFar, Belo Horizonte, Minas Gerais, Brazil
| | - Gabriela Cerri
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- National Institute in Science and Technology NanoBioFar, Belo Horizonte, Minas Gerais, Brazil
| | - Danielle Coutinho
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- National Institute in Science and Technology NanoBioFar, Belo Horizonte, Minas Gerais, Brazil
| | - Itamar Couto Guedes de Jesus
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- National Institute in Science and Technology NanoBioFar, Belo Horizonte, Minas Gerais, Brazil
| | - Silvia Guatimosim
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- National Institute in Science and Technology NanoBioFar, Belo Horizonte, Minas Gerais, Brazil
| | - Natalia D. Linhares
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Natalia Alenina
- Max-Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
- German Center for Cardiovascular Research, Berlin Partner Site, Berlin, Germany
| | - Michael Bader
- Max-Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
- German Center for Cardiovascular Research, Berlin Partner Site, Berlin, Germany
- Charite-University Medicine, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Maria José Campagnole-Santos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- National Institute in Science and Technology NanoBioFar, Belo Horizonte, Minas Gerais, Brazil
| | - Robson A. Souza Santos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- National Institute in Science and Technology NanoBioFar, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
143
|
Ougaard ME, Jensen HE, Thuen ID, Petersen EG, Kvist PH. Inhibitors of the renin-angiotensin system ameliorates clinical and pathological aspects of experimentally induced nephrotoxic serum nephritis. Ren Fail 2018; 40:640-648. [PMID: 30403908 PMCID: PMC6225365 DOI: 10.1080/0886022x.2018.1533867] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Introduction: Chronic kidney disease (CKD) is a global health concern, but the current treatments only slow down the progression. Thus an improved understanding of the pathogenesis and novel treatments of CKD are needed. The nephrotoxic nephritis (NTN) model has the potential to study the pathogenesis of CKD as it resembles human CKD. The classical treatments with angiotensin II receptor blocker (ARB) or the angiotensin-converting enzyme inhibitor (ACE I) have shown a clinical effect in CKD. Methods: We characterized the disease development in the NTN model over 11 weeks by investigating functional and histopathological changes. We tested doses of 15 and 30 mg/kg/day enalapril and losartan in the NTN model in order to investigate the effect of inhibiting the renin-angiotensin-system (RAS). Results: The NTN model displayed albuminuria peaking on days 6–7, mesangial expansion (ME), renal fibrosis, inflammation and iron accumulation peaking on day 42. However, albuminuria, ME, renal fibrosis and inflammation were still significantly present on day 77, suggesting that the NTN model is useful for studying both the acute and chronic disease phases. Enalapril and losartan significantly enhanced the glomerular filtration rate (GFR) and decreased albuminuria, ME, renal fibrosis and inflammation of NTN-induced kidney disease in mice. Conclusions: This is the first study showing a comprehensive pathological description of the chronic features of the murine NTN model and that inhibiting the RAS pathway show a significant effect on functional and morphological parameters.
Collapse
Affiliation(s)
- M E Ougaard
- a Haemophilia PK & ADME , Novo Nordisk , Frederiksberg , Denmark.,b Department of Veterinary Disease Biology , University of Copenhagen , Frederiksberg , Denmark
| | - H E Jensen
- b Department of Veterinary Disease Biology , University of Copenhagen , Frederiksberg , Denmark
| | - I D Thuen
- b Department of Veterinary Disease Biology , University of Copenhagen , Frederiksberg , Denmark
| | - E G Petersen
- b Department of Veterinary Disease Biology , University of Copenhagen , Frederiksberg , Denmark
| | - P H Kvist
- a Haemophilia PK & ADME , Novo Nordisk , Frederiksberg , Denmark
| |
Collapse
|
144
|
You Y, Huang Y, Wang D, Li Y, Wang G, Jin S, Zhu X, Wu B, Du X, Li X. Angiotensin (1-7) inhibits arecoline-induced migration and collagen synthesis in human oral myofibroblasts via inhibiting NLRP3 inflammasome activation. J Cell Physiol 2018; 234:4668-4680. [PMID: 30246378 DOI: 10.1002/jcp.27267] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 07/24/2018] [Indexed: 12/15/2022]
Abstract
Arecoline induces oral submucous fibrosis (OSF) via promoting the reactive oxygen species (ROS). Angiotensin (1-7) (Ang-(1-7)) protects against fibrosis by counteracting angiotensin II (Ang-II) via the Mas receptor. However, the effects of Ang-(1-7) on OSF remain unknown. NOD-like receptors (NLRs) family pyrin domain containing 3 (NLRP3) inflammasome is identified as the novel mechanism of fibrosis. Whereas the effects of arecoline on NLRP3 inflammasome remain unclear. We aimed to explore the effect of Ang-(1-7) on NLRP3 inflammasome in human oral myofibroblasts. In vivo, activation of NLRP3 inflammasomes with an increase of Ang-II type 1 receptor (AT1R) protein level and ROS production in human oral fibrosis tissues. Ang-(1-7) improved arecoline-induced rats OSF, reduced protein levels of NADPH oxidase 4 (NOX4) and the NLRP3 inflammasome. In vitro, arecoline increased ROS along with upregulation of the angiotensin-converting enzyme (ACE)/Ang-II/AT1R axis and NLRP3 inflammasome/interleukin-1β axis in human oral myofibroblasts, which were reduced by NOX4 inhibitor VAS2870, ROS scavenger N-acetylcysteine, and NOX4 small interfering RNA (siRNA). Furthermore, arecoline induced collagen synthesis or migration via the Smad or RhoA-ROCK pathway respectively, which could be inhibited by NLRP3 siRNA or caspase-1 blocker VX-765. Ang-(1-7) shifted the balance of RAS toward the ACE2/Ang-(1-7)/Mas axis, inhibited arecoline-induced ROS and NLRP3 inflammasome activation, leading to attenuation of migration or collagen synthesis. In summary, Ang-(1-7) attenuates arecoline-induced migration and collagen synthesis via inhibiting NLRP3 inflammasome in human oral myofibroblasts.
Collapse
Affiliation(s)
- Yuehua You
- Department of Emergency, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Stomatology, The People's Hospital of Longhua, Shenzhen, China
| | - Yun Huang
- Department of Emergency, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Cadre's Ward, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Dan Wang
- Department of Emergency, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yang Li
- Department of Emergency, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guozhen Wang
- Department of Emergency, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Siyi Jin
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xintao Zhu
- Department of Emergency and Critical Care Medicine, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Bin Wu
- Department of Stomatology, The People's Hospital of Longhua, Shenzhen, China
| | - Xinya Du
- Department of Stomatology, The People's Hospital of Longhua, Shenzhen, China
| | - Xu Li
- Department of Emergency, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
145
|
Oakes JM, Fuchs RM, Gardner JD, Lazartigues E, Yue X. Nicotine and the renin-angiotensin system. Am J Physiol Regul Integr Comp Physiol 2018; 315:R895-R906. [PMID: 30088946 DOI: 10.1152/ajpregu.00099.2018] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cigarette smoking is the single most important risk factor for the development of cardiovascular and pulmonary diseases (CVPD). Although cigarette smoking has been in constant decline since the 1950s, the introduction of e-cigarettes or electronic nicotine delivery systems 10 yr ago has attracted former smokers as well as a new generation of consumers. Nicotine is a highly addictive substance, and it is currently unclear whether e-cigarettes are "safer" than regular cigarettes or whether they have the potential to reverse the health benefits, notably on the cardiopulmonary system, acquired with the decline of tobacco smoking. Of great concern, nicotine inhalation devices are becoming popular among young adults and youths, emphasizing the need for awareness and further study of the potential cardiopulmonary risks of nicotine and associated products. This review focuses on the interaction between nicotine and the renin-angiotensin system (RAS), one of the most important regulatory systems on autonomic, cardiovascular, and pulmonary functions in both health and disease. The literature presented in this review strongly suggests that nicotine alters the homeostasis of the RAS by upregulating the detrimental angiotensin-converting enzyme (ACE)/angiotensin (ANG)-II/ANG II type 1 receptor axis and downregulating the compensatory ACE2/ANG-(1-7)/Mas receptor axis, contributing to the development of CVPD.
Collapse
Affiliation(s)
- Joshua M Oakes
- Department of Physiology, Louisiana State University Health Sciences Center , New Orleans, Louisiana
| | - Robert M Fuchs
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center , New Orleans, Louisiana
| | - Jason D Gardner
- Department of Physiology, Louisiana State University Health Sciences Center , New Orleans, Louisiana
| | - Eric Lazartigues
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center , New Orleans, Louisiana
| | - Xinping Yue
- Department of Physiology, Louisiana State University Health Sciences Center , New Orleans, Louisiana
| |
Collapse
|
146
|
Balance and circumstance: The renin angiotensin system in wound healing and fibrosis. Cell Signal 2018; 51:34-46. [PMID: 30071289 DOI: 10.1016/j.cellsig.2018.07.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/27/2018] [Accepted: 07/29/2018] [Indexed: 12/17/2022]
Abstract
The tissue renin angiotensin system (tRAS) is a locally-acting master-modulator of tissue homeostasis and regeneration. Through these abilities, it is emerging as an attractive target for therapies aiming to restore tissue homeostasis in conditions associated with disturbed wound healing. The tRAS can be divided into two axes - one being pro-inflammatory and pro-fibrotic and one being anti-inflammatory and anti-fibrotic. However, the division of the axes is fuzzy and imperfect as the axes are codependent and the outcome of tRAS activation is determined by the context. Although the tRAS is a local system it shares its key enzymes, ligands and receptors with the systemic RAS and is consequently also targeted by repurposing of drugs developed against the systemic RAS to manage hypertension. With a focus on the skin we will here discuss the tRAS, its involvement in physiological and pathological wound healing, and the therapeutic aptitude of its targeting to treat chronic wounds and fibrosis.
Collapse
|
147
|
O’Connor AT, Clark MA. Astrocytes and the Renin Angiotensin System: Relevance in Disease Pathogenesis. Neurochem Res 2018; 43:1297-1307. [DOI: 10.1007/s11064-018-2557-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/21/2018] [Accepted: 05/23/2018] [Indexed: 12/29/2022]
|
148
|
Gayat E, Hollinger A, Cariou A, Deye N, Vieillard-Baron A, Jaber S, Chousterman BG, Lu Q, Laterre PF, Monnet X, Darmon M, Leone M, Guidet B, Sonneville R, Lefrant JY, Fournier MC, Resche-Rigon M, Mebazaa A, Legrand M. Impact of angiotensin-converting enzyme inhibitors or receptor blockers on post-ICU discharge outcome in patients with acute kidney injury. Intensive Care Med 2018; 44:598-605. [DOI: 10.1007/s00134-018-5160-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 03/30/2018] [Indexed: 12/25/2022]
|
149
|
Progression of chronic kidney disease in children - role of glomerular hemodynamics and interstitial fibrosis. Curr Opin Pediatr 2018; 30:220-227. [PMID: 29389683 DOI: 10.1097/mop.0000000000000594] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
PURPOSE OF REVIEW The aim of this review is to provide an overview of the current advances in the understanding of the mechanisms involved in the progression of chronic kidney disease (CKD) with emphasis on the role of glomerular hemodynamics and tubulointerstitial fibrosis. RECENT FINDINGS Despite the varied causes of CKD, the progressive destruction of renal tissue processes through a complex common pathway. Current studies have highlighted both the role of the abnormal intrarenal hemodynamics and of the activation of fibrogenic biochemical pathway in the replacement of normal renal structure by extracellular matrix and ultimately by fibrosis. Molecular markers with the potential to contribute to the detection of tubular cell damage and tubulointerstitial fibrosis in the kidney has been identified. SUMMARY There is a clear need to understand and elucidate the mechanisms of progression of CKD to develop efficient therapeutic strategies to halt decline of renal function in children.
Collapse
|
150
|
Wang NP, Erskine J, Zhang WW, Zheng RH, Zhang LH, Duron G, Gendreau J, Zhao ZQ. Recruitment of macrophages from the spleen contributes to myocardial fibrosis and hypertension induced by angiotensin II. J Renin Angiotensin Aldosterone Syst 2018; 18:1470320317706653. [PMID: 28490219 PMCID: PMC5843916 DOI: 10.1177/1470320317706653] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION The purpose of this study was to determine whether macrophages migrated from the spleen are associated with angiotensin II-induced cardiac fibrosis and hypertension. METHODS Sprague-Dawley rats were subjected to angiotensin II infusion in vehicle (500 ng/kg/min) for up to four weeks. In splenectomy, the spleen was removed before angiotensin II infusion. In the angiotensin II AT1 receptor blockade, telmisartan was administered by gastric gavage (10 mg/kg/day) during angiotensin II infusion. The heart and aorta were isolated for Western blot analysis and immunohistochemistry. RESULTS Angiotensin II infusion caused a significant reduction in the number of monocytes in the spleen through the AT1 receptor-activated monocyte chemoattractant protein-1. Comparison of angiotensin II infusion, splenectomy and telmisartan comparatively reduced the recruitment of macrophages into the heart. Associated with this change, transforming growth factor β1 expression and myofibroblast proliferation were inhibited, and Smad2/3 and collagen I/III were downregulated. Furthermore, interstitial/perivascular fibrosis was attenuated. These modifications occurred in coincidence with reduced blood pressure. At week 4, invasion of macrophages and myofibroblasts in the thoracic aorta was attenuated and expression of endothelial nitric oxide synthase was upregulated, along with a reduction in aortic fibrosis. CONCLUSIONS These results suggest that macrophages when recruited into the heart and aorta from the spleen potentially contribute to angiotensin II-induced cardiac fibrosis and hypertension.
Collapse
Affiliation(s)
- Ning-Ping Wang
- 1 Cardiovascular Research Laboratory, Mercer University School of Medicine, USA
| | - James Erskine
- 2 Department of Internal Medicine, Navicent Health, USA
| | - Wei-Wei Zhang
- 3 Department of Physiology, Shanxi Medical University, China
| | - Rong-Hua Zheng
- 3 Department of Physiology, Shanxi Medical University, China
| | - Li-Hui Zhang
- 1 Cardiovascular Research Laboratory, Mercer University School of Medicine, USA
| | - Garret Duron
- 1 Cardiovascular Research Laboratory, Mercer University School of Medicine, USA
| | - Julian Gendreau
- 1 Cardiovascular Research Laboratory, Mercer University School of Medicine, USA
| | - Zhi-Qing Zhao
- 1 Cardiovascular Research Laboratory, Mercer University School of Medicine, USA.,3 Department of Physiology, Shanxi Medical University, China
| |
Collapse
|