101
|
Sun H, Sun X, Wang H, Ma X. Advances in salt tolerance molecular mechanism in tobacco plants. Hereditas 2020; 157:5. [PMID: 32093781 PMCID: PMC7041081 DOI: 10.1186/s41065-020-00118-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/18/2020] [Indexed: 02/01/2023] Open
Abstract
Tobacco, an economic crop and important model plant, has received more progress in salt tolerance with the aid of transgenic technique. Salt stress has become a key research field in abiotic stress. The study of tobacco promotes the understanding about the important adjustment for survival in high salinity environments, including cellular ion transport, osmotic regulation, antioxidation, signal transduction and expression regulation, and protection of cells from stress damage. Genes, which response to salt, have been studied using targeted transgenic technologies in tobacco plants to investigate the molecular mechanisms. The transgenic tobacco plants exhibited higher seed germination and survival rates, better root and shoot growth under salt stress treatments. Transgenic approach could be the promising option for enhancing tobacco production under saline condition. This review highlighted the salt tolerance molecular mechanisms of tobacco.
Collapse
Affiliation(s)
- Haiji Sun
- School of Life Science, Shandong Normal University, Jinan, 250014 China
| | - Xiaowen Sun
- School of Life Science, Shandong Normal University, Jinan, 250014 China
| | - Hui Wang
- School of Life Science, Shandong Normal University, Jinan, 250014 China
| | - Xiaoli Ma
- Central laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, 250013 China
| |
Collapse
|
102
|
Understanding Mechanisms of Salinity Tolerance in Barley by Proteomic and Biochemical Analysis of Near-Isogenic Lines. Int J Mol Sci 2020; 21:ijms21041516. [PMID: 32098451 PMCID: PMC7073193 DOI: 10.3390/ijms21041516] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 12/13/2022] Open
Abstract
Salt stress is one of the major environmental factors impairing crop production. In our previous study, we identified a major QTL for salinity tolerance on chromosome 2H on barley (Hordeum vulgare L.). For further investigation of the mechanisms responsible for this QTL, two pairs of near-isogenic lines (NILs) differing in this QTL were developed. Sensitive NILs (N33 and N53) showed more severe damage after exposure to 300 mM NaCl than tolerant ones (T46 and T66). Both tolerant NILs maintained significantly lower Na+ content in leaves and much higher K+ content in the roots than sensitive lines under salt conditions, thus indicating the presence of a more optimal Na+/K+ ratio in plant tissues. Salinity stress caused significant accumulation of H2O2, MDA, and proline in salinity-sensitive NILs, and a greater enhancement in antioxidant enzymatic activities at one specific time or tissues in tolerant lines. One pair of NILs (N33 and T46) were used for proteomic studies using two-dimensional gel electrophoresis. A total of 53 and 51 differentially expressed proteins were identified through tandem mass spectrometry analysis in the leaves and roots, respectively. Proteins which are associated with photosynthesis, reactive oxygen species (ROS) scavenging, and ATP synthase were found to be specifically upregulated in the tolerant NIL. Proteins identified in this study can serve as a useful resource with which to explore novel candidate genes for salinity tolerance in barley.
Collapse
|
103
|
Mwando E, Angessa TT, Han Y, Li C. Salinity tolerance in barley during germination- homologs and potential genes. J Zhejiang Univ Sci B 2020; 21:93-121. [PMID: 32115909 PMCID: PMC7076347 DOI: 10.1631/jzus.b1900400] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 09/25/2019] [Indexed: 12/13/2022]
Abstract
Salinity affects more than 6% of the world's total land area, causing massive losses in crop yield. Salinity inhibits plant growth and development through osmotic and ionic stresses; however, some plants exhibit adaptations through osmotic regulation, exclusion, and translocation of accumulated Na+ or Cl-. Currently, there are no practical, economically viable methods for managing salinity, so the best practice is to grow crops with improved tolerance. Germination is the stage in a plant's life cycle most adversely affected by salinity. Barley, the fourth most important cereal crop in the world, has outstanding salinity tolerance, relative to other cereal crops. Here, we review the genetics of salinity tolerance in barley during germination by summarizing reported quantitative trait loci (QTLs) and functional genes. The homologs of candidate genes for salinity tolerance in Arabidopsis, soybean, maize, wheat, and rice have been blasted and mapped on the barley reference genome. The genetic diversity of three reported functional gene families for salt tolerance during barley germination, namely dehydration-responsive element-binding (DREB) protein, somatic embryogenesis receptor-like kinase and aquaporin genes, is discussed. While all three gene families show great diversity in most plant species, the DREB gene family is more diverse in barley than in wheat and rice. Further to this review, a convenient method for screening for salinity tolerance at germination is needed, and the mechanisms of action of the genes involved in salt tolerance need to be identified, validated, and transferred to commercial cultivars for field production in saline soil.
Collapse
Affiliation(s)
- Edward Mwando
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA 6150, Australia
| | - Tefera Tolera Angessa
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA 6150, Australia
- Department of Primary Industries and Regional Development, 3 Baron-Hay Court, South Perth, WA 6151, Australia
| | - Yong Han
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA 6150, Australia
| | - Chengdao Li
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA 6150, Australia
- Department of Primary Industries and Regional Development, 3 Baron-Hay Court, South Perth, WA 6151, Australia
| |
Collapse
|
104
|
Wei T, Wang Y, Liu JH. Comparative transcriptome analysis reveals synergistic and disparate defense pathways in the leaves and roots of trifoliate orange ( Poncirus trifoliata) autotetraploids with enhanced salt tolerance. HORTICULTURE RESEARCH 2020; 7:88. [PMID: 32528700 PMCID: PMC7261775 DOI: 10.1038/s41438-020-0311-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 05/06/2023]
Abstract
Polyploid plants often exhibit enhanced stress tolerance relative to their diploid counterparts, but the physiological and molecular mechanisms of this enhanced stress tolerance remain largely unknown. In this study, we showed that autotetraploid trifoliate orange (Poncirus trifoliata (L.) Raf.) exhibited enhanced salt tolerance in comparison with diploid progenitors. Global transcriptome profiling of diploid and tetraploid plants with or without salt stress by RNA-seq revealed that the autotetraploids displayed specific enrichment of differentially expressed genes. Interestingly, the leaves and roots of tetraploids exhibited different expression patterns of a variety of upregulated genes. Genes related to plant hormone signal transduction were enriched in tetraploid leaves, whereas those associated with starch and sucrose metabolism and proline biosynthesis were enriched in roots. In addition, genes encoding different antioxidant enzymes were upregulated in the leaves (POD) and roots (APX) of tetraploids under salt stress. Consistently, the tetraploids accumulated higher levels of soluble sugars and proline but less ROS under salt stress compared to the diploids. Moreover, several genes encoding transcription factors were induced specifically or to higher levels in the tetraploids under salt stress. Collectively, this study demonstrates that the activation of various multifaceted defense systems in leaves and roots contributes to the enhanced salt tolerance of autotetraploids.
Collapse
Affiliation(s)
- Tonglu Wei
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yue Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
105
|
El Moukhtari A, Cabassa-Hourton C, Farissi M, Savouré A. How Does Proline Treatment Promote Salt Stress Tolerance During Crop Plant Development? FRONTIERS IN PLANT SCIENCE 2020; 11:1127. [PMID: 32793273 PMCID: PMC7390974 DOI: 10.3389/fpls.2020.01127] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/08/2020] [Indexed: 05/20/2023]
Abstract
Soil salinity is one of the major abiotic stresses restricting the use of land for agriculture because it limits the growth and development of most crop plants. Improving productivity under these physiologically stressful conditions is a major scientific challenge because salinity has different effects at different developmental stages in different crops. When supplied exogenously, proline has improved salt stress tolerance in various plant species. Under high-salt conditions, proline application enhances plant growth with increases in seed germination, biomass, photosynthesis, gas exchange, and grain yield. These positive effects are mainly driven by better nutrient acquisition, water uptake, and biological nitrogen fixation. Exogenous proline also alleviates salt stress by improving antioxidant activities and reducing Na+ and Cl- uptake and translocation while enhancing K+ assimilation by plants. However, which of these mechanisms operate at any one time varies according to the proline concentration, how it is applied, the plant species, and the specific stress conditions as well as the developmental stage. To position salt stress tolerance studies in the context of a crop plant growing in the field, here we discuss the beneficial effects of exogenous proline on plants exposed to salt stress through well-known and more recently described examples in more than twenty crop species in order to appreciate both the diversity and commonality of the responses. Proposed mechanisms by which exogenous proline mitigates the detrimental effects of salt stress during crop plant growth are thus highlighted and critically assessed.
Collapse
Affiliation(s)
- Ahmed El Moukhtari
- Sorbonne Université, UPEC, CNRS, IRD, INRA, Institut d’Ecologie et Sciences de l’Environnement de Paris, IEES, Paris, France
- Laboratory of Biotechnology & Sustainable Development of Natural Resources, Polydisciplinary Faculty, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Cécile Cabassa-Hourton
- Sorbonne Université, UPEC, CNRS, IRD, INRA, Institut d’Ecologie et Sciences de l’Environnement de Paris, IEES, Paris, France
| | - Mohamed Farissi
- Laboratory of Biotechnology & Sustainable Development of Natural Resources, Polydisciplinary Faculty, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Arnould Savouré
- Sorbonne Université, UPEC, CNRS, IRD, INRA, Institut d’Ecologie et Sciences de l’Environnement de Paris, IEES, Paris, France
- *Correspondence: Arnould Savouré,
| |
Collapse
|
106
|
Geng J, Wei T, Wang Y, Huang X, Liu JH. Overexpression of PtrbHLH, a basic helix-loop-helix transcription factor from Poncirus trifoliata, confers enhanced cold tolerance in pummelo (Citrus grandis) by modulation of H2O2 level via regulating a CAT gene. TREE PHYSIOLOGY 2019; 39:2045-2054. [PMID: 31330032 DOI: 10.1093/treephys/tpz081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/31/2019] [Accepted: 07/02/2019] [Indexed: 05/17/2023]
Abstract
The basic helix-loop-helix (bHLH) family of transcription factors (TFs) plays a crucial role in regulating plant response to abiotic stress by targeting a large spectrum of stress-responsive genes. However, the physiological mechanisms underlying the TF-mediated stress response are still poorly understood for most of the bHLH genes. In this study, transgenic pummelo (Citrus grandis) plants overexpressing PtrbHLH, a TF previously identified from Poncirus trifoliata, were generated via Agrobacterium-mediated transformation. In comparison with the wild-type plants, the transgenic lines exhibited significantly lower electrolyte leakage and malondialdehyde content after cold treatment, thereby resulting in a more tolerant phenotype. Meanwhile, the transgenic lines accumulated dramatically lower reactive oxygen species (ROS) levels, consistent with elevated activity and expression levels of antioxidant enzymes (genes), including catalase (CAT), peroxidase and superoxide dismutase. In addition, PtrbHLH was shown to specifically bind to and activate the promoter of PtrCAT gene. Taken together, these results demonstrated that overexpression of PtrbHLH leads to enhanced cold tolerance in transgenic pummelo, which may be due, at least partly, to modulation of ROS levels by regulating the CAT gene.
Collapse
Affiliation(s)
- Jingjing Geng
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Mountainous Areas Research Institute, Hebei Agricultural University, Baoding 071001, China
| | - Tonglu Wei
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yue Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaosan Huang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
107
|
Efimova MV, Mukhamatdinova EA, Kovtun IS, Kabil FF, Medvedeva YV, Kuznetsov VV. Jasmonic Acid Enhances the Potato Plant Resistance to the Salt Stress in Vitro. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2019; 488:149-152. [PMID: 31732901 DOI: 10.1134/s0012496619050077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 11/22/2022]
Abstract
The protective effect of jasmonic acid (JA) was evaluated under the stress conditions (100 mM NaCl). The potato plants Solanum tuberosum L, mid-season variety Lugovskoy, were used in the experiments. The plant-regenerants were grafted and grown in test tubes on the modified Murashige and Skoog agar medium in the absence (control) or presence of JA at concentrations of 0.001, 0.1, and 10 μM under the optimal conditions or with addition of NaCl. After 28 days of cultivation, the growth (stem and root lengths, tier and leaf numbers, and plant mass) and physiological (proline and photosynthetic pigment contents and teh osmotic potential of cell exudate) characteristics of the plants were assessed. Jasmonic acid (0.1 and 10 μM) has been demonstrated to display a pronounced protective effect on potato plants under the salt stress condition. JA abolished partially the negative salt effect on the main photosynthetic pigments and maintained the cell osmotic status during salinization.
Collapse
Affiliation(s)
- M V Efimova
- National Research Tomsk State University, 634050, Tomsk, Russia.
| | | | - I S Kovtun
- National Research Tomsk State University, 634050, Tomsk, Russia
| | - F F Kabil
- Cairo University, Faculty of Agriculture, 12613, Giza, Egypt
| | - Yu V Medvedeva
- National Research Tomsk State University, 634050, Tomsk, Russia
| | - V V Kuznetsov
- National Research Tomsk State University, 634050, Tomsk, Russia.,Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276, Moscow, Russia
| |
Collapse
|
108
|
Lin JH, Xu ZJ, Peng JS, Zhao J, Zhang GB, Xie J, Yi ZX, Zhang JH, Gong JM, Ye NH, Meng S. OsProT1 and OsProT3 Function to Mediate Proline- and γ-aminobutyric acid-specific Transport in Yeast and are Differentially Expressed in Rice (Oryza sativa L.). RICE (NEW YORK, N.Y.) 2019; 12:79. [PMID: 31707526 PMCID: PMC6842372 DOI: 10.1186/s12284-019-0341-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 10/21/2019] [Indexed: 05/31/2023]
Abstract
BACKGROUND Proline (Pro) and γ-aminobutyric acid (GABA) play important roles in plant development and stress tolerance. However, the molecular components responsible for the transport of these molecules in rice remain largely unknown. RESULTS Here we identified OsProT1 and OsProT3 as functional transporters for Pro and GABA. Transient expression of eGFP-OsProTs in plant protoplasts revealed that both OsProT1 and OsProT3 are localized to the plasma membrane. Ectopic expression in a yeast mutant demonstrated that both OsProT1 and OsProT3 specifically mediate transport of Pro and GABA with affinity for Pro in the low affinity range. qRT-PCR analyses suggested that OsProT1 was preferentially expressed in leaf sheathes during vegetative growth, while OsProT3 exhibited relatively high expression levels in several tissues, including nodes, panicles and roots. Interestingly, both OsProT1 and OsProT3 were induced by cadmium stress in rice shoots. CONCLUSIONS Our results suggested that plasma membrane-localized OsProT1 and OsProT3 efficiently transport Pro and GABA when ectopically expressed in yeast and appear to be involved in various physiological processes, including adaption to cadmium stress in rice plants.
Collapse
Affiliation(s)
- Jin-Hong Lin
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Agronomy, Hunan Agricultural University, Changsha, 410128 China
| | - Zhi-Jun Xu
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Agronomy, Hunan Agricultural University, Changsha, 410128 China
| | - Jia-Shi Peng
- Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-Polluted Soils, College of Life Science, Hunan University of Science and Technology, Xiangtan, 411201 China
| | - Jing Zhao
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Agronomy, Hunan Agricultural University, Changsha, 410128 China
| | - Guo-Bin Zhang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Jun Xie
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Agronomy, Hunan Agricultural University, Changsha, 410128 China
| | - Zhen-Xie Yi
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Agronomy, Hunan Agricultural University, Changsha, 410128 China
| | - Jian-Hua Zhang
- Department of Biology, Hong Kong Baptist University, Kowloon, 999077 Hong Kong
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, 999077 Hong Kong
| | - Ji-Ming Gong
- National Key Laboratory of Plant Molecular Genetics and CAS center for excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Neng-Hui Ye
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Agronomy, Hunan Agricultural University, Changsha, 410128 China
| | - Shuan Meng
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Agronomy, Hunan Agricultural University, Changsha, 410128 China
| |
Collapse
|
109
|
Zhang L, Li T, Wang Y, Zhang Y, Dong YS. FvC5SD overexpression enhances drought tolerance in soybean by reactive oxygen species scavenging and modulating stress-responsive gene expression. PLANT CELL REPORTS 2019; 38:1039-1051. [PMID: 31144112 DOI: 10.1007/s00299-019-02424-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 05/02/2019] [Indexed: 05/27/2023]
Abstract
KEY MESSAGE Overexpression of FvC5SD improves drought tolerance in soybean. Drought stress is one of the most important abiotic stress factors that influence soybean crop quality and yield. Therefore, the creation of drought-tolerant soybean germplasm resources through genetic engineering technology is effective in alleviating drought stress. FvC5SD is a type of C-5 sterol desaturase gene that is obtained from the edible fungus Flammulina velutipes. This gene has good tolerance to the effects of stresses, including drought and low temperature, in yeast cells and tomato. In this study, we introduced the FvC5SD gene into the soybean variety Shennong9 through the Agrobacterium-mediated transformation of soybean to identify drought-tolerant transgenic soybean varieties. PCR, RT-PCR, and Southern blot analysis results showed that T-DNA was inserted into the soybean genome and stably inherited by the progeny. The ectopic expression of FvC5SD under the control of a CaMV 35S promoter in transgenic soybean plants enhanced the plant's tolerance to dehydration and drought. Under drought conditions, the transgenic plants accumulated lower levels of reactive oxygen species and exhibited higher activities and expression levels of enzymes and cell than wild-type soybean. iTRAQ analysis of the comparative proteomics showed that some exogenous genes coding either functional or regulatory proteins were induced in the transgenic lines under drought stress. FvC5SD overexpression can serve as a direct and efficient target in improving drought tolerance in soybean and may be an important biotechnological strategy for trait improvement in soybean and other crops.
Collapse
Affiliation(s)
- Ling Zhang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, Jilin, People's Republic of China
| | - Tong Li
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, Jilin, People's Republic of China
- School of Life Sciences, Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Yang Wang
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling, 136100, Jilin, People's Republic of China
| | - Yuanyu Zhang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, Jilin, People's Republic of China
| | - Ying-Shan Dong
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, Jilin, People's Republic of China.
| |
Collapse
|
110
|
Kovtun IS, Efimova MV, Malofii MK, Kuznetsov VV. Tolerance of Potato Plants to Chloride Salinity Is Regulated by Selective Light. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2019; 484:19-22. [PMID: 31016499 DOI: 10.1134/s0012496619010058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Indexed: 06/09/2023]
Abstract
Potato plant tolerance to chloride salinity rose after short-term exposure to blue light, which has been first shown in this study. The protective effect of blue light was based on its ability to stimulate the accumulation of low-molecular weight organic compounds with antioxidant activity.
Collapse
Affiliation(s)
- I S Kovtun
- Tomsk State University, 634050, Tomsk, Russia
| | - M V Efimova
- Tomsk State University, 634050, Tomsk, Russia.
| | - M K Malofii
- Tomsk State University, 634050, Tomsk, Russia
| | - V V Kuznetsov
- Tomsk State University, 634050, Tomsk, Russia
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276, Moscow, Russia
| |
Collapse
|
111
|
Rahman MM, Mostofa MG, Rahman MA, Miah MG, Saha SR, Karim MA, Keya SS, Akter M, Islam M, Tran LSP. Insight into salt tolerance mechanisms of the halophyte Achras sapota: an important fruit tree for agriculture in coastal areas. PROTOPLASMA 2019; 256:181-191. [PMID: 30062531 DOI: 10.1007/s00709-018-1289-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 07/17/2018] [Indexed: 06/08/2023]
Abstract
Sapota (Achras sapota), a fruit tree with nutritional and medicinal properties, is known to thrive in salt-affected areas. However, the underlying mechanisms that allow sapota to adapt to saline environment are yet to be explored. Here, we examined various morphological, physiological, and biochemical features of sapota under a gradient of seawater (0, 4, 8, and 12 dS m-1) to study its adaptive responses against salinity. Our results showed that seawater-induced salinity negatively impacted on growth-related attributes, such as plant height, root length, leaf area, and dry biomass in a dose-dependent manner. This growth reduction was positively correlated with reductions in relative water content, stomatal conductance, xylem exudation rate, and chlorophyll, carbohydrate, and protein contents. However, the salt tolerance index did not decline in proportional to the increasing doses of seawater, indicating a salt tolerance capacity of sapota. Under salt stress, ion analysis revealed that Na+ mainly retained in roots, whereas K+ and Ca2+ were more highly accumulated in leaves than in roots, suggesting a potential mechanism in restricting transport of excessive Na+ to leaves to facilitate the uptake of other essential minerals. Sapota plants also maintained an improved leaf succulence with increasing levels of seawater. Furthermore, increased accumulations of proline, total amino acids, soluble sugars, and reducing sugars suggested an enhanced osmoprotective capacity of sapota to overcome salinity-induced osmotic stress. Our results demonstrate that the salt adaptation strategy of sapota is attributed to increased leaf succulence, selective transport of minerals, efficient Na+ retention in roots, and accumulation of compatible solutes.
Collapse
Affiliation(s)
- Md Mezanur Rahman
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Mohammad Golam Mostofa
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh.
| | - Md Abiar Rahman
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Md Giashuddin Miah
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Satya Ranjan Saha
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - M Abdul Karim
- Department of Agronomy, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Sanjida Sultana Keya
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Munny Akter
- Department of Agronomy, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Mohidul Islam
- Hill Agricultural Research Station, Raikhali, Rangamati Hill District, Bangladesh
| | - Lam-Son Phan Tran
- Plant Stress Research Group & Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan.
| |
Collapse
|
112
|
Ou D, Li W, Li H, Wu X, Li C, Zhuge Y, Liu YD. Enhancement of the removal and settling performance for aerobic granular sludge under hypersaline stress. CHEMOSPHERE 2018; 212:400-407. [PMID: 30149313 DOI: 10.1016/j.chemosphere.2018.08.096] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/29/2018] [Accepted: 08/18/2018] [Indexed: 06/08/2023]
Abstract
The aerobic granular sludge (AGS) dominated by halophilic microorganisms, was successfully cultivated in a lab-scale sequencing batch reactor (SBR) under varying salinity levels (from 0% to 6% (w/v)). Removal performance of AGS improved with the increase of salinity and increased up to 42.86 mg g-1 VSS h-1 at 6% salinity. Increased salinity resulted in better settling performance of AGS in terms of the sludge volume index (SVI), which was initially 148.80 mL/g at 0% salinity and gradually decreased to 59.1 mL/g at 6% salinity. The increase of salinity stimulated bacteria to secret excessive extracellular polymeric substances (EPS), with its highest production of 725.5 mg/(g·VSS) at 5% salinity. The total protein (PN) exhibited highly positive correlation with the total EPS (R = 0.951), indicating that selective secretion of some functional PN played a key constituent in resisting the external osmotic pressure and improving sludge performance. Salinicola, accounted for up to 91% relative abundance at 6% salinity, showed the high positive correlation (R = 0.953) with salinity. The enrichment of such halophilic or halotolerant microbial community assured both stable and improved removal performance in the AGS system. The enrichment of salt response pathways and altered metabolic processes for salt-tolerant bacteria indicated that the microbial community formed special metabolic pattern under long-term hypersaline stress to maintain favourable cellular activity and removal performance.
Collapse
Affiliation(s)
- Dong Ou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Wei Li
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China; National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Hui Li
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China; National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Xiao Wu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Cheng Li
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yangyang Zhuge
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yong-di Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China; National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
113
|
Hmidi D, Abdelly C, Athar HUR, Ashraf M, Messedi D. Effect of salinity on osmotic adjustment, proline accumulation and possible role of ornithine-δ-aminotransferase in proline biosynthesis in Cakile maritima. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2018; 24:1017-1033. [PMID: 30425420 PMCID: PMC6214428 DOI: 10.1007/s12298-018-0601-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/08/2018] [Accepted: 09/06/2018] [Indexed: 05/08/2023]
Abstract
The short time response to salt stress was studied in Cakile maritima. Plants were exposed to different salt concentrations (0, 100, 200 and 400 mM NaCl) and harvested after 4, 24, 72 and 168 h of treatment. Before harvesting plants, tissue hydration, osmotic potential, inorganic and organic solute contents, and ornithine-δ-aminotransferase activity were measured. Plants of C. maritima maintained turgor and tissue hydration at low osmotic potential mainly at 400 mM NaCl. The results showed that, in leaves and stems, Na+ content increased significantly after the first 4 h of treatment. However, in roots, the increase of Na+ content remained relatively unchanged with increasing salt. The K+ content decreased sharply at 200 and 400 mM NaCl with treatment duration. This decrease was more pronounced in roots. The content of proline and amino acids increased with increasing salinity and treatment duration. These results indicated that the accumulation of inorganic and organic compounds was a central adaptive mechanism by which C. maritima maintained intracellular ionic balance under saline conditions. However, their percentage contribution to total osmotic adjustment varies from organ to organ; for example, Na+ accumulation mainly contributes in osmotic adjustment of stem tissue (60%). Proline contribution to osmotic adjustment reached 36% in roots. In all organs, proline as well as δ-OAT activity increased with salt concentration and treatment duration. Under normal growth conditions, δ-OAT is mainly involved in the mobilization of nitrogen required for plant growth. However, the highly significant positive correlation between proline and δ-OAT activity under salt-stress conditions suggests that ornithine pathway contributed to proline synthesis.
Collapse
Affiliation(s)
- Dorsaf Hmidi
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie, Technopole de Borj Cédria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Chedly Abdelly
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie, Technopole de Borj Cédria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Habib-ur-Rehman Athar
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, 60800 Pakistan
| | | | - Dorsaf Messedi
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie, Technopole de Borj Cédria, BP 901, 2050 Hammam-Lif, Tunisia
| |
Collapse
|
114
|
Chen Q, Zhang Y, Tao M, Li M, Wu Y, Qi Q, Yang H, Wan X. Comparative Metabolic Responses and Adaptive Strategies of Tea Leaves ( Camellia sinensis) to N 2 and CO 2 Anaerobic Treatment by a Nontargeted Metabolomics Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:9565-9572. [PMID: 30133278 DOI: 10.1021/acs.jafc.8b03067] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
It is well-known that anaerobic treatment has been considered as a utility process to accumulate γ-aminobutyric acid (GABA) in tea leaves. In this article, the nonvolatile differential compounds in picked-tea leaves between filled-N2 treatment and filled-CO2 treatment were compared in metabolic profiles and dynamic changes via ultrahigh performance liquid chromatography linked to a hybrid quadrupole orthogonal time-of-flight mass spectrometer (UPLC-Q-TOF-MS). Multivariate analysis and heat map of hierarchical clustering analysis indicated that filled-N2 treatment resulted in a wider range of metabolic perturbation than filled-CO2 treatment, but GABA accumulates faster and more significantly under filled-CO2 treatment than other treatment. The differential metabolites in anaerobic treatment were mainly reflected in the levels of glucose metabolism and amino acid metabolism, and the main differential pathway included the glyoxylate metabolism pathway, galactose metabolism, and phenylalanine metabolism. These metabolomic analyses were also evaluated to illuminate the physiological adaptive strategies of tea adopted to tolerate certain anaerobic stress types.
Collapse
Affiliation(s)
- Qi Chen
- State Key Laboratory of Tea Plant Biochemistry and Utilization , Anhui Agricultural University , Hefei , Anhui 230036 , P. R. China
- Key Laboratory of Agricultural Products Processing Engineering of Anhui Province , Anhui Agricultural University , Hefei , Anhui 230036 , P. R. China
| | - Yamin Zhang
- State Key Laboratory of Tea Plant Biochemistry and Utilization , Anhui Agricultural University , Hefei , Anhui 230036 , P. R. China
| | - Minming Tao
- State Key Laboratory of Tea Plant Biochemistry and Utilization , Anhui Agricultural University , Hefei , Anhui 230036 , P. R. China
| | - Mengshuang Li
- State Key Laboratory of Tea Plant Biochemistry and Utilization , Anhui Agricultural University , Hefei , Anhui 230036 , P. R. China
| | - Yun Wu
- State Key Laboratory of Tea Plant Biochemistry and Utilization , Anhui Agricultural University , Hefei , Anhui 230036 , P. R. China
| | - Qi Qi
- State Key Laboratory of Tea Plant Biochemistry and Utilization , Anhui Agricultural University , Hefei , Anhui 230036 , P. R. China
- Key Laboratory of Agricultural Products Processing Engineering of Anhui Province , Anhui Agricultural University , Hefei , Anhui 230036 , P. R. China
| | - Hua Yang
- State Key Laboratory of Tea Plant Biochemistry and Utilization , Anhui Agricultural University , Hefei , Anhui 230036 , P. R. China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biochemistry and Utilization , Anhui Agricultural University , Hefei , Anhui 230036 , P. R. China
| |
Collapse
|
115
|
Hashem A, Alqarawi AA, Radhakrishnan R, Al-Arjani ABF, Aldehaish HA, Egamberdieva D, Abd_Allah EF. Arbuscular mycorrhizal fungi regulate the oxidative system, hormones and ionic equilibrium to trigger salt stress tolerance in Cucumis sativus L. Saudi J Biol Sci 2018; 25:1102-1114. [PMID: 30174509 PMCID: PMC6117372 DOI: 10.1016/j.sjbs.2018.03.009] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/28/2018] [Accepted: 03/18/2018] [Indexed: 11/20/2022] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) association increases plant stress tolerance. This study aimed to determine the mitigation effect of AMF on the growth and metabolic changes of cucumbers under adverse impact of salt stress. Salinity reduced the water content and synthesis of pigments. However, AMF inoculation ameliorated negative effects by enhancing the biomass, synthesis of pigments, activity of antioxidant enzymes, including superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase, and the content of ascorbic acid, which might be the result of lower level lipid peroxidation and electrolyte leakage. An accumulation of phenols and proline in AMF-inoculated plants also mediated the elimination of superoxide radicals. In addition, jasmonic acid, salicylic acid and several important mineral elements (K, Ca, Mg, Zn, Fe, Mn and Cu) were enhanced with significant reductions in the uptake of deleterious ions like Na+. These results suggested that AMF can protect cucumber growth from salt stress.
Collapse
Affiliation(s)
- Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia
- Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, ARC, Giza 12511, Egypt
| | - Abdulaziz A. Alqarawi
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia
| | | | - Al-Bandari Fahad Al-Arjani
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia
| | - Horiah Abdulaziz Aldehaish
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia
| | | | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia
| |
Collapse
|
116
|
Dai W, Wang M, Gong X, Liu JH. The transcription factor FcWRKY40 of Fortunella crassifolia functions positively in salt tolerance through modulation of ion homeostasis and proline biosynthesis by directly regulating SOS2 and P5CS1 homologs. THE NEW PHYTOLOGIST 2018; 219:972-989. [PMID: 29851105 DOI: 10.1111/nph.15240] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 04/26/2018] [Indexed: 05/17/2023]
Abstract
Although some WRKYs have been characterized, regulatory roles of most WRKYs remain poorly understood. Herein, we elucidated function of FcWRKY40 from Fortunella crassifolia in salt tolerance via overexpression and virus-induced gene silencing (VIGS) and unraveled its target genes. Overexpression of FcWRKY40 enhanced salt tolerance in transgenic tobacco and lemon, while silencing of FcWRKY40 increased salt susceptibility. Homolog genes of Salt Overly Sensitive 2 (SOS2) and Δ-1-pyrroline-5-carboxylate synthetase 1 (P5CS1) were dramatically up-regulated in transgenic lemon but down-regulated in VIGS line. Consistently, transgenic lemon displayed lower Na+ and higher proline concentrations, whereas the silenced line accumulated more Na+ but less proline. Treatment of transgenic lemon with 24-epi-brassinolide compromised salt tolerance, while supply of exogenous proline partially restored salt tolerance of the VIGS line. FcWRKY40 specifically binds to and activates promoters of FcSOS2 and FcP5CS1. FcWRKY40 was up-regulated by ABA and salt, and confirmed as a target of ABA-responsive element binding factor 2 (FcABF2). Moreover, salt treatment up-regulated FcABF2 and FcP5CS1, and elevated proline concentrations. Taken together, our findings demonstrate that FcWRKY40 participates in the ABA signaling pathway and as a positive regulator functions in salt tolerance by regulating genes involved in ion homeostasis and proline biosynthesis.
Collapse
Affiliation(s)
- Wenshan Dai
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Min Wang
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoqing Gong
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
117
|
Bian W, Bao G, Qian H, Song Z, Qi Z, Zhang M, Chen W, Dong W. Physiological Response Characteristics in Medicago sativa Under Freeze-Thaw and Deicing Salt Stress. WATER, AIR, & SOIL POLLUTION 2018; 229:196. [PMID: 0 DOI: 10.1007/s11270-018-3850-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 05/25/2018] [Indexed: 05/21/2023]
|
118
|
Sarker U, Oba S. Drought Stress Effects on Growth, ROS Markers, Compatible Solutes, Phenolics, Flavonoids, and Antioxidant Activity in Amaranthus tricolor. Appl Biochem Biotechnol 2018; 186:999-1016. [PMID: 29804177 DOI: 10.1007/s12010-018-2784-5] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/13/2018] [Indexed: 01/10/2023]
Abstract
Four selected Amaranthus tricolor cultivars were grown under four irrigation regimes (25, 50, 80, and 100% field capacity) to evaluate the mechanisms of growth and physiological and biochemical responses against drought stress in randomized complete block design with three replications. Drought stress led to decrease in total biomass, specific leaf area, relative water content (RWC), photosynthetic pigments (chlorophyll a, chlorophyll b, chlorophyll ab), and soluble protein and increase in MDA, H2O2, EL, proline, total carotenoid, ascorbic acid, polyphenols, flavonoids, and antioxidant activity. However, responses of these parameters were differential in respect to cultivars and the degree of drought stresses. No significant difference was observed in control and LDS for most of the traits. The cultivars VA14 and VA16 were identified as more tolerant to drought and could be used for further evaluations in future breeding programs and new cultivar release programs. Positively significant correlations among MDA, H2O2, compatible solutes, and non-enzymatic antioxidant (proline, TPC, TFC, and TAC) suggested that compatible solutes and non-enzymatic antioxidant played vital role in detoxifying of ROS in A. tricolor cultivar. The increased content of ascorbic acid indicated the crucial role of the ASC-GSH cycle for scavenging ROS in A. tricolor.
Collapse
Affiliation(s)
- Umakanta Sarker
- The United Graduate School of Agricultural Science, Laboratory of Field Science, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.,Department of Genetics and Plant Breeding, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Shinya Oba
- The United Graduate School of Agricultural Science, Laboratory of Field Science, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
| |
Collapse
|
119
|
Yang Y, Guo Y. Elucidating the molecular mechanisms mediating plant salt-stress responses. THE NEW PHYTOLOGIST 2018; 217:523-539. [PMID: 29205383 DOI: 10.1111/nph.14920] [Citation(s) in RCA: 747] [Impact Index Per Article: 106.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/11/2017] [Indexed: 05/18/2023]
Abstract
Contents Summary 523 I. Introduction 523 II. Sensing salt stress 524 III. Ion homeostasis regulation 524 IV. Metabolite and cell activity responses to salt stress 527 V. Conclusions and perspectives 532 Acknowledgements 533 References 533 SUMMARY: Excess soluble salts in soil (saline soils) are harmful to most plants. Salt imposes osmotic, ionic, and secondary stresses on plants. Over the past two decades, many determinants of salt tolerance and their regulatory mechanisms have been identified and characterized using molecular genetics and genomics approaches. This review describes recent progress in deciphering the mechanisms controlling ion homeostasis, cell activity responses, and epigenetic regulation in plants under salt stress. Finally, we highlight research areas that require further research to reveal new determinants of salt tolerance in plants.
Collapse
Affiliation(s)
- Yongqing Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
120
|
Nounjan N, Chansongkrow P, Charoensawan V, Siangliw JL, Toojinda T, Chadchawan S, Theerakulpisut P. High Performance of Photosynthesis and Osmotic Adjustment Are Associated With Salt Tolerance Ability in Rice Carrying Drought Tolerance QTL: Physiological and Co-expression Network Analysis. FRONTIERS IN PLANT SCIENCE 2018; 9:1135. [PMID: 30127798 PMCID: PMC6088249 DOI: 10.3389/fpls.2018.01135] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 07/13/2018] [Indexed: 05/04/2023]
Abstract
Understanding specific biological processes involving in salt tolerance mechanisms is important for improving traits conferring tolerance to salinity, one of the most important abiotic stresses in plants. Under drought and salinity stresses, plants share overlapping responsive mechanisms such as physiological changes and activation of signaling molecules, which induce and transmit signals through regulator genes in a regulatory network. In this study, two near isogenic lines of rice carrying chromosome segments of drought tolerance QTL on chromosome 8 from IR68586-F2-CA-31 (DH103) in the genetic background of sensitive cultivar "Khao Dawk Mali 105; KDML105" (designated as CSSL8-94 and CSSL8-95) were used to investigate physiological responses to salt stress [namely growth, Na+/K+ ratio, water status, osmotic adjustment, photosynthetic parameters, electrolyte leakage (EL), malondialdehyde (MDA), proline and sugar accumulations], compared with the standard salt tolerant (Pokkali; PK) and their recurrent parent (KDML105) rice cultivars. Physiological examination indicated that both CSSLs showed superior salt-tolerant level to KDML105. Our results suggested that salt tolerance ability of these CSSL lines may be resulted from high performance photosynthesis, better osmotic adjustment, and less oxidative stress damage under salt conditions. Moreover, to explore new candidate genes that might take part in salt tolerance mechanisms, we performed co-expression network analysis for genes identified in the CSSL rice, and found that Os08g419090, the gene involved with tetrapyrrole and porphyrin biosynthetic process (chlorophyll biosynthetic process), Os08g43230 and Os08g43440 (encoded TraB family protein and cytochrome P450, respectively) might have unprecedented roles in salt stress tolerance.
Collapse
Affiliation(s)
- Noppawan Nounjan
- Salt-tolerant Rice Research Group, Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Pakkanan Chansongkrow
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Varodom Charoensawan
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
- Integrative Computational BioScience Center, Mahidol University, Nakhon Pathom, Thailand
| | - Jonaliza L. Siangliw
- Rice Gene Discovery Unit, BIOTEC, NSTDA, Kasetsart University, Nakhon Pathom, Thailand
| | - Theerayut Toojinda
- Rice Gene Discovery Unit, BIOTEC, NSTDA, Kasetsart University, Nakhon Pathom, Thailand
- Plant Biotechnology Research Unit, BIOTEC, NSTDA, Khlong Luang, Thailand
| | - Supachitra Chadchawan
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Piyada Theerakulpisut
- Salt-tolerant Rice Research Group, Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
- *Correspondence: Piyada Theerakulpisut
| |
Collapse
|
121
|
Abdel Latef AAH, Srivastava AK, Saber H, Alwaleed EA, Tran LSP. Sargassum muticum and Jania rubens regulate amino acid metabolism to improve growth and alleviate salinity in chickpea. Sci Rep 2017. [PMID: 28874670 DOI: 10.1007/s00344-018-9906-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023] Open
Abstract
The present study evaluates the potential of Sar gassum muticum (Sar) and Jan ia rubens (Jan) seaweeds for enhancing growth and mitigating soil-salinity in chickpea (Cicer arietinum L.). Under control conditions, Sar and Jan extracts improved chickpea growth which was attributed to their potential for increasing photosynthetic pigments, K+ and amino acids, particularly proline, in comparison with water-sprayed control. Upon stress imposition, chickpea growth was reduced in NaCl concentration-dependent manner, and principal component analysis (PCA) revealed Na+ accumulation and oxidative damage as major determinants of sensitivity at high salinity. Furthermore, amino acid quantification indicated activation/deactivation of overall metabolism in roots/shoots, as an adaptive strategy, for maintaining plant growth under salt stress. Sar and Jan extract supplementations provided stress amelioration, and PCA confirmed that improved growth parameters at high salinity were associated with enhanced activities of superoxide dismutase and peroxidase. Besides, four key amino acids, including serine, threonine, proline and aspartic acids, were identified from roots which maximally contribute to Sar- and Jan-mediated stress amelioration. Sar showed higher effectiveness than Jan under both control and salt stress conditions. Our findings highlight "bio-stimulant" properties of two seaweeds and provide mechanistic insight into their salt-ameliorating action which is relevant for both basic and applied research.
Collapse
Affiliation(s)
- Arafat Abdel Hamed Abdel Latef
- Botany Department, Faculty of Science, South Valley University, 83523, Qena, Egypt.
- Biology Department, College of Applied Medical Science, Turabah Branch 21955, Taif University, Taif, Saudi Arabia.
| | - Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Hani Saber
- Botany Department, Faculty of Science, South Valley University, 83523, Qena, Egypt
| | - Eman A Alwaleed
- Botany Department, Faculty of Science, South Valley University, 83523, Qena, Egypt
| | - Lam-Son Phan Tran
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, Vietnam.
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan.
| |
Collapse
|