101
|
Fourgeaud L, Boulanger LM. Role of immune molecules in the establishment and plasticity of glutamatergic synapses. Eur J Neurosci 2011; 32:207-17. [PMID: 20946111 DOI: 10.1111/j.1460-9568.2010.07342.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An increasing number of studies support an unexpected role for immune molecules in regulating healthy brain functions during development and in adulthood. Here we review the roles of specific immune molecules (including cytokines, components of the complement cascade, and members of the major histocompatibility complex class I family and their receptors) in the formation and plasticity of glutamatergic synapses. These findings add a new dimension to our understanding of neural-immune interactions, and suggest novel molecular mechanisms that may underlie the modification of glutamatergic synapses in both normal and pathological states.
Collapse
Affiliation(s)
- Lawrence Fourgeaud
- Molecular Neurobiology Laboratories (MNL-L), The Salk Institute for Biological Studies, La Jolla, CA, USA
| | | |
Collapse
|
102
|
Dilger EK, Shin HS, Guido W. Requirements for synaptically evoked plateau potentials in relay cells of the dorsal lateral geniculate nucleus of the mouse. J Physiol 2010; 589:919-37. [PMID: 21173075 DOI: 10.1113/jphysiol.2010.202499] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In developing cells of the mouse dorsal lateral geniculate nucleus (dLGN), synaptic responses evoked by optic tract (OT) stimulation give rise to long-lasting, high-amplitude depolarizations known as plateau potentials. These events are mediated by L-type Ca2+ channels and occur during early postnatal life, a time when retinogeniculate connections are remodelling. To better understand the relationship between L-type activity and dLGN development we used an in vitro thalamic slice preparation which preserves the retinal connections and intrinsic circuitry in dLGN and examined how synaptic responses evoked by OT stimulation lead to the activation of plateau potentials. By varying the strength and temporal frequency of OT stimulation we identified at least three factors that contribute to the developmental regulation of plateau activity: the degree of retinal convergence, the temporal pattern of retinal stimulation and the emergence of feed-forward inhibition. Before natural eye opening (postnatal day 14), the excitatory synaptic responses of relay cells receiving multiple retinal inputs summated in both the spatial and temporal domains to produce depolarizations sufficient to activate L-type activity. After eye opening, when inhibitory responses are fully developed, plateau activity was rarely evoked even with high temporal rates of OT stimulation. When the bulk of this inhibition was blocked by bath application of bicuculline, the incidence of plateau activity increased significantly. We also made use of a transgenic mouse that lacks the β3 subunit of the L-type Ca2+ channel. These mutants have far fewer membrane-bound Ca2+ channels and attenuated L-type activity. In β3 nulls, L-type plateau activity was rarely observed even at young ages when plateau activity prevails. Thus, in addition to the changing patterns of synaptic connectivity and retinal activity, the expression of L-type Ca2+ channels is a requisite component in the manifestation of plateau activity.
Collapse
Affiliation(s)
- Emily K Dilger
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Centre, Sanger Hall, 1101 E. Marshall St, Richmond, VA 23298, USA
| | | | | |
Collapse
|
103
|
Cheng TW, Liu XB, Faulkner RL, Stephan AH, Barres BA, Huberman AD, Cheng HJ. Emergence of lamina-specific retinal ganglion cell connectivity by axon arbor retraction and synapse elimination. J Neurosci 2010; 30:16376-82. [PMID: 21123583 PMCID: PMC3073606 DOI: 10.1523/jneurosci.3455-10.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Revised: 10/01/2010] [Accepted: 10/07/2010] [Indexed: 11/21/2022] Open
Abstract
Throughout the nervous system, neurons restrict their connections to specific depths or "layers" of their targets to constrain the type and number of synapses they make. Despite the importance of lamina-specific synaptic connectivity, the mechanisms that give rise to this feature in mammals remain poorly understood. Here we examined the cellular events underlying the formation of lamina-specific retinal ganglion cell (RGC) axonal projections to the superior colliculus (SC) of the mouse. By combining a genetically encoded marker of a defined RGC subtype (OFF-αRGCs) with serial immunoelectron microscopy, we resolved the ultrastructure of axon terminals fated for laminar stabilization versus those fated for removal. We found that OFF-αRGCs form synapses across the full depth of the retinorecipient SC before undergoing lamina-specific arbor retraction and synapse elimination to arrive at their mature, restricted pattern of connectivity. Interestingly, we did not observe evidence of axon degeneration or glia-induced synapse engulfment during this process. These findings indicate that lamina-specific visual connections are generated through the selective stabilization of correctly targeted axon arbors and suggest that the decision to maintain or eliminate an axonal projection reflects the molecular compatibility of presynaptic and postsynaptic neurons at a given laminar depth.
Collapse
Affiliation(s)
- Ting-Wen Cheng
- Center for Neuroscience, University of California, Davis, California 95618
| | - Xiao-Bo Liu
- Center for Neuroscience, University of California, Davis, California 95618
| | - Regina L. Faulkner
- Center for Neuroscience, University of California, Davis, California 95618
| | - Alexander H. Stephan
- Department of Neurobiology, Stanford University School of Medicine, Palo Alto, California 94305, and
| | - Ben A. Barres
- Department of Neurobiology, Stanford University School of Medicine, Palo Alto, California 94305, and
| | - Andrew D. Huberman
- Neurosciences Department, School of Medicine, and
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093
| | - Hwai-Jong Cheng
- Center for Neuroscience, University of California, Davis, California 95618
| |
Collapse
|
104
|
Sun JJ, Kilb W, Luhmann HJ. Self-organization of repetitive spike patterns in developing neuronal networks in vitro. Eur J Neurosci 2010; 32:1289-99. [PMID: 20846326 DOI: 10.1111/j.1460-9568.2010.07383.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The appearance of spontaneous correlated activity is a fundamental feature of developing neuronal networks in vivo and in vitro. To elucidate whether the ontogeny of correlated activity is paralleled by the appearance of specific spike patterns we used a template-matching algorithm to detect repetitive spike patterns in multi-electrode array recordings from cultures of dissociated mouse neocortical neurons between 6 and 15 days in vitro (div). These experiments demonstrated that the number of spiking neurons increased significantly between 6 and 15 div, while a significantly synchronized network activity appeared at 9 div and became the main discharge pattern in the subsequent div. Repetitive spike patterns with a low complexity were first observed at 8 div. The number of repetitive spike patterns in each dataset as well as their complexity and recurrence increased during development in vitro. The number of links between neurons implicated in repetitive spike patterns, as well as their strength, showed a gradual increase during development. About 8% of the spike sequences contributed to more than one repetitive spike patterns and were classified as core patterns. These results demonstrate for the first time that defined neuronal assemblies, as represented by repetitive spike patterns, appear quite early during development in vitro, around the time synchronized network burst become the dominant network pattern. In summary, these findings suggest that dissociated neurons can self-organize into complex neuronal networks that allow reliable flow and processing of neuronal information already during early phases of development.
Collapse
Affiliation(s)
- Jyh-Jang Sun
- Institute of Physiology and Pathophysiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | | | | |
Collapse
|
105
|
Elstrott J, Feller MB. Direction-selective ganglion cells show symmetric participation in retinal waves during development. J Neurosci 2010; 30:11197-201. [PMID: 20720127 PMCID: PMC2928560 DOI: 10.1523/jneurosci.2302-10.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 06/28/2010] [Accepted: 07/01/2010] [Indexed: 11/21/2022] Open
Abstract
Direction-selective ganglion cells (DSGCs) fire robustly for stimuli moving along one direction of motion and are strongly inhibited by stimuli moving in the opposite, or null, direction. In contrast to direction-selective neurons in primary visual cortex, a role for neural activity in the development of direction-selective retinal circuits has not been established. Direction-selective responses are detected at eye opening, before which spontaneous correlated activity known as retinal waves provide directional input to ganglion cells. Indeed, we observed a significant bias in wave propagation along the nasal over temporal direction. Using simultaneous calcium imaging and cell-attached recordings from three genetically labeled DSGC types in mice, we observed that all three DSGC types fire action potentials during retinal waves. However, we found that the direction of wave propagation did not influence DSGC spiking. These results indicate that the mechanisms guiding the formation of the asymmetric inhibition underlying direction selectivity in the retina are not dependent upon the directional properties of retinal waves.
Collapse
Affiliation(s)
- Justin Elstrott
- Department of Molecular and Cell Biology and the Helen Wills Neurosciences Institute, University of California, Berkeley, Berkeley, California 94720
| | - Marla B. Feller
- Department of Molecular and Cell Biology and the Helen Wills Neurosciences Institute, University of California, Berkeley, Berkeley, California 94720
| |
Collapse
|
106
|
Zhang RW, Wei HP, Xia YM, Du JL. Development of light response and GABAergic excitation-to-inhibition switch in zebrafish retinal ganglion cells. J Physiol 2010; 588:2557-69. [PMID: 20498234 PMCID: PMC2916988 DOI: 10.1113/jphysiol.2010.187088] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 05/17/2010] [Indexed: 01/02/2023] Open
Abstract
The zebrafish retina has been an important model for studying morphological development of neural circuits in vivo. However, its functional development is not yet well understood. To investigate the functional development of zebrafish retina, we developed an in vivo patch-clamp whole-cell recording technique in intact zebrafish larvae. We first examined the developmental profile of light-evoked responses (LERs) in retinal ganglion cells (RGCs) from 2 to 9 days post-fertilization (dpf). Unstable LERs were first observed at 2.5 dpf. By 4 dpf, RGCs exhibited reliable light responses. As the GABAergic system is critical for retinal development, we then performed in vivo gramicidin perforated-patch whole-cell recording to characterize the developmental change of GABAergic action in RGCs. The reversal potential of GABA-induced currents (E(GABA)) in RGCs gradually shifted from depolarized to hyperpolarized levels during 2-4 dpf and the excitation-to-inhibition (E-I) switch of GABAergic action occurred at around 2.5 dpf when RGCs became light sensitive. Meanwhile, GABAergic transmission upstream to RGCs also became inhibitory by 2.5 dpf. Furthermore, down-regulation of the K(+)/Cl() co-transporter (KCC2) by the morpholino oligonucleotide-based knockdown approach, which shifted RGC E(GABA) towards a more depolarized level and thus delayed the E-I switch by one day, postponed the appearance of RGC LERs by one day. In addition, RGCs exhibited correlated giant inward current (GICs) during 2.5-3.5 dpf. The period of GICs was shifted to 3-4.5 dpf by KCC2 knockdown. Taken together, the GABAergic E-I switch occurs coincidently with the emergence of light responses and GICs in zebrafish RGCs, and may contribute to the functional development of retinal circuits.
Collapse
Affiliation(s)
- Rong-wei Zhang
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-yang Road, Shanghai 200031, China
| | | | | | | |
Collapse
|
107
|
Hanganu-Opatz IL. Between molecules and experience: role of early patterns of coordinated activity for the development of cortical maps and sensory abilities. ACTA ACUST UNITED AC 2010; 64:160-76. [PMID: 20381527 DOI: 10.1016/j.brainresrev.2010.03.005] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 03/22/2010] [Accepted: 03/29/2010] [Indexed: 10/19/2022]
Abstract
Sensory systems processing information from the environment rely on precisely formed and refined neuronal networks that build maps of sensory receptor epithelia at different subcortical and cortical levels. These sensory maps share similar principles of function and emerge according to developmental processes common in visual, somatosensory and auditory systems. Whereas molecular cues set the coarse organization of cortico-subcortical topography, its refinement is known to succeed under the influence of experience-dependent electrical activity during critical periods. However, coordinated patterns of activity synchronize the cortico-subcortical networks long before the meaningful impact of environmental inputs on sensory maps. Recent studies elucidated the cellular and network mechanisms underlying the generation of these early patterns of activity and highlighted their similarities across species. Moreover, the experience-independent activity appears to act as a functional template for the maturation of sensory networks and cortico-subcortical maps. A major goal for future research will be to analyze how this early activity interacts with the molecular cues and to determine whether it is permissive or rather supporting for the establishment of sensory topography.
Collapse
Affiliation(s)
- Ileana L Hanganu-Opatz
- Developmental Neurophysiology, Center of Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Falkenried 94, Hamburg, Germany.
| |
Collapse
|
108
|
Bickford ME, Slusarczyk A, Dilger EK, Krahe TE, Kucuk C, Guido W. Synaptic development of the mouse dorsal lateral geniculate nucleus. J Comp Neurol 2010; 518:622-35. [PMID: 20034053 DOI: 10.1002/cne.22223] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The dorsal lateral geniculate nucleus (dLGN) of the mouse has emerged as a model system in the study of thalamic circuit development. However, there is still a lack of information regarding how and when various types of retinal and nonretinal synapses develop. We examined the synaptic organization of the developing mouse dLGN in the common pigmented C57/BL6 strain, by recording the synaptic responses evoked by electrical stimulation of optic tract axons, and by investigating the ultrastructure of identified synapses. At early postnatal ages (<P12), optic tract evoked responses were primarily excitatory. The full complement of inhibitory responses did not emerge until after eye opening (>P14), when optic tract stimulation routinely evoked an excitatory postsynaptic potential/inhibitory postsynaptic potential (EPSP/IPSP) sequence, with the latter having both a GABA(A) and GABA(B) component. Electrophysiological and ultrastructural observations were consistent. At P7, many synapses were present, but synaptic profiles lacked the ultrastructural features characteristic of the adult dLGN, and little gamma-aminobutyric acid (GABA) could be detected by using immunocytochemical techniques. In contrast, by P14, GABA staining was robust, mature synaptic profiles of retinal and nonretinal origin were easily distinguished, and the size and proportion of synaptic contacts were similar to those of the adult. The emergence of nonretinal synapses coincides with pruning of retinogeniculate connections, and the transition of retinal activity from spontaneous to visually driven. These results indicate that the synaptic architecture of the mouse dLGN is similar to that of other higher mammals, and thus provides further support for its use as a model system for visual system development.
Collapse
Affiliation(s)
- Martha E Bickford
- Department of Anatomical Sciences & Neurobiology, University of Louisville School of Medicine, Kentucky 40292, USA
| | | | | | | | | | | |
Collapse
|
109
|
Speer CM, Mikula S, Huberman AD, Chapman B. The developmental remodeling of eye-specific afferents in the ferret dorsal lateral geniculate nucleus. Anat Rec (Hoboken) 2010; 293:1-24. [PMID: 20039439 DOI: 10.1002/ar.21001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Eye-specific projections to the dorsal lateral geniculate nucleus (dLGN) serve as a model for exploring how precise patterns of circuitry form during development in the mammalian central nervous system. Using a combination of dual-label anterograde retinogeniculate tracing and Nissl-staining, we studied the patterns of eye-specific afferents and cellular laminae in the dLGN of the pigmented sable ferret at eight developmental timepoints between birth and adulthood. Each time point was investigated in the three standard orthogonal planes of section, allowing us to generate a complete anatomical map of eye-specific development in this species. We find that eye-specific retinal ganglion cell axon segregation varies according to location in the dLGN, with the principle contralateral (A) and ipsilateral layers (A1) maturing first, followed by the contralateral and ipsilateral C laminae. Cytoarchitectural lamination lags behind eye-specific segregation, except in the C laminae where underlying cellular layers never develop to accompany eye-specific afferent domains. The emergence of On/Off sublaminae occurs following eye-specific segregation in this species. On the basis of these findings, we constructed a three-dimensional map of eye-specific channels in the developing and mature ferret dLGN.
Collapse
Affiliation(s)
- Colenso M Speer
- Center for Neuroscience, University of California, Davis, Davis, California 95618, USA
| | | | | | | |
Collapse
|
110
|
Anishchenko A, Greschner M, Elstrott J, Sher A, Litke AM, Feller MB, Chichilnisky EJ. Receptive field mosaics of retinal ganglion cells are established without visual experience. J Neurophysiol 2010; 103:1856-64. [PMID: 20107116 DOI: 10.1152/jn.00896.2009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A characteristic feature of adult retina is mosaic organization: a spatial arrangement of cells of each morphological and functional type that produces uniform sampling of visual space. How the mosaics of visual receptive fields emerge in the retina during development is not fully understood. Here we use a large-scale multielectrode array to determine the mosaic organization of retinal ganglion cells (RGCs) in rats around the time of eye opening and in the adult. At the time of eye opening, we were able to reliably distinguish two types of ON RGCs and two types of OFF RGCs in rat retina based on their light response and intrinsic firing properties. Although the light responses of individual cells were not yet mature at this age, each of the identified functional RGC types formed a receptive field mosaic, where the spacing of the receptive field centers and the overlap of the receptive field extents were similar to those observed in the retinas of adult rats. These findings suggest that, although the light response properties of RGCs may need vision to reach full maturity, extensive visual experience is not required for individual RGC types to form a regular sensory map of visual space.
Collapse
|
111
|
Tsc2-Rheb signaling regulates EphA-mediated axon guidance. Nat Neurosci 2010; 13:163-72. [PMID: 20062052 PMCID: PMC2812631 DOI: 10.1038/nn.2477] [Citation(s) in RCA: 196] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 11/24/2009] [Indexed: 12/11/2022]
Abstract
Tuberous sclerosis complex is a disease caused by mutations in the TSC1 or TSC2 genes, which encode a protein complex that inhibits mTOR kinase signaling by inactivating the Rheb GTPase. Activation of mTOR promotes the formation of benign tumors in various organs while the mechanisms underlying the neurological symptoms of the disease remain largely unknown. Here, we report that in mice Tsc2 haploinsufficiency causes aberrant retinogeniculate projections that suggest defects in EphA receptor-dependent axon guidance. We also show that EphA receptor activation by ephrin-A ligands in neurons leads to inhibition of ERK1/2 kinase activity and decreased inhibition of Tsc2 by ERK1/2. Thus, ephrin stimulation inactivates the mTOR pathway by enhancing Tsc2 activity. Furthermore, Tsc2 deficiency and hyperactive Rheb constitutively activate mTOR and inhibit ephrin-induced growth cone collapse. Our results demonstrate that TSC2-Rheb-mTOR signaling cooperates with the ephrin-Eph receptor system to control axon guidance in the visual system.
Collapse
|
112
|
Abstract
The most impressive structural feature of the nervous system is the specificity of its synaptic connections. Even after axons have navigated long distances to reach target areas, they must still choose appropriate synaptic partners from the many potential partners within easy reach. In many cases, axons also select a particular domain of the postsynaptic cell on which to form a synapse. Thus, synapse formation is selective at both cellular and subcellular levels. Unsurprisingly, the nervous system uses multiple mechanisms to ensure proper connectivity; these include complementary labels, coordinated growth of synaptic partners, sorting of afferents, prohibition or elimination of inappropriate synapses, respecification of targets, and use of short-range guidance mechanisms or intermediate targets. Specification of any circuit is likely to involve integration of multiple mechanisms. Recent studies of vertebrate and invertebrate systems have led to the identification of molecules that mediate a few of these interactions.
Collapse
Affiliation(s)
- Joshua R Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | |
Collapse
|
113
|
Josten NJ, Huberman AD. Milestones and Mechanisms for Generating Specific Synaptic Connections between the Eyes and the Brain. Curr Top Dev Biol 2010; 93:229-59. [DOI: 10.1016/b978-0-12-385044-7.00008-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
114
|
Rosen AM, Stevens B. The Role of the Classical Complement Cascade in Synapse Loss During Development and Glaucoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 703:75-93. [DOI: 10.1007/978-1-4419-5635-4_6] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
115
|
Blankenship AG, Feller MB. Mechanisms underlying spontaneous patterned activity in developing neural circuits. Nat Rev Neurosci 2009; 11:18-29. [PMID: 19953103 DOI: 10.1038/nrn2759] [Citation(s) in RCA: 542] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Patterned, spontaneous activity occurs in many developing neural circuits, including the retina, the cochlea, the spinal cord, the cerebellum and the hippocampus, where it provides signals that are important for the development of neurons and their connections. Despite there being differences in adult architecture and output across these various circuits, the patterns of spontaneous network activity and the mechanisms that generate it are remarkably similar. The mechanisms can include a depolarizing action of GABA (gamma-aminobutyric acid), transient synaptic connections, extrasynaptic transmission, gap junction coupling and the presence of pacemaker-like neurons. Interestingly, spontaneous activity is robust; if one element of a circuit is disrupted another will generate similar activity. This research suggests that developing neural circuits exhibit transient and tunable features that maintain a source of correlated activity during crucial stages of development.
Collapse
Affiliation(s)
- Aaron G Blankenship
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, California 92093, USA
| | | |
Collapse
|
116
|
Dunn TA, Storm DR, Feller MB. Calcium-dependent increases in protein kinase-A activity in mouse retinal ganglion cells are mediated by multiple adenylate cyclases. PLoS One 2009; 4:e7877. [PMID: 19924297 PMCID: PMC2774513 DOI: 10.1371/journal.pone.0007877] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 10/26/2009] [Indexed: 11/28/2022] Open
Abstract
Neurons undergo long term, activity dependent changes that are mediated by activation of second messenger cascades. In particular, calcium-dependent activation of the cyclic-AMP/Protein kinase A signaling cascade has been implicated in several developmental processes including cell survival, axonal outgrowth, and axonal refinement. The biochemical link between calcium influx and the activation of the cAMP/PKA pathway is primarily mediated through adenylate cyclases. Here, dual imaging of intracellular calcium concentration and PKA activity was used to assay the role of different classes of calcium-dependent adenylate cyclases (ACs) in the activation of the cAMP/PKA pathway in retinal ganglion cells (RGCs). Surprisingly, depolarization-induced calcium-dependent PKA transients persist in barrelless mice lacking AC1, the predominant calcium-dependent adenylate cyclase in RGCs, as well as in double knockout mice lacking both AC1 and AC8. Furthermore, in a subset of RGCs, depolarization-induced PKA transients persist during the inhibition of all transmembrane adenylate cyclases. These results are consistent with the existence of a soluble adenylate cyclase that plays a role in calcium-dependent activation of the cAMP/PKA cascade in neurons.
Collapse
Affiliation(s)
- Timothy A. Dunn
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Daniel R. Storm
- Department of Pharmacology, University of Washington, Seattle, Washington, United States of America
| | - Marla B. Feller
- Department of Molecular and Cell Biology and the Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
| |
Collapse
|
117
|
Allene C, Cossart R. Early NMDA receptor-driven waves of activity in the developing neocortex: physiological or pathological network oscillations? J Physiol 2009; 588:83-91. [PMID: 19917570 DOI: 10.1113/jphysiol.2009.178798] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Several patterns of coherent activity have been described in developing cortical structures, thus providing a general framework for network maturation. A detailed timely description of network patterns at circuit and cell levels is essential for the understanding of pathogenic processes occurring during brain development. Disturbances in the expression timetable of this pattern sequence are very likely to affect network maturation. This review focuses on the maturation of coherent activity patterns in developing neocortical structures. It emphasizes the intrinsic and synaptic cellular properties that are unique to the immature neocortex and, in particular, the critical role played by extracellular glutamate in controlling network excitability and triggering synchronous network waves of activity.
Collapse
Affiliation(s)
- Camille Allene
- INSERM u901, Institut de Neurobiologie de la Méditerranée, Unité 01 Parc Scientifique de Luminy, Boîte Postale 13, Marseille 13273, France
| | | |
Collapse
|
118
|
Stafford BK, Sher A, Litke AM, Feldheim DA. Spatial-temporal patterns of retinal waves underlying activity-dependent refinement of retinofugal projections. Neuron 2009; 64:200-12. [PMID: 19874788 DOI: 10.1016/j.neuron.2009.09.021] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2009] [Indexed: 11/27/2022]
Abstract
During development, retinal axons project coarsely within their visual targets before refining to form organized synaptic connections. Spontaneous retinal activity, in the form of acetylcholine-driven retinal waves, is proposed to be necessary for establishing these projection patterns. In particular, both axonal terminations of retinal ganglion cells (RGCs) and the size of receptive fields of target neurons are larger in mice that lack the beta2 subunit of the nicotinic acetylcholine receptor (beta2KO). Here, using a large-scale, high-density multielectrode array to record activity from hundreds of RGCs simultaneously, we present analysis of early postnatal retinal activity from both wild-type (WT) and beta2KO retinas. We find that beta2KO retinas have correlated patterns of activity, but many aspects of these patterns differ from those of WT retina. Quantitative analysis suggests that wave directionality, coupled with short-range correlated bursting patterns of RGCs, work together to refine retinofugal projections.
Collapse
Affiliation(s)
- Ben K Stafford
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | | | |
Collapse
|
119
|
Abstract
Retinotopic maps form prior to the development of vision, when retinal waves serve as a robust source of correlated neural activity. Two recent studies provide critical insights into the features of retinal waves that may be instructive for the formation of retinotopic maps.
Collapse
|
120
|
Abstract
For the nervous system to translate experience into memory and behavior, lasting structural change at synapses must occur. This requirement is clearly evident during critical periods of activity-dependent neural development, and accumulating evidence has established a surprising role for the major histocompatibility complex class I (MHCI) proteins in this process.
Collapse
Affiliation(s)
- Carla J Shatz
- Bio-X and Departments of Biology and Neurobiology, James H. Clark Center, 318 Campus Drive W1.1, Stanford University, Stanford CA 94305-5437, USA.
| |
Collapse
|
121
|
|
122
|
Peron SP, Jones PW, Gabbiani F. Precise subcellular input retinotopy and its computational consequences in an identified visual interneuron. Neuron 2009; 63:830-42. [PMID: 19778511 DOI: 10.1016/j.neuron.2009.09.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2009] [Indexed: 11/27/2022]
Abstract
The Lobula Giant Movement Detector (LGMD) is a higher-order visual interneuron of Orthopteran insects that responds preferentially to objects approaching on a collision course. It receives excitatory input from an entire visual hemifield that anatomical evidence suggests is retinotopic. We show that this excitatory projection activates calcium-permeable nicotinic acetylcholine receptors. In vivo calcium imaging reveals that the excitatory projection preserves retinotopy down to the level of a single ommatidium. Examining the impact of retinotopy on the LGMD's computational properties, we show that sublinear synaptic summation can explain orientation preference in this cell. Exploring retinotopy's impact on directional selectivity leads us to infer that the excitatory input to the LGMD is intrinsically directionally selective. Our results show that precise retinotopy has implications for the dendritic integration of visual information in a single neuron.
Collapse
Affiliation(s)
- Simon P Peron
- Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA.
| | | | | |
Collapse
|
123
|
Kaneda M, Ito K, Shigematsu Y, Shimoda Y. The OFF-pathway dominance of P2X(2)-purinoceptors is formed without visual experience. Neurosci Res 2009; 66:86-91. [PMID: 19819273 DOI: 10.1016/j.neures.2009.09.1714] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 09/26/2009] [Accepted: 09/29/2009] [Indexed: 10/20/2022]
Abstract
Visual input in the critical period is an important determinant of the functions of the visual system, affecting for example the formation of the ocular dominance column in the visual cortex. The final map of columnar organization is usually determined by plastic changes in the critical period, but organization is distorted without adequate visual input. Here, we examined whether formation of the OFF-pathway dominance of P2X(2)-purinoceptor signaling in the mouse retina is the result of visual experience. The P2X(2)-purinoceptor signaling pathway developed during the critical period. However, visual experience in this period produced no plastic change in the formation of the OFF-pathway dominance of P2X(2)-purinoceptor signaling. Our findings suggest that the OFF-pathway dominance of P2X(2)-signaling in the mouse retina is intrinsically programmed.
Collapse
Affiliation(s)
- Makoto Kaneda
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan.
| | | | | | | |
Collapse
|
124
|
Ziburkus J, Dilger EK, Lo FS, Guido W. LTD and LTP at the developing retinogeniculate synapse. J Neurophysiol 2009; 102:3082-90. [PMID: 19776360 DOI: 10.1152/jn.90618.2008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of the present study was to determine whether retinal activity can support long-term changes in synaptic strength in the developing dorsal lateral geniculate nucleus (LGN) of thalamus. To test for this we made use of a rodent in vitro explant preparation in which retinal afferents and the intrinsic circuitry of the LGN remain intact. We repetitively stimulated the optic tract with a tetanus protocol that approximated the temporal features of spontaneous retinal waves. We found the amplitude of extracellular field potentials evoked by retinal stimulation changed significantly after tetanus and that the polarity of these alterations was related to postnatal age. At a time when substantial pruning of retinal connections occurs (postnatal day 1 [P1] to P14), high-frequency stimulation led to an immediate and long-term depression (LTD). However, at times when pruning wanes and adult-like patterns of connectivity are stabilizing (P16 to P30), the identical form of stimulation produced a modest form of potentiation (long-term potentiation [LTP]). The LTD was unaffected by the bath application of gamma-aminobutyric acid type A and N-methyl-D-aspartate receptor antagonists. However, both LTD and LTP were blocked by L-type Ca(2+)-channel antagonists. Thus the Ca(2+) influx associated with L-type channel activation mediates the induction of synaptic plasticity and may signal the pruning and subsequent stabilization of developing retinogeniculate connections.
Collapse
Affiliation(s)
- Jokūbas Ziburkus
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | | | | | | |
Collapse
|
125
|
Godfrey KB, Eglen SJ. Theoretical models of spontaneous activity generation and propagation in the developing retina. MOLECULAR BIOSYSTEMS 2009; 5:1527-35. [PMID: 19763323 DOI: 10.1039/b907213f] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spontaneous neural activity is present in many parts of the developing nervous system, including visual, auditory and motor areas. In the developing retina, nearby neurons are spontaneously active and produce propagating patterns of activity, known as retinal waves. Such activity is thought to instruct the refinement of retinal axons. In this article we review several computational models used to help evaluate the mechanisms that might be responsible for the generation of retinal waves. We then discuss the models relative to the molecular mechanisms underlying wave activity, including gap junctions, neurotransmitters and second messenger systems. We examine how well the models represent these mechanisms and propose areas for future modelling research. The retinal wave models are also discussed in relation to models of spontaneous activity in other areas of the developing nervous system.
Collapse
Affiliation(s)
- Keith B Godfrey
- Cambridge Computational Biology Institute, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge, UK
| | | |
Collapse
|
126
|
Three patterns of oscillatory activity differentially synchronize developing neocortical networks in vivo. J Neurosci 2009; 29:9011-25. [PMID: 19605639 DOI: 10.1523/jneurosci.5646-08.2009] [Citation(s) in RCA: 220] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Coordinated patterns of electrical activity are important for the early development of sensory systems. The spatiotemporal dynamics of these early activity patterns and the role of the peripheral sensory input for their generation are essentially unknown. We performed extracellular multielectrode recordings in the somatosensory cortex of postnatal day 0 to 7 rats in vivo and observed three distinct patterns of synchronized oscillatory activity. (1) Spontaneous and periphery-driven spindle bursts of 1-2 s in duration and approximately 10 Hz in frequency occurred approximately every 10 s. (2) Spontaneous and sensory-driven gamma oscillations of 150-300 ms duration and 30-40 Hz in frequency occurred every 10-30 s. (3) Long oscillations appeared only every approximately 20 min and revealed the largest amplitude (250-750 microV) and longest duration (>40 s). These three distinct patterns of early oscillatory activity differently synchronized the neonatal cortical network. Whereas spindle bursts and gamma oscillations did not propagate and synchronized a local neuronal network of 200-400 microm in diameter, long oscillations propagated with 25-30 microm/s and synchronized 600-800 microm large ensembles. All three activity patterns were triggered by sensory activation. Single electrical stimulation of the whisker pad or tactile whisker activation elicited neocortical spindle bursts and gamma activity. Long oscillations could be only evoked by repetitive sensory stimulation. The neonatal oscillatory patterns in vivo depended on NMDA receptor-mediated synaptic transmission and gap junctional coupling. Whereas spindle bursts and gamma oscillations may represent an early functional columnar-like pattern, long oscillations may serve as a propagating activation signal consolidating these immature neuronal networks.
Collapse
|
127
|
Cook JE, Becker DL. Gap-Junction Proteins in Retinal Development: New Roles for the “Nexus”. Physiology (Bethesda) 2009; 24:219-30. [DOI: 10.1152/physiol.00007.2009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Gap-junction channels, the cytoplasmic proteins that associate with them, and the transcriptional networks that regulate them are increasingly being viewed as critical communications hubs for cell signaling in health and disease. As a result, the term “nexus,” which was the original structural name for these focal intercellular links, is coming back into use with new proteomic and transcriptomic meanings. The retina is better understood than any other part of the vertebrate central nervous system in respect of its developmental patterning, its diverse neuronal types and circuits, and the emergence of its definitive structure-function correlations. Thus, studies of the junctional and nonjunctional nexus roles of gap-junction proteins in coordinating retinal development should throw useful light on cell signaling in other developing nervous tissues.
Collapse
Affiliation(s)
- Jeremy E. Cook
- Department of Cell and Developmental Biology, University College London, Gower Street, London, United Kingdom
| | - David L. Becker
- Department of Cell and Developmental Biology, University College London, Gower Street, London, United Kingdom
| |
Collapse
|
128
|
Abstract
In mammals smooth retinotopic maps of the visual field are formed along the visual processing pathway whereby the left visual field is represented in the right hemisphere and vice versa. The reorganization of retinotopic maps in the lateral geniculate nucleus (LGN) of the thalamus and early visual areas (V1-V3) is studied in a patient who was born with only one cerebral hemisphere. Before the seventh week of embryonic gestation, the development of the patient's right cerebral hemisphere terminated. Despite the complete loss of her right hemisphere (di- and telencephalon) at birth, the patient's remaining hemisphere has not only developed maps of the contralateral (right) visual hemifield but, surprisingly, also maps of the ipsilateral (left) visual hemifield. Retinal ganglion-cells changed their predetermined crossing pattern in the optic chiasm and grew to the ipsilateral LGN. In the visual cortex, islands of ipsilateral visual field representations were located along the representations of the vertical meridian. In V1, smooth and continuous maps from contra- and ipsilateral hemifield overlap each other, whereas in ventral V2 and V3 ipsilateral quarter field representations invaded small distinct cortical patches. This reveals a surprising flexibility of the self-organizing developmental mechanisms responsible for map formation.
Collapse
|
129
|
Chalupa LM. Retinal waves are unlikely to instruct the formation of eye-specific retinogeniculate projections. Neural Dev 2009; 4:25. [PMID: 19580684 PMCID: PMC2706240 DOI: 10.1186/1749-8104-4-25] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 06/29/2009] [Indexed: 11/17/2022] Open
Abstract
In all mammalian species the projections of the two eyes to the dorsal lateral geniculate nucleus are initially overlapping before gradually forming the eye-specific domains evident at maturity. It is widely thought that retinal waves of neuronal activity play an instructional role in this developmental process. Here, I discuss the myriad reasons why retinal waves are unlikely to have such a role, and suggest that eye-specific molecular cues in combination with neuronal activity are most probably involved in the formation of eye-specific retinogeniculate projections.
Collapse
Affiliation(s)
- Leo M Chalupa
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, School of Medicine, University of California, Davis, CA 95616, USA.
| |
Collapse
|
130
|
Feller MB. Retinal waves are likely to instruct the formation of eye-specific retinogeniculate projections. Neural Dev 2009; 4:24. [PMID: 19580682 PMCID: PMC2706239 DOI: 10.1186/1749-8104-4-24] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2009] [Accepted: 06/29/2009] [Indexed: 11/24/2022] Open
Abstract
Prior to eye-opening and the development of visual responses, the retina exhibits highly correlated spontaneous firing pattens termed retinal waves. Disruption of the normal spontaneous firing pattern either genetically or pharmacologically prevents the eye-specific refinement of retinogeniculate afferents. Here I provide the evidence that retinal waves play an instructive role in this process. In addition, I argue that a full understanding requires an identification of the features of retinal activity that drive the refinement as well as an understanding of mechanisms that transform these signals into axonal rearrangements.
Collapse
Affiliation(s)
- Marla B Feller
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA.
| |
Collapse
|
131
|
Hoffpauir BK, Marrs GS, Mathers PH, Spirou GA. Does the brain connect before the periphery can direct? A comparison of three sensory systems in mice. Brain Res 2009; 1277:115-29. [PMID: 19272365 PMCID: PMC2700192 DOI: 10.1016/j.brainres.2009.02.050] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 02/15/2009] [Accepted: 02/23/2009] [Indexed: 12/13/2022]
Abstract
The development of peripheral to central neural connections within the auditory, visual, and olfactory systems of mice is reviewed to address whether peripheral signaling may play an instructive role during initial synapse formation. For each sensory system, developmental times of histogenesis and the earliest ages of innervation and function are considered for peripheral and selected central relays. For the auditory and visual system, anatomical and functional reports indicate that central connections may form prior to synapse formation in the periphery. However, evidence from the olfactory system suggests that the peripheral olfactory sensory neurons form synaptic connections before more central olfactory connections are established. We find that significant gaps in knowledge exist for embryonic development of these systems in mice and that genetic tools have not yet been systematically directed to address these issues.
Collapse
Affiliation(s)
- Brian K Hoffpauir
- Sensory Neuroscience Research Center, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | | | | | | |
Collapse
|
132
|
Blankenship AG, Ford KJ, Johnson J, Seal RP, Edwards RH, Copenhagen DR, Feller MB. Synaptic and extrasynaptic factors governing glutamatergic retinal waves. Neuron 2009; 62:230-41. [PMID: 19409268 PMCID: PMC2807181 DOI: 10.1016/j.neuron.2009.03.015] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 01/28/2009] [Accepted: 03/17/2009] [Indexed: 11/28/2022]
Abstract
In the few days prior to eye-opening in mice, the excitatory drive underlying waves switches from cholinergic to glutamatergic. Here, we describe the unique synaptic and spatiotemporal properties of waves generated by the retina's glutamatergic circuits. First, knockout mice lacking vesicular glutamate transporter type 1 do not have glutamatergic waves, but continue to exhibit cholinergic waves, demonstrating that the two wave-generating circuits are linked. Second, simultaneous outside-out patch and whole-cell recordings reveal that retinal waves are accompanied by transient increases in extrasynaptic glutamate, directly demonstrating the existence of glutamate spillover during waves. Third, the initiation rate and propagation speed of retinal waves, as assayed by calcium imaging, are sensitive to pharmacological manipulations of spillover and inhibition, demonstrating a role for both signaling pathways in shaping the spatiotemporal properties of glutamatergic retinal waves.
Collapse
Affiliation(s)
- Aaron G Blankenship
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | |
Collapse
|
133
|
Scicolone G, Ortalli AL, Carri NG. Key roles of Ephs and ephrins in retinotectal topographic map formation. Brain Res Bull 2009; 79:227-47. [PMID: 19480983 DOI: 10.1016/j.brainresbull.2009.03.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 02/16/2009] [Accepted: 03/24/2009] [Indexed: 01/06/2023]
Abstract
Cellular and molecular mechanisms involved in the development of topographic ordered connections in the central nervous system (CNS) constitute a key issue in neurobiology because neural connectivities are the base of the CNS normal function. We discuss the roles of the Eph/ephrin system in the establishment of retinotopic projections onto the tectum/colliculus, the most detailed studied model of topographic mapping. The expression patterns of Ephs and ephrins in opposing gradients both in the retina and the tectum/colliculus, label the local addresses on the target and give specific sensitivities to growth cones according to their topographic origin in the retina. We postulate that the highest levels of these gradients could signal both the entry as well as the limiting boundaries of the target. Since Ephs and ephrins are membrane-bound molecules, they may function as both receptors and ligands producing repulsive or attractant responses according to their microenvironment and play central roles in a variety of developmental events such as axon guidance, synapse formation and remodeling. Due to different experimental approaches and the inherent species-specific differences, some results appear contradictory and should be reanalyzed. Nevertheless, these studies about the roles of the Eph/ephrin system in retinotectal/collicular mapping support general principles in order to understand CNS development and could be useful to design regeneration therapies.
Collapse
Affiliation(s)
- Gabriel Scicolone
- Institute of Cell Biology and Neuroscience "Prof. E. De Robertis", School of Medicine, University of Buenos Aires, 1121 Buenos Aires, Argentina.
| | | | | |
Collapse
|
134
|
Eglen SJ, Gjorgjieva J. Self-organization in the developing nervous system: theoretical models. HFSP JOURNAL 2009; 3:176-85. [PMID: 19639040 DOI: 10.2976/1.3079539] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Accepted: 01/20/2009] [Indexed: 01/07/2023]
Abstract
Sensory maps in the nervous system often connect to each other in a topographic fashion. This is most strikingly seen in the visual system, where neighboring neurons in the retina project to neighboring neurons in the target structure, such as the superior colliculus. This article discusses the developmental mechanisms that are involved in the formation of topographic maps, with an emphasis on the role of theoretical models in helping us to understand these mechanisms. Recent experimental advances in studying the roles of guidance molecules and patterns of spontaneous activity mean that there are new challenges to be addressed by theoretical models. Key questions include understanding what instructional cues are present in the patterns of spontaneous activity, and how activity and guidance molecules might interact. Our discussion concludes by comparing development of visual maps with development of maps in the olfactory system, where the influence of neural activity seems to differ.
Collapse
Affiliation(s)
- Stephen J Eglen
- Cambridge Computational Biology Institute, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| | | |
Collapse
|
135
|
Iwai L, Kawasaki H. Molecular development of the lateral geniculate nucleus in the absence of retinal waves during the time of retinal axon eye-specific segregation. Neuroscience 2009; 159:1326-37. [PMID: 19409202 DOI: 10.1016/j.neuroscience.2009.02.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 01/05/2009] [Accepted: 02/05/2009] [Indexed: 11/29/2022]
Abstract
When retinal waves are inhibited binocularly, eye-specific segregation of retinal axons is disrupted, and retinal axons from the two eyes remain intermingled in the lateral geniculate nucleus (LGN). This effect of binocular retinal wave inhibition is mediated by the lack of activity-dependent competition between retinal axons from the two eyes, but it is unknown whether this effect is also mediated by the developmental arrest of the LGN in an immature state. Here we find developmental markers of the LGN during eye-specific segregation. The expression levels of Purkinje cell protein 4 (PCP4/PEP19), transcription factor 7-like 2 (TCF7L2/TCF4) and LIM homeobox protein 9 (Lhx9) in the LGN change significantly during eye-specific segregation. Using PCP4, TCF7L2 and Lhx9 as developmental markers of the LGN, we examine whether LGN development is affected by binocular disruption of retinal waves during eye-specific segregation. Binocular injection of epibatidine strongly inhibits eye-specific segregation, whereas it does not affect the expression of PCP4, TCF7L2 and Lhx9. Furthermore, the expression of PCP4, TCF7L2 and Lhx9 is normal in binocularly enucleated animals and in mice treated with the monoamine oxidase A (MAOA) inhibitor, clorgyline. In addition, our experiments using LGN slice cultures show that the expression of PCP4 and TCF7L2 in LGN slices changes as in vivo. Our results suggest that LGN development proceeds, at least in part, even in the absence of retinal inputs. PCP4, TCF7L2 and Lhx9 should be useful to examine LGN development during eye-specific segregation in mice and in ferrets.
Collapse
Affiliation(s)
- L Iwai
- Department of Molecular and Systems Neurobiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
136
|
Mochida H, Fortin G, Champagnat J, Glover JC. Differential Involvement of Projection Neurons During Emergence of Spontaneous Activity in the Developing Avian Hindbrain. J Neurophysiol 2009; 101:591-602. [DOI: 10.1152/jn.90835.2008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To better characterize the emergence of spontaneous neuronal activity in the developing hindbrain, spontaneous activity was recorded optically from defined projection neuron populations in isolated preparations of the brain stem of the chicken embryo. Ipsilaterally projecting reticulospinal (RS) neurons and several groups of vestibuloocular (VO) neurons were labeled retrogradely with Calcium Green-1 dextran amine and spontaneous calcium transients were recorded using a charge-coupled-device camera mounted on a fluorescence microscope. Simultaneous extracellular recordings were made from one of the trigeminal motor nerves (nV) to register the occurrence of spontaneous synchronous bursts of activity. Two types of spontaneous activity were observed: synchronous events (SEs), which occurred in register with spontaneous bursts in nV once every few minutes and were tetrodotoxin (TTX) dependent, and asynchronous events (AEs), which occurred in the intervals between SEs and were TTX resistant. AEs occurred developmentally before SEs and were in general smaller and more variable in amplitude than SEs. SEs appeared at the same stage as nV bursts early on embryonic day 4, first in RS neurons and then in VO neurons. All RS neurons participated equally in SEs from the outset, whereas different subpopulations of VO neurons participated differentially, both in terms of the proportion of neurons that exhibited SEs, the fidelity with which the SEs in individual neurons followed the nV bursts, and the developmental stage at which SEs appeared and matured. The results show that spontaneous activity is expressed heterogeneously among hindbrain projection neuron populations, suggesting its differential involvement in the formation of different functional neuronal circuits.
Collapse
|
137
|
Thivierge JP. How does non-random spontaneous activity contribute to brain development? Neural Netw 2009; 22:901-12. [PMID: 19196491 DOI: 10.1016/j.neunet.2009.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 07/17/2008] [Accepted: 01/01/2009] [Indexed: 11/28/2022]
Abstract
Highly non-random forms of spontaneous activity are proposed to play an instrumental role in the early development of the visual system. However, both the fundamental properties of spontaneous activity required to drive map formation, as well as the exact role of this information remain largely unknown. Here, a realistic computational model of spontaneous retinal waves is employed to demonstrate that both the amplitude and frequency of waves may play determining roles in retinocollicular map formation. Furthermore, results obtained with different learning rules show that spike precision in the order of milliseconds may be instrumental to neural development: a rule based on precise spike interactions (spike-timing-dependent plasticity) reduced the density of aberrant projections to the SC to a markedly greater extent than a rule based on interactions at much broader time-scale (correlation-based plasticity). Taken together, these results argue for an important role of spontaneous yet highly non-random activity, along with temporally precise learning rules, in the formation of neural circuits.
Collapse
Affiliation(s)
- Jean-Philippe Thivierge
- Department of Psychological and Brain Sciences, Indiana University, 1101 East Tenth Street, Bloomington, IN 47405, USA.
| |
Collapse
|
138
|
Chandrasekaran AR, Furuta Y, Crair MC. Consequences of axon guidance defects on the development of retinotopic receptive fields in the mouse colliculus. J Physiol 2009; 587:953-63. [PMID: 19153163 DOI: 10.1113/jphysiol.2008.160952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Gradients of molecular factors pattern the developing retina and superior colliculus (SC) and guide retinal ganglion cell (RGC) axons to their appropriate central target perinatally. During and subsequent to this period, spontaneous waves of action potentials sweep across the retina, providing an instructive topographic signal based on the correlations of firing patterns of neighbouring RGCs. How these activity-independent and activity-dependent factors interact during retinotopic map formation remains unclear. A typical phenotype of mutant mice lacking genes for one or more RGC axon guidance molecules is the presence of topographically inappropriate projections or 'ectopic spots'. Here, we examine mice that lack functional bone morphogenetic protein receptors (BMPRs) in the retina. Retinal BMP controls the graded expression of RGC axon guidance molecules, resulting in some dorsal RGCs projecting ectopically to locations in the SC that normally receive input from ventral retina. We examine the consequences of this anatomical phenotype in vivo by studying the receptive field (RF) properties of neurons in the superficial SC. We observe a mixture of physiological phenotypes in BMPR mutant mice; notably we find some neurons with ectopic RFs displaced in elevation, corresponding to the observed anatomical defect. However, in a result not necessarily congruent with the presence of focal ectopic projections, some neurons have split, enlarged and patchy/distorted RFs. These results are consistent with the effects of spontaneous retinal waves acting upon a disrupted molecular template, and they place significant limits on the form of an activity-dependent learning rule for the development of retinocollicular projections.
Collapse
|
139
|
Chen M, Weng S, Deng Q, Xu Z, He S. Physiological properties of direction-selective ganglion cells in early postnatal and adult mouse retina. J Physiol 2008; 587:819-28. [PMID: 19103682 DOI: 10.1113/jphysiol.2008.161240] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Selective responses of retinal ganglion cells (RGCs) to the direction of motion have been recorded extracellularly from the rabbit and the mouse retina at eye opening. Recently, it has been shown that the development of this circuitry is light independent. Using whole-cell patch clamp recording, we report here that mouse early postnatal direction-selective ganglion cells (DSGCs) showed lower membrane excitability, lower reliability of synaptic transmission and much slower kinetics of light responses compared with adult DSGCs. However, the degree of direction selectivity of early postnatal DSGCs measured by the direction-selective index and the width of the directional tuning curve was almost identical to that of adult DSGCs. The DSGCs exhibited a clear selectivity for the direction of motion at the onset of light sensitivity. Furthermore, the degree of direction selectivity was not affected by rearing in complete darkness from birth to postnatal day 11 or 30. The formation of the retinal neurocircuitry for coding motion direction is completely independent of light.
Collapse
Affiliation(s)
- Minggang Chen
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | |
Collapse
|
140
|
Mochida H, Sato K, Momose-Sato Y. Switching of the transmitters that mediate hindbrain correlated activity in the chick embryo. Eur J Neurosci 2008; 29:14-30. [PMID: 19087161 DOI: 10.1111/j.1460-9568.2008.06569.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Widely propagating correlated neuronal activity is a hallmark of the developing nervous system. The activity is usually mediated by multiple transmitters, and the contribution of gap junctions has also been suggested in several systems. In some structures, such as the retina and spinal cord, it has been shown that the dominant transmitter mediating the correlated wave switches from acetylcholine to glutamate during development, although the functional significance of this phenomenon has not been clarified. An important question is whether such a transmitter switch occurs in other systems, especially in the brain. In the present study, we demonstrate that the major transmitter mediating correlated wave activity in the embryonic chick hindbrain changes from acetylcholine/gamma-aminobutyric acid (GABA)/glycine to glutamate/GABA as development proceeds. The results show for the first time that the dominant transmitter switches from acetylcholine to glutamate in a region other than the retina and spinal cord. This finding sheds more light on the role of nicotinic acetylcholine receptors in the generation of correlated wave activity, which is considered to regulate the development of the nervous system.
Collapse
Affiliation(s)
- Hiraku Mochida
- Department of Psychiatry, Graduate School and Faculty of Medicine, Kobe University, Kobe, Japan
| | | | | |
Collapse
|
141
|
Cang J, Wang L, Stryker MP, Feldheim DA. Roles of ephrin-as and structured activity in the development of functional maps in the superior colliculus. J Neurosci 2008; 28:11015-23. [PMID: 18945909 PMCID: PMC2588436 DOI: 10.1523/jneurosci.2478-08.2008] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 08/15/2008] [Accepted: 09/10/2008] [Indexed: 11/21/2022] Open
Abstract
The orderly projections from retina to superior colliculus (SC) preserve a continuous retinotopic representation of the visual world. The development of retinocollicular maps depend on a combination of molecular guidance cues and patterned neural activity. Here, we characterize the functional retinocollicular maps in mice lacking the guidance molecules ephrin-A2, -A3, and -A5 and in mice deficient in both ephrin-As and structured spontaneous retinal activity, using a method of Fourier imaging of intrinsic signals. We find that the SC of ephrin-A2/A3/A5 triple knock-out mice contains functional maps that are disrupted selectively along the nasotemporal (azimuth) axis of the visual space. These maps are discontinuous, with patches of SC responding to topographically incorrect locations. The patches disappear in mice that are deficient in both ephrin-As and structured activity, resulting in a near-absence of azimuth map in the SC. These results indicate that ephrin-As guide the formation of functional topography in the SC, and patterned retinal activity clusters cells based on their correlated firing patterns. Comparison of the SC and visual cortical mapping defects in these mice suggests that although ephrin-As are required for mapping in both SC and visual cortex, ephrin-A-independent mapping mechanisms are more important in visual cortex than in the SC.
Collapse
Affiliation(s)
- Jianhua Cang
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208, USA.
| | | | | | | |
Collapse
|
142
|
Architecture and activity-mediated refinement of axonal projections from a mosaic of genetically identified retinal ganglion cells. Neuron 2008; 59:425-38. [PMID: 18701068 DOI: 10.1016/j.neuron.2008.07.018] [Citation(s) in RCA: 227] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 07/04/2008] [Accepted: 07/08/2008] [Indexed: 11/21/2022]
Abstract
Our understanding of how mammalian sensory circuits are organized and develop has long been hindered by the lack of genetic markers of neurons with discrete functions. Here, we report a transgenic mouse selectively expressing GFP in a complete mosaic of transient OFF-alpha retinal ganglion cells (tOFF-alphaRGCs). This enabled us to relate the mosaic spacing, dendritic anatomy, and electrophysiology of these RGCs to their complete map of projections in the brain. We find that tOFF-alphaRGCs project exclusively to the superior colliculus (SC) and dorsal lateral geniculate nucleus and are restricted to a specific laminar depth within each of these targets. The axons of tOFF-alphaRGC are also organized into columns in the SC. Both laminar and columnar specificity develop through axon refinement. Disruption of cholinergic retinal waves prevents the emergence of columnar- but not laminar-specific tOFF-alphaRGC connections. Our findings reveal that in a genetically identified sensory map, spontaneous activity promotes synaptic specificity by segregating axons arising from RGCs of the same subtype.
Collapse
|
143
|
Retinal waves in mice lacking the beta2 subunit of the nicotinic acetylcholine receptor. Proc Natl Acad Sci U S A 2008; 105:13638-43. [PMID: 18757739 DOI: 10.1073/pnas.0807178105] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The structural and functional properties of the visual system are disrupted in mutant animals lacking the beta2 subunit of the nicotinic acetylcholine receptor. In particular, eye-specific retinogeniculate projections do not develop normally in these mutants. It is widely thought that the developing retinas of beta2(-/-) mutants do not manifest correlated activity, leading to the notion that retinal waves play an instructional role in the formation of eye-specific retinogeniculate projections. By multielectrode array recordings, we show here that the beta2(-/-) mutants have robust retinal waves during the formation of eye-specific projections. Unlike in WT animals, however, the mutant retinal waves are propagated by gap junctions rather than cholinergic circuitry. These results indicate that lack of retinal waves cannot account for the abnormalities that have been documented in the retinogeniculate pathway of the beta2(-/-) mutants and suggest that other factors must contribute to the deficits in the visual system that have been noted in these animals.
Collapse
|
144
|
Shah RD, Crair MC. Mechanisms of response homeostasis during retinocollicular map formation. J Physiol 2008; 586:4363-9. [PMID: 18617562 DOI: 10.1113/jphysiol.2008.157222] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The mechanisms of Hebbian synaptic plasticity have been widely hypothesized to play a role in the activity-dependent development of neural circuits. However, these mechanisms are inherently unstable and would lead to the runaway excitation or depression of circuits if left unchecked. In the last decade, a number of elegant studies have demonstrated that homeostatic plasticity mechanisms exist to stabilize neural networks and maintain the constancy of neuronal output in response to changes in activity levels. These include synaptic scaling, sliding threshold models of synaptic plasticity, dynamic regulation of the number and strength of synapses, and bidirectional control of intrinsic excitability. Recently, we showed that the total synaptic input onto individual neurons of the mouse superior colliculus is preserved regardless of the size of their visual receptive fields, a phenomenon we term 'response homeostasis'. Here, we argue that regulating the capacity for synaptic plasticity and controlling the number and strength of retinocollicular inputs can preserve collicular neuron output, and we present evidence that changes in intrinsic excitability are not associated with response homeostasis. We also review findings from a number of different mutant mice and discuss whether and how different cellular mechanisms may underlie response homeostasis. Combined with other studies, our work reveals an important role for homeostatic mechanisms in regulating functional connectivity during the construction of receptive fields and the refinement of topographic maps.
Collapse
Affiliation(s)
- Ruchir D Shah
- Department of Neurobiology, Yale University School of Medicine, 333 Cedar Street SHM B301, New Haven, CT 06510, USA
| | | |
Collapse
|
145
|
Abstract
Much of our present understanding about the mechanisms contributing to the activity-dependent refinement of sensory connections comes from experiments done in the retinogeniculate pathway. In recent years the mouse has emerged as a model system of study. This review outlines the major changes in connectivity that occur in this species and a potential mechanism that can account for such remodelling. During early postnatal life when spontaneous activity of retinal ganglion cells sweeps across the retina in waves, retinal projections from the two eyes to the dorsal lateral geniculate nucleus (LGN) segregate to form non-overlapping eye-specific domains. There is a loss of binocular innervation, a pruning of excitatory inputs from a dozen or more to one or two, and the emergence of inhibitory circuitry. Many of these changes underlie the development of precise eye-specific visual maps and receptive field structure of LGN neurons. Retinal activity plays a major role both in the induction and maintenance of this refinement. The activity-dependent influx of Ca(2+) through L-type channels and associated activation of CREB signalling may underlie the pruning and stabilization of developing retinogeniculate connections.
Collapse
Affiliation(s)
- William Guido
- Department of Anatomy and Neurobiology, VCU Medical Center, Sanger Hall, 1101 E. Marshall Street, Richmond, VA 23298, USA.
| |
Collapse
|
146
|
Elstrott J, Anishchenko A, Greschner M, Sher A, Litke AM, Chichilnisky EJ, Feller MB. Direction selectivity in the retina is established independent of visual experience and cholinergic retinal waves. Neuron 2008; 58:499-506. [PMID: 18498732 PMCID: PMC2474739 DOI: 10.1016/j.neuron.2008.03.013] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 01/28/2008] [Accepted: 03/18/2008] [Indexed: 11/25/2022]
Abstract
Direction selectivity in the retina requires the asymmetric wiring of inhibitory inputs onto four subtypes of On-Off direction-selective ganglion cells (DSGCs), each preferring motion in one of four cardinal directions. The primary model for the development of direction selectivity is that patterned activity plays an instructive role. Here, we use a unique, large-scale multielectrode array to demonstrate that DSGCs are present at eye opening, in mice that have been reared in darkness and in mice that lack cholinergic retinal waves. These data suggest that direction selectivity in the retina is established largely independent of patterned activity and is therefore likely to emerge as a result of complex molecular interactions.
Collapse
Affiliation(s)
- Justin Elstrott
- Neuroscience Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA.
| | | | | | | | | | | | | |
Collapse
|
147
|
Nicol X, Gaspar P. [Interaction between neuronal activity and ephrin signalling during the refinement of neuronal connections]. Med Sci (Paris) 2008; 24:144-6. [PMID: 18272074 DOI: 10.1051/medsci/2008242144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
148
|
Abstract
A characteristic feature of developing neural circuits is that they are spontaneously active. There are several examples, including the retina, spinal cord, and hippocampus, where spontaneous activity is highly correlated among neighboring cells, with large depolarizing events occurring with a periodicity on the order of minutes. One likely mechanism by which neurons can "decode" these slow oscillations is through activation of second messenger cascades that either influence transcriptional activity or drive posttranslational modifications. Here, we describe recent experiments where imaging has been used to characterize slow oscillations in the cAMP/PKA second messenger cascade in retinal neurons. We review the latest techniques in imaging this specific second messenger cascade, its intimate relationship with changes in intracellular calcium concentration, and several hypotheses regarding its role in neurodevelopment.
Collapse
Affiliation(s)
- Timothy A Dunn
- Division of Biological Sciences, University of California at San Diego, La Jolla, California, USA
| | | |
Collapse
|
149
|
Sato K, Momose-Sato Y. OPTICAL IMAGING ANALYSIS OF NEURAL CIRCUIT FORMATION IN THE EMBRYONIC BRAIN. Clin Exp Pharmacol Physiol 2008; 35:706-13. [DOI: 10.1111/j.1440-1681.2007.04834.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
150
|
Hanganu IL, Okabe A, Lessmann V, Luhmann HJ. Cellular Mechanisms of Subplate-Driven and Cholinergic Input-Dependent Network Activity in the Neonatal Rat Somatosensory Cortex. Cereb Cortex 2008; 19:89-105. [DOI: 10.1093/cercor/bhn061] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|