101
|
Sauer L, Calvo CM, Vitale AS, Henrie N, Milliken CM, Bernstein PS. Imaging of Hydroxychloroquine Toxicity with Fluorescence Lifetime Imaging Ophthalmoscopy. ACTA ACUST UNITED AC 2019; 3:814-825. [DOI: 10.1016/j.oret.2019.04.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/20/2019] [Accepted: 04/23/2019] [Indexed: 12/16/2022]
|
102
|
Luzhansky ID, Sudlow LC, Brogan DM, Wood MD, Berezin MY. Imaging in the repair of peripheral nerve injury. Nanomedicine (Lond) 2019; 14:2659-2677. [PMID: 31612779 PMCID: PMC6886568 DOI: 10.2217/nnm-2019-0115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/20/2019] [Indexed: 12/25/2022] Open
Abstract
Surgical intervention followed by physical therapy remains the major way to repair damaged nerves and restore function. Imaging constitutes promising, yet underutilized, approaches to improve surgical and postoperative techniques. Dedicated methods for imaging nerve regeneration will potentially provide surgical guidance, enable recovery monitoring and postrepair intervention, elucidate failure mechanisms and optimize preclinical procedures. Herein, we present an outline of promising innovations in imaging-based tracking of in vivo peripheral nerve regeneration. We emphasize optical imaging because of its cost, versatility, relatively low toxicity and sensitivity. We discuss the use of targeted probes and contrast agents (small molecules and nanoparticles) to facilitate nerve regeneration imaging and the engineering of grafts that could be used to track nerve repair. We also discuss how new imaging methods might overcome the most significant challenges in nerve injury treatment.
Collapse
Affiliation(s)
- Igor D Luzhansky
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
- The Institute of Materials Science & Engineering, Washington University, St Louis, MO 63130, USA
| | - Leland C Sudlow
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - David M Brogan
- Department of Orthopedic Surgery, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Matthew D Wood
- Department of Surgery, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Mikhail Y Berezin
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
- The Institute of Materials Science & Engineering, Washington University, St Louis, MO 63130, USA
| |
Collapse
|
103
|
Pfau M, von der Emde L, Dysli C, Thiele S, Möller PT, Lindner M, Nadal J, Schmid M, Schmitz-Valckenberg S, Holz FG, Fleckenstein M. Light Sensitivity Within Areas of Geographic Atrophy Secondary to Age-Related Macular Degeneration. ACTA ACUST UNITED AC 2019; 60:3992-4001. [DOI: 10.1167/iovs.19-27178] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Maximilian Pfau
- University of Bonn, Department of Ophthalmology, Bonn, Germany
- GRADE Reading Center, Bonn, Germany
| | | | - Chantal Dysli
- University of Bonn, Department of Ophthalmology, Bonn, Germany
- Department of Ophthalmology and Department of Clinical Research, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Sarah Thiele
- University of Bonn, Department of Ophthalmology, Bonn, Germany
- GRADE Reading Center, Bonn, Germany
| | - Philipp T. Möller
- University of Bonn, Department of Ophthalmology, Bonn, Germany
- GRADE Reading Center, Bonn, Germany
| | - Moritz Lindner
- The Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Jennifer Nadal
- Institute for Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Germany
| | - Matthias Schmid
- Institute for Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Germany
| | | | - Frank G. Holz
- University of Bonn, Department of Ophthalmology, Bonn, Germany
- GRADE Reading Center, Bonn, Germany
| | - Monika Fleckenstein
- University of Bonn, Department of Ophthalmology, Bonn, Germany
- GRADE Reading Center, Bonn, Germany
| |
Collapse
|
104
|
Hutfilz A, Sonntag SR, Lewke B, Theisen-Kunde D, Grisanti S, Brinkmann R, Miura Y. Fluorescence Lifetime Imaging Ophthalmoscopy of the Retinal Pigment Epithelium During Wound Healing After Laser Irradiation. Transl Vis Sci Technol 2019; 8:12. [PMID: 31588376 PMCID: PMC6748347 DOI: 10.1167/tvst.8.5.12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 06/19/2019] [Indexed: 12/22/2022] Open
Abstract
Purpose To investigate the change in fluorescence lifetime of retinal pigment epithelium (RPE) after laser irradiation by using an organ culture model. Methods Porcine RPE-choroid-sclera explants were irradiated with selective retina treatment laser (wavelength: 527 nm, beam diameter: 200 μm, energy: 80–150 μJ). At 24 and 72 hours after irradiation, the mean fluorescence lifetime (τm) was measured with fluorescence lifetime imaging ophthalmoscopy (FLIO) (excitation wavelength: 473 nm, emission: short spectral channel: 498-560 nm, long spectral channel: 560–720 nm). For every laser spot, central damaged zone (zone 1: 120 × 120 μm), area including wound rim (280 × 280 μm except zone 1), and environmental zone (440 × 440 μm except zone 1 and 2) were analyzed. Peripheral zone at a distance from laser spots longer than 2000 μm was examined for comparison. Cell viability was evaluated with calcein-acetoxymethyl ester and morphology with fluorescence microscopy for filamentous-actin. Results The RPE defect after selective retina treatment was mostly closed within 72 hours. FLIO clearly demarcated the irradiated region, with prolonged τm at the center of the defect decreasing with eccentricity. In short spectral channel, but not in long spectral channel, τm in the environmental zone after 72 hours was still significantly longer than in the peripheral zone. Conclusions FLIO may clearly demarcate the RPE defect, demonstrate its closure, and, moreover, indicate the induced metabolic changes of surrounding cells during wound healing. Translational Relevance This ex vivo study showed that FLIO may be used to evaluate the extent and quality of restoration of the damaged RPE and to detect its metabolic change in human fundus noninvasively.
Collapse
Affiliation(s)
- Alessa Hutfilz
- Institute of Biomedical Optics, University of Lübeck, Lübeck, Germany.,Medical Laser Center Lübeck, Lübeck, Germany
| | - Svenja Rebecca Sonntag
- Department of Ophthalmology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Britta Lewke
- Institute of Biomedical Optics, University of Lübeck, Lübeck, Germany.,Medical Laser Center Lübeck, Lübeck, Germany
| | | | - Salvatore Grisanti
- Department of Ophthalmology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Ralf Brinkmann
- Institute of Biomedical Optics, University of Lübeck, Lübeck, Germany.,Medical Laser Center Lübeck, Lübeck, Germany
| | - Yoko Miura
- Institute of Biomedical Optics, University of Lübeck, Lübeck, Germany.,Department of Ophthalmology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany.,Medical Laser Center Lübeck, Lübeck, Germany
| |
Collapse
|
105
|
Abstract
Retinal carotenoids are dietary nutrients that uniquely protect the eye from light damage and various retinal pathologies. Their antioxidative properties protect the eye from many retinal diseases, such as age-related macular degeneration. As many retinal diseases are accompanied by low carotenoid levels, accurate noninvasive assessment of carotenoid status can help ophthalmologists identify the patients most likely to benefit from carotenoid supplementation. This review focuses on the different methods available to assess carotenoid status and highlights disease-related changes and potential nutritional interventions.
Collapse
Affiliation(s)
- Lydia Sauer
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, Utah 84132, USA;, ,
| | - Binxing Li
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, Utah 84132, USA;, ,
| | - Paul S. Bernstein
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, Utah 84132, USA;, ,
| |
Collapse
|
106
|
Della Volpe-Waizel M, Traber GL, Maloca P, Zinkernagel M, Schmidt-Erfurth U, Rubin G, Roska B, Otto T, Weleber RG, Scholl HPN. New Technologies for Outcome Measures in Retinal Disease: Review from the European Vision Institute Special Interest Focus Group. Ophthalmic Res 2019; 63:77-87. [PMID: 31352462 DOI: 10.1159/000501887] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/03/2019] [Indexed: 01/03/2023]
Abstract
Novel diagnostic tools to measure retinal function and structure are rapidly being developed and introduced into clinical use. Opportunities exist to use these informative and robust measures as endpoints for clinical trials to determine efficacy and to monitor safety of therapeutic interventions. In order to inform researchers and clinician-scientists about these new diagnostic tools, a workshop was organized by the European Vision Institute. Invited speakers highlighted the recent advances in state-of-the-art technologies for outcome measures in the field of retina. This review highlights the workshop's presentations in the context of published literature.
Collapse
Affiliation(s)
- Maria Della Volpe-Waizel
- Department of Ophthalmology, University of Basel, Basel, Switzerland.,Institute of Molecular and Clinical Ophthalmology (IOB), Basel, Switzerland
| | - Ghislaine L Traber
- Department of Ophthalmology, University of Basel, Basel, Switzerland.,Institute of Molecular and Clinical Ophthalmology (IOB), Basel, Switzerland
| | - Peter Maloca
- Institute of Molecular and Clinical Ophthalmology (IOB), Basel, Switzerland
| | - Martin Zinkernagel
- Department of Ophthalmology and Department of Clinical Research, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Gary Rubin
- UCL University College London, Institute of Ophthalmology, London, United Kingdom
| | - Botond Roska
- Institute of Molecular and Clinical Ophthalmology (IOB), Basel, Switzerland
| | - Tilman Otto
- Heidelberg Engineering GmbH, Heidelberg, Germany
| | - Richard G Weleber
- Casey Eye Institute, Departments of Ophthalmology and Molecular and Medical Genetics, University of Oregon Health and Science University, Portland, Oregon, USA
| | - Hendrik P N Scholl
- Department of Ophthalmology, University of Basel, Basel, Switzerland, .,Institute of Molecular and Clinical Ophthalmology (IOB), Basel, Switzerland,
| |
Collapse
|
107
|
Handa JT, Bowes Rickman C, Dick AD, Gorin MB, Miller JW, Toth CA, Ueffing M, Zarbin M, Farrer LA. A systems biology approach towards understanding and treating non-neovascular age-related macular degeneration. Nat Commun 2019; 10:3347. [PMID: 31350409 PMCID: PMC6659646 DOI: 10.1038/s41467-019-11262-1] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 07/03/2019] [Indexed: 12/20/2022] Open
Abstract
Age-related macular degeneration (AMD) is the most common cause of blindness among the elderly in the developed world. While treatment is effective for the neovascular or “wet” form of AMD, no therapy is successful for the non-neovascular or “dry” form. Here we discuss the current knowledge on dry AMD pathobiology and propose future research directions that would expedite the development of new treatments. In our view, these should emphasize system biology approaches that integrate omic, pharmacological, and clinical data into mathematical models that can predict disease onset and progression, identify biomarkers, establish disease causing mechanisms, and monitor response to therapy. No effective therapies exist for dry age-related macular degeneration. In this perspective, the authors propose that research should emphasize system biology approaches that integrate various ‘omics’ data into mathematical models to establish pathogenic mechanisms on which to design novel treatments, and identify biomarkers that predict disease progression and therapeutic response.
Collapse
Affiliation(s)
- James T Handa
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, 21287, MD, USA.
| | - Cathy Bowes Rickman
- Department of Ophthalmology, Duke University Medical Center, Durham, 27708, NC, USA
| | - Andrew D Dick
- Translational Health Sciences (Ophthalmology), University of Bristol, Bristol, BS8 1TH, UK.,University College London, Institute of Ophthalmology and the National Institute for Health Research Biomedical Research Centre, Moorfields Eye Hospital and UCL-Institute of Ophthalmology, London, WC1E 6BT, UK
| | - Michael B Gorin
- Department of Ophthalmology, Jules Stein Eye Institute, David Geffen School of Medicine, UCLA, Los Angeles, 90095, CA, USA.,Brain Research Institute, UCLA, Los Angeles, 90095, CA, USA
| | - Joan W Miller
- Retina Service, Massachusetts Eye and Ear, Harvard Ophthalmology AMD Center of Excellence, Department of Ophthalmology, Harvard Medical School, Boston, 02114, MA, USA
| | - Cynthia A Toth
- Department of Ophthalmology, Duke University Medical Center, Durham, 27708, NC, USA
| | - Marius Ueffing
- Department of Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, D-72076, Germany
| | - Marco Zarbin
- Institute of Ophthalmology and Visual Science, New Jersey Medical School, Rutgers University, Newark, 07103, NJ, USA
| | - Lindsay A Farrer
- Departments of Medicine (Biomedical Genetics), Neurology, Ophthalmology, Epidemiology, and Biostatistics, Boston University Schools of Medicine and Public Health, Boston, 02118, MA, USA.
| |
Collapse
|
108
|
Chen B, Lu Y, Pan W, Xiong J, Yang Z, Yan W, Liu L, Qu J. Support Vector Machine Classification of Nonmelanoma Skin Lesions Based on Fluorescence Lifetime Imaging Microscopy. Anal Chem 2019; 91:10640-10647. [DOI: 10.1021/acs.analchem.9b01866] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Bingling Chen
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yuan Lu
- Department of Dermatology, The Sixth People’s Hospital of Shenzhen, Guangdong 518052, China
| | - Wenhui Pan
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jia Xiong
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhigang Yang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Wei Yan
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Liwei Liu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
109
|
Choriocapillaris flow impairment predicts the development and enlargement of drusen. Graefes Arch Clin Exp Ophthalmol 2019; 257:2079-2085. [DOI: 10.1007/s00417-019-04403-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/18/2019] [Accepted: 06/21/2019] [Indexed: 12/21/2022] Open
|
110
|
Shcheslavskiy VI, Shirmanova MV, Jelzow A, Becker W. Multiparametric Time-Correlated Single Photon Counting Luminescence Microscopy. BIOCHEMISTRY (MOSCOW) 2019; 84:S51-S68. [PMID: 31213195 DOI: 10.1134/s0006297919140049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Classic time-correlated single photon counting (TCSPC) technique involves detection of single photons of a periodic optical signal, registration of the photon arrival time in respect to the reference pulse, and construction of photon distribution with regard to the detection times. This technique achieves extremely high time resolution and near-ideal detection efficiency. Modern TCSPC is multi-dimensional, i.e., in addition to the photon arrival time relative to the excitation pulse, spatial coordinates within the image area, wavelength, time from the start of the experiment, and many other parameters are determined for each photon. Hence, the multi-dimensional TCSPC allows generation of photon distributions over these parameters. This review describes both classic and multi-dimensional types of TCSPC microscopy and their application for fluorescence lifetime imaging in different areas of biological studies.
Collapse
Affiliation(s)
- V I Shcheslavskiy
- Becker&Hickl GmbH, Berlin, 12277, Germany. .,Privolzhskiy Medical Research University, Nizhny Novgorod, 603005, Russia
| | - M V Shirmanova
- Privolzhskiy Medical Research University, Nizhny Novgorod, 603005, Russia
| | - A Jelzow
- Becker&Hickl GmbH, Berlin, 12277, Germany
| | - W Becker
- Becker&Hickl GmbH, Berlin, 12277, Germany
| |
Collapse
|
111
|
Allen P, Calcagni A, Robson AG, Claridge E. Investigating the potential of Zernike polynomials to characterise spatial distribution of macular pigment. PLoS One 2019; 14:e0217265. [PMID: 31125363 PMCID: PMC6534297 DOI: 10.1371/journal.pone.0217265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 05/09/2019] [Indexed: 11/24/2022] Open
Abstract
It has been postulated that particular patterns of macular pigment (MP) distribution may be associated with the risk for eye diseases such as age-related macular degeneration (AMD). This work investigates the potential of Zernike polynomials (ZP) to characterise the level and distribution of MP, and their suitability as a representation for analysis of the effects of age and AMD on MP patterns. As the case study, MP distribution maps computed using an experimental method based on fundus reflectance (MRIA) were obtained for ninety volunteers representing three groups: under-fifty without AMD, fifty and over without AMD, and fifty and over with AMD. ZP with 105 coefficients were fitted to the maps using least-squares optimisation and found to represent MP maps accurately (RMSE<10−1). One-way MANOVA analysis carried out on ZP representations showed that the three subject groups have significantly different means (Wilk’s Lambda 0.125, p<0.0001). Linear discriminant analysis with leave-one-out scheme resulted in accuracy, sensitivity and specificity of classification according to, respectively, disease status regardless of age (81% all); disease status in the age-matched groups (87%, 88%, 86%); age irrespective of disease status (81%, 83%, 73%); and age for subjects without AMD (83%, 88%, 80%). Mean MP distributions computed from ZP coefficients for the three groups showed more elevated and more peaked MP for the healthy under-fifty group; more irregular and more elevated peripheral levels in over-fifty AMD group than in over-fifty non-AMD group; and moderate radial asymmetry in non-AMD over-50 group. The results suggest that ZP coefficients are capable of accurately representing MP in a way that captures certain spatial patterns of its distribution. Using the ZP representation MP maps could be classified according to both age and disease status with accuracy significantly greater than chance, with peak elevation, pattern irregularity and radial asymmetry identified as important features.
Collapse
Affiliation(s)
- Piers Allen
- School of Computer Science, University of Birmingham, Birmingham, United Kingdom
| | - Antonio Calcagni
- School of Computer Science, University of Birmingham, Birmingham, United Kingdom
- Aston University, Ophthalmic Research Group, School of Life and Health Sciences, Aston Triangle, Birmingham, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, Department of Electrophysiology, London, United Kingdom
| | - Anthony G. Robson
- Moorfields Eye Hospital NHS Foundation Trust, Department of Electrophysiology, London, United Kingdom
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Ela Claridge
- School of Computer Science, University of Birmingham, Birmingham, United Kingdom
- * E-mail:
| |
Collapse
|
112
|
Solberg Y, Dysli C, Möller B, Wolf S, Zinkernagel MS. Fluorescence Lifetimes in Patients With Hydroxychloroquine Retinopathy. ACTA ACUST UNITED AC 2019; 60:2165-2172. [DOI: 10.1167/iovs.18-26079] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Yasmin Solberg
- Department of Ophthalmology, Inselspital, Bern University Hospital, and Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Chantal Dysli
- Department of Ophthalmology, Inselspital, Bern University Hospital, and Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Burkhard Möller
- Department of Rheumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sebastian Wolf
- Department of Ophthalmology, Inselspital, Bern University Hospital, and Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Martin S. Zinkernagel
- Department of Ophthalmology, Inselspital, Bern University Hospital, and Department of BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
113
|
Kwon S, Borrelli E, Fan W, Ebraheem A, Marion KM, Sadda SR. Repeatability of Fluorescence Lifetime Imaging Ophthalmoscopy in Normal Subjects With Mydriasis. Transl Vis Sci Technol 2019; 8:15. [PMID: 31114715 PMCID: PMC6506203 DOI: 10.1167/tvst.8.3.15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/10/2019] [Indexed: 11/24/2022] Open
Abstract
Purpose We evaluate the repeatability of fluorescence lifetime imaging ophthalmoscopy (FLIO) in normal subjects with mydriasis and explore factors that influence FLIO imaging. Method Thirty-two healthy participants (63 eyes) were enrolled in this prospective study. The Heidelberg Engineering FLIO system uses a 473 nm blue laser light and the emitted fluorescence is detected in two wavelength channels, short and long spectral channels (SSC, LSC). The mean fluorescence lifetime (τm) values were computed for the entire scan area as well as in five regions of interest (ROI, 1 × 1 mm) at the fovea and superior, nasal, inferior, and temporal portions of the macula. Intraclass correlation coefficients (ICC) and coefficients of variation (CV) were used to assess the repeatability. Age, macular thickness, and vascular density also were correlated with τm. Results The repeatability was good for both channels (ICC, 0.956∼0.995; CV, 9∼16%). The τm for the entire scan was 367.8 ± 58.1 picoseconds (ps) in SSC and 322.5 ± 34.0 ps in LSC. τm was the shortest in the fovea and significantly shorter in the temporal region compared to other regions. τm was positively correlated with age (r = 0.588 for SSC and r = 0.584 for LSC, P = 0.000) and retinal thickness (r = 0.298 for SSC and r = 0.322 for LSC, P = 0.000), and negatively correlated with vascular density (r = −0.112, P = 0.055 for SSC and r = −0.119, P = 0.040 for LSC). Conclusion Repeatable fluorescence lifetime values can be obtained with FLIO, but the lifetimes are affected by age, retinal thickness, vessel density, and macular location. Translational Relevance Establishing repeatability of FLIO can introduce fluorescence lifetime imaging technique, which is used in basic science for analysis of excitation and emission wavelength spectrum of fixed and living cells into clinical practice.
Collapse
Affiliation(s)
- Soonil Kwon
- Doheny Eye Institute, Los Angeles, CA, USA.,Department of Ophthalmology, Hallym Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Gyeonggi, South Korea
| | | | | | | | | | - SriniVas R Sadda
- Doheny Eye Institute, Los Angeles, CA, USA.,Department of Ophthalmology, David Geffen School of Medicine at UCLA, Stein Eye Institute, Los Angeles CA, USA
| |
Collapse
|
114
|
Sadda SR, Borrelli E, Fan W, Ebraheem A, Marion KM, Harrington M, Kwon S. A pilot study of fluorescence lifetime imaging ophthalmoscopy in preclinical Alzheimer's disease. Eye (Lond) 2019; 33:1271-1279. [PMID: 30923356 DOI: 10.1038/s41433-019-0406-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/06/2019] [Accepted: 02/24/2019] [Indexed: 01/03/2023] Open
Abstract
PURPOSE To investigate fluorescence lifetime imaging ophthalmoscopy (FLIO) findings in preclinical Alzheimer's disease (AD). METHODS This prospective, observational study enrolled patients with early AD undergoing Alzheimer's biomarker analysis and matched controls. Alzheimer-associated parameters (β-amyloid [Aβ], total tau in cerebrospinal fluid [CSF], Mini-Mental Status Examination [MMSE], etc.), risk factor-associated data (body mass index [BMI], hypertension, lipid profile, etc.), ganglion cell layer plus inner plexiform layer (GCIPL) thickness in structural optical coherence tomography (OCT), OCT angiography data, and FLIO-derived parameters (τm, τ1, τ2, and τ3) in short and long spectral channels (SSC and LSC) were compared and correlated between the two groups. Additional analyses were performed separately within subgroups of phakic and pseudophakic. RESULTS A total of 28 eyes from 15 subjects (8 control and 7 AD) were included in this analysis. In FLIO parameters, τm in AD group showed longer lifetimes compared to the controls in phakic subjects (593.9 ± 93.3, 454.4 ± 38.6 ps; 475.0 ± 71.6, 394.1 ± 28.2 ps in SSC and LSC of AD and control groups, respectively, p = 0.036 and 0.024). Aβ, tau in CSF, and GCIPL thickness correlated with τm in the LSC for phakic subjects (r = -0.611 to 0.562, p < 0.05 for all), but only the GCIPL thickness showed a correlation with FLIO parameters in pseudophakic subjects (r = -0.893 to -0.795, p < 0.001 for all). CONCLUSION FLIO-derived parameters appear to correlate with Aβ, tau levels in the CSF, and GCIPL thickness on OCT in AD patients. If these findings can be validated in future longitudinal studies, FLIO may prove to be useful as a simple, non-invasive diagnostic tool for AD.
Collapse
Affiliation(s)
- SriniVas R Sadda
- Doheny Eye Institute, University of California, Los Angeles, CA, USA.,Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Enrico Borrelli
- Doheny Eye Institute, University of California, Los Angeles, CA, USA
| | - Wenying Fan
- Doheny Eye Institute, University of California, Los Angeles, CA, USA
| | - Adel Ebraheem
- Doheny Eye Institute, University of California, Los Angeles, CA, USA
| | - Kenneth M Marion
- Doheny Eye Institute, University of California, Los Angeles, CA, USA
| | - Michael Harrington
- Molecular Neurology Program, Huntington Medical Research Institutes, Pasadena, CA, USA
| | - Soonil Kwon
- Doheny Eye Institute, University of California, Los Angeles, CA, USA. .,Department of Ophthalmology, Hallym Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Gyeonggi, South Korea.
| |
Collapse
|
115
|
Klemm M, Sauer L, Klee S, Link D, Peters S, Hammer M, Schweitzer D, Haueisen J. Bleaching effects and fluorescence lifetime imaging ophthalmoscopy. BIOMEDICAL OPTICS EXPRESS 2019; 10:1446-1461. [PMID: 30891358 PMCID: PMC6420301 DOI: 10.1364/boe.10.001446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/02/2018] [Accepted: 12/02/2018] [Indexed: 05/13/2023]
Abstract
This study investigates the influence of photopigment bleaching on autofluorescence lifetimes in the fundus in 21 young healthy volunteers. Three measurements of 30° retinal fields in two spectral channels (SSC: 498-560 nm, LSC: 560-720 nm) were obtained for each volunteer using fluorescence lifetime imaging ophthalmoscopy (FLIO). After dark-adaptation by wearing a custom-made lightproof mask for 30 minutes, the first FLIO-measurement was recorded (dark-adapted state). Subsequently, the eye was bleached for 1 minute (luminance: 3200 cd/m2), followed by a second FLIO-measurement (bleached state). Following an additional 10 minute dark adaptation using the mask, a final FLIO-measurement was recorded (recovered state). Average values of the fluorescence lifetimes were calculated from within different areas of a standardized early treatment diabetic retinopathy study (ETDRS) grid (central area, inner and outer rings). The acquisition time in the bleached state was significantly shortened by approximately 20%. The SSC did not show any significant changes in fluorescence lifetimes with photopigment bleaching, only the LSC showed small but significant bleaching-related changes in the fluorescence lifetimes τ1 and τ2 from all regions, as well as the mean fluorescence lifetime in the central area. The fluorescence lifetime differences caused by bleaching were by far less significant than pathological changes caused by eye diseases. The magnitudes of fluorescence lifetime changes are <10% and do not interfere with healthy or disease related FLIO patterns. Thus, we conclude that bleaching is not a relevant confounder in current clinical applications of FLIO.
Collapse
Affiliation(s)
- Matthias Klemm
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, POB 100565, 98694 Ilmenau, Germany
| | - Lydia Sauer
- University Hospital Jena, Department of Ophthalmology, Am Klinikum 1, 07743 Jena, Germany
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Sascha Klee
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, POB 100565, 98694 Ilmenau, Germany
| | - Dietmar Link
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, POB 100565, 98694 Ilmenau, Germany
| | - Sven Peters
- University Hospital Jena, Department of Ophthalmology, Am Klinikum 1, 07743 Jena, Germany
| | - Martin Hammer
- University Hospital Jena, Department of Ophthalmology, Am Klinikum 1, 07743 Jena, Germany
- University of Jena, Center for Biomedical Optics and Photonics, 07740 Jena, Germany
| | - Dietrich Schweitzer
- University Hospital Jena, Department of Ophthalmology, Am Klinikum 1, 07743 Jena, Germany
| | - Jens Haueisen
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, POB 100565, 98694 Ilmenau, Germany
| |
Collapse
|
116
|
Nassisi M, Baghdasaryan E, Borrelli E, Ip M, Sadda SR. Choriocapillaris flow impairment surrounding geographic atrophy correlates with disease progression. PLoS One 2019; 14:e0212563. [PMID: 30794627 PMCID: PMC6386298 DOI: 10.1371/journal.pone.0212563] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 02/05/2019] [Indexed: 01/03/2023] Open
Abstract
Purpose To evaluate the correlation between the choriocapillaris (CC) flow alterations around geographic atrophy (GA) and the GA yearly growth rate (yGR) in patients with dry age-related macular degeneration (AMD). Methods We retrospectively reviewed and analyzed spectral domain optical coherence tomography (SD-OCT) and SD-OCT angiography images of consecutive patients with GA acquired using the Cirrus OCT at the Doheny Eye Centers between 2015 and 2017. All eligible patients had one 6 x 6 mm OCTA scan acquired during the first visit (considered as baseline) and two fovea-centered 512 x 128 macular cubes (6 x 6 mm) acquired at baseline and after a minimum of 12 months. Main outcome measures The fundus images from the OCT volumes were used to manually delineate the GA area and calculate the yGR after square root transformation. The en-face angiogram at the level of the CC was analyzed for the percentage of flow voids (FV) outside the atrophic lesion (FVOUT) and in the para- and peri-atrophy regions (FV500 and FV1000 respectively; two concentric 500 μm wide rings around the atrophy edge). These values, together with the difference between FV500 and FV1000 (ΔFV), were then correlated with the corresponding yGR. Results Thirty-three eyes of 23 patients were eligible for the analysis. The mean yGR was 0.23 ± 0.17 mm/years. At baseline, the mean FVOUT was 41.86 ± 2.71%, while FV500 and FV1000 were 46.4 ± 4.17% and 42.51 ± 2.65% respectively. The mean ΔFV was 3.89 ± 2.6%. While in the univariable analysis, the yGR was significantly associated with FV500 and with ΔFV (both p < 0.001), in multivariable model the association remained significant only with ΔFV (p < 0.001). Conclusions Our study reports a correlation between the CC flow impairment around the atrophic lesions and their yGR in patients with GA. If replicated in future longitudinal studies, the choriocapillaris FV in the para-and peri-atrophy regions may prove to be useful parameters for evaluating the prognosis of these eyes.
Collapse
Affiliation(s)
- Marco Nassisi
- Doheny Image Reading Center, Doheny Eye Institute, Los Angeles, California, United States of America
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Elmira Baghdasaryan
- Doheny Image Reading Center, Doheny Eye Institute, Los Angeles, California, United States of America
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Enrico Borrelli
- Doheny Image Reading Center, Doheny Eye Institute, Los Angeles, California, United States of America
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Ophthalmology Clinic, Department of Medicine and Science of Ageing, University G. D'Annunzio Chieti-Pescara, Chieti, Italy
| | - Michael Ip
- Doheny Image Reading Center, Doheny Eye Institute, Los Angeles, California, United States of America
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Srinivas R. Sadda
- Doheny Image Reading Center, Doheny Eye Institute, Los Angeles, California, United States of America
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
117
|
Dysli C, Schuerch K, Escher P, Wolf S, Zinkernagel MS. Fundus Autofluorescence Lifetime Patterns in Retinitis Pigmentosa. Invest Ophthalmol Vis Sci 2019; 59:1769-1778. [PMID: 29610860 DOI: 10.1167/iovs.17-23336] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose We investigated whether fundus autofluorescence (FAF) lifetimes in patients with retinitis pigmentosa display a disease-specific lifetime pattern. Methods Fundus autofluorescence lifetime imaging ophthalmoscopy (FLIO) was performed in two spectral channels (498-560 and 560-720 nm) after excitation with a 473 nm pulsed laser in patients with retinitis pigmentosa and compared to healthy controls of a similar age range. Corresponding FAF intensity and spectral domain optical coherence tomography (OCT) data, as well as best corrected visual acuity (BCVA) were acquired and compared to fluorescence lifetime data. Results We investigated 43 eyes from 43 patients with retinitis pigmentosa (mean age 45 ± 15 years) and compared them to eyes of 13 age-matched healthy participants. Mean FAF lifetimes were prolonged in areas of photoreceptor atrophy with preserved retinal pigment epithelium (RPE) (P = 0.0036) and even longer in areas with total atrophy of photoreceptors and RPE (P = 0.0002). The prevalence of perifoveal ring structures characterized by prolonged fluorescence lifetimes in FLIO was higher (63% vs. 49%) and the rings were wider compared to the hyperautofluorescent rings in qualitative fundus autofluorescence intensity images. In the central fovea with intact retinal layer structure identified by OCT, fluorescence lifetimes were slightly prolonged compared to those of age-matched healthy controls (short spectral channel [SSC], P = 0.0044; long spectral channel [LSC], P = 0.0128). Short lifetimes within the macular center were negatively correlated with BCVA (R2 = 0.33, P < 0.0001) as well as the greatest diameter of the ellipsoid band in OCT. Conclusions FLIO in retinitis pigmentosa reveals characteristic patterns that allow identification of areas of photoreceptor atrophy, RPE atrophy, and remaining photoreceptor segments in areas of RPE atrophy. Fluorescence lifetimes can be used to identify ellipsoid zone loss that correlates with functional parameters.
Collapse
Affiliation(s)
- Chantal Dysli
- Department of Ophthalmology, Inselspital, Bern University Hospital, and Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Kaspar Schuerch
- Department of Ophthalmology, Inselspital, Bern University Hospital, and Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Pascal Escher
- Department of Ophthalmology, Inselspital, Bern University Hospital, and Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Sebastian Wolf
- Department of Ophthalmology, Inselspital, Bern University Hospital, and Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Martin S Zinkernagel
- Department of Ophthalmology, Inselspital, Bern University Hospital, and Department of BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
118
|
Dysli C, Müller PL, Birtel J, Holz FG, Herrmann P. Spectrally Resolved Fundus Autofluorescence in ABCA4-Related Retinopathy. ACTA ACUST UNITED AC 2019; 60:274-281. [DOI: 10.1167/iovs.18-25755] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Chantal Dysli
- Department of Ophthalmology, University of Bonn, Bonn, Germany
- Department of Ophthalmology and Department of Clinical Research, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Philipp L. Müller
- Department of Ophthalmology, University of Bonn, Bonn, Germany
- Center for Rare Diseases, University of Bonn, Bonn, Germany
| | - Johannes Birtel
- Department of Ophthalmology, University of Bonn, Bonn, Germany
- Center for Rare Diseases, University of Bonn, Bonn, Germany
| | - Frank G. Holz
- Department of Ophthalmology, University of Bonn, Bonn, Germany
- Center for Rare Diseases, University of Bonn, Bonn, Germany
| | - Philipp Herrmann
- Department of Ophthalmology, University of Bonn, Bonn, Germany
- Center for Rare Diseases, University of Bonn, Bonn, Germany
| |
Collapse
|
119
|
Burns SA, Elsner AE, Sapoznik KA, Warner RL, Gast TJ. Adaptive optics imaging of the human retina. Prog Retin Eye Res 2019; 68:1-30. [PMID: 30165239 PMCID: PMC6347528 DOI: 10.1016/j.preteyeres.2018.08.002] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 12/18/2022]
Abstract
Adaptive Optics (AO) retinal imaging has provided revolutionary tools to scientists and clinicians for studying retinal structure and function in the living eye. From animal models to clinical patients, AO imaging is changing the way scientists are approaching the study of the retina. By providing cellular and subcellular details without the need for histology, it is now possible to perform large scale studies as well as to understand how an individual retina changes over time. Because AO retinal imaging is non-invasive and when performed with near-IR wavelengths both safe and easily tolerated by patients, it holds promise for being incorporated into clinical trials providing cell specific approaches to monitoring diseases and therapeutic interventions. AO is being used to enhance the ability of OCT, fluorescence imaging, and reflectance imaging. By incorporating imaging that is sensitive to differences in the scattering properties of retinal tissue, it is especially sensitive to disease, which can drastically impact retinal tissue properties. This review examines human AO retinal imaging with a concentration on the use of the Adaptive Optics Scanning Laser Ophthalmoscope (AOSLO). It first covers the background and the overall approaches to human AO retinal imaging, and the technology involved, and then concentrates on using AO retinal imaging to study the structure and function of the retina.
Collapse
Affiliation(s)
- Stephen A Burns
- 800E. Atwater S, School of Optometry, Indiana University, Bloomington, IN, United States.
| | - Ann E Elsner
- 800E. Atwater S, School of Optometry, Indiana University, Bloomington, IN, United States
| | - Kaitlyn A Sapoznik
- 800E. Atwater S, School of Optometry, Indiana University, Bloomington, IN, United States
| | - Raymond L Warner
- 800E. Atwater S, School of Optometry, Indiana University, Bloomington, IN, United States
| | - Thomas J Gast
- 800E. Atwater S, School of Optometry, Indiana University, Bloomington, IN, United States
| |
Collapse
|
120
|
Sadda SR, Borrelli E, Fan W, Ebraheem A, Marion KM, Kwon S. Impact of mydriasis in fluorescence lifetime imaging ophthalmoscopy. PLoS One 2018; 13:e0209194. [PMID: 30592718 PMCID: PMC6310355 DOI: 10.1371/journal.pone.0209194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 11/30/2018] [Indexed: 11/19/2022] Open
Abstract
Fluorescence lifetime imaging ophthalmoscopy (FLIO) is a novel technique that measures in vivo autofluorescence intensity decay over time of endogenous fluorophores in the retina. The Heidelberg Engineering FLIO system was used to obtain two 30 degree scans centered on the fovea of both eyes. The FLIO system uses a 473nm blue scanning laser light source and the emitted fluorescence is detected in two wavelengths channels, short and long spectral channels (SSC, LSC). Since the mydriatic status influence the FLIO result, the impact of mydriasis on FLIO need to be clarified. In this prospective, observational study, the impact of mydriasis on measurements from fluorescence lifetime imaging ophthalmoscope (FLIO) images in normal subjects were evaluated. 12 healthy participants (24 eyes) were volunteered and all subjects were scanned twice and the mean fluorescence lifetime (τm) values were computed with dilation and without dilation on different days. Intraclass correlation coefficients (ICC) and coefficients of variation (CV) were calculated from the measured τm in dilated, nondilated and between the dilated and non-dilated setting. Test duration was also compared and correlated with lifetimes in both settings. Repeatability was excellent for both the dilation and non-dilation settings (ICC; 0.967–0.996; 0.926–0.986, respectively). The agreement between the dilation and non-dilation settings, however, were lower (ICC; 0.688–0.970). The τm in the non-dilation setting was significantly longer than in the dilation setting for the SSC (P<0.05). The FLIO test duration in the non-dilation setting was significantly longer than with dilation for the SSC (P <0.05). Although good repeatability in τm measurements between imaging sessions were observed both with and without dilation, the agreement was not as good when comparing dilated with non-dilated measurements. Since FLIO without mydriasis results in longer τm in the SSC and takes a longer time for image acquisition, maximal dilation is recommended for FLIO testing.
Collapse
Affiliation(s)
- SriniVas R Sadda
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Doheny Eye Center, Los Angeles, CA
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Stein Eye Institute, Los Angeles, CA
| | - Enrico Borrelli
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Doheny Eye Center, Los Angeles, CA
| | - Wenying Fan
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Doheny Eye Center, Los Angeles, CA
| | - Adel Ebraheem
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Doheny Eye Center, Los Angeles, CA
| | - Kenneth M Marion
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Doheny Eye Center, Los Angeles, CA
| | - Soonil Kwon
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Doheny Eye Center, Los Angeles, CA
- Department of Ophthalmology, Hallym Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Gyeonggi, South Korea
| |
Collapse
|
121
|
Brown CN, Green BD, Thompson RB, den Hollander AI, Lengyel I. Metabolomics and Age-Related Macular Degeneration. Metabolites 2018; 9:metabo9010004. [PMID: 30591665 PMCID: PMC6358913 DOI: 10.3390/metabo9010004] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 12/11/2022] Open
Abstract
Age-related macular degeneration (AMD) leads to irreversible visual loss, therefore, early intervention is desirable, but due to its multifactorial nature, diagnosis of early disease might be challenging. Identification of early markers for disease development and progression is key for disease diagnosis. Suitable biomarkers can potentially provide opportunities for clinical intervention at a stage of the disease when irreversible changes are yet to take place. One of the most metabolically active tissues in the human body is the retina, making the use of hypothesis-free techniques, like metabolomics, to measure molecular changes in AMD appealing. Indeed, there is increasing evidence that metabolic dysfunction has an important role in the development and progression of AMD. Therefore, metabolomics appears to be an appropriate platform to investigate disease-associated biomarkers. In this review, we explored what is known about metabolic changes in the retina, in conjunction with the emerging literature in AMD metabolomics research. Methods for metabolic biomarker identification in the eye have also been discussed, including the use of tears, vitreous, and aqueous humor, as well as imaging methods, like fluorescence lifetime imaging, that could be translated into a clinical diagnostic tool with molecular level resolution.
Collapse
Affiliation(s)
- Connor N Brown
- Wellcome-Wolfson Institute for Experimental Medicine (WWIEM), Queen's University Belfast, Belfast BT9 7BL, UK.
| | - Brian D Green
- Institute for Global Food Security (IGFS), Queen's University Belfast, Belfast BT9 6AG, UK.
| | - Richard B Thompson
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| | - Anneke I den Hollander
- Department of Ophthalmology, Radboud University Nijmegen Medical Centre, Nijmegen 6525 EX, The Netherlands.
| | - Imre Lengyel
- Wellcome-Wolfson Institute for Experimental Medicine (WWIEM), Queen's University Belfast, Belfast BT9 7BL, UK.
| |
Collapse
|
122
|
Lapierre-Landry M, Carroll J, Skala MC. Imaging retinal melanin: a review of current technologies. J Biol Eng 2018; 12:29. [PMID: 30534199 PMCID: PMC6280494 DOI: 10.1186/s13036-018-0124-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/22/2018] [Indexed: 11/10/2022] Open
Abstract
The retinal pigment epithelium (RPE) is essential to the health of the retina and the proper functioning of the photoreceptors. The RPE is rich in melanosomes, which contain the pigment melanin. Changes in RPE pigmentation are seen with normal aging and in diseases such as albinism and age-related macular degeneration. However, most techniques used to this day to detect and quantify ocular melanin are performed ex vivo and are destructive to the tissue. There is a need for in vivo imaging of melanin both at the clinical and pre-clinical level to study how pigmentation changes can inform disease progression. In this manuscript, we review in vivo imaging techniques such as fundus photography, fundus reflectometry, near-infrared autofluorescence imaging, photoacoustic imaging, and functional optical coherence tomography that specifically detect melanin in the retina. These methods use different contrast mechanisms to detect melanin and provide images with different resolutions and field-of-views, making them complementary to each other.
Collapse
Affiliation(s)
- Maryse Lapierre-Landry
- 1Morgridge Institute for Research, Madison, WI USA.,2Department of Biomedical Engineering, Vanderbilt University, Nashville, TN USA.,6Department of Pediatrics, Case Western Reserve University, Cleveland, OH USA
| | - Joseph Carroll
- 3Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI USA.,4Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI USA
| | - Melissa C Skala
- 1Morgridge Institute for Research, Madison, WI USA.,5Department of Biomedical Engineering, University of Wisconsin Madison, Madison, WI USA
| |
Collapse
|
123
|
Şencan İ, Esipova TV, Yaseen MA, Fu B, Boas DA, Vinogradov SA, Shahidi M, Sakadžić S. Two-photon phosphorescence lifetime microscopy of retinal capillary plexus oxygenation in mice. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-9. [PMID: 30516039 PMCID: PMC6278707 DOI: 10.1117/1.jbo.23.12.126501] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/07/2018] [Indexed: 05/23/2023]
Abstract
Impaired oxygen delivery and/or consumption in the retinal tissue underlies the pathophysiology of many retinal diseases. However, the essential tools for measuring oxygen concentration in retinal capillaries and studying oxygen transport to retinal tissue are still lacking. We show that two-photon phosphorescence lifetime microscopy can be used to map absolute partial pressures of oxygen (pO2) in the retinal capillary plexus. Measurements were performed at various retinal depths in anesthetized mice under systemic normoxic and hyperoxic conditions. We used a newly developed two-photon phosphorescent oxygen probe, based on a two-photon absorbing platinum tetraphthalimidoporphyrin, and commercially available optics without correction for optical aberrations of the eye. The transverse and axial distances within the tissue volume were calibrated using a model of the eye's optical system. We believe this is the first demonstration of in vivo depth-resolved imaging of pO2 in retinal capillaries. Application of this method has the potential to advance our understanding of oxygen delivery on the microvascular scale and help elucidate mechanisms underlying various retinal diseases.
Collapse
Affiliation(s)
- İkbal Şencan
- Massachusetts General Hospital, Harvard Medical School, Athinuola A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Tatiana V. Esipova
- University of Pennsylvania, Departments of Biochemistry and Biophysics and of Chemistry, Philadelphia, Pennsylvania, United States
| | - Mohammad A. Yaseen
- Massachusetts General Hospital, Harvard Medical School, Athinuola A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Buyin Fu
- Massachusetts General Hospital, Harvard Medical School, Athinuola A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - David A. Boas
- Massachusetts General Hospital, Harvard Medical School, Athinuola A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Sergei A. Vinogradov
- University of Pennsylvania, Departments of Biochemistry and Biophysics and of Chemistry, Philadelphia, Pennsylvania, United States
| | - Mahnaz Shahidi
- University of Southern California, Departments of Ophthalmology and Biomedical Engineering, Los Angeles, California, United States
| | - Sava Sakadžić
- Massachusetts General Hospital, Harvard Medical School, Athinuola A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| |
Collapse
|
124
|
Abstract
Photoacoustic ophthalmoscopy (PAOM) is a novel, hybrid, non-ionizing, and non-invasive imaging technology that has been used to assess the retina. PAOM can provide both anatomic and functional retinal characterizations with high resolution, high sensitivity, high contrast, and a high depth of penetration. Thus, ocular diseases can be precisely detected and visualized at earlier stages, resulting in an improved understanding of pathophysiology, improved management, and the improved monitoring of retinal treatment to prevent vision loss. To better visualize ocular components such as retinal vessels, choroidal vessels, choroidal neovascularization, retinal neovascularization, and the retinal pigment epithelium, an advanced multimodal ocular imaging platform has been developed by a combination of PAOM with other optical imaging techniques such as optical coherence tomography (OCT), scanning laser ophthalmoscopy (SLO), and fluorescence microscopy. The multimodal images can be acquired from a single imaging system and co-registered on the same image plane, enabling an improved evaluation of disease. In this review, the potential application of photoacoustic ophthalmoscopy in both research and clinical diagnosis are discussed as a medical screening technique for the visualization of various ocular diseases. The basic principle and requirements of photoacoustic ocular imaging are introduced. Then, various photoacoustic microscopy imaging systems of the retina in animals are presented. Finally, the future development of PAOM and multimodal imaging is discussed.
Collapse
Affiliation(s)
- Van Phuc Nguyen
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Yannis M. Paulus
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA
| |
Collapse
|
125
|
The retinal pigment epithelial response after retinal laser photocoagulation in diabetic mice. Lasers Med Sci 2018; 34:179-190. [DOI: 10.1007/s10103-018-2680-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/31/2018] [Indexed: 12/21/2022]
|
126
|
Garrity ST, Sarraf D, Freund KB, Sadda SR. Multimodal Imaging of Nonneovascular Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2018; 59:AMD48-AMD64. [PMID: 30025107 DOI: 10.1167/iovs.18-24158] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Nonneovascular (dry) AMD is a retinal disease with potential for significant central visual impairment. The hallmarks of this disease are macular drusen, RPE alterations, and geographic atrophy (GA). Classification schemes for nonneovascular AMD have evolved over the years as major advances in retinal imaging have enabled a greater understanding of disease pathophysiology. The original classifications of nonneovascular AMD were based on color fundus photography (CFP), while more modern schemes rely on a multimodal imaging approach. Effective diagnosis and management of nonneovascular AMD requires a thorough understanding of its multimodal imaging features as detailed in this review. Future imaging modalities and imaging biomarkers that may aid in diagnosis and management are also discussed.
Collapse
Affiliation(s)
- Sean T Garrity
- Stein Eye Institute, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States
| | - David Sarraf
- Stein Eye Institute, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States.,Greater Los Angeles VA Healthcare Center, Los Angeles, California, United States
| | - K Bailey Freund
- Vitreous Retina Macula Consultants of New York, New York, New York, United States.,Department of Ophthalmology, New York University School of Medicine, New York, New York, United States
| | - Srinivas R Sadda
- Doheny Eye Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States
| |
Collapse
|
127
|
Palczewska G, Stremplewski P, Suh S, Alexander N, Salom D, Dong Z, Ruminski D, Choi EH, Sears AE, Kern TS, Wojtkowski M, Palczewski K. Two-photon imaging of the mammalian retina with ultrafast pulsing laser. JCI Insight 2018; 3:121555. [PMID: 30185665 DOI: 10.1172/jci.insight.121555] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/24/2018] [Indexed: 12/13/2022] Open
Abstract
Noninvasive imaging of visual system components in vivo is critical for understanding the causal mechanisms of retinal diseases and for developing therapies for their treatment. However, ultraviolet light needed to excite endogenous fluorophores that participate in metabolic processes of the retina is highly attenuated by the anterior segment of the human eye. In contrast, 2-photon excitation fluorescence imaging with pulsed infrared light overcomes this obstacle. Reducing retinal exposure to laser radiation remains a major barrier in advancing this technology to studies in humans. To increase fluorescence intensity and reduce the requisite laser power, we modulated ultrashort laser pulses with high-order dispersion compensation and applied sensorless adaptive optics and custom image recovery software and observed an over 300% increase in fluorescence of endogenous retinal fluorophores when laser pulses were shortened from 75 fs to 20 fs. No functional or structural changes to the retina were detected after exposure to 2-photon excitation imaging light with 20-fs pulses. Moreover, wide bandwidth associated with short pulses enables excitation of multiple fluorophores with different absorption spectra and thus can provide information about their relative changes and intracellular distribution. These data constitute a substantial advancement for safe 2-photon fluorescence imaging of the human eye.
Collapse
Affiliation(s)
| | - Patrycjusz Stremplewski
- Department of Physical Chemistry of Biological Systems, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Susie Suh
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Nathan Alexander
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - David Salom
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Zhiqian Dong
- Polgenix, Inc., Department of Medical Devices, Cleveland, Ohio, USA
| | - Daniel Ruminski
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Elliot H Choi
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Avery E Sears
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Timothy S Kern
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Maciej Wojtkowski
- Department of Physical Chemistry of Biological Systems, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Krzysztof Palczewski
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
128
|
Sauer L, Andersen KM, Dysli C, Zinkernagel MS, Bernstein PS, Hammer M. Review of clinical approaches in fluorescence lifetime imaging ophthalmoscopy. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-20. [PMID: 30182580 PMCID: PMC8357196 DOI: 10.1117/1.jbo.23.9.091415] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 07/24/2018] [Indexed: 05/04/2023]
Abstract
Autofluorescence-based imaging techniques have become very important in the ophthalmological field. Being noninvasive and very sensitive, they are broadly used in clinical routines. Conventional autofluorescence intensity imaging is largely influenced by the strong fluorescence of lipofuscin, a fluorophore that can be found at the level of the retinal pigment epithelium. However, different endogenous retinal fluorophores can be altered in various diseases. Fluorescence lifetime imaging ophthalmoscopy (FLIO) is an imaging modality to investigate the autofluorescence of the human fundus in vivo. It expands the level of information, as an addition to investigating the fluorescence intensity, and autofluorescence lifetimes are captured. The Heidelberg Engineering Spectralis-based fluorescence lifetime imaging ophthalmoscope is used to investigate a 30-deg retinal field centered at the fovea. It detects FAF decays in short [498 to 560 nm, short spectral channel (SSC) and long (560 to 720 nm, long spectral channel (LSC)] spectral channels, the mean fluorescence lifetimes (τm) are calculated using bi- or triexponential approaches. These are meant to be relatively independent of the fluorophore's intensity; therefore, fluorophores with less intense fluorescence can be detected. As an example, FLIO detects the fluorescence of macular pigment, retinal carotenoids that help protect the human fundus from light damages. Furthermore, FLIO is able to detect changes related to various retinal diseases, such as age-related macular degeneration, albinism, Alzheimer's disease, diabetic retinopathy, macular telangiectasia type 2, retinitis pigmentosa, and Stargardt disease. Some of these changes can already be found in healthy eyes and may indicate a risk to developing such diseases. Other changes in already affected eyes seem to indicate disease progression. This review article focuses on providing detailed information on the clinical findings of FLIO. This technique detects not only structural changes at very early stages but also metabolic and disease-related alterations. Therefore, it is a very promising tool that might soon be used for early diagnostics.
Collapse
Affiliation(s)
- Lydia Sauer
- University Hospital Jena, Jena, Thuringia, Germany
- University of Utah, John A. Moran Eye Center, Salt Lake City, Utah, United States
| | - Karl M. Andersen
- University of Utah, John A. Moran Eye Center, Salt Lake City, Utah, United States
- Geisinger Commonwealth School of Medicine, Scranton, Pennsylvania, United States
| | - Chantal Dysli
- Bern University Hospital, Inselspital, Department of Ophthalmology, Bern, Switzerland
| | - Martin S. Zinkernagel
- Bern University Hospital, Inselspital, Department of Ophthalmology, Bern, Switzerland
| | - Paul S. Bernstein
- University of Utah, John A. Moran Eye Center, Salt Lake City, Utah, United States
| | - Martin Hammer
- University Hospital Jena, Jena, Thuringia, Germany
- University of Jena, Center for Biomedical Optics and Photonics, Jena, Germany
- Address all correspondence to: Martin Hammer, E-mail:
| |
Collapse
|
129
|
Trapani I, Auricchio A. Seeing the Light after 25 Years of Retinal Gene Therapy. Trends Mol Med 2018; 24:669-681. [PMID: 29983335 DOI: 10.1016/j.molmed.2018.06.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 05/31/2018] [Accepted: 06/11/2018] [Indexed: 12/25/2022]
Abstract
The retina has been at the forefront of translational gene therapy. Proof-of-concept that gene therapy could restore vision in a large animal led to the initiation of the first successful clinical trials and, in turn, to the recent approval of the first gene therapy product for an ocular disease. As dozens of clinical trials of retinal gene therapy have begun, new challenges are identified, which include delivery of large genes, counteracting gain-of-function mutations, and safe and effective gene transfer to diseased retinas. Advancements in vector design, improvements of delivery routes, and selection of optimal timing for intervention will contribute to extend the initial success of retinal gene therapy to an increasing number of inherited blinding conditions.
Collapse
Affiliation(s)
- Ivana Trapani
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Medical Genetics, Department of Translational Medicine, Federico II University, Naples, Italy.
| | - Alberto Auricchio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Department of Advanced Biomedicine, Federico II University, Naples, Italy.
| |
Collapse
|
130
|
Hammer M, Sauer L, Klemm M, Peters S, Schultz R, Haueisen J. Fundus autofluorescence beyond lipofuscin: lesson learned from ex vivo fluorescence lifetime imaging in porcine eyes. BIOMEDICAL OPTICS EXPRESS 2018; 9:3078-3091. [PMID: 29984084 PMCID: PMC6033583 DOI: 10.1364/boe.9.003078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/25/2018] [Accepted: 04/25/2018] [Indexed: 05/06/2023]
Abstract
Fundus autofluorescence (FAF) imaging is a well-established method in ophthalmology; however, the fluorophores involved need more clarification. The FAF lifetimes of 20 post mortem porcine eyes were measured in two spectral channels using fluorescence lifetime imaging ophthalmoscopy (FLIO) and compared with clinical data from 44 healthy young subjects. The FAF intensity ratio of the short and the long wavelength emission (spectral ratio) was determined. Ex vivo porcine fundus fluorescence emission is generally less intense than that seen in human eyes. The porcine retina showed significantly (p<0.05) longer lifetimes than the retinal pigment epithelium (RPE): 584 ± 128 ps vs. 121 ± 55 ps 498-560 nm, 240 ± 42 ps vs. 125 ± 20 ps at 560-720 nm. Furthermore, the lifetimes of the porcine RPE were significantly shorter (121 ± 55 ps and 125 ± 20 ps) than those measured from human fundus in vivo (162 ± 14 ps and 179 ± 13 ps, respectively). The fluorescence emission of porcine retina was shifted towards a shorter wavelength compared to that of RPE and human FAF. This data shows the considerable contribution of fluorophores in the neural retina to total FAF intensity in porcine eyes.
Collapse
Affiliation(s)
- Martin Hammer
- University Hospital Jena, Department of Ophthalmology, 07747 Jena, Am Klinikum 1, Germany
- University of Jena, Center for Biomedical Optics and Photonics, 07740 Jena, Germany
| | - Lydia Sauer
- University Hospital Jena, Department of Ophthalmology, 07747 Jena, Am Klinikum 1, Germany
- Technical University Ilmenau, Institute for Biomedical Engineering and Informatics, Gustav-Kirchhoff-Str. 2, 98693 Ilmenau, Germany
| | - Matthias Klemm
- Technical University Ilmenau, Institute for Biomedical Engineering and Informatics, Gustav-Kirchhoff-Str. 2, 98693 Ilmenau, Germany
| | - Sven Peters
- University Hospital Jena, Department of Ophthalmology, 07747 Jena, Am Klinikum 1, Germany
| | - Rowena Schultz
- University Hospital Jena, Department of Ophthalmology, 07747 Jena, Am Klinikum 1, Germany
| | - Jens Haueisen
- Technical University Ilmenau, Institute for Biomedical Engineering and Informatics, Gustav-Kirchhoff-Str. 2, 98693 Ilmenau, Germany
| |
Collapse
|
131
|
Andersen KM, Sauer L, Gensure RH, Hammer M, Bernstein PS. Characterization of Retinitis Pigmentosa Using Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO). Transl Vis Sci Technol 2018; 7:20. [PMID: 29946494 PMCID: PMC6016507 DOI: 10.1167/tvst.7.3.20] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/16/2018] [Indexed: 02/06/2023] Open
Abstract
PURPOSE We investigated fundus autofluorescence (FAF) lifetimes in patients with retinitis pigmentosa (RP) using fluorescence lifetime imaging ophthalmoscopy (FLIO). METHODS A total of 33 patients (mean age, 40.0 ± 17.0 years) with RP and an age-matched healthy group were included. The Heidelberg FLIO was used to detect FAF decays in short (SSC; 498-560 nm) and long (LSC; 560-720 nm) spectral channels. We investigated a 30° retinal field and calculated the amplitude-weighted mean fluorescence lifetime (τm). Additionally, macular pigment measurements, macular optical coherence tomography (OCT) scans, fundus photographs, visual fields, and fluorescein angiograms were recorded. Genetic studies were performed on nearly all patients. RESULTS In RP, FLIO shows a typical pattern of prolonged τm in atrophic regions in the outer macula (SSC, 419 ± 195 ps; LSC, 401 ± 111 ps). Within the relatively preserved retina in the macular region, ring-shaped patterns were found, most distinctive in patients with autosomal dominant RP inheritance. Mean FAF lifetimes were shortened in rings in the LSC. Central areas remained relatively unaffected. CONCLUSIONS FLIO uniquely presents a distinct and specific signature in eyes affected with RP. The ring patterns show variations that indicate genetically determined pathologic processes. Shortening of FAF lifetimes in the LSC may indicate disease progression, as was previously demonstrated for Stargardt disease. Therefore, FLIO might be able to indicate disease progression in RP as well. TRANSLATIONAL RELEVANCE Hyperfluorescent FLIO rings with short FAF lifetimes may provide insight into the pathophysiologic disease status of RP-affected retinas potentially providing a more detailed assessment of disease progression.
Collapse
Affiliation(s)
- Karl M. Andersen
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
- Geisinger Commonwealth School of Medicine, Scranton, PA, USA
| | - Lydia Sauer
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
- Department of Experimental Ophthalmology, University Hospital Jena, Jena, Germany
| | | | - Martin Hammer
- Department of Experimental Ophthalmology, University Hospital Jena, Jena, Germany
| | - Paul S. Bernstein
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
132
|
Sauer L, Gensure RH, Hammer M, Bernstein PS. Fluorescence Lifetime Imaging Ophthalmoscopy: A Novel Way to Assess Macular Telangiectasia Type 2. Ophthalmol Retina 2018; 2:587-598. [PMID: 30116796 PMCID: PMC6089530 DOI: 10.1016/j.oret.2017.10.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
PURPOSE Macular Telangiectasia Type 2 (MacTel) is an uncommon, late-onset complex retinal disease that leads to central vision loss. No causative gene(s) have been identified so far, resulting in a challenging clinical diagnostic dilemma because retinal changes of early stages are often subtle. The objective of this study was to investigate the benefit of fluorescence lifetime imaging ophthalmoscopy (FLIO) for retinal imaging in patients with MacTel. DESIGN Cross-sectional study from a tertiary-care retinal referral practice. SUBJECTS AND CONTROLS 42 eyes of 21 patients (mean age 60.5±13.3 years) with MacTel as well as an age-matched healthy control group (42 eyes of 25 subjects, mean age 60.8±13.4 years). METHODS A 30° retinal field centered at the fovea was investigated using FLIO. This camera is based on a Heidelberg Engineering Spectralis system. Fundus autofluorescence (FAF) decays were detected in short (498-560 nm, SSC) and long (560-720 nm, LSC) spectral channels. The mean fluorescence lifetime, τm, was calculated from a 3-exponential approximation of the FAF decays. For MacTel patients, macular pigment (MP), OCT, blue light reflectance, fluorescein angiography, as well as fundus photography, were also recorded. MAIN OUTCOME MEASURES Mean FAF lifetime (τm) images. RESULTS FLIO of MacTel patients shows a unique pattern of prolonged τm at the temporal side of the fovea in patients with MacTel in the "MacTel area" within 5-6° of the foveal center. In early stages, this region appears crescent-shaped, while advanced stages show a ring-like pattern. This pattern corresponds well with other imaging modalities and gives an especially high contrast of the affected region even in minimally affected individuals. Additionally, FLIO provides a novel means to monitor the abnormal MP distribution. In one case, FLIO showed changes suggestive of MacTel within a clinically normal parent of two MacTel patients. CONCLUSIONS FLIO detects retinal changes in patients with MacTel with high contrast, presenting a distinctive signature that is a characteristic finding of the disease. The non-invasive properties of this novel imaging modality provide a valuable addition to clinical assessment of early changes in the disease that could lead to more accurate diagnosis of MacTel.
Collapse
Affiliation(s)
- Lydia Sauer
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
- University Hospital Jena, Bachstraße 18, 07743, Jena, Germany
| | | | - Martin Hammer
- University Hospital Jena, Bachstraße 18, 07743, Jena, Germany
| | - Paul S. Bernstein
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
133
|
Sauer L, Andersen KM, Li B, Gensure RH, Hammer M, Bernstein PS. Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO) of Macular Pigment. Invest Ophthalmol Vis Sci 2018; 59:3094-3103. [PMID: 30025128 PMCID: PMC6009392 DOI: 10.1167/iovs.18-23886] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/04/2018] [Indexed: 02/04/2023] Open
Abstract
Purpose To describe different patterns of macular pigment (MP) seen in fluorescence lifetime imaging ophthalmoscopy (FLIO) and to analyze ex vivo fluorescence characteristics of carotenoids. Methods A total of 31 eyes of young healthy subjects, 4 eyes from patients with albinism, 36 eyes with macular telangiectasia type 2 (MacTel), 24 eyes with retinitis pigmentosa, and 1 eye with a macular hole were included in this clinic-based, cross-sectional study. All subjects underwent Heidelberg Engineering FLIO and MP measurements (dual-wavelength autofluorescence). Fundus autofluorescence (FAF) lifetimes of a 30° retinal field were detected in two spectral channels (SSC: 498-560 nm; LSC: 560-720 nm), and amplitude-weighted mean fluorescence lifetimes (τm) were calculated. Additionally, autofluorescence lifetimes of known dilutions of lutein and zeaxanthin were measured in a cuvette in free- and protein-associated states. Results MP shows a significant inverse correlation to foveal FAF lifetimes measured with FLIO (SSC: r = -0.608; P < 0.001). Different distribution patterns can be assigned to specific disease-related changes. Two patients with albinism, who did not have MP, were found to be missing short FAF lifetimes. In solvent, lutein and zeaxanthin show very short autofluorescence lifetimes (∼50-60 ps; SSC), as do their respective binding proteins (∼40-50 ps; SSC). When combining carotenoids with their specific binding proteins, the decay times shift to longer means (∼70-90 ps; SSC). Conclusions This study expands upon previous findings of an impact of MP on short FAF lifetimes by describing ex vivo autofluorescence lifetimes of carotenoids and different in vivo autofluorescence patterns that can be associated with certain diseases.
Collapse
Affiliation(s)
- Lydia Sauer
- John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, United States
- Department of Experimental Ophthalmology, University Hospital Jena, Jena, Germany
| | - Karl M. Andersen
- John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, United States
- Geisinger Commonwealth School of Medicine, Scranton, Pennsylvania, United States
| | - Binxing Li
- John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, United States
| | - Rebekah H. Gensure
- John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, United States
| | - Martin Hammer
- Department of Experimental Ophthalmology, University Hospital Jena, Jena, Germany
| | - Paul S. Bernstein
- John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
134
|
Spectral analysis of fundus autofluorescence pattern as a tool to detect early stages of degeneration in the retina and retinal pigment epithelium. Eye (Lond) 2018; 32:1440-1448. [PMID: 29786089 DOI: 10.1038/s41433-018-0109-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 02/27/2018] [Accepted: 03/30/2018] [Indexed: 01/14/2023] Open
Abstract
PURPOSE The aim of this work is the determination of quantitative diagnostic criteria based on the spectral characteristics of fundus autofluorescence to detect early stages of degeneration in the retina and retinal pigment epithelium (RPE). METHODS RPE cell suspension samples were obtained from the cadaver eyes with and without signs of age-related macular degeneration (AMD). Fluorescence analysis at an excitation wavelength of 488 nm was performed. The fluorescence lifetimes of lipofuscin-granule fluorophores were measured by counting time-correlated photon method. RESULTS Comparative analysis of fluorescence spectra of RPE cell suspensions from the cadaver eyes with and without signs of AMD showed a significant difference in fluorescence intensity at 530-580 nm in response to fluorescence excitation at 488 nm. It was notably higher in eyes with visual pathology than in normal eyes regardless of the age of the eye donor. Measurements of fluorescence lifetimes of lipofuscin fluorophores showed that the contribution of photooxidation and photodegradation products of bisretinoids to the total fluorescence at 530-580 nm of RPE cell suspensions was greater in eyes with visual pathology than in normal eyes. CONCLUSION Because photooxidation and photodegradation products of bisretinoids are markers of photodestructive processes, which can cause RPE cell death and initiate degenerative processes in the retina, quantitative determination of increases in these bisretinoid products in lipofuscin granules may be used to establish quantitative diagnostic criteria for degenerative processes in the retina and RPE.
Collapse
|
135
|
Sauer L, Klemm M, Peters S, Schweitzer D, Schmidt J, Kreilkamp L, Ramm L, Meller D, Hammer M. Monitoring foveal sparing in geographic atrophy with fluorescence lifetime imaging ophthalmoscopy - a novel approach. Acta Ophthalmol 2018; 96:257-266. [PMID: 29105362 DOI: 10.1111/aos.13587] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 08/09/2017] [Indexed: 01/12/2023]
Abstract
PURPOSE To investigate fundus autofluorescence (FAF) lifetimes in geographic atrophy (GA) with a focus on macular pigment (MP) and foveal sparing. METHODS The study included 35 eyes from 28 patients (mean age 79.2 ± 8.0 years) with GA. A 30° retinal field, centred at the macula, was investigated using fluorescence lifetime imaging ophthalmoscopy (FLIO). The FLIO technology is based on a Heidelberg Engineering Spectralis system. Decays of FAF were detected in a short (498-560 nm, SSC) and long (560-720 nm, LSC) spectral channel. The mean fluorescence lifetime, τm , was calculated from a three-exponential approximation of the FAF decays. Macular optical coherence tomography (OCT) scans as well as fundus photography were recorded. RESULTS Review of FLIO data reveals specific patterns of significantly prolonged τm in regions of GA (SSC 616 ± 343 ps, LSC 615 ± 154 ps) as compared to non-atrophic regions. Large τm differences between the fovea and atrophic areas correlate with better visual acuity (VA). Shorter τm at the fovea than within other non-atrophic regions indicates sparing, which was identified in 16 eyes. Seventy per cent of patients treated with lutein supplementation showed foveal sparing, whereas the rate among non-supplemented patients was 22%. CONCLUSION Using FLIO, we present a novel way to detect foveal sparing, investigate MP, and analyse variability of τm in different foveal regions (including the prognostic valuable border region) in GA. These findings support the potential utility of FLIO in monitoring disease progression. The findings also highlight the possibly protective effect of lutein supplementation, with implication in recording the presence and distributional pattern of MP.
Collapse
Affiliation(s)
| | - Matthias Klemm
- Institute of Biomedical Engineering and Informatics; Technical University Ilmenau; Ilmenau Germany
| | | | - Dietrich Schweitzer
- University Hospital Jena; Jena Germany
- Center for Medical Optics and Photonics; University of Jena; Jena Germany
| | | | | | - Lisa Ramm
- Department of Ophthalmology; University Hospital Carl-Gustav Carus; TU Dresden; Dresden Germany
| | | | - Martin Hammer
- University Hospital Jena; Jena Germany
- Center for Medical Optics and Photonics; University of Jena; Jena Germany
| |
Collapse
|
136
|
Matet A, Kohl S, Baumann B, Antonio A, Mohand-Said S, Sahel JA, Audo I. Multimodal imaging including semiquantitative short-wavelength and near-infrared autofluorescence in achromatopsia. Sci Rep 2018; 8:5665. [PMID: 29618791 PMCID: PMC5884771 DOI: 10.1038/s41598-018-23919-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/20/2018] [Indexed: 11/11/2022] Open
Abstract
Multimodal imaging provides insights into phenotype and disease progression in inherited retinal disorders. Congenital achromatopsia (ACHM), a cone dysfunction syndrome, has been long considered a stable condition, but recent evidence suggests structural progression. With gene replacement strategies under development for ACHM, there is a critical need for imaging biomarkers to define progression patterns and follow therapy. Using semiquantitative plots, near-infrared (NIR-AF) and short-wavelength autofluorescence (SW-AF) were explored and correlated with clinical characteristics and retinal structure on optical coherence tomography (OCT). In sixteen ACHM patients with genetic confirmation (CNGA3, n = 8; CNGB3, n = 7; PDE6C, n = 1), semiquantitative plots allowed the detailed analysis of autofluorescence patterns, even in poorly fixating eyes. Twelve eyes showed perifoveal hyperautofluorescent rings on SW-AF, and 7 eyes had central hypoautofluorescent areas on NIR-AF, without association between these alterations (P = 0.57). Patients with central NIR-AF hypoautofluorescence were older (P = 0.004) and showed more advanced retinal alterations on OCT than those with normal NIR-AF (P = 0.051). NIR-AF hypoautofluorescence diameter was correlated to patient age (r = 0.63, P = 0.009), size of ellipsoid zone defect on OCT (r = 0.67, P = 0.005), but not to the size of SW-AF hyperautofluorescence (P = 0.27). These results demonstrate the interest of NIR-AF as imaging biomarker in ACHM, suggesting a relationship with age and disease progression.
Collapse
Affiliation(s)
- Alexandre Matet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
- INSERM-DHOS, CIC1423, DHU ViewMaintain, CHNO des Quinze-Vingts, Paris, 75012, France
| | - Susanne Kohl
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Britta Baumann
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Aline Antonio
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Saddek Mohand-Said
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
- INSERM-DHOS, CIC1423, DHU ViewMaintain, CHNO des Quinze-Vingts, Paris, 75012, France
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
- INSERM-DHOS, CIC1423, DHU ViewMaintain, CHNO des Quinze-Vingts, Paris, 75012, France
- Fondation Ophtalmologique Adolphe de Rothschild, Paris, F-75019, France
- Académie des Sciences, Institut de France, Paris, F-75006, France
- Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburg, PA, United States
- University College London, Institute of Ophthalmology, London, EC1V 9EL, UK
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France.
- INSERM-DHOS, CIC1423, DHU ViewMaintain, CHNO des Quinze-Vingts, Paris, 75012, France.
- University College London, Institute of Ophthalmology, London, EC1V 9EL, UK.
| |
Collapse
|
137
|
Sauer L, Gensure RH, Andersen KM, Kreilkamp L, Hageman GS, Hammer M, Bernstein PS. Patterns of Fundus Autofluorescence Lifetimes In Eyes of Individuals With Nonexudative Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2018; 59:AMD65-AMD77. [PMID: 30025104 PMCID: PMC6009207 DOI: 10.1167/iovs.17-23764] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 05/11/2018] [Indexed: 01/20/2023] Open
Abstract
Purpose To investigate fundus autofluorescence (FAF) lifetimes in patients with nonexudative AMD. Methods A total of 150 eyes of 110 patients (mean age: 73.2 ± 10.7 years) with nonexudative AMD, as well as a healthy group of 57 eyes in 38 subjects (mean age: 66.5 ± 8.7 years), were included. Investigations were conducted at the University Eye Clinic in Jena, Germany, as well as the Moran Eye Center in Salt Lake City, Utah, USA, using the Heidelberg Engineering Spectralis-based fluorescence lifetime imaging ophthalmoscope (FLIO). A 30° retinal field centered at the fovea was investigated. FAF decays were detected in short (498-560 nm) and long (560-720 nm, LSC) spectral channels. The mean fluorescence lifetimes (τm) were calculated. Optical coherence tomography scans and fundus photographs were also recorded. Results In patients with nonexudative AMD, FLIO shows a ring-shaped pattern of prolonged τm in the LSC. This pattern occurs in all patients with AMD (including very early stages) and in one-third of the healthy controls. FAF lifetimes were longer with more advanced stages. The presence of drusen is associated with prolonged τm when compared with the healthy fundus, but drusen identification is difficult with FLIO only. Conclusions FLIO detects a clear pattern of changes within the fundus, which appears to be AMD-associated. These changes are already visible in early AMD stages and not masked by the presence of other coexisting retinal diseases. These findings may be useful for the early diagnosis of AMD and to distinguish AMD from other retinal diseases.
Collapse
Affiliation(s)
- Lydia Sauer
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, United States
- Department of Experimental Ophthalmology, University Hospital Jena, Jena, Germany
| | - Rebekah H. Gensure
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, United States
| | - Karl M. Andersen
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, United States
- Geisinger Commonwealth School of Medicine, Scranton, Pennsylvania, United States
| | - Lukas Kreilkamp
- Department of Experimental Ophthalmology, University Hospital Jena, Jena, Germany
| | - Gregory S. Hageman
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, United States
- Sharon Eccles Steele Center for Translational Medicine, John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, United States
| | - Martin Hammer
- Department of Experimental Ophthalmology, University Hospital Jena, Jena, Germany
| | - Paul S. Bernstein
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
138
|
Abstract
Throughout ophthalmic history it has been shown that progress has gone hand in hand with technological breakthroughs. In the past, fluorescein angiography and fundus photographs were the most commonly used imaging modalities in the management of diabetic macular edema (DME). Today, despite the moderate correlation between macular thickness and functional outcomes, spectral domain optical coherence tomography (SD-OCT) has become the DME workhorse in clinical practice. Several SD-OCT biomarkers have been looked at including presence of epiretinal membrane, vitreomacular adhesion, disorganization of the inner retinal layers, central macular thickness, integrity of the ellipsoid layer, and subretinal fluid, among others. Emerging imaging modalities include fundus autofluorescence, macular pigment optical density, fluorescence lifetime imaging ophthalmoscopy, OCT angiography, and adaptive optics. Technological advances in imaging of the posterior segment of the eye have enabled ophthalmologists to develop hypotheses about pathological mechanisms of disease, monitor disease progression, and assess response to treatment. Spectral domain OCT is the most commonly performed imaging modality in the management of DME. However, reliable biomarkers have yet to be identified. Machine learning may provide treatment algorithms based on multimodal imaging.
Collapse
Affiliation(s)
- Dhariana Acón
- Asociación para Evitar la Ceguera, Hospital Luis Sanchez Bulnes. Mexico City, Mexico
| | - Lihteh Wu
- Asociados de Mácula, Vítreo y Retina de Costa Rica, San José, Costa Rica
| |
Collapse
|