101
|
Gordon CJ, Phillips PM, Ledbetter A, Snow SJ, Schladweiler MC, Johnstone AFM, Kodavanti UP. Active vs. sedentary lifestyle from weaning to adulthood and susceptibility to ozone in rats. Am J Physiol Lung Cell Mol Physiol 2016; 312:L100-L109. [PMID: 27836902 DOI: 10.1152/ajplung.00415.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/07/2016] [Accepted: 11/07/2016] [Indexed: 11/22/2022] Open
Abstract
The prevalence of a sedentary (SED) life style combined with calorically rich diets has spurred the rise in childhood obesity, which, in turn, translates to adverse health effects in adulthood. Obesity and lack of active (ACT) lifestyle may increase susceptibility to air pollutants. We housed 22-day-old female Long-Evans rats in a cage without (SED) or with a running wheel (ACT). After 10 wk the rats ran 310 ± 16.3 km. Responses of SED and ACT rats to whole-body O3 (0, 0.25, 0.5, or 1.0 ppm; 5 h/day for 2 days) was assessed. Glucose tolerance testing (GTT) was performed following the first day of O3 ACT rats had less body fat and an improved glucose GTT. Ventilatory function (plethysmography) of SED and ACT groups was similarly impaired by O3 Bronchoalveolar lavage fluid (BALF) was collected after the second O3 exposure. SED and ACT rats were hyperglycemic following 1.0 ppm O3 GTT was impaired by O3 in both groups; however, ACT rats exhibited improved recovery to 0.25 and 1.0 ppm O3 BALF cell neutrophils and total cells were similarly increased in ACT and SED groups exposed to 1.0 ppm O3 O3-induced increase in eosinophils was exacerbated in SED rats. Chronic exercise from postweaning to adulthood improved some of the metabolic and pulmonary responses to O3 (GTT and eosinophils) but several other parameters were unaffected. The reduction in O3-induced rise in BALF eosinophils in ACT rats suggests a possible link between a SED lifestyle and incidence of asthma-related symptoms from O3.
Collapse
Affiliation(s)
- C J Gordon
- Toxicity Assessment Division, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina; and
| | - P M Phillips
- Toxicity Assessment Division, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina; and
| | - A Ledbetter
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina
| | - S J Snow
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina
| | - M C Schladweiler
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina
| | - A F M Johnstone
- Toxicity Assessment Division, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina; and
| | - U P Kodavanti
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina
| |
Collapse
|
102
|
TRPA1 mediates changes in heart rate variability and cardiac mechanical function in mice exposed to acrolein. Toxicol Appl Pharmacol 2016; 324:51-60. [PMID: 27746315 DOI: 10.1016/j.taap.2016.10.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 09/07/2016] [Accepted: 10/09/2016] [Indexed: 12/31/2022]
Abstract
Short-term exposure to ambient air pollution is linked with adverse cardiovascular effects. While previous research focused primarily on particulate matter-induced responses, gaseous air pollutants also contribute to cause short-term cardiovascular effects. Mechanisms underlying such effects have not been adequately described, however the immediate nature of the response suggests involvement of irritant neural activation and downstream autonomic dysfunction. Thus, this study examines the role of TRPA1, an irritant sensory receptor found in the airways, in the cardiac response of mice to acrolein and ozone. Conscious unrestrained wild-type C57BL/6 (WT) and TRPA1 knockout (KO) mice implanted with radiotelemeters were exposed once to 3ppm acrolein, 0.3ppm ozone, or filtered air. Heart rate (HR) and electrocardiogram (ECG) were recorded continuously before, during and after exposure. Analysis of ECG morphology, incidence of arrhythmia and heart rate variability (HRV) were performed. Cardiac mechanical function was assessed using a Langendorff perfusion preparation 24h post-exposure. Acrolein exposure increased HRV independent of HR, as well as incidence of arrhythmia. Acrolein also increased left ventricular developed pressure in WT mice at 24h post-exposure. Ozone did not produce any changes in cardiac function. Neither gas produced ECG effects, changes in HRV, arrhythmogenesis, or mechanical function in KO mice. These data demonstrate that a single exposure to acrolein causes cardiac dysfunction through TRPA1 activation and autonomic imbalance characterized by a shift toward parasympathetic modulation. Furthermore, it is clear from the lack of ozone effects that although gaseous irritants are capable of eliciting immediate cardiac changes, gas concentration and properties play important roles.
Collapse
|
103
|
Zhong J, Allen K, Rao X, Ying Z, Braunstein Z, Kankanala SR, Xia C, Wang X, Bramble LA, Wagner JG, Lewandowski R, Sun Q, Harkema JR, Rajagopalan S. Repeated ozone exposure exacerbates insulin resistance and activates innate immune response in genetically susceptible mice. Inhal Toxicol 2016; 28:383-392. [PMID: 27240593 PMCID: PMC4911226 DOI: 10.1080/08958378.2016.1179373] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/11/2016] [Indexed: 01/04/2023]
Abstract
BACKGROUND Inhaled ozone (O3) has been demonstrated as a harmful pollutant and associated with chronic inflammatory diseases such as diabetes and vascular disorders. However, the underlying mechanisms by which O3 mediates harmful effects are poorly understood. OBJECTIVES To investigate the effect of O3 exposure on glucose intolerance, immune activation and underlying mechanisms in a genetically susceptible mouse model. METHODS Diabetes-prone KK mice were exposed to filtered air (FA), or O3 (0.5 ppm) for 13 consecutive weekdays (4 h/day). Insulin tolerance test (ITT) was performed following the last exposure. Plasma insulin, adiponectin, and leptin were measured by ELISA. Pathologic changes were examined by H&E and Oil-Red-O staining. Inflammatory responses were detected using flow cytometry and real-time PCR. RESULTS KK mice exposed to O3 displayed an impaired insulin response. Plasma insulin and leptin levels were reduced in O3-exposed mice. Three-week exposure to O3 induced lung inflammation and increased monocytes/macrophages in both blood and visceral adipose tissue. Inflammatory monocytes/macrophages increased both systemically and locally. CD4 + T cell activation was also enhanced by the exposure of O3 although the relative percentage of CD4 + T cell decreased in blood and adipose tissue. Multiple inflammatory genes including CXCL-11, IFN-γ, TNFα, IL-12, and iNOS were up-regulated in visceral adipose tissue. Furthermore, the expression of oxidative stress-related genes such as Cox4, Cox5a, Scd1, Nrf1, and Nrf2, increased in visceral adipose tissue of O3-exposed mice. CONCLUSIONS Repeated O3 inhalation induces oxidative stress, adipose inflammation and insulin resistance.
Collapse
Affiliation(s)
- Jixin Zhong
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Katryn Allen
- EPA Great Lakes Clean Air Research Center, Michigan State University, East Lansing, Michigan, USA
| | - Xiaoquan Rao
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Zhekang Ying
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Zachary Braunstein
- Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA
| | - Saumya R. Kankanala
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Chang Xia
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Xiaoke Wang
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Lori A. Bramble
- EPA Great Lakes Clean Air Research Center, Michigan State University, East Lansing, Michigan, USA
| | - James G. Wagner
- EPA Great Lakes Clean Air Research Center, Michigan State University, East Lansing, Michigan, USA
| | - Ryan Lewandowski
- EPA Great Lakes Clean Air Research Center, Michigan State University, East Lansing, Michigan, USA
| | - Qinghua Sun
- Davis Heart & Lung Research Institute, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Jack R. Harkema
- EPA Great Lakes Clean Air Research Center, Michigan State University, East Lansing, Michigan, USA
| | - Sanjay Rajagopalan
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
104
|
Development of Dissociation-Enhanced Lanthanide Fluoroimmunoassay for Measuring Leptin. J Fluoresc 2016; 26:1715-21. [PMID: 27343179 DOI: 10.1007/s10895-016-1862-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 06/14/2016] [Indexed: 10/21/2022]
Abstract
Development of a dissociation-enhanced lanthanide fluoroimmunoassay (DELFIA) for measuring leptin, a satiety hormone of appetite control, was conducted in sandwich assay format exploiting a microplate immobilized with an anti-leptin antibody and another antibody raised against leptin and tagged with an europium chelate. In the leptin DELFIA of this study, amounts of antibody coated to the microplate and of the bioconjugate for the second immune reaction were optimized as 0.5 μg and 200 ng per well, respectively. When plotted in double-logarithmic scale, a linear relationship of y (log10 response signal) = 0.6023× (log10 leptin concentration) + 3.4084 (r(2) = 0.9646) was obtained at the leptin concentrations of 0.01─50 ng/mL with the limit of detection of 0.01 ng/mL. Individual leptin concentrations in various samples were well convergent to the calibration curve of the current assay. When applied to the measurement of leptin in a rat serum, the present assay was found quite effective and was competitive to a commercial sandwich-type ELISA.
Collapse
|
105
|
Miller DB, Snow SJ, Henriquez A, Schladweiler MC, Ledbetter AD, Richards JE, Andrews DL, Kodavanti UP. Systemic metabolic derangement, pulmonary effects, and insulin insufficiency following subchronic ozone exposure in rats. Toxicol Appl Pharmacol 2016; 306:47-57. [PMID: 27368153 DOI: 10.1016/j.taap.2016.06.027] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/23/2016] [Accepted: 06/26/2016] [Indexed: 12/17/2022]
Abstract
Acute ozone exposure induces a classical stress response with elevated circulating stress hormones along with changes in glucose, protein and lipid metabolism in rats, with similar alterations in ozone-exposed humans. These stress-mediated changes over time have been linked to insulin resistance. We hypothesized that acute ozone-induced stress response and metabolic impairment would persist during subchronic episodic exposure and induce peripheral insulin resistance. Male Wistar Kyoto rats were exposed to air or 0.25ppm or 1.00ppm ozone, 5h/day, 3 consecutive days/week (wk) for 13wks. Pulmonary, metabolic, insulin signaling and stress endpoints were determined immediately after 13wk or following a 1wk recovery period (13wk+1wk recovery). We show that episodic ozone exposure is associated with persistent pulmonary injury and inflammation, fasting hyperglycemia, glucose intolerance, as well as, elevated circulating adrenaline and cholesterol when measured at 13wk, however, these responses were largely reversible following a 1wk recovery. Moreover, the increases noted acutely after ozone exposure in non-esterified fatty acids and branched chain amino acid levels were not apparent following a subchronic exposure. Neither peripheral or tissue specific insulin resistance nor increased hepatic gluconeogenesis were present after subchronic ozone exposure. Instead, long-term ozone exposure lowered circulating insulin and severely impaired glucose-stimulated beta-cell insulin secretion. Thus, our findings in young-adult rats provide potential insights into epidemiological studies that show a positive association between ozone exposures and type 1 diabetes. Ozone-induced beta-cell dysfunction may secondarily contribute to other tissue-specific metabolic alterations following chronic exposure due to impaired regulation of glucose, lipid, and protein metabolism.
Collapse
Affiliation(s)
- Desinia B Miller
- Curriculum in Toxicology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States
| | - Samantha J Snow
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Andres Henriquez
- Curriculum in Toxicology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States
| | - Mette C Schladweiler
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Allen D Ledbetter
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Judy E Richards
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Debora L Andrews
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Urmila P Kodavanti
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States.
| |
Collapse
|
106
|
Rajagopalan S, Brook RD. Ozone-induced Metabolic Effects in Humans. Ieiunium, Conviviorum, aut Timor? (Fasting, Feasting, or Fear?). Am J Respir Crit Care Med 2016; 193:1327-9. [PMID: 27304238 DOI: 10.1164/rccm.201601-0142ed] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Sanjay Rajagopalan
- 1 Division of Cardiovascular Medicine University of Maryland School of Medicine Baltimore, Maryland
| | - Robert D Brook
- 2 Division of Cardiovascular Medicine University of Michigan Ann Arbor, Michigan
| |
Collapse
|
107
|
Gordon CJ, Phillips PM, Beasley TE, Ledbetter A, Aydin C, Snow SJ, Kodavanti UP, Johnstone AF. Pulmonary sensitivity to ozone exposure in sedentary versus chronically trained, female rats. Inhal Toxicol 2016; 28:293-302. [DOI: 10.3109/08958378.2016.1163441] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
108
|
Kodavanti UP. Stretching the stress boundary: Linking air pollution health effects to a neurohormonal stress response. Biochim Biophys Acta Gen Subj 2016; 1860:2880-90. [PMID: 27166979 DOI: 10.1016/j.bbagen.2016.05.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/02/2016] [Accepted: 05/05/2016] [Indexed: 02/07/2023]
Abstract
Inhaled pollutants produce effects in virtually all organ systems in our body and have been linked to chronic diseases including hypertension, atherosclerosis, Alzheimer's and diabetes. A neurohormonal stress response (referred to here as a systemic response produced by activation of the sympathetic nervous system and hypothalamus-pituitary-adrenal (HPA)-axis) has been implicated in a variety of psychological and physical stresses, which involves immune and metabolic homeostatic mechanisms affecting all organs in the body. In this review, we provide new evidence for the involvement of this well-characterized neurohormonal stress response in mediating systemic and pulmonary effects of a prototypic air pollutant - ozone. A plethora of systemic metabolic and immune effects are induced in animals exposed to inhaled pollutants, which could result from increased circulating stress hormones. The release of adrenal-derived stress hormones in response to ozone exposure not only mediates systemic immune and metabolic responses, but by doing so, also modulates pulmonary injury and inflammation. With recurring pollutant exposures, these effects can contribute to multi-organ chronic conditions associated with air pollution. This review will cover, 1) the potential mechanisms by which air pollutants can initiate the relay of signals from respiratory tract to brain through trigeminal and vagus nerves, and activate stress responsive regions including hypothalamus; and 2) the contribution of sympathetic and HPA-axis activation in mediating systemic homeostatic metabolic and immune effects of ozone in various organs. The potential contribution of chronic environmental stress in cardiovascular, neurological, reproductive and metabolic diseases, and the knowledge gaps are also discussed. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio and Weidong Wu.
Collapse
Affiliation(s)
- Urmila P Kodavanti
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| |
Collapse
|
109
|
Snow SJ, Gordon CJ, Bass VL, Schladweiler MC, Ledbetter AD, Jarema KA, Phillips PM, Johnstone AF, Kodavanti UP. Age-related differences in pulmonary effects of acute and subchronic episodic ozone exposures in Brown Norway rats. Inhal Toxicol 2016; 28:313-23. [PMID: 27097751 DOI: 10.3109/08958378.2016.1170910] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ozone (O3) is known to induce adverse pulmonary and systemic health effects. Importantly, children and older persons are considered at-risk populations for O3-induced dysfunction, yet the mechanisms accounting for the age-related pulmonary responses to O3 are uncertain. In this study, we examined age-related susceptibility to O3 using 1 mo (adolescent), 4 mo (young adult), 12 mo (adult) and 24 mo (senescent) male Brown Norway rats exposed to filtered air or O3 (0.25 and 1.00 ppm), 6 h/day, two days/week for 1 week (acute) or 13 weeks (subchronic). Ventilatory function, assessed by whole-body plethysmography, and bronchoalveolar lavage fluid (BALF) biomarkers of injury and inflammation were used to examine O3-induced pulmonary effects. Relaxation time declined in all ages following the weekly exposures; however, this effect persisted only in the 24 mo rats following a five days recovery, demonstrating an inability to induce adaptation commonly seen with repeated O3 exposures. PenH was increased in all groups with an augmented response in the 4 mo rats following the subchronic O3 exposures. O3 led to increased breathing frequency and minute volume in the 1 and 4 mo animals. Markers of pulmonary permeability were increased in all age groups. Elevations in BALF γ-glutamyl transferase activity and lung inflammation following an acute O3 exposure were noted in only the 1 and 4 mo rats, which likely received an increased effective O3 dose. These data demonstrate that adolescent and young adult animals are more susceptible to changes in ventilation and pulmonary injury/inflammation caused by acute and episodic O3 exposure.
Collapse
Affiliation(s)
- Samantha J Snow
- a Environmental Public Health Division and NHEERL, US Environmental Protection Agency, Research Triangle Park , NC , USA
| | - Christopher J Gordon
- b Toxicity Assessment Division, NHEERL, US Environmental Protection Agency, Research Triangle Park , NC , USA , and
| | - Virginia L Bass
- a Environmental Public Health Division and NHEERL, US Environmental Protection Agency, Research Triangle Park , NC , USA .,c Environmental Sciences and Engineering, School of Public Health, University of North Carolina at Chapel Hil , Chapel Hill , NC , USA
| | - Mette C Schladweiler
- a Environmental Public Health Division and NHEERL, US Environmental Protection Agency, Research Triangle Park , NC , USA
| | - Allen D Ledbetter
- a Environmental Public Health Division and NHEERL, US Environmental Protection Agency, Research Triangle Park , NC , USA
| | - Kimberly A Jarema
- b Toxicity Assessment Division, NHEERL, US Environmental Protection Agency, Research Triangle Park , NC , USA , and
| | - Pamela M Phillips
- b Toxicity Assessment Division, NHEERL, US Environmental Protection Agency, Research Triangle Park , NC , USA , and
| | - Andrew F Johnstone
- b Toxicity Assessment Division, NHEERL, US Environmental Protection Agency, Research Triangle Park , NC , USA , and
| | - Urmila P Kodavanti
- a Environmental Public Health Division and NHEERL, US Environmental Protection Agency, Research Triangle Park , NC , USA
| |
Collapse
|
110
|
Thomson EM, Pal S, Guénette J, Wade MG, Atlas E, Holloway AC, Williams A, Vincent R. Ozone Inhalation Provokes Glucocorticoid-Dependent and -Independent Effects on Inflammatory and Metabolic Pathways. Toxicol Sci 2016; 152:17-28. [DOI: 10.1093/toxsci/kfw061] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
111
|
Miller DB, Snow SJ, Schladweiler MC, Richards JE, Ghio AJ, Ledbetter AD, Kodavanti UP. Acute Ozone-Induced Pulmonary and Systemic Metabolic Effects Are Diminished in Adrenalectomized Rats. Toxicol Sci 2016; 150:312-22. [PMID: 26732886 DOI: 10.1093/toxsci/kfv331] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Acute ozone exposure increases circulating stress hormones and induces metabolic alterations in animals. We hypothesized that the increase of adrenal-derived stress hormones is necessary for both ozone-induced metabolic effects and lung injury. Male Wistar-Kyoto rats underwent bilateral adrenal demedullation (DEMED), total bilateral adrenalectomy (ADREX), or sham surgery (SHAM). After a 4 day recovery, rats were exposed to air or ozone (1 ppm), 4 h/day for 1 or 2 days and responses assessed immediately postexposure. Circulating adrenaline levels dropped to nearly zero in DEMED and ADREX rats relative to SHAM. Corticosterone tended to be low in DEMED rats and dropped to nearly zero in ADREX rats. Adrenalectomy in air-exposed rats caused modest changes in metabolites and lung toxicity parameters. Ozone-induced hyperglycemia and glucose intolerance were markedly attenuated in DEMED rats with nearly complete reversal in ADREX rats. Ozone increased circulating epinephrine and corticosterone in SHAM but not in DEMED or ADREX rats. Free fatty acids (P = .15) and branched-chain amino acids increased after ozone exposure in SHAM but not in DEMED or ADREX rats. Lung minute volume was not affected by surgery or ozone but ozone-induced labored breathing was less pronounced in ADREX rats. Ozone-induced increases in lung protein leakage and neutrophilic inflammation were markedly reduced in DEMED and ADREX rats (ADREX > DEMED). Ozone-mediated decreases in circulating white blood cells in SHAM were not observed in DEMED and ADREX rats. We demonstrate that ozone-induced peripheral metabolic effects and lung injury/inflammation are mediated through adrenal-derived stress hormones likely via the activation of stress response pathway.
Collapse
Affiliation(s)
- Desinia B Miller
- *Curriculum in Toxicology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599; and
| | - Samantha J Snow
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Mette C Schladweiler
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Judy E Richards
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Andrew J Ghio
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Allen D Ledbetter
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Urmila P Kodavanti
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| |
Collapse
|
112
|
Madden MC. Comparative toxicity and mutagenicity of soy-biodiesel and petroleum-diesel emissions: overview of studies from the U.S. EPA, Research Triangle Park, NC. Inhal Toxicol 2015; 27:511-4. [PMID: 26514779 DOI: 10.3109/08958378.2015.1107153] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 10/08/2015] [Indexed: 01/08/2023]
Abstract
Biodiesel use as a fuel is increasing globally as an alternate to petroleum sources. To comprehensively assess the effects of the use of biodiesel as an energy source, end stage uses of biodiesel such as the effects of inhalation of combusted products on human health must be incorporated. To date, few reports concerning the toxicological effects of the emissions of combusted biodiesel or blends of biodiesel on surrogates of health effects have been published. The relative toxicity of the combusted biodiesel emissions compared to petroleum diesel emissions with short term exposures is also not well known. To address the paucity of findings on the toxicity of combusted biodiesel emissions, studies were undertaken at the U.S. Environmental Protection Agency laboratories in Research Triangle Park, North Carolina. The studies used a variety of approaches with nonhuman animal models to examine biological responses of the lung and cardiovascular systems induced by acute and repeated exposures to pure biodiesel and biodiesel blended with petroleum diesel. Effects of the emissions on induction of mutations in bacterial test strains and mammalian DNA adducts were also characterized and normalized to engine work load. The emissions were characterized as to the physicochemical composition in order to determine the magnitude of the differences among the emissions utilized in the studies. This article summarizes the major finding of these studies which are contained within this special issue of Inhalation Toxicology. The findings provided in these articles provide information about the toxicity of biodiesel emissions relative to petroleum diesel emissions and which can be utilized in a life cycle analyses of the effects of increased biodiesel usage.
Collapse
Affiliation(s)
- Michael C Madden
- a National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park , NC , USA
| |
Collapse
|