101
|
Nonaka S, Nagaosa K, Mori T, Shiratsuchi A, Nakanishi Y. Integrin αPS3/βν-mediated phagocytosis of apoptotic cells and bacteria in Drosophila. J Biol Chem 2013; 288:10374-80. [PMID: 23426364 DOI: 10.1074/jbc.m113.451427] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Integrins exert a variety of cellular functions as heterodimers of two transmembrane subunits named α and β. Integrin βν, a β-subunit of Drosophila integrin, is involved in the phagocytosis of apoptotic cells and bacteria. Here, we searched for an α-subunit that forms a complex and cooperates with βν. Examinations of RNAi-treated animals suggested that αPS3, but not any of four other α-subunits, is required for the effective phagocytosis of apoptotic cells in Drosophila embryos. The mutation of αPS3-encoding scb, deficiency, insertion of P-element, or alteration of nucleotide sequences, brought about a reduction in the level of phagocytosis. The defect in phagocytosis by deficiency was reverted by the forced expression of scb. Furthermore, flies in which the expression of both αPS3 and βν was inhibited by RNAi showed a level of phagocytosis almost equal to that observed in flies with RNAi for either subunit alone. A loss of αPS3 also decreased the activity of larval hemocytes in the phagocytosis of Staphylococcus aureus. Finally, a co-immunoprecipitation analysis using a Drosophila cell line treated with a chemical cross-linker suggested a physical association between αPS3 and βν. These results collectively indicated that integrin αPS3/βν serves as a receptor in the phagocytosis of apoptotic cells and bacteria by Drosophila phagocytes.
Collapse
Affiliation(s)
- Saori Nonaka
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | | | | | | | | |
Collapse
|
102
|
Tung TT, Nagaosa K, Fujita Y, Kita A, Mori H, Okada R, Nonaka S, Nakanishi Y. Phosphatidylserine recognition and induction of apoptotic cell clearance by Drosophila engulfment receptor Draper. ACTA ACUST UNITED AC 2013; 153:483-91. [DOI: 10.1093/jb/mvt014] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
103
|
Su Z, Chen J, Qiu Y, Yuan Y, Zhu F, Zhu Y, Liu X, Pu Y, He C. Olfactory ensheathing cells: the primary innate immunocytes in the olfactory pathway to engulf apoptotic olfactory nerve debris. Glia 2013; 61:490-503. [PMID: 23339073 DOI: 10.1002/glia.22450] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 11/09/2012] [Indexed: 11/11/2022]
Abstract
The olfactory system is an unusual tissue in which olfactory receptor neurons (ORNs) are continuously replaced throughout the life of mammals. Clearance of the apoptotic ORNs corpses is a fundamental process serving important functions in the regulation of olfactory nerve turnover and regeneration. However, little is known about the underlying mechanisms. Olfactory ensheathing cells (OECs) are a unique type of glial cells that wrap olfactory axons and support their continual regeneration from the olfactory epithelium to the bulb. In the present study, OECs were identified to exist in two different states, resting and reactive, in which resting OECs could be activated by LPS stimulation and functioned as phagocytes for cleaning apoptotic ORNs corpses. Confocal analysis revealed that dead ORNs debris were engulfed by OECs and co-localized with lysosome associated membrane protein 1. Moreover, phosphatidylserine (PS) receptor was identified to express on OECs, which allowed OECs to recognize apoptotic ORNs by binding to PS. Importantly, engulfment of olfactory nerve debris by OECs was found in olfactory mucosa under normal turnover and was significantly increased in the animal model of olfactory bulbectomy, while little phagocytosis by Iba-1-positive microglia/macrophages was observed. Together, these results implicate OEC as a primary innate immunocyte in the olfactory pathway, and suggest a cellular and molecular mechanism by which ORNs corpses are removed during olfactory nerve turnover and regeneration.
Collapse
Affiliation(s)
- Zhida Su
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of Ministry of Education, Neuroscience Research Center of Changzheng Hospital, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Marker DF, Puccini JM, Mockus TE, Barbieri J, Lu SM, Gelbard HA. LRRK2 kinase inhibition prevents pathological microglial phagocytosis in response to HIV-1 Tat protein. J Neuroinflammation 2012. [PMID: 23190742 PMCID: PMC3538654 DOI: 10.1186/1742-2094-9-261] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Human Immunodeficiency Virus-1 (HIV-1) associated neurocognitive disorders (HANDs) are accompanied by significant morbidity, which persists despite the use of combined antiretroviral therapy (cART). While activated microglia play a role in pathogenesis, changes in their immune effector functions, including phagocytosis and proinflammatory signaling pathways, are not well understood. We have identified leucine-rich repeat kinase 2 (LRRK2) as a novel regulator of microglial phagocytosis and activation in an in vitro model of HANDs, and hypothesize that LRRK2 kinase inhibition will attenuate microglial activation during HANDs. METHODS We treated BV-2 immortalized mouse microglia cells with the HIV-1 trans activator of transcription (Tat) protein in the absence or presence of LRRK2 kinase inhibitor (LRRK2i). We used Western blot, qRT-PCR, immunocytochemistry and latex bead engulfment assays to analyze LRRK2 protein levels, proinflammatory cytokine and phagocytosis receptor expression, LRRK2 cellular distribution and phagocytosis, respectively. Finally, we utilized ex vivo microfluidic chambers containing primary hippocampal neurons and BV-2 microglia cells to investigate microglial phagocytosis of neuronal axons. RESULTS We found that Tat-treatment of BV-2 cells induced kinase activity associated phosphorylation of serine 935 on LRRK2 and caused the formation of cytoplasmic LRRK2 inclusions. LRRK2i decreased Tat-induced phosphorylation of serine 935 on LRRK2 and inhibited the formation of Tat-induced cytoplasmic LRRK2 inclusions. LRRK2i also decreased Tat-induced process extension in BV-2 cells. Furthermore, LRRK2i attenuated Tat-induced cytokine expression and latex bead engulfment. We examined relevant cellular targets in microfluidic chambers and found that Tat-treated BV-2 microglia cells cleared axonal arbor and engulfed neuronal elements, whereas saline treated controls did not. LRRK2i was found to protect axons in the presence of Tat-activated microglia, as well as AnnexinV, a phosphatidylserine-binding protein. In addition, LRRK2i decreased brain-specific angiogenesis inhibitor 1 (BAI1) receptor expression on BV-2 cells after Tat-treatment, a key receptor in phosphatidylserine-mediated phagocytosis. CONCLUSION Taken together, these results implicate LRRK2 as a key player in microglial inflammation and, in particular, in the phagocytosis of neuronal elements. These studies show that LRRK2 kinase inhibition may prove an effective therapeutic strategy for HANDs, as well as other neuroinflammatory conditions.
Collapse
Affiliation(s)
- Daniel F Marker
- Center for Neural Development and Disease, Department of Neurology, Child Neurology Division, University of Rochester, Rochester, NY, USA
| | | | | | | | | | | |
Collapse
|
105
|
Burger P, Kostova E, Bloem E, Hilarius-Stokman P, Meijer AB, van den Berg TK, Verhoeven AJ, de Korte D, van Bruggen R. Potassium leakage primes stored erythrocytes for phosphatidylserine exposure and shedding of pro-coagulant vesicles. Br J Haematol 2012. [PMID: 23190498 DOI: 10.1111/bjh.12133] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
During storage, erythrocytes undergo changes that alter their clearance and function after transfusion and there is increasing evidence that these changes contribute to the complications observed in transfused patients. Stored erythrocytes were incubated overnight at 37°C to mimic the temperature after transfusion. After incubation, several markers for erythrocyte damage were analysed. After overnight incubation, stored erythrocytes showed increased potassium leakage, haemolysis, PS exposure and vesicle formation, and all these effects increased with increasing storage time. Furthermore, we demonstrated that long-term stored erythrocytes develop decreased flippase activity and increased scrambling activity after overnight incubation, leading to PS exposure and the release of vesicles. Reduced intracellular potassium was identified as the cause of the decreased flippase activity. Lastly, we provide evidence that erythrocytes can return to a PS-negative state by shedding parts of their membrane as PS-containing vesicles and that these vesicles can serve as a platform for the coagulation cascade. These findings reveal that potassium leakage, a well-known phenomenon of prolonged erythrocyte storage, primes erythrocytes for PS exposure. PS exposure will lead to vesicle formation and might have an important impact on the post-transfusion function and side effects of stored erythrocytes.
Collapse
Affiliation(s)
- Patrick Burger
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Huang S, Jia K, Wang Y, Zhou Z, Levine B. Autophagy genes function in apoptotic cell corpse clearance during C. elegans embryonic development. Autophagy 2012; 9:138-49. [PMID: 23108454 DOI: 10.4161/auto.22352] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Efficient apoptotic corpse clearance is essential for metazoan development and adult tissue homeostasis. Several autophagy proteins have been previously shown to function in apoptotic cell clearance; however, it remains unknown whether autophagy genes are essential for efficient apoptotic corpse clearance in the developing embryo. Here we show that, in Caenorhabditis elegans embryos, loss-of-function mutations in several autophagy genes that act at distinct steps in the autophagy pathway resulted in increased numbers of cell corpses and delayed cell corpse clearance. Further analysis of embryos with a null mutation in bec- 1, the C. elegans ortholog of yeast VPS30/ATG6/mammalian beclin 1 (BECN1), revealed normal phosphatidylserine exposure on dying cells. Moreover, the corpse clearance defects of bec- 1(ok691) embryos were rescued by BEC-1 expression in engulfing cells, and bec- 1(ok691) enhanced corpse clearance defects in nematodes with simultaneous mutations in the engulfment genes, ced- 1, ced- 6 or ced- 12. Together, these data demonstrate that autophagy proteins play an important role in cell corpse clearance during nematode embryonic development, and likely function in parallel to known pathways involved in corpse removal.
Collapse
Affiliation(s)
- Shuyi Huang
- Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | | | | |
Collapse
|
107
|
Harre U, Keppeler H, Ipseiz N, Derer A, Poller K, Aigner M, Schett G, Herrmann M, Lauber K. Moonlighting osteoclasts as undertakers of apoptotic cells. Autoimmunity 2012; 45:612-9. [DOI: 10.3109/08916934.2012.719950] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
108
|
Dwivedi P, Kansal S, Sharma M, Shukla R, Verma A, Shukla P, Tripathi P, Gupta P, Saini D, Khandelwal K, Verma R, Dwivedi AK, Mishra PR. Exploiting 4-sulphateN-acetyl galactosamine decorated gelatin nanoparticles for effective targeting to professional phagocytesin vitroandin vivo. J Drug Target 2012; 20:883-96. [DOI: 10.3109/1061186x.2012.725169] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
109
|
Kansal S, Tandon R, Dwivedi P, Misra P, Verma PRP, Dube A, Mishra PR. Development of nanocapsules bearing doxorubicin for macrophage targeting through the phosphatidylserine ligand: a system for intervention in visceral leishmaniasis. J Antimicrob Chemother 2012; 67:2650-60. [DOI: 10.1093/jac/dks286] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
110
|
Park HJ, Baen JY, Lee YJ, Choi YH, Kang JL. The TAM-family receptor Mer mediates production of HGF through the RhoA-dependent pathway in response to apoptotic cells. Mol Biol Cell 2012; 23:3254-65. [PMID: 22740630 PMCID: PMC3418318 DOI: 10.1091/mbc.e12-01-0029] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The TAM receptor protein tyrosine kinases Tyro3, Axl, and Mer play important roles in macrophage function. We investigated the roles of the TAM receptors in mediating the induction of hepatocyte growth factor (HGF) during the interaction of macrophages with apoptotic cells. Mer-specific neutralizing antibody, small interfering RNA (siRNA), and a recombinant Mer protein (Mer/Fc) inhibited HGF mRNA and protein expression, as well as activation of RhoA, Akt, and specific mitogen-activated protein (MAP) kinases in response to apoptotic cells. Inhibition of Axl or Tyro3 with specific antibodies, siRNA, or Fc-fusion proteins did not prevent apoptotic cell-induced HGF mRNA and protein expression and did not inhibit activation of the postreceptor signaling molecules RhoA and certain MAP kinases, including extracellular signal-regulated protein kinase and c-Jun NH(2)-terminal kinase. However, Axl- and Tyro3-specific blockers did inhibit the activation of Akt and p38 MAP kinase in response to apoptotic cells. In addition, none of the TAM receptors mediated the effects of apoptotic cells on transforming growth factor-β or epidermal growth factor mRNA expression. However, they were involved in the induction of vascular endothelial growth factor mRNA expression. Our data provide evidence that when macrophages interact with apoptotic cells, only Mer of the TAM-family receptors is responsible for mediating transcriptional HGF production through a RhoA-dependent pathway.
Collapse
Affiliation(s)
- Hyun-Jung Park
- Department of Physiology, School of Medicine, Ewha Womans University, Seoul, Korea
| | | | | | | | | |
Collapse
|
111
|
Eken C, Sadallah S, Martin PJ, Treves S, Schifferli JA. Ectosomes of polymorphonuclear neutrophils activate multiple signaling pathways in macrophages. Immunobiology 2012; 218:382-92. [PMID: 22749214 DOI: 10.1016/j.imbio.2012.05.021] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 04/03/2012] [Accepted: 05/17/2012] [Indexed: 02/02/2023]
Abstract
Ectosomes are vesicles shed directly from the cell surface. Human polymorphonuclear neutrophils release ectosomes (PMN-Ect) upon their activation. PMN-Ect expose phosphatidylserine (PS) on the outer leaflet of the plasma membrane, and down-modulate the inflammatory response of human macrophages and dendritic cells exposed to TLR-2 and -4 ligands. This down-modulation is mediated by PS via the engagement and activation of the Mer receptor tyrosine kinase (MerTK). In the present study, we demonstrate that exposure of macrophages to PMN-Ect activates directly 2 additional pathways, an immediate Ca(2+) flux and a rapid release of TGF-β1. As expected, the Ca(2+) flux was necessary for the activation of TLR-2 pathway with the release of cytokines. However, MerTK blockade with antibodies did not modify the Ca(2+) flux, indicating an independent activation of Ca(2+) by PMN-Ect. Striking was that the rapid release of TGF-β1 was independent of the MerTK pathway and did not require a Ca(2+) flux. TGF-β1 was present in cytosolic storage pools, which were depleted after exposure of the macrophages to PMN-Ect, and no increase in TGF-β1 mRNA could be detected in the 3 first hours when maximal release had occurred. The release of TGF-β1 by macrophages was seen only for PMN-Ect and not for PS-liposomes or erythrocyte ectosomes, which express PS. However, blocking the PS of PMN-Ect inhibited TGF-β1 release, suggesting that PS expression was necessary although not sufficient for this release. Interestingly, the effects of PMN-Ect pre-exposure were lasting for 24h with the macrophages being less receptive to TLR-2 activation and TGF-β1 stores remaining low. In sum, PMN-Ect induce several signaling pathways in resting and stimulated macrophages, which include independently the MerTK pathway, Ca(2+) flux and the release of stored TGF-β1, and each might influence the immunomodulatory effects of macrophages.
Collapse
Affiliation(s)
- Ceylan Eken
- Immunonephrology Laboratory, Departments of Biomedicine and Medicine, University Hospital Basel, Basel, Switzerland.
| | | | | | | | | |
Collapse
|
112
|
Schürpf T, Chen Q, Liu JH, Wang R, Springer TA, Wang JH. The RGD finger of Del-1 is a unique structural feature critical for integrin binding. FASEB J 2012; 26:3412-20. [PMID: 22601780 DOI: 10.1096/fj.11-202036] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Developmental endothelial cell locus-1 (Del-1) glycoprotein is secreted by endothelial cells and a subset of macrophages. Del-1 plays a regulatory role in vascular remodeling and functions in innate immunity through interaction with integrin α(V)β(3). Del-1 contains 3 epidermal growth factor (EGF)-like repeats and 2 discoidin-like domains. An Arg-Gly-Asp (RGD) motif in the second EGF domain (EGF2) mediates adhesion by endothelial cells and phagocytes. We report the crystal structure of its 3 EGF domains. The RGD motif of EGF2 forms a type II' β turn at the tip of a long protruding loop, dubbed the RGD finger. Whereas EGF2 and EGF3 constitute a rigid rod via an interdomain calcium ion binding site, the long linker between EGF1 and EGF2 lends considerable flexibility to EGF1. Two unique O-linked glycans and 1 N-linked glycan locate to the opposite side of EGF2 from the RGD motif. These structural features favor integrin binding of the RGD finger. Mutagenesis data confirm the importance of having the RGD motif at the tip of the RGD finger. A database search for EGF domain sequences shows that this RGD finger is likely an evolutionary insertion and unique to the EGF domain of Del-1 and its homologue milk fat globule-EGF 8.
Collapse
Affiliation(s)
- Thomas Schürpf
- Immune Disease Institute, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
113
|
de Freitas A, Banerjee S, Xie N, Cui H, Davis KI, Friggeri A, Fu M, Abraham E, Liu G. Identification of TLT2 as an engulfment receptor for apoptotic cells. THE JOURNAL OF IMMUNOLOGY 2012; 188:6381-8. [PMID: 22573805 DOI: 10.4049/jimmunol.1200020] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Clearance of apoptotic cells (efferocytosis) is critical to the homeostasis of the immune system by restraining inflammation and autoimmune response to intracellular Ags released from dying cells. TLRs-mediated innate immunity plays an important role in pathogen clearance and in regulation of the adaptive immune response. However, the regulation of efferocytosis by activation of TLRs has not been well characterized. In this study, we found that activation of TLR3 or TLR9, but not of TLR2, enhances engulfment of apoptotic cells by macrophages. We found that the activation of TLR3 upregulates the expression of triggering receptor expressed on myeloid cells (TREM)-like protein 2 (TLT2), a member of the TREM receptor family, on the surface of macrophages. Blocking TLT2 on the macrophage surface by either specific anti-TLT2 Ab or soluble TLT2 extracellular domain attenuated the enhanced ability of macrophages with TLR3 activation to engulf apoptotic cells. To the contrary, overexpression of TLT2 increased the phagocytosis of apoptotic cells. We found that TLT2 specifically binds to phosphatidylserine, a major "eat me" signal that is exposed on the surface of apoptotic cells. Furthermore, we found that TLT2 mediates phagocytosis of apoptotic cells in vivo. Thus, our studies identified TLT2 as an engulfment receptor for apoptotic cells. Our data also suggest a novel mechanism by which TREM receptors regulate inflammation and autoimmune response.
Collapse
Affiliation(s)
- Andressa de Freitas
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Davis K, Banerjee S, Friggeri A, Bell C, Abraham E, Zerfaoui M. Poly(ADP-ribosyl)ation of high mobility group box 1 (HMGB1) protein enhances inhibition of efferocytosis. Mol Med 2012; 18:359-69. [PMID: 22204001 DOI: 10.2119/molmed.2011.00203] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 12/21/2011] [Indexed: 11/06/2022] Open
Abstract
Phagocytosis of apoptotic cells by macrophages, known as efferocytosis, is a critical process in the resolution of inflammation. High mobility group box 1 (HMGB1) protein was first described as a nuclear nonhistone DNA-binding protein, but is now known to be secreted by activated cells during inflammatory processes, where it participates in diminishing efferocytosis. Although HMGB1 is known to undergo modification when secreted, the effect of such modifications on the inhibitory actions of HMGB1 during efferocytosis have not been reported. In the present studies, we found that HMGB1 secreted by Toll-like receptor 4 (TLR4) stimulated cells is highly poly(ADP-ribosyl)ated (PARylated). Gene deletion of poly(ADP)-ribose polymerase (PARP)-1 or pharmacological inhibition of PARP-1 decreased the release of HMGB1 from the nucleus to the extracellular milieu after TLR4 engagement. Preincubation of macrophages or apoptotic cells with HMGB1 diminished efferocytosis through mechanisms involving binding of HMGB1 to phosphatidylserine on apoptotic cells and to the receptor for advanced glycation end products (RAGE) on macrophages. Preincubation of either macrophages or apoptotic cells with PARylated HMGB1 inhibited efferocytosis to a greater degree than exposure to unmodified HMGB1, and PARylated HMGB1 demonstrated higher affinity for phosphatidylserine and RAGE than unmodified HMGB1. PARylated HMGB1 had a greater inhibitory effect on Ras-related C3 botulinum toxin substrate 1 (Rac-1) activation in macrophages during the uptake of apoptotic cells than unmodified HMGB1. The present results, showing that PARylation of HMGB1 enhances its ability to inhibit efferocytosis, provide a novel mechanism by which PARP-1 may promote inflammation.
Collapse
Affiliation(s)
- Kasey Davis
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294-0006, USA
| | | | | | | | | | | |
Collapse
|
115
|
Diurnal, localized exposure of phosphatidylserine by rod outer segment tips in wild-type but not Itgb5-/- or Mfge8-/- mouse retina. Proc Natl Acad Sci U S A 2012; 109:8145-8. [PMID: 22566632 DOI: 10.1073/pnas.1121101109] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In the mammalian retina, life-long renewal of light-sensitive photoreceptor outer segments (POS) involves circadian shedding of distal rod POS tips and their subsequent phagocytosis by the adjacent retinal pigment epithelium (RPE) every morning after light onset. Molecular mechanisms that promote or synchronize POS tip shedding have thus far remained unknown. Here we examined plasma membrane asymmetry of living POS by quantifying surface exposure of the membrane phospholipid phosphatidylserine (PS) using antibodies, annexin V, and pSIVA (polarity-sensitive indicator of viability and apoptosis), an annexin-based biosensor with switchable states of fluorescence. We found that isolated POS particles possess externalized PS, whose blockade or removal reduces their binding and engulfment by RPE in culture. Imaging of live photoreceptors in freshly dissected mouse retina detected PS externalization restricted to POS tips with discrete boundaries. In wild-type mice, frequency of rod tips exposing PS and length of tips with exposed PS peak shortly after light onset. In contrast, PS-marked POS tips do not vary in mice lacking the diurnal phagocytic rhythm of the RPE due to loss of either the phagocytosis receptor αvβ5 integrin, expressed by the RPE but not by photoreceptors, or its extracellular ligand milk fat globule-EGF factor 8 (MFG-E8). These data identify a molecular distinction, localized PS exposure, that is specific to the surface of rod POS tips. Enhanced PS exposure preceding rod shedding and phagocytosis suggests that surface PS promotes these processes. Moreover, our results demonstrate that the diurnal rhythm of PS demarcation of POS tips is not intrinsic to rod photoreceptors but requires activities of the RPE as well.
Collapse
|
116
|
Song JS, Lim KM, Kang S, Noh JY, Kim K, Bae ON, Chung JH. Procoagulant and prothrombotic effects of the herbal medicine, Dipsacus asper and its active ingredient, dipsacus saponin C, on human platelets. J Thromb Haemost 2012; 10:895-906. [PMID: 22405282 DOI: 10.1111/j.1538-7836.2012.04685.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND In spite of the growing popularity of herbal medicines and natural food supplements, their effects on cardiovascular homeostasis remain largely unknown, especially regarding pro-thrombotic risks. OBJECTIVE In the present study, 21 herbal tea extracts were screened for the procoagulant activities on platelets, an important promoter of thrombosis to examine if herbal medicines or natural products may have prothrombotic risks. We discovered that Dipsacus asper (DA), known to have analgesic and anti-inflammatory effects, potently induced procoagulant activities in platelets. We tried to identify the active ingredient and elucidate the underlying mechanism. RESULTS Among 10 major ingredients of DA, dipsacus saponin C (DSC) was identified as a key active ingredient in DA-induced procoagulant activities. DSC-induced procoagulant activities were achieved by the exposure of phosphatidylserine (PS) and PS-bearing microparticle generation that were caused by the alteration in the activities of phospholipid translocases: scramblase and flippase. These events were initiated by increased intracellular calcium and ATP depletion. Notably, DSC induced a series of apoptotic events including the disruption of mitochondrial membrane potential, translocation of Bax and Bak, cytochrome c release and caspase-3 activation. The key roles of apoptotic pathway and caspase activation were demonstrated by the reversal of DSC-induced PS exposure and procoagulant activities with the pretreatment of caspase inhibitors. Interestingly, EGTA reversed DSC-induced procoagulant activities and apoptotic events suggesting that an intracellular calcium increase may play a central role. These results were also confirmed in vivo where platelets of the rats exposed to DSC or DA exhibited PS exposure. Most importantly, DSC or DA administration led to increased thrombus formation. CONCLUSION These results demonstrate that herbal medicines or natural products such as DA or DSC might have prothrombotic risks through procoagulant activation of platelets.
Collapse
Affiliation(s)
- J-S Song
- College of Pharmacy, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
117
|
Abstract
Passive immunotherapy, including adoptive T-cell therapy and antibody therapy, has shown encouraging results in cancer treatment lately. However, active immunotherapy of solid cancers remains an elusive goal. It is now known that the human innate immune system recognizes pathogen-associated molecular patterns conserved among microbes or damage-associated molecular patterns released from tissue injuries to initiate adaptive immune responses during infection and tissue inflammation, respectively. In contrast, how the innate immune system recognizes endogenously arising cancer remains poorly understood at the molecular level, which poses a significant roadblock to the development of active cancer immunotherapy. We hereby review the current knowledge of how solid cancers directly and indirectly interact with cells of the human innate immune system, with a focus on the potential effect of such interactions to the resultant adaptive immune responses against cancer. We believe that understanding cancer and innate immune system interactions may allow us to better manipulate the adaptive immune system at the molecular level to develop effective active immunotherapy against cancer. Current and future perspectives in clinical development that exploits these molecular interactions are discussed.
Collapse
Affiliation(s)
- Yanan Liu
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1738
| | - Gang Zeng
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1738
| |
Collapse
|
118
|
Kay JG, Koivusalo M, Ma X, Wohland T, Grinstein S. Phosphatidylserine dynamics in cellular membranes. Mol Biol Cell 2012; 23:2198-212. [PMID: 22496416 PMCID: PMC3364182 DOI: 10.1091/mbc.e11-11-0936] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The distribution and dynamics of phosphatidylserine are studied in the plasma membrane and in organellar membranes of live cells using two novel fluorescent probes in combination with various biophysical techniques, including fluorescence correlation spectroscopy and single-particle tracking. Much has been learned about the role of exofacial phosphatidylserine (PS) in apoptosis and blood clotting using annexin V. However, because annexins are impermeant and unable to bind PS at low calcium concentration, they are unsuitable for intracellular use. Thus little is known about the topology and dynamics of PS in the endomembranes of normal cells. We used two new probes—green fluorescent protein (GFP)–LactC2, a genetically encoded fluorescent PS biosensor, and 1-palmitoyl-2-(dipyrrometheneboron difluoride)undecanoyl-sn-glycero-3-phospho-l-serine (TopFluor-PS), a synthetic fluorescent PS analogue—to examine PS distribution and dynamics inside live cells. The mobility of PS was assessed by a combination of advanced optical methods, including single-particle tracking and fluorescence correlation spectroscopy. Our results reveal the existence of a sizable fraction of PS with limited mobility, with cortical actin contributing to the confinement of PS in the plasma membrane. We were also able to measure the dynamics of PS in endomembrane organelles. By targeting GFP-LactC2 to the secretory pathway, we detected the presence of PS in the luminal leaflet of the endoplasmic reticulum. Our data provide new insights into properties of PS inside cells and suggest mechanisms to account for the subcellular distribution and function of this phospholipid.
Collapse
Affiliation(s)
- Jason G Kay
- Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | | | | | | | | |
Collapse
|
119
|
Matsuda A, Jacob A, Wu R, Zhou M, Aziz M, Wang P. Milk fat globule--EGF factor VIII ameliorates liver injury after hepatic ischemia-reperfusion. J Surg Res 2012; 180:e37-46. [PMID: 22487387 DOI: 10.1016/j.jss.2012.03.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 02/15/2012] [Accepted: 03/09/2012] [Indexed: 12/20/2022]
Abstract
BACKGROUND Hepatic ischemia-reperfusion (I/R) injury is a serious clinical complication that may compromise liver function because of extensive hepatocyte loss. Therefore, the development of novel and effective therapies for hepatic I/R is critical for the improvement of patient outcome. It has been previously shown that administration of milk fat globule-EGF factor VIII (MFG-E8), a membrane-associated secretory glycoprotein, exerts significant beneficial effects under acute inflammatory conditions through multiple physiological processes associated with tissue remodeling. METHODS To determine whether administration of recombinant human (rh) MFG-E8 attenuates liver injury in an animal model of hepatic I/R, male adult rats were subjected to 70% hepatic ischemia for 90 min, followed by reperfusion. At the beginning of reperfusion, rats were treated intravenously with normal saline (vehicle) or rhMFG-E8 (160 μg/kg) over a period of 30 min. MFG-E8 levels and various measurements were assessed 4 h after reperfusion. In addition, survival study was conducted in MFG-E8(-/-) and rhMFG-E8-treated wild-type (WT) mice using a total hepatic ischemia model. RESULTS Liver and plasma MFG-E8 protein levels were significantly decreased after hepatic I/R. Administration of rhMFG-E8 significantly improved liver injury, suppressed apoptosis, attenuated inflammation and oxidative stress, and downregulated NF-κB pathway. We also noticed that rhMFG-E8 treatment restored the downregulated PPAR-γ expression after hepatic I/R. MFG-E8(-/-) mice showed deterioration on survival and, in contrast, rhMFG-E8-treated WT mice showed a significant improvement of survival compared with vehicle-treated WT mice. CONCLUSIONS MFG-E8-mediated multiple physiological events may represent an effective therapeutic option in tissue injury following an episode of hepatic I/R.
Collapse
Affiliation(s)
- Akihisa Matsuda
- Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Manhasset, New York, USA
| | | | | | | | | | | |
Collapse
|
120
|
Phagocytosis by macrophages and endothelial cells inhibits procoagulant and fibrinolytic activity of acute promyelocytic leukemia cells. Blood 2012; 119:2325-34. [PMID: 22138513 DOI: 10.1182/blood-2011-06-362186] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The coagulopathy of acute promyelocytic leukemia (APL) is mainly related to procoagulant substances and fibrinolytic activators of APL blasts, but the fate of these leukemic cells is unknown. The aim of this study was to investigate the removal of APL blasts by macrophages and endothelial cells in vitro and consequent procoagulant and fibrinolytic activity of APL cells. We found that human umbilical vein endothelial cells as well as THP-1 and monocyte-derived macrophages bound, engulfed, and subsequently degraded immortalized APL cell line NB4 and primary APL cells. Lactadherin promoted phagocytosis of APL cells in a time-dependent fashion. Furthermore, factor Xa and prothrombinase activity of phosphatidylserine-exposed target APL cells was time-dependently decreased after incubation with phagocytes (THP-1–derived macrophages or HUVECs). Thrombin production on target APL cells was reduced by 40%-45% after 2 hours of coincubation with phagocytes and 80% by a combination of lactadherin and phagocytes. Moreover, plasmin generation of target APL cells was inhibited 30% by 2 hours of phagocytosis and ∼ 50% by lactadherin-mediated engulfment. These results suggest that engulfment by macrophages and endothelial cells reduce procoagulant and fibrinolytic activity of APL blasts. Lactadherin and phagocytosis could cooperatively ameliorate the clotting disorders in APL.
Collapse
|
121
|
Mycobacterium tuberculosis-induced neutrophil ectosomes decrease macrophage activation. Tuberculosis (Edinb) 2012; 92:218-25. [PMID: 22391089 DOI: 10.1016/j.tube.2012.02.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 02/09/2012] [Accepted: 02/11/2012] [Indexed: 01/14/2023]
Abstract
BACKGROUND The existence of ectosome-like microvesicles released by neutrophils was proposed a few decades ago. Other studies revealed that the innate immune response during mycobacterial infection is accompanied by an intense migration of neutrophils to the site of infection, which may be important during the acute phase of tuberculosis. We found that the ectosomes derived from infected neutrophils are biologically active and can influence the survival of Mycobacterium tuberculosis within macrophages. METHODS Mycobacteria were cultured on supplemented Middlebrook-7H9 broth. All strains were grown to the exponential phase and quantitated by serial dilution. Human neutrophils and macrophages were infected with mycobacteria. Ectosomes from neutrophils were isolated post-infection and characterized by transmission electron microscopy and flow cytometry. To determine whether these microvesicles influenced mycobactericidal activity, mycobacteria-infected macrophages were treated with isolated ectosomes. RESULTS Ectosomes were released from neutrophils infected with mycobacteria. These ectosomes were derived from neutrophil plasma membrane and a small proportion stained with PKH26. These microvesicles, when incubated with infected macrophages, influenced antimycobacterial activity. CONCLUSIONS This is the first study to demonstrate that ectosomes that are shed from infected neutrophils influence mycobactericidal activity in macrophages in vitro, suggesting that these microvesicles have biological significance. Nevertheless, major gaps in our knowledge of microvesicle biology remain.
Collapse
|
122
|
Fricker M, Neher JJ, Zhao JW, Théry C, Tolkovsky AM, Brown GC. MFG-E8 mediates primary phagocytosis of viable neurons during neuroinflammation. J Neurosci 2012; 32:2657-66. [PMID: 22357850 PMCID: PMC3312099 DOI: 10.1523/jneurosci.4837-11.2012] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 12/21/2011] [Accepted: 01/05/2012] [Indexed: 12/20/2022] Open
Abstract
Milk-fat globule EGF factor-8 (MFG-E8, SED1, lactadherin) is known to mediate the phagocytic removal of apoptotic cells by bridging phosphatidylserine (PS)-exposing cells and the vitronectin receptor (VR) on phagocytes. However, we show here that MFG-E8 can mediate phagocytosis of viable neurons during neuroinflammation induced by lipopolysaccharide (LPS), thereby causing neuronal death. In vitro, inflammatory neuronal loss is independent of apoptotic pathways, and is inhibited by blocking the PS/MFG-E8/VR pathway (by adding PS blocking antibodies, annexin V, mutant MFG-E8 unable to bind VR, or VR antagonist). Neuronal loss is absent in Mfge8 knock-out cultures, but restored by adding recombinant MFG-E8, without affecting inflammation. In vivo, LPS-induced neuronal loss is reduced in the striatum of Mfge8 knock-out mice or by coinjection of an MFG-E8 receptor (VR) inhibitor into the rat striatum. Our data show that blocking MFG-E8-dependent phagocytosis preserves live neurons, implying that phagocytosis actively contributes to neuronal death during brain inflammation.
Collapse
Affiliation(s)
- Michael Fricker
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Jonas J. Neher
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Jing-Wei Zhao
- Cambridge Centre for Brain Repair, University of Cambridge, Cambridge CB2 OPY, United Kingdom, and
| | | | - Aviva M. Tolkovsky
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
- Cambridge Centre for Brain Repair, University of Cambridge, Cambridge CB2 OPY, United Kingdom, and
| | - Guy C. Brown
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| |
Collapse
|
123
|
Abstract
Mammalian target of rapamycin (mTOR) is an evolutionarily conserved kinase that integrates signals from nutrients and growth factors for the coordinate regulation of many cellular processes, including proliferation and cell death. Constitutive mTOR signaling characterizes multiple human malignancies, and pharmacological inhibitors of mTOR such as the immunosuppressant rapamycin and some of its nonimmunosuppressive derivatives not only have been ascribed with promising anticancer properties in vitro and in vivo but are also being extensively evaluated in clinical trials. mTOR inhibition rapidly leads to the activation of autophagy, which most often exerts prosurvival effects, although in some cases it accompanies cell death. Thus, depending on the specific experimental setting (cell type, concentration, stimulation time, and presence of concurrent stimuli), rapamycin can activate/favor a wide spectrum of cellular responses/phenotypes, ranging from adaptation to stress and survival to cell death. The (at least partial) overlap among the biochemical and morphological responses triggered by rapamycin considerably complicates the study of cell death-associated variables. Moreover, rapamycin presumably triggers acute cell death mainly via off-target mechanisms. Here, we describe a set of assays that can be employed for the routine quantification of rapamycin-induced cell death in vitro, as well as a set of guidelines that should be applied for their correct interpretation.
Collapse
|
124
|
Fens MHAM, van Wijk R, Andringa G, van Rooijen KL, Dijstelbloem HM, Rasmussen JT, de Vooght KMK, Schiffelers RM, Gaillard CAJM, van Solinge WW. A role for activated endothelial cells in red blood cell clearance: implications for vasopathology. Haematologica 2011; 97:500-8. [PMID: 22102700 DOI: 10.3324/haematol.2011.048694] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Phosphatidylserine exposure by red blood cells is acknowledged as a signal that initiates phagocytic removal of the cells from the circulation. Several disorders and conditions are known to induce phosphatidylserine exposure. Removal of phosphatidylserine-exposing red blood cells generally occurs by macrophages in the spleen and liver. Previously, however, we have shown that endothelial cells are also capable of erythrophagocytosis. Key players in the erythrophagocytosis by endothelial cells appeared to be lactadherin and α(v)-integrin. Phagocytosis via the phosphatidylserine-lactadherin-α(v)-integrin pathway is the acknowledged route for removal of apoptotic innate cells by phagocytes. DESIGN AND METHODS Endothelial cell phagocytosis of red blood cells was further explored using a more (patho)physiological approach. Red blood cells were exposed to oxidative stress, induced by tert-butyl hydroperoxide. After opsonization with lactadherin, red blood cells were incubated with endothelial cells to study erythrophagocytosis and examine cytotoxicity. RESULTS Red blood cells exposed to oxidative stress show alterations such as phosphatidylserine exposure and loss of deformability. When incubated with endothelial cells, marked erythrophagocytosis occurred in the presence of lactadherin under both static and flow conditions. As a consequence, intracellular organization was disturbed and endothelial cells were seen to change shape ('rounding up'). Increased expression of apoptotic markers indicated that marked erythrophagocytosis has cytotoxic effects. CONCLUSIONS Activated endothelial cells show significant phagocytosis of phosphatidylserine-exposing and rigid red blood cells under both static and flow conditions. This results in a certain degree of cytotoxicity. We postulate that activated endothelial cells play a role in red blood cell clearance in vivo. Significant erythrophagocytosis can induce endothelial cell loss, which may contribute to vasopathological effects as seen, for instance, in sickle cell disease.
Collapse
Affiliation(s)
- Marcel H A M Fens
- Department of Clinical Chemistry and Hematology, Laboratory for Red Blood Cell Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Sossdorf M, Otto GP, Claus RA, Gabriel HHW, Lösche W. Cell-derived microparticles promote coagulation after moderate exercise. Med Sci Sports Exerc 2011; 43:1169-76. [PMID: 21131870 DOI: 10.1249/mss.0b013e3182068645] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
UNLABELLED Cell-derived procoagulant microparticles (MP) might be able to contribute to exercise-induced changes in blood hemostasis. PURPOSES This study aimed to examine (i) the concentration and procoagulant activity of cell-derived MP after a moderate endurance exercise and (ii) the differences in the release, clearance, and activity of MP before and after exercise between trained and untrained individuals. METHODS All subjects performed a single bout of physical exercise on a bicycle ergometer for 90 min at 80% of their individual anaerobic threshold. MP were identified and quantified by flow cytometry measurements. Procoagulant activity of MP was measured by a prothrombinase activity assay as well as tissue factor-induced fibrin formation in MP-containing plasma. RESULTS At baseline, no differences were observed for the absolute number and procoagulant activities of MP between trained and untrained subjects. However, trained individuals had a lower number of tissue factor-positive monocyte-derived MP compared with untrained individuals. In trained subjects, exercise induced a significant increase in the number of MP derived from platelets, monocytes, and endothelial cells, with maximum values at 45 min after exercise and returned to basal levels at 2 h after exercise. Untrained subjects revealed a similar increase in platelet-derived MP, but their level was still increased at 2 h after exercise, indicating a reduced clearance compared with trained individuals. Procoagulant activities of MP were increased immediately after exercise and remained elevated up to 2 h after exercise. CONCLUSIONS We conclude that increased levels of MP were found in healthy individuals after an acute bout of exercise, that the amount of circulating MP contributes to an exercise-induced increase of hemostatic potential, and that there were differences in kinetic and dynamic characteristics between trained and untrained individuals.
Collapse
Affiliation(s)
- Maik Sossdorf
- Department of Anaesthesiology and Intensive Care Medicine, Jena University Hospital, and Department of Sports Medicine, Institute of Sports Science, Jena Friedrich-Schiller University, Jena, Germany.
| | | | | | | | | |
Collapse
|
126
|
Abu Jawdeh BG, Khan S, Deschênes I, Hoshi M, Goel M, Lock JT, Shinlapawittayatorn K, Babcock G, Lakhe-Reddy S, DeCaro G, Yadav SP, Mohan ML, Naga Prasad SV, Schilling WP, Ficker E, Schelling JR. Phosphoinositide binding differentially regulates NHE1 Na+/H+ exchanger-dependent proximal tubule cell survival. J Biol Chem 2011; 286:42435-42445. [PMID: 22020933 DOI: 10.1074/jbc.m110.212845] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tubular atrophy predicts chronic kidney disease progression, and is caused by proximal tubular epithelial cellcaused by proximal tubular epithelial cell (PTC) apoptosis. The normally quiescent Na(+)/H(+) exchanger-1 (NHE1) defends against PTC apoptosis, and is regulated by PI(4,5)P(2) binding. Because of the vast array of plasma membrane lipids, we hypothesized that NHE1-mediated cell survival is dynamically regulated by multiple anionic inner leaflet phospholipids. In membrane overlay and surface plasmon resonance assays, the NHE1 C terminus bound phospholipids with low affinity and according to valence (PIP(3) > PIP(2) > PIP = PA > PS). NHE1-phosphoinositide binding was enhanced by acidic pH, and abolished by NHE1 Arg/Lys to Ala mutations within two juxtamembrane domains, consistent with electrostatic interactions. PI(4,5)P(2)-incorporated vesicles were distributed to apical and lateral PTC domains, increased NHE1-regulated Na(+)/H(+) exchange, and blunted apoptosis, whereas NHE1 activity was decreased in cells enriched with PI(3,4,5)P(3), which localized to basolateral membranes. Divergent PI(4,5)P(2) and PI(3,4,5)P(3) effects on NHE1-dependent Na(+)/H(+) exchange and apoptosis were confirmed by selective phosphoinositide sequestration with pleckstrin homology domain-containing phospholipase Cδ and Akt peptides, PI 3-kinase, and Akt inhibition in wild-type and NHE1-null PTCs. The results reveal an on-off switch model, whereby NHE1 toggles between weak interactions with PI(4,5)P(2) and PI(3,4,5)P(3). In response to apoptotic stress, NHE1 is stimulated by PI(4,5)P(2), which leads to PI 3-kinase activation, and PI(4,5)P(2) phosphorylation. The resulting PI(3,4,5)P(3) dually stimulates sustained, downstream Akt survival signaling, and dampens NHE1 activity through competitive inhibition and depletion of PI(4,5)P(2).
Collapse
Affiliation(s)
- Bassam G Abu Jawdeh
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44109
| | - Shenaz Khan
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44109
| | - Isabelle Deschênes
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44109; Departments of Physiology and Biophysics, Lerner Research Institute, Case Western Reserve University, Cleveland, Ohio 44109
| | - Malcolm Hoshi
- Departments of Physiology and Biophysics, Lerner Research Institute, Case Western Reserve University, Cleveland, Ohio 44109
| | - Monu Goel
- Departments of Physiology and Biophysics, Lerner Research Institute, Case Western Reserve University, Cleveland, Ohio 44109
| | - Jeffrey T Lock
- Departments of Physiology and Biophysics, Lerner Research Institute, Case Western Reserve University, Cleveland, Ohio 44109
| | - Krekwit Shinlapawittayatorn
- Departments of Physiology and Biophysics, Lerner Research Institute, Case Western Reserve University, Cleveland, Ohio 44109
| | - Gerald Babcock
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44109; Departments of Physiology and Biophysics, Lerner Research Institute, Case Western Reserve University, Cleveland, Ohio 44109
| | - Sujata Lakhe-Reddy
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44109
| | - Garren DeCaro
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44109
| | - Satya P Yadav
- Department of Cleveland Clinic Foundation, Case Western Reserve University, Cleveland, Ohio 44109
| | - Maradumane L Mohan
- Department of Cleveland Clinic Foundation, Case Western Reserve University, Cleveland, Ohio 44109
| | | | - William P Schilling
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44109; Departments of Physiology and Biophysics, Lerner Research Institute, Case Western Reserve University, Cleveland, Ohio 44109
| | - Eckhard Ficker
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44109
| | - Jeffrey R Schelling
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44109.
| |
Collapse
|
127
|
Neniskyte U, Neher JJ, Brown GC. Neuronal death induced by nanomolar amyloid β is mediated by primary phagocytosis of neurons by microglia. J Biol Chem 2011; 286:39904-13. [PMID: 21903584 PMCID: PMC3220594 DOI: 10.1074/jbc.m111.267583] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Alzheimer disease is characterized by neuronal loss and brain plaques of extracellular amyloid β (Aβ), but the means by which Aβ may induce neuronal loss is not entirely clear. Although high concentrations of Aβ (μm) can induce direct toxicity to neurons, we find that low concentration (nm) induce neuronal loss through a microglia-mediated mechanism. In mixed neuronal-glial cultures from rat cerebellum, 250 nm Aβ1–42 (added as monomers, oligomers or fibers) induced about 30% loss of neurons between 2 and 3 days. This neuronal loss occurred without any increase in neuronal apoptosis or necrosis, and no neuronal loss occurred with Aβ42–1. Aβ greatly increased the phagocytic capacity of microglia and induced phosphatidylserine exposure (an “eat-me” signal) on neuronal processes. Blocking exposed phosphatidylserine by adding annexin V or an antibody to phosphatidylserine or inhibiting microglial phagocytosis by adding either cytochalasin D (to block actin polymerization) or cyclo(RGDfV) (to block vitronectin receptors) significantly prevented neuronal loss. Loss of neuronal synapses occurred in parallel with loss of cell bodies and was also prevented by blocking phagocytosis. Inhibition of phagocytosis prevented neuronal loss with no increase in neuronal death, even after 7 days, suggesting that microglial phagocytosis was the primary cause of neuronal death induced by nanomolar Aβ.
Collapse
Affiliation(s)
- Urte Neniskyte
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom.
| | | | | |
Collapse
|
128
|
Peck AB, Saylor BT, Nguyen L, Sharma A, She JX, Nguyen CQ, McIndoe RA. Gene expression profiling of early-phase Sjögren's syndrome in C57BL/6.NOD-Aec1Aec2 mice identifies focal adhesion maturation associated with infiltrating leukocytes. Invest Ophthalmol Vis Sci 2011; 52:5647-55. [PMID: 21666236 DOI: 10.1167/iovs.11-7652] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Despite considerable efforts, the molecular and cellular events in lacrimal gland tissues initiating inflammatory responses leading to keratoconjunctivitis sicca (KCS), autoimmunity, and Sjögren's syndrome (SjS) have yet to be defined. To determine whether altered glandular homeostasis occurs before the onset of autoimmunity, a temporal transcriptome study was carried out in an animal model of primary SjS. METHODS Using oligonucleotide microarrays, gene expression profiles were generated for lacrimal glands of C57BL/6.NOD-Aec1Aec2 mice 4 to 20 weeks of age. Pairwise analyses identified genes differentially expressed, relative to their 4-week expression, during the development of SjS-like disease. Statistical analyses defined differentially and coordinately expressed gene sets. The PANTHER (Protein ANalysis THrough Evolutionary Relationships) classification system was used to define annotated biological processes or functions. RESULTS Temporal transcript expression profiles of C57BL/6.NOD-Aec1Aec2 lacrimal glands before, or concomitant with, the first appearance of inflammatory cells revealed a highly restricted subset of differentially expressed genes encoding interactive extracellular matrix proteins, fibronectin, integrins, and syndecans. In contrast, genes encoding interepithelial junctional complex proteins defined alterations in tight junctions (TJ), adherens, desmosomes, and gap junctions, suggesting perturbations in the permeability of the paracellular spaces between epithelial barriers. Correlating with this were gene sets defining focal adhesion (FA) maturation and Ras/Raf-Mek/Erk signal transduction. Immunohistochemically, FAs were associated with infiltrating leukocytes and not with lacrimal epithelial cells. CONCLUSIONS For the first time, FA maturations are implicated as initial biomarkers of impending autoimmunity in lacrimal glands of SjS-prone mice. Changes in TJ complex genes support an increased movement of cells through paracellular spaces.
Collapse
Affiliation(s)
- Ammon B Peck
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA.
| | | | | | | | | | | | | |
Collapse
|
129
|
Oba J, Moroi Y, Nakahara T, Abe T, Hagihara A, Furue M. Expression of milk fat globule epidermal growth factor-VIII may be an indicator of poor prognosis in malignant melanoma. Br J Dermatol 2011; 165:506-12. [PMID: 21574974 DOI: 10.1111/j.1365-2133.2011.10409.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Milk fat globule epidermal growth factor-VIII (MFG-E8) is a secreted protein that binds phosphatidylserine and promotes apoptotic cell ingestion by phagocytes, mediating the immune tolerance and maintenance of homeostasis. A recent study has shown that MFG-E8 expression in human melanoma is increased with tumour progression; however, the effect of its expression on patient survival has not yet been clarified. OBJECTIVE To analyse MFG-E8 expression in melanoma, and to determine whether it can serve as a marker for diagnosis, tumour progression and/or prognosis. METHODS MFG-E8 expression was examined by immunohistochemistry in 60 primary melanomas, 22 metastatic lesions and 30 benign naevi. The following clinicopathological variables were evaluated: age, gender, histological type, tumour site, Breslow thickness, Clark's level, the presence or absence of ulceration and tumour-infiltrating lymphocytes, and survival periods. Statistical analyses were performed to assess associations and melanoma-specific survival. RESULTS MFG-E8 expression was significantly higher in primary and metastatic melanoma than in naevus. Furthermore, it increased according to tumour progression and metastasis. Patients with MFG-E8 expression in primary tumours had significantly shorter survival periods than those without MFG-E8 expression. Univariate and multivariate analyses revealed that MFG-E8 expression was a statistically significant and independent prognostic factor. CONCLUSION MFG-E8 expression may serve as a tumour progression marker and can predict an unfavourable prognosis in patients with melanoma.
Collapse
Affiliation(s)
- J Oba
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | | | | | | | | | | |
Collapse
|
130
|
Otani K, Yamahara K. Development of antibody-carrying microbubbles based on clinically available ultrasound contrast agent for targeted molecular imaging: a preliminary chemical study. Mol Imaging Biol 2011; 13:250-6. [PMID: 20512420 DOI: 10.1007/s11307-010-0344-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE The purpose of the study was to examine the feasibility of an antibody-carrying targeted-bubble preparation using clinically available phosphatidylserine (PS)-containing perfluorobutane-filled microbubbles for molecular ultrasound imaging. PROCEDURES Firstly, we examined whether PS on the surface of perfluorobutane-filled microbubbles could be detected by means of flow cytometry (fluorescence activated cell sorting (FACS)) using annexin V. After conjugation with fluorescein isothiocyanate (FITC)-labeled annexin V (up to 50 μL) for 15 min on ice, microbubbles were assessed using a FACSCalibur. Secondly, we examined whether phycoerythrin (PE)-labeled streptavidin could be attached onto PS-containing perfluorobutane-filled microbubbles through the intermediacy of biotinylated annexin V. Microbubbles conjugated with biotinylated annexin V were incubated with PE-streptavidin for 30 min on ice, then FACS analysis was performed. Finally, we examined whether attachment of biotinylated IgG onto PS-containing perfluorobutane-filled microbubbles could be accomplished using biotinylated annexin V and avidin-biotin binding. Microbubbles with avidin-biotin complexes were incubated with Alexa488-labeled biotinylated IgG for 30 min on ice. RESULTS FITC-positive microbubbles could be detected after conjugation with FITC-annexin V. Additionally, the mean fluorescence intensity of Sonazoid bubbles increased in a dose-dependent manner (0 μL, 3.3 vs. 50 μL, 617.1). The PE signal of microbubbles in the presence of biotinylated annexin V was higher than that in the absence of biotinylated annexin V (mean fluorescence intensity, 327.1 vs. 14.8). Significant amplification of the Alexa488-signal was accomplished through the intermediation of biotinylated annexin V and streptavidin. CONCLUSIONS Our results support the feasibility of an antibody-carrying targeted-bubble preparation based on clinically available PS-containing perfluorobutane-filled microbubbles. Although further study is needed, this technique could be applicable for in vivo molecular ultrasound imaging.
Collapse
Affiliation(s)
- Kentaro Otani
- Department of Regenerative Medicine and Tissue Engineering, National Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan.
| | | |
Collapse
|
131
|
Kumar RS, Riyasdeen A, Dinesh M, Paul CP, Srinag S, Krishnamurthy H, Arunachalam S, Akbarsha MA. Cytotoxic Property of Surfactant-Cobalt(III) Complexes on a Human Breast Cancer Cell Line. Arch Pharm (Weinheim) 2011; 344:422-30. [DOI: 10.1002/ardp.201000144] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 08/02/2010] [Accepted: 08/13/2010] [Indexed: 11/08/2022]
|
132
|
Sadallah S, Eken C, Martin PJ, Schifferli JA. Microparticles (ectosomes) shed by stored human platelets downregulate macrophages and modify the development of dendritic cells. THE JOURNAL OF IMMUNOLOGY 2011; 186:6543-52. [PMID: 21525379 DOI: 10.4049/jimmunol.1002788] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Microparticles (MP) shed by platelets (PLT) during storage have procoagulant activities, but little is known about their properties to modify inflammation or immunity. In this study, we studied the capacity of MP present in PLT concentrates to alter the function of macrophages and dendritic cells (DC). The size of the purified MP was between 100 and 1000 nm, and they expressed phosphatidylserine; surface proteins of PLT (CD61, CD36, CD47), including complement inhibitors (CD55, CD59), but not CD63; and proteins acquired from plasma (C1q, C3 fragments, factor H). These characteristics suggest that the MP shed by PLT are formed by budding from the cell surface, corresponding to ectosomes. The purified PLT ectosomes (PLT-Ect) reduced the release of TNF-α and IL-10 by macrophages activated with LPS or zymosan A. In addition, PLT-Ect induced the immediate release of TGF-β from macrophages, a release that was not modified by LPS or zymosan A. Macrophages had a reduced TNF-α release even 24 h after their exposure to PLT-Ect, suggesting that PLT-Ect induced a modification of the differentiation of macrophages. Similarly, the conventional 6-d differentiation of monocytes to immature DC by IL-4 and GM-CSF was modified by the presence of PLT-Ect during the first 2 d. Immature DC expressed less HLA-DP DQ DR and CD80 and lost part of their phagocytic activity, and their LPS-induced maturation was downmodulated when exposed to PLT-Ect. These data indicate that PLT-Ect shed by stored PLT have intrinsic properties that modify macrophage and DC differentiation toward less reactive states.
Collapse
Affiliation(s)
- Salima Sadallah
- Department of Biomedicine, University Hospital Basel, 4031 Basel, Switzerland.
| | | | | | | |
Collapse
|
133
|
Neher JJ, Neniskyte U, Zhao JW, Bal-Price A, Tolkovsky AM, Brown GC. Inhibition of microglial phagocytosis is sufficient to prevent inflammatory neuronal death. THE JOURNAL OF IMMUNOLOGY 2011; 186:4973-83. [PMID: 21402900 DOI: 10.4049/jimmunol.1003600] [Citation(s) in RCA: 306] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
It is well-known that dead and dying neurons are quickly removed through phagocytosis by the brain's macrophages, the microglia. Therefore, neuronal loss during brain inflammation has always been assumed to be due to phagocytosis of neurons subsequent to their apoptotic or necrotic death. However, we report in this article that under inflammatory conditions in primary rat cultures of neurons and glia, phagocytosis actively induces neuronal death. Specifically, two inflammatory bacterial ligands, lipoteichoic acid or LPS (agonists of glial TLR2 and TLR4, respectively), stimulated microglial proliferation, phagocytic activity, and engulfment of ∼30% of neurons within 3 d. Phagocytosis of neurons was dependent on the microglial release of soluble mediators (and peroxynitrite in particular), which induced neuronal exposure of the eat-me signal phosphatidylserine (PS). Surprisingly, however, eat-me signaling was reversible, so that blocking any step in a phagocytic pathway consisting of PS exposure, the PS-binding protein milk fat globule epidermal growth factor-8, and its microglial vitronectin receptor was sufficient to rescue up to 90% of neurons without reducing inflammation. Hence, our data indicate a novel form of inflammatory neurodegeneration, where inflammation can cause eat-me signal exposure by otherwise viable neurons, leading to their death through phagocytosis. Thus, blocking phagocytosis may prevent some forms of inflammatory neurodegeneration, and therefore might be beneficial during brain infection, trauma, ischemia, neurodegeneration, and aging.
Collapse
Affiliation(s)
- Jonas J Neher
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom.
| | | | | | | | | | | |
Collapse
|
134
|
Desmarets M, Noizat-Pirenne F. [Murine models in blood transfusion: allo-immunization, hemolysis]. Transfus Clin Biol 2011; 18:115-23. [PMID: 21398162 DOI: 10.1016/j.tracli.2011.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 01/27/2011] [Indexed: 01/28/2023]
Abstract
Mice represent an animal model that can be easily manipulated. Mice have been used to model many human diseases. This review addresses murine models of immunity directed against red blood cell antigens as well as models of antibody and non-antibody mediated hemolysis. These models allow for a better understanding of the side effects of transfusion, such as red blood cell allo-immunization and post-transfusional hemolytic reactions. They also help explore strategies to treat and prevent these side effects in ways that would not be available using clinical research alone.
Collapse
Affiliation(s)
- M Desmarets
- EFS Île-de-France, 51, avenue Maréchal-de-Lattre-de-Tassigny, 94000 Créteil, France.
| | | |
Collapse
|
135
|
Zahra S, Anderson JAM, Stirling D, Ludlam CA. Microparticles, malignancy and thrombosis. Br J Haematol 2011; 152:688-700. [DOI: 10.1111/j.1365-2141.2010.08452.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
136
|
Presence of phosphatidylserine synthesizing enzymes in triton insoluble floating fractions from cerebrocortical plasma membranes: do phosphatidylserine synthesizing enzymes in plasma membrane microdomains play a role in signal transduction? Neurochem Res 2011; 36:774-82. [PMID: 21229309 DOI: 10.1007/s11064-011-0399-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2011] [Indexed: 10/18/2022]
Abstract
Mammals synthesize phosphatidylserine (PS), a binding PKC molecule, by exchanging the nitrogen base of phosphatidylethanolamine or phosphatidylcholine with free serine. Serine base exchange enzyme (SBEE) was found in Triton insoluble floating fractions (TIFFs) from rat cerebellum which contained PKC. Consequently, SBEE might modulate PS levels in the PKC binding area (Buratta et al., J Neurochem 103:942-951, 2007). In the present study, we determined whether SBEE and PKC were localised in rat cerebral cortex TIFFs (cx-TIFFs) and in rat cerebrocortical plasma membrane-TIFFs (PM-TIFFs) which are more directly involved in signal transduction than intracellular membranes. Cx-and PM-TIFFs expressed SBEE activity and contained PKC. SBEE used ethanolamine as free exchanging base which may modulate PS level in the PKC binding area, transforming PS into PE and vice versa. The slight decrease in [(14)C]serine incorporation in the presence of choline indicated the existence of a SBEE isoform which may play a peculiar role in this brain area.
Collapse
|
137
|
Zhang M, Xu S, Han Y, Cao X. Apoptotic cells attenuate fulminant hepatitis by priming Kupffer cells to produce interleukin-10 through membrane-bound TGF-β. Hepatology 2011; 53:306-16. [PMID: 21140375 DOI: 10.1002/hep.24029] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 09/26/2010] [Indexed: 12/29/2022]
Abstract
UNLABELLED The liver, a unique tolerogenic organ, is regarded as the site to trap and destroy aging erythrocytes and activated T cells. However, to date, the mechanisms for why the liver is tolerogenic and whether liver Kupffer cells (KC) are critical phagocytes for apoptotic cells (AC) contributing to the liver immunosuppression remain unclear. Here we report that KC is the main phagocyte for AC in the liver. Contact of AC inhibits proinflammatory cytokine but enhances anti-inflammatory cytokine production of KC in response to lipopolysaccharide (LPS) stimulation. Membrane-bound transforming growth factor (TGF)-β on AC is responsible for the increased production of interleukin (IL)-10 in KC through extracellular signal-regulated kinase (ERK) activation via the Smad3 pathway. Importantly, KC-derived IL-10 is critical for AC infusion-mediated protection of endotoxin-induced fulminant hepatitis through suppression of tumor necrosis factor (TNF)-α and nitric oxide (NO) production from KC and consequently attenuation of KC-mediated cytolysis of hepatocytes. CONCLUSION AC can be preferentially phagocytosed by KC in the liver, leading to attenuation of fulminant hepatitis through IL-10-mediated suppression of KC-derived inflammatory TNF-α and NO production. These findings demonstrate that priming of KC by AC may contribute to maintain liver immunosuppression, providing a new mechanistic explanation for how immune homeostasis is maintained in the liver.
Collapse
Affiliation(s)
- Minggang Zhang
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, China
| | | | | | | |
Collapse
|
138
|
Pisetsky DS. The role of HMGB1 in efferocytosis: when the dead go unburied. Focus on “HMGB1 inhibits macrophage activity in efferocytosis through binding to the αvβ3-integrin”. Am J Physiol Cell Physiol 2010; 299:C1253-5. [DOI: 10.1152/ajpcell.00397.2010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- David S. Pisetsky
- Division of Rheumatology and Immunology, Department of Medicine, Duke University Medical Center, Durham Veterans Administration Medical Center, Durham, North Carolina
| |
Collapse
|
139
|
Ungethüm L, Kenis H, Nicolaes GA, Autin L, Stoilova-McPhie S, Reutelingsperger CPM. Engineered annexin A5 variants have impaired cell entry for molecular imaging of apoptosis using pretargeting strategies. J Biol Chem 2010; 286:1903-10. [PMID: 21078669 DOI: 10.1074/jbc.m110.163527] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphatidylserine (PS) on apoptotic cells is a target for diagnosis and therapy using annexin A5 (anxA5). Pretargeting is a strategy developed to improve signal to background ratio for molecular imaging and to minimize undesired side effects of pharmacological and radiotherapy. Pretargeting relies on accessibility of the target finder on the surface of the target cell. anxA5 binds PS and crystallizes in a two-dimensional network covering the PS-expressing cell surface. Two-dimensional crystallization is the driving force for anxA5 internalization by PS-expressing cells. Here, we report structure/function analysis of anxA5 internalization. Guided by structural bioinformatics including protein-protein docking, we revealed that the amino acids Arg(63), Lys(70), Lys(101), Glu(138), Asp(139), and Asn(160) engage in intermolecular salt bridges within the anxA5 trimer, which is the basic building block of the two-dimensional network. Disruption of the salt bridges by site-directed mutagenesis does not affect PS binding but inhibits trimer formation and cell entry of surface-bound anxA5. The anxA5 variants with impaired internalization are superior molecular imaging agents in pretargeting strategies as compared with wild-type anxA5.
Collapse
Affiliation(s)
- Lisette Ungethüm
- Department of Biochemistry of the Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | | | | | | | | | | |
Collapse
|
140
|
Scull CM, Hays WD, Fischer TH. Macrophage pro-inflammatory cytokine secretion is enhanced following interaction with autologous platelets. JOURNAL OF INFLAMMATION-LONDON 2010; 7:53. [PMID: 21067617 PMCID: PMC2988777 DOI: 10.1186/1476-9255-7-53] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 11/11/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND Macrophages are the dominant phagocyte at sites of wound healing and inflammation, and the cellular and acellular debris encountered by macrophages can have profound effects on their inflammatory profile. Following interaction with apoptotic cells, macrophages are known to switch to an anti-inflammatory phenotype. Activated platelets, however, are also a major component of inflammatory lesions and have been proposed to be pro-inflammatory mediators. In the present study, we tested the hypothesis that macrophage interaction with activated platelets results in an inflammatory response that differs from the response following phagocytosis of apoptotic cells. METHODS Human monocyte-derived macrophages (hMDMs) were co-incubated with autologous activated platelets (AAPs) and the platelet-macrophage interaction was examined by electron microscopy and flow cytometry. The cytokines TNF-α, IL-6, and IL-23 were also measured during LPS-activated hMDM co-incubation with AAPs, which was compared to co-incubation with apoptotic lymphocytes. Cytokine secretion was also compared to platelets pre-treated with the gluococorticoid dexamethasone. RESULTS Macrophages trapped and phagocytized AAPs utilizing a mechanism that was significantly inhibited by the scavenger receptor ligand fucoidan. LPS-induced macrophage secretion of TNF-α, IL-6, and IL-23 was inhibited by co-incubation with apoptotic cells, but enhanced by co-incubation with AAPs. The platelet-dependent enhancement of LPS-induced cytokines could be reversed by pre-loading the platelets with the glucocorticoid dexamethasone. CONCLUSIONS The interaction of human macrophages with autologous platelets results in scavenger-receptor-mediated platelet uptake and enhancement of LPS-induced cytokines. Therefore, the presence of activated platelets at sites of inflammation may exacerbate pro-inflammatory macrophage activation. The possibility of reversing macrophage activation with dexamethasone-loaded platelets is a promising therapeutic approach to treating unresolved inflammation.
Collapse
Affiliation(s)
- Christopher M Scull
- Francis Owen Blood Research Lab, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 125 University Lake Rd, Chapel Hill, NC 27516, USA.
| | | | | |
Collapse
|
141
|
Eken C, Martin PJ, Sadallah S, Treves S, Schaller M, Schifferli JA. Ectosomes released by polymorphonuclear neutrophils induce a MerTK-dependent anti-inflammatory pathway in macrophages. J Biol Chem 2010; 285:39914-21. [PMID: 20959443 DOI: 10.1074/jbc.m110.126748] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
At the earliest stage of activation, human polymorphonuclear neutrophils release vesicles derived directly from the cell surface. These vesicles, called ectosomes (PMN-Ect), expose phosphatidylserine in the outer membrane leaflet. They inhibit the inflammatory response of human monocyte-derived macrophages and dendritic cells to zymosan A (ZymA) and LPS and induce TGF-β1 release, suggesting a reprogramming toward a tolerogenic phenotype. The receptors and signaling pathways involved have not yet been defined. Here, we demonstrate that PMN-Ect interfered with ZymA activation of macrophages via inhibition of NFκB p65 phosphorylation and NFκB translocation. The MerTK (Mer receptor tyrosine kinase) and PI3K/Akt pathways played a key role in this immunomodulatory effect as shown using specific MerTK-blocking antibodies and PI3K inhibitors LY294002 and wortmannin. As a result, PMN-Ect reduced the transcription of many proinflammatory genes in ZymA-activated macrophages. In sum, PMN-Ect interacted with the macrophages by activation of the MerTK pathway responsible for down-modulation of the proinflammatory signals generated by ZymA.
Collapse
Affiliation(s)
- Ceylan Eken
- Basel University Hospital, 4031 Basel, Switzerland.
| | | | | | | | | | | |
Collapse
|
142
|
Frey B, Gaipl US. The immune functions of phosphatidylserine in membranes of dying cells and microvesicles. Semin Immunopathol 2010; 33:497-516. [DOI: 10.1007/s00281-010-0228-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 09/21/2010] [Indexed: 01/05/2023]
|
143
|
Nguyen CQ, Peck AB. Inflammation in dry eye diseases culminating in loss of ocular homeostasis. EXPERT REVIEW OF OPHTHALMOLOGY 2010. [DOI: 10.1586/eop.10.51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
144
|
Matsuda A, Jacob A, Wu R, Zhou M, Nicastro JM, Coppa GF, Wang P. Milk fat globule-EGF factor VIII in sepsis and ischemia-reperfusion injury. Mol Med 2010; 17:126-33. [PMID: 20882259 DOI: 10.2119/molmed.2010.00135] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 09/17/2010] [Indexed: 01/04/2023] Open
Abstract
Sepsis and ischemia-reperfusion (I/R) injury are among the leading causes of death in critically ill patients at the surgical intensive care unit setting. Both conditions are marked by the excessive inflammatory response which leads to a lethal disease complex such as acute lung injury, systemic inflammatory response syndrome and multiple organ dysfunction syndrome. Despite the advances in the understanding of the pathophysiology of those conditions, very little progress has been made toward therapeutic interventions. One of the key aspects of these conditions is the accumulation of apoptotic cells that have the potential to release toxic and proinflammatory contents due to secondary necrosis without appropriate clearance by phagocytes. Along with the prevention of apoptosis, that is reported to be beneficial in sepsis and I/R injury, thwarting the development of secondary necrosis through the active removal of apoptotic cells via phagocytosis may offer a novel therapy. Milk fat globule-EGF factor VIII (MFG-E8), which is mainly produced by macrophages and dendritic cells, is an opsonin for apoptotic cells and acts as a bridging protein between apoptotic cells and phagocytes. Recently, we have shown that MFG-E8 expression is decreased in experimental sepsis and I/R injury models. Exogenous administration of MFG-E8 attenuated the inflammatory response as well as tissue injury and mortality through the promotion of phagocytosis of apoptotic cells. In this review, we describe novel information available about the involvement of MFG-E8 in the pathophysiology of sepsis and I/R injury, and the therapeutic potential of exogenous MFG-E8 treatment for those conditions.
Collapse
Affiliation(s)
- Akihisa Matsuda
- Laboratory of Surgical Research, The Feinstein Institute for Medical Research, Manhasset, New York, USA
| | | | | | | | | | | | | |
Collapse
|
145
|
Friggeri A, Yang Y, Banerjee S, Park YJ, Liu G, Abraham E. HMGB1 inhibits macrophage activity in efferocytosis through binding to the alphavbeta3-integrin. Am J Physiol Cell Physiol 2010; 299:C1267-76. [PMID: 20826760 DOI: 10.1152/ajpcell.00152.2010] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phagocytosis of apoptotic cells is critical to resolution of inflammation. High mobility group box 1 protein (HMGB1), a mediator of inflammation, has been shown to diminish phagocytosis through binding to phosphatidylserine (PS) exposed on the surface of apoptotic neutrophils. However, it is currently unknown whether HMGB1 also modulates the activity of receptors involved in PS recognition on the surface of phagocytes. In the present studies, we found that preincubation of macrophages with HMGB1 decreased their ability to engulf apoptotic neutrophils or thymocytes. Preincubation of macrophages with HMGB1 prevented the enhancement of efferocytosis resulting from exposure to milk fat globule EGF factor 8 (MFG-E8), an opsonin that bridges PS and α(v)β(3) as well as α(v)β(5)-integrins on the surface of phagocytes. The inhibitory effect of HMGB1 on the phagocytic activity of macrophages was prevented by preincubation of HMGB1 with soluble α(v)β(3), but not with soluble α(v)β(5). HMGB1 colocalized with the β(3)-integrin on the cell membrane of macrophages and bound to soluble α(v)β(3), but not to soluble α(v)β(5). HMGB1 suppressed the interaction between MFG-E8 and α(v)β(3). HMGB1 also inhibited intracellular signaling events, including ERK phosphorylation and Rac-1 activation, which are activated in macrophages during phagocytosis of apoptotic cells. These results demonstrate that HMGB1 blocks α(v)β(3)-dependent recognition and uptake of apoptotic cells.
Collapse
Affiliation(s)
- Arnaud Friggeri
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | |
Collapse
|
146
|
Meesmann HM, Fehr EM, Kierschke S, Herrmann M, Bilyy R, Heyder P, Blank N, Krienke S, Lorenz HM, Schiller M. Decrease of sialic acid residues as an eat-me signal on the surface of apoptotic lymphocytes. J Cell Sci 2010; 123:3347-56. [PMID: 20826457 DOI: 10.1242/jcs.066696] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The silent clearance of apoptotic cells is essential for cellular homeostasis in multicellular organisms, and several mediators of apoptotic cell recognition have been identified. However, the distinct mechanisms involved are not fully deciphered yet. We analyzed alterations of the glycocalyx on the surfaces of apoptotic cells and its impact for engulfment. After apoptosis induction of lymphocytes, a decrease of α2,6-terminal sialic acids and sialic acids in α2,3-linkage with galactose was observed. Similar changes were to be found on the surface of apoptotic membrane blebs released during early stages of apoptosis, whereas later released blebs showed no impaired, but rather an increased, exposure of sialic acids. We detected an exposure of fucose residues on the surface of apoptotic-cell-derived membrane blebs. Cleavage by neuraminidase of sialic acids, as well as lectin binding to sialic acids on the surfaces, enhanced the engulfment of apoptotic cells and blebs. Interestingly, even viable lymphoblasts were engulfed in an autologous cell system after neuraminidase treatment. Similarly, the engulfment of resting apoptotic lymphocytes was augmented after neuraminidase treatment. However, the engulfment of resting viable lymphocytes was not significantly enhanced after neuraminidase treatment. Our findings support the importance of the glycocalyx, notably the terminal sialic acids, in the regulation of apoptotic cell clearance. Thus, depending on cell type and activation status, changes in surface glycosylation can either directly mediate cellular engulfment or enhance phagocytosis by cooperation with further engulfment signals.
Collapse
Affiliation(s)
- Hanna Marie Meesmann
- Department of Medicine V, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Banerjee S, Friggeri A, Liu G, Abraham E. The C-terminal acidic tail is responsible for the inhibitory effects of HMGB1 on efferocytosis. J Leukoc Biol 2010; 88:973-9. [PMID: 20682624 DOI: 10.1189/jlb.0510262] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
HMGB1 was described originally as a nuclear protein involved in DNA binding and transcriptional regulation. However, HMGB1 also has an extracellular role as a potent mediator of inflammation and can diminish the uptake of apoptotic cells by phagocytes, a process called efferocytosis. To explore the mechanism responsible for the ability of HMGB1 to inhibit efferocytosis, we examined the role of the C-terminal acidic tail, a region of HMGB1 that has been shown to participate in specific intramolecular interactions. Deletion of the C-terminal tail abrogated the ability of HMGB1 to decrease murine macrophage ingestion of apoptotic neutrophils and to diminish phagocytosis-induced activation of Erk and Rac-1 in macrophages. We found that RAGE plays a major role in efferocytosis, and deletion of the C-terminal tail of HMGB1 prevented binding of HMGB1 to RAGE but not to other macrophage receptors involved in efferocytosis, such as the α(V)β(3) integrin. Whereas HMGB1 decreased ingestion of apoptotic neutrophils significantly by alveolar macrophages under in vivo conditions in the lungs of mice, this effect was lost when the C-terminal acidic tail was absent from HMGB1. These results demonstrate that the HMGB1 C-terminal tail is responsible for the inhibitory effects of HMGB1 on phagocytosis of apoptotic neutrophils under in vitro and in vivo conditions.
Collapse
Affiliation(s)
- Sami Banerjee
- University of Alabama at Birmingham, School of Medicine, 1808 7th Ave., S., Birmingham, AL 35294, USA
| | | | | | | |
Collapse
|
148
|
Yang Y, Friggeri A, Banerjee S, Bdeir K, Cines DB, Liu G, Abraham E. Urokinase-type plasminogen activator inhibits efferocytosis of neutrophils. Am J Respir Crit Care Med 2010; 182:1516-23. [PMID: 20656938 DOI: 10.1164/rccm.201003-0452oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
RATIONALE Phagocytosis of apoptotic cells, also called efferocytosis, plays an essential role in the resolution of inflammation. Urokinase-type plasminogen activator (uPA) is a multifunctional protein that has been implicated in inflammatory conditions, including pneumonia and severe infection, which are often accompanied by the development of acute lung injury. However, the role of uPA in modulating efferocytosis of apoptotic neutrophils has not been defined. OBJECTIVES To characterize the role of uPA in regulation of efferocytosis and to delineate the underlying mechanisms involved in this process. METHODS In vitro and in vivo phagocytosis, immunoprecipitation, and Western blotting assays. MEASUREMENTS AND MAIN RESULTS The phagocytosis of apoptotic neutrophils by macrophages was significantly inhibited by uPA. Mutant uPA lacking the growth factor domain and catalytically inactive uPA had similar inhibitory effects on efferocytosis, as did wild-type uPA. In contrast, absence of the kringle domain abrogated the ability of uPA to diminish efferocytosis. Both the α(V)β₃ integrin and vitronectin seemed to be involved in the inhibition of efferocytosis by uPA. Incubation of macrophages with uPA also diminished activation of the small GTPase Rac-1, which normally occurs during ingestion of apoptotic neutrophils. Under in vivo conditions in the lungs, uPA decreased the uptake of apoptotic neutrophils by alveolar macrophages. CONCLUSIONS Our data demonstrate a novel role for uPA in which it is able to diminish the uptake of apoptotic neutrophils by macrophages under both in vitro and in vivo conditions.
Collapse
Affiliation(s)
- Yanping Yang
- Department of Medicine, University of Alabama at Birmingham, 35294, USA
| | | | | | | | | | | | | |
Collapse
|
149
|
Acharya AP, Dolgova NV, Moore NM, Xia CQ, Clare-Salzler MJ, Becker ML, Gallant ND, Keselowsky BG. The modulation of dendritic cell integrin binding and activation by RGD-peptide density gradient substrates. Biomaterials 2010; 31:7444-54. [PMID: 20637504 DOI: 10.1016/j.biomaterials.2010.06.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 06/15/2010] [Indexed: 01/17/2023]
Abstract
Dendritic cells (DCs) are central regulators of the immune system that operate in both innate and adaptive branches of immunity. Activation of DC by numerous factors, such as danger signals, has been well established. However, modulation of DC functions through adhesion-based cues has only begun to be characterized. In this work, DCs were cultured on surfaces presenting a uniform gradient of the integrin-targeting RGD peptide generated using the recently established "universal gradient substrate for click biofunctionalization" methodology. Surface expression of activation markers (costimulatory molecule CD86 and stimulatory molecule MHC-II) and production of cytokines IL-10 and IL-12p40 of adherent DCs was quantified in situ. Additionally, bound alpha(V) integrin was quantified in situ using a biochemical crosslinking/extraction method. Our findings demonstrate that DCs upregulated CD86, MHC-II, IL-10, IL-12p40 and alpha(V) integrin binding as a function of RGD surface density, with production of IL-12p40 being the marker most sensitive to RGD surface density. Surface expression of activation markers demonstrated moderate correlation with alpha(V) integrin binding, while cytokine production was highly correlated with alpha(V) integrin binding. This work demonstrates the utility of the surface density gradient platform as a high-throughput method to investigate RGD density-dependent DC adhesive responses. Furthermore, this quantitative analysis of DC integrin-based activation represents a first of its type, helping to establish the field of adhesion-based modulation of DCs as a general mechanism that has previously not been defined, and informs the rational design of biomimetic biomaterials for immunomodulation.
Collapse
Affiliation(s)
- Abhinav P Acharya
- Materials Science and Engineering, University of Florida, Gainesville, FL, USA
| | | | | | | | | | | | | | | |
Collapse
|
150
|
Kane LP. T cell Ig and mucin domain proteins and immunity. THE JOURNAL OF IMMUNOLOGY 2010; 184:2743-9. [PMID: 20200285 DOI: 10.4049/jimmunol.0902937] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Proteins of the transmembrane (or T cell) Ig and mucin domain (TIM) family are expressed by multiple cell types within the immune systems of rodents and humans. Studies over the last several years have suggested that these proteins may be promising targets for therapeutic manipulation of immune responses. This review discusses the progress that has been made in understanding TIM protein function in the immune system, as well as some of the unresolved issues that remain on the road to eventually targeting TIM proteins for enhancing or inhibiting immunity.
Collapse
Affiliation(s)
- Lawrence P Kane
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| |
Collapse
|