101
|
Khudayberdiev SA, Zampa F, Rajman M, Schratt G. A comprehensive characterization of the nuclear microRNA repertoire of post-mitotic neurons. Front Mol Neurosci 2013; 6:43. [PMID: 24324399 PMCID: PMC3840315 DOI: 10.3389/fnmol.2013.00043] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 11/07/2013] [Indexed: 11/17/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs with important functions in the development and plasticity of post-mitotic neurons. In addition to the well-described cytoplasmic function of miRNAs in post-transcriptional gene regulation, recent studies suggested that miRNAs could also be involved in transcriptional and post-transcriptional regulatory processes in the nuclei of proliferating cells. However, whether miRNAs localize to and function within the nucleus of post-mitotic neurons is unknown. Using a combination of microarray hybridization and small RNA deep sequencing, we identified a specific subset of miRNAs which are enriched in the nuclei of neurons. Nuclear enrichment of specific candidate miRNAs (miR-25 and miR-92a) could be independently validated by Northern blot, quantitative real-time PCR (qRT-PCR) and fluorescence in situ hybridization (FISH). By cross-comparison to published reports, we found that nuclear accumulation of miRNAs might be linked to a down-regulation of miRNA expression during in vitro development of cortical neurons. Importantly, by generating a comprehensive isomiR profile of the nuclear and cytoplasmic compartments, we found a significant overrepresentation of guanine nucleotides (nt) at the 3′-terminus of nuclear-enriched isomiRs, suggesting the presence of neuron-specific mechanisms involved in miRNA nuclear localization. In conclusion, our results provide a starting point for future studies addressing the nuclear function of specific miRNAs and the detailed mechanisms underlying subcellular localization of miRNAs in neurons and possibly other polarized cell types.
Collapse
Affiliation(s)
- Sharof A Khudayberdiev
- Biochemisch-Pharmakologisches Centrum, Institut für Physiologische Chemie, Philipps-Universität Marburg Marburg, Germany
| | | | | | | |
Collapse
|
102
|
Lee NN, Chalamcharla VR, Reyes-Turcu F, Mehta S, Zofall M, Balachandran V, Dhakshnamoorthy J, Taneja N, Yamanaka S, Zhou M, Grewal SIS. Mtr4-like protein coordinates nuclear RNA processing for heterochromatin assembly and for telomere maintenance. Cell 2013; 155:1061-74. [PMID: 24210919 DOI: 10.1016/j.cell.2013.10.027] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 10/07/2013] [Accepted: 10/17/2013] [Indexed: 10/26/2022]
Abstract
The regulation of protein-coding and noncoding RNAs is linked to nuclear processes, including chromatin modifications and gene silencing. However, the mechanisms that distinguish RNAs and mediate their functions are poorly understood. We describe a nuclear RNA-processing network in fission yeast with a core module comprising the Mtr4-like protein, Mtl1, and the zinc-finger protein, Red1. The Mtl1-Red1 core promotes degradation of mRNAs and noncoding RNAs and associates with different proteins to assemble heterochromatin via distinct mechanisms. Mtl1 also forms Red1-independent interactions with evolutionarily conserved proteins named Nrl1 and Ctr1, which associate with splicing factors. Whereas Nrl1 targets transcripts with cryptic introns to form heterochromatin at developmental genes and retrotransposons, Ctr1 functions in processing intron-containing telomerase RNA. Together with our discovery of widespread cryptic introns, including in noncoding RNAs, these findings reveal unique cellular strategies for recognizing regulatory RNAs and coordinating their functions in response to developmental and environmental cues.
Collapse
Affiliation(s)
- Nathan N Lee
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, MD 20892, USA; National Institutes of Health and Johns Hopkins University Graduate Partnership Program, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
RETRACTED: Construction of circular miRNA sponges targeting miR-21 or miR-221 and demonstration of their excellent anticancer effects on malignant melanoma cells. Int J Biochem Cell Biol 2013; 45:2643-50. [DOI: 10.1016/j.biocel.2013.09.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 08/31/2013] [Accepted: 09/02/2013] [Indexed: 11/19/2022]
|
104
|
Tomecki R, Drazkowska K, Kucinski I, Stodus K, Szczesny RJ, Gruchota J, Owczarek EP, Kalisiak K, Dziembowski A. Multiple myeloma-associated hDIS3 mutations cause perturbations in cellular RNA metabolism and suggest hDIS3 PIN domain as a potential drug target. Nucleic Acids Res 2013; 42:1270-90. [PMID: 24150935 PMCID: PMC3902924 DOI: 10.1093/nar/gkt930] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
hDIS3 is a mainly nuclear, catalytic subunit of the human exosome complex, containing exonucleolytic (RNB) and endonucleolytic (PIN) active domains. Mutations in hDIS3 have been found in ∼10% of patients with multiple myeloma (MM). Here, we show that these mutations interfere with hDIS3 exonucleolytic activity. Yeast harboring corresponding mutations in DIS3 show growth inhibition and changes in nuclear RNA metabolism typical for exosome dysfunction. Construction of a conditional DIS3 knockout in the chicken DT40 cell line revealed that DIS3 is essential for cell survival, indicating that its function cannot be replaced by other exosome-associated nucleases: hDIS3L and hRRP6. Moreover, HEK293-derived cells, in which depletion of endogenous wild-type hDIS3 was complemented with exogenously expressed MM hDIS3 mutants, proliferate at a slower rate and exhibit aberrant RNA metabolism. Importantly, MM mutations are synthetically lethal with the hDIS3 PIN domain catalytic mutation both in yeast and human cells. Since mutations in PIN domain alone have little effect on cell physiology, our results predict the hDIS3 PIN domain as a potential drug target for MM patients with hDIS3 mutations. It is an interesting example of intramolecular synthetic lethality with putative therapeutic potential in humans.
Collapse
Affiliation(s)
- Rafal Tomecki
- Department of Biophysics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland, Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland and International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
105
|
The human nuclear poly(a)-binding protein promotes RNA hyperadenylation and decay. PLoS Genet 2013; 9:e1003893. [PMID: 24146636 PMCID: PMC3798265 DOI: 10.1371/journal.pgen.1003893] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 09/05/2013] [Indexed: 12/05/2022] Open
Abstract
Control of nuclear RNA stability is essential for proper gene expression, but the mechanisms governing RNA degradation in mammalian nuclei are poorly defined. In this study, we uncover a mammalian RNA decay pathway that depends on the nuclear poly(A)-binding protein (PABPN1), the poly(A) polymerases (PAPs), PAPα and PAPγ, and the exosome subunits RRP6 and DIS3. Using a targeted knockdown approach and nuclear RNA reporters, we show that PABPN1 and PAPα, redundantly with PAPγ, generate hyperadenylated decay substrates that are recognized by the exosome and degraded. Poly(A) tail extension appears to be necessary for decay, as cordycepin treatment or point mutations in the PAP-stimulating domain of PABPN1 leads to the accumulation of stable transcripts with shorter poly(A) tails than controls. Mechanistically, these data suggest that PABPN1-dependent promotion of PAP activity can stimulate nuclear RNA decay. Importantly, efficiently exported RNAs are unaffected by this decay pathway, supporting an mRNA quality control function for this pathway. Finally, analyses of both bulk poly(A) tails and specific endogenous transcripts reveals that a subset of nuclear RNAs are hyperadenylated in a PABPN1-dependent fashion, and this hyperadenylation can be either uncoupled or coupled with decay. Our results highlight a complex relationship between PABPN1, PAPα/γ, and nuclear RNA decay, and we suggest that these activities may play broader roles in the regulation of human gene expression. In eukaryotes, mRNAs include a stretch of adenosine nucleotides at their 3′ end termed the poly(A) tail. In the cytoplasm, the poly(A) tail stimulates translation of the mRNA into protein, and protects the transcript from degradation. Evidence suggests that poly(A) tails may play distinct roles in RNA metabolism in the nucleus, but little is known about these functions and mechanisms. We show here that poly(A) tails can stimulate transcript decay in the nucleus, a function mediated by the ubiquitous nuclear poly(A) binding protein PABPN1. We find that PABPN1 is required for the degradation of a viral nuclear noncoding RNA as well as an inefficiently exported human mRNA. Importantly, the targeting of RNAs to this decay pathway requires the PABPN1 and poly(A) polymerase-dependent extension of the poly(A) tail. Nuclear transcripts with longer poly(A) tails are then selectively degraded by components of the nuclear exosome. These studies elucidate mechanisms that mammalian cells use to ensure proper mRNA “quality control” and may be important to regulate the expression of nuclear noncoding RNAs. Furthermore, our results suggest that the poly(A) tail has diverse and context-specific roles in gene expression.
Collapse
|
106
|
Kong KYE, Tang HMV, Pan K, Huang Z, Lee THJ, Hinnebusch AG, Jin DY, Wong CM. Cotranscriptional recruitment of yeast TRAMP complex to intronic sequences promotes optimal pre-mRNA splicing. Nucleic Acids Res 2013; 42:643-60. [PMID: 24097436 PMCID: PMC3874199 DOI: 10.1093/nar/gkt888] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Most unwanted RNA transcripts in the nucleus of eukaryotic cells, such as splicing-defective pre-mRNAs and spliced-out introns, are rapidly degraded by the nuclear exosome. In budding yeast, a number of these unwanted RNA transcripts, including spliced-out introns, are first recognized by the nuclear exosome cofactor Trf4/5p-Air1/2p-Mtr4p polyadenylation (TRAMP) complex before subsequent nuclear-exosome-mediated degradation. However, it remains unclear when spliced-out introns are recognized by TRAMP, and whether TRAMP may have any potential roles in pre-mRNA splicing. Here, we demonstrated that TRAMP is cotranscriptionally recruited to nascent RNA transcripts, with particular enrichment at intronic sequences. Deletion of TRAMP components led to further accumulation of unspliced pre-mRNAs even in a yeast strain defective in nuclear exosome activity, suggesting a novel stimulatory role of TRAMP in splicing. We also uncovered new genetic and physical interactions between TRAMP and several splicing factors, and further showed that TRAMP is required for optimal recruitment of the splicing factor Msl5p. Our study provided the first evidence that TRAMP facilitates pre-mRNA splicing, and we interpreted this as a fail-safe mechanism to ensure the cotranscriptional recruitment of TRAMP before or during splicing to prepare for the subsequent targeting of spliced-out introns to rapid degradation by the nuclear exosome.
Collapse
Affiliation(s)
- Ka-Yiu Edwin Kong
- Department of Biochemistry, Department of Medicine, State Key Laboratory of Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong and Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
107
|
Poly(A) tail-mediated gene regulation by opposing roles of Nab2 and Pab2 nuclear poly(A)-binding proteins in pre-mRNA decay. Mol Cell Biol 2013; 33:4718-31. [PMID: 24081329 DOI: 10.1128/mcb.00887-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The 3' end of most eukaryotic transcripts is decorated by poly(A)-binding proteins (PABPs), which influence the fate of mRNAs throughout gene expression. However, despite the fact that multiple PABPs coexist in the nuclei of most eukaryotes, how functional interplay between these nuclear PABPs controls gene expression remains unclear. By characterizing the ortholog of the Nab2/ZC3H14 zinc finger PABP in Schizosaccharomyces pombe, we show here that the two major fission yeast nuclear PABPs, Pab2 and Nab2, have opposing roles in posttranscriptional gene regulation. Notably, we find that Nab2 functions in gene-specific regulation in a manner opposite to that of Pab2. By studying the ribosomal-protein-coding gene rpl30-2, which is negatively regulated by Pab2 via a nuclear pre-mRNA decay pathway that depends on the nuclear exosome subunit Rrp6, we show that Nab2 promotes rpl30-2 expression by acting at the level of the unspliced pre-mRNA. Our data support a model in which Nab2 impedes Pab2/Rrp6-mediated decay by competing with Pab2 for polyadenylated transcripts in the nucleus. The opposing roles of Pab2 and Nab2 reveal that interplay between nuclear PABPs can influence gene regulation.
Collapse
|
108
|
Carzaniga T, Mazzantini E, Nardini M, Regonesi ME, Greco C, Briani F, De Gioia L, Dehò G, Tortora P. A conserved loop in polynucleotide phosphorylase (PNPase) essential for both RNA and ADP/phosphate binding. Biochimie 2013; 97:49-59. [PMID: 24075876 DOI: 10.1016/j.biochi.2013.09.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 09/16/2013] [Indexed: 11/27/2022]
Abstract
Polynucleotide phosphorylase (PNPase) reversibly catalyzes RNA phosphorolysis and polymerization of nucleoside diphosphates. Its homotrimeric structure forms a central channel where RNA is accommodated. Each protomer core is formed by two paralogous RNase PH domains: PNPase1, whose function is largely unknown, hosts a conserved FFRR loop interacting with RNA, whereas PNPase2 bears the putative catalytic site, ∼20 Å away from the FFRR loop. To date, little is known regarding PNPase catalytic mechanism. We analyzed the kinetic properties of two Escherichia coli PNPase mutants in the FFRR loop (R79A and R80A), which exhibited a dramatic increase in Km for ADP/Pi binding, but not for poly(A), suggesting that the two residues may be essential for binding ADP and Pi. However, both mutants were severely impaired in shifting RNA electrophoretic mobility, implying that the two arginines contribute also to RNA binding. Additional interactions between RNA and other PNPase domains (such as KH and S1) may preserve the enzymatic activity in R79A and R80A mutants. Inspection of enzyme structure showed that PNPase has evolved a long-range acting hydrogen bonding network that connects the FFRR loop with the catalytic site via the F380 residue. This hypothesis was supported by mutation analysis. Phylogenetic analysis of PNPase domains and RNase PH suggests that such network is a unique feature of PNPase1 domain, which coevolved with the paralogous PNPase2 domain.
Collapse
Affiliation(s)
- Thomas Carzaniga
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan 20133, Italy.
| | - Elisa Mazzantini
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milan 20126, Italy.
| | - Marco Nardini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan 20133, Italy.
| | - Maria Elena Regonesi
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milan 20126, Italy.
| | - Claudio Greco
- Dipartimento di Scienze dell'ambiente e del territorio e di Scienze della terra, Università degli Studi di Milano-Bicocca, Milan 20126, Italy.
| | - Federica Briani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan 20133, Italy.
| | - Luca De Gioia
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milan 20126, Italy.
| | - Gianni Dehò
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan 20133, Italy.
| | - Paolo Tortora
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milan 20126, Italy.
| |
Collapse
|
109
|
Goldfarb KC, Cech TR. 3' terminal diversity of MRP RNA and other human noncoding RNAs revealed by deep sequencing. BMC Mol Biol 2013; 14:23. [PMID: 24053768 PMCID: PMC3849073 DOI: 10.1186/1471-2199-14-23] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 09/13/2013] [Indexed: 11/10/2022] Open
Abstract
Background Post-transcriptional 3′ end processing is a key component of RNA regulation. The abundant and essential RNA subunit of RNase MRP has been proposed to function in three distinct cellular compartments and therefore may utilize this mode of regulation. Here we employ 3′ RACE coupled with high-throughput sequencing to characterize the 3′ terminal sequences of human MRP RNA and other noncoding RNAs that form RNP complexes. Results The 3′ terminal sequence of MRP RNA from HEK293T cells has a distinctive distribution of genomically encoded termini (including an assortment of U residues) with a portion of these selectively tagged by oligo(A) tails. This profile contrasts with the relatively homogenous 3′ terminus of an in vitro transcribed MRP RNA control and the differing 3′ terminal profiles of U3 snoRNA, RNase P RNA, and telomerase RNA (hTR). Conclusions 3′ RACE coupled with deep sequencing provides a valuable framework for the functional characterization of 3′ terminal sequences of noncoding RNAs.
Collapse
Affiliation(s)
- Katherine C Goldfarb
- Department of Chemistry and Biochemistry, BioFrontiers Institute, University of Colorado, Boulder, CO, USA.
| | | |
Collapse
|
110
|
Stuparevic I, Mosrin-Huaman C, Hervouet-Coste N, Remenaric M, Rahmouni AR. Cotranscriptional recruitment of RNA exosome cofactors Rrp47p and Mpp6p and two distinct Trf-Air-Mtr4 polyadenylation (TRAMP) complexes assists the exonuclease Rrp6p in the targeting and degradation of an aberrant messenger ribonucleoprotein particle (mRNP) in yeast. J Biol Chem 2013; 288:31816-29. [PMID: 24047896 DOI: 10.1074/jbc.m113.491290] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The cotranscriptional mRNA processing and packaging reactions that lead to the formation of export-competent messenger ribonucleoprotein particles (mRNPs) are under the surveillance of quality control steps. Aberrant mRNPs resulting from faulty events are retained in the nucleus with ensuing elimination of their mRNA component. The molecular mechanisms by which the surveillance system recognizes defective mRNPs and stimulates their destruction by the RNA degradation machinery are still not completely elucidated. Using an experimental approach in which mRNP formation in yeast is disturbed by the action of the bacterial Rho helicase, we have shown previously that the targeting of Rho-induced aberrant mRNPs is mediated by Rrp6p, which is recruited cotranscriptionally in association with Nrd1p following Rho action. Here we investigated the specific involvement in this quality control process of different cofactors associated with the nuclear RNA degradation machinery. We show that, in addition to the main hydrolytic action of the exonuclease Rrp6p, the cofactors Rrp47p, Mpp6p as well as the Trf-Air-Mtr4 polyadenylation (TRAMP) components Trf4p, Trf5p, and Air2p contribute significantly by stimulating the degradation process upon their cotranscriptional recruitment. Trf4p and Trf5p are apparently recruited in two distinct TRAMP complexes that both contain Air2p as component. Surprisingly, Rrp47p appears to play an important role in mutual protein stabilization with Rrp6p, which highlights a close association between the two partners. Together, our results provide an integrated view of how different cofactors of the RNA degradation machinery cooperate to target and eliminate aberrant mRNPs.
Collapse
Affiliation(s)
- Igor Stuparevic
- From the Centre de Biophysique Moléculaire, Unité Propre de Recherche (UPR) 4301 du CNRS, rue Charles Sadron, 45071 Orléans, France
| | | | | | | | | |
Collapse
|
111
|
Casper I, Nowag S, Koch K, Hubrich T, Bollmann F, Henke J, Schmitz K, Kleinert H, Pautz A. Post-transcriptional regulation of the human inducible nitric oxide synthase (iNOS) expression by the cytosolic poly(A)-binding protein (PABP). Nitric Oxide 2013; 33:6-17. [DOI: 10.1016/j.niox.2013.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 05/14/2013] [Accepted: 05/16/2013] [Indexed: 12/21/2022]
|
112
|
Wichtowska D, Turowski TW, Boguta M. An interplay between transcription, processing, and degradation determines tRNA levels in yeast. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 4:709-22. [PMID: 24039171 DOI: 10.1002/wrna.1190] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 07/09/2013] [Accepted: 07/10/2013] [Indexed: 11/06/2022]
Abstract
tRNA biogenesis in yeast involves the synthesis of the initial transcript by RNA polymerase III followed by processing and controlled degradation in both the nucleus and the cytoplasm. A vast landscape of regulatory elements controlling tRNA stability in yeast has emerged from recent studies. Diverse pathways of tRNA maturation generate multiple stable and unstable intermediates. A significant impact on tRNA stability is exerted by a variety of nucleotide modifications. Pre-tRNAs are targets of exosome-dependent surveillance in the nucleus. Some tRNAs that are hypomodified or bear specific destabilizing mutations are directed to the rapid tRNA decay pathway leading to 5'→3' exonucleolytic degradation by Rat1 and Xrn1. tRNA molecules are selectively marked for degradation by a double CCA at their 3' ends. In addition, under different stress conditions, tRNA half-molecules can be generated by independent endonucleolytic cleavage events. Recent studies reveal unexpected relationships between the subsequent steps of tRNA biosynthesis and the mechanisms controlling its quality and turnover.
Collapse
Affiliation(s)
- Dominika Wichtowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | | |
Collapse
|
113
|
Schneider C, Tollervey D. Threading the barrel of the RNA exosome. Trends Biochem Sci 2013; 38:485-93. [PMID: 23910895 PMCID: PMC3838930 DOI: 10.1016/j.tibs.2013.06.013] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/20/2013] [Accepted: 06/26/2013] [Indexed: 12/22/2022]
Abstract
A wide range of in vivo targets for the exosome complex has been established. RNA polymerase III transcripts have emerged as major substrates. The human nucleus has spatially localized forms of the exosome, with matching cofactors. Structural analyses reveal a highly conserved RNA path through the eukaryotic exosome.
In eukaryotes, the exosome complex degrades RNA backbones and plays key roles in RNA processing and surveillance. It was predicted that RNA substrates are threaded through a central channel. This pathway is conserved between eukaryotic and archaeal complexes, even though nuclease activity was lost from the nine-subunit eukaryotic core (EXO-9) and transferred to associated proteins. The exosome cooperates with nuclear and cytoplasmic cofactors, including RNA helicases Mtr4 and Ski2, respectively. Structures of an RNA-bound exosome and both helicases revealed how substrates are channeled through EXO-9 to the associated nuclease Rrp44. Recent high-throughput analyses provided fresh insights relating exosome structure to its diverse in vivo functions. They also revealed surprisingly high degradation rates for newly synthesized RNAs, particularly RNA polymerase III transcripts.
Collapse
Affiliation(s)
- Claudia Schneider
- Institute for Cell and Molecular Biosciences (ICaMB), Newcastle University, Newcastle upon Tyne, UK.
| | | |
Collapse
|
114
|
Post-transcriptional regulation of iron homeostasis in Saccharomyces cerevisiae. Int J Mol Sci 2013; 14:15785-809. [PMID: 23903042 PMCID: PMC3759886 DOI: 10.3390/ijms140815785] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 07/15/2013] [Accepted: 07/18/2013] [Indexed: 12/19/2022] Open
Abstract
Iron is an essential micronutrient for all eukaryotic organisms because it participates as a redox cofactor in a wide variety of biological processes. Recent studies in Saccharomyces cerevisiae have shown that in response to iron deficiency, an RNA-binding protein denoted Cth2 coordinates a global metabolic rearrangement that aims to optimize iron utilization. The Cth2 protein contains two Cx8Cx5Cx3H tandem zinc fingers (TZFs) that specifically bind to adenosine/uridine-rich elements within the 3′ untranslated region of many mRNAs to promote their degradation. The Cth2 protein shuttles between the nucleus and the cytoplasm. Once inside the nucleus, Cth2 binds target mRNAs and stimulates alternative 3′ end processing. A Cth2/mRNA-containing complex is required for export to the cytoplasm, where the mRNA is degraded by the 5′ to 3′ degradation pathway. This post-transcriptional regulatory mechanism limits iron utilization in nonessential pathways and activates essential iron-dependent enzymes such as ribonucleotide reductase, which is required for DNA synthesis and repair. Recent findings indicate that the TZF-containing tristetraprolin protein also functions in modulating human iron homeostasis. Elevated iron concentrations can also be detrimental for cells. The Rnt1 RNase III exonuclease protects cells from excess iron by promoting the degradation of a subset of the Fe acquisition system when iron levels rise.
Collapse
|
115
|
OULHEN NATHALIE, WESSEL GARYM. Retention of exogenous mRNAs selectively in the germ cells of the sea urchin requires only a 5'-cap and a 3'-UTR. Mol Reprod Dev 2013; 80:561-9. [PMID: 23686945 PMCID: PMC4379035 DOI: 10.1002/mrd.22193] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 04/30/2013] [Indexed: 12/26/2022]
Abstract
The abundance of an mRNA in a cell depends on its overall rates of synthesis and decay. RNA stability is an important element in the regulation of gene expression, and is achieved by a variety of processes including specific recruitment of nucleases and RNAi-associated mechanisms. These mechanisms are particularly important in stem cells, which, in many cases, have attenuated transcription. Here we report that exogenous mRNA injected into fertilized eggs of the sea urchin is selectively retained in the small micromeres, which contribute to the germ line in this organism, beginning in blastulae, when compared to adjacent somatic cells. We show that modification of this exogenous RNA using cap analogs and poly-adenosine tail deletions do not affect its selective retention in the small micromeres, but removal of the cap or of the 3'-untranslated region eliminates any selective mRNA retention in the presumptive germ line. Our results illuminate a likely ancient mechanism used by stem cells to prolong the lifespan of RNAs-either through RNA protection or by the absence of basic RNA degradation mechanisms, which are employed by most other cells of an organism.
Collapse
Affiliation(s)
- NATHALIE OULHEN
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - GARY M. WESSEL
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, Rhode Island
| |
Collapse
|
116
|
Wei F, Yang J, Wong DT. Detection of exosomal biomarker by electric field-induced release and measurement (EFIRM). Biosens Bioelectron 2013; 44:115-21. [PMID: 23402739 PMCID: PMC3809103 DOI: 10.1016/j.bios.2012.12.046] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/04/2012] [Accepted: 12/20/2012] [Indexed: 12/30/2022]
Abstract
Exosomes biomarkers mediating important biological process, especially in the systemic disease diagnostics and therapeutics, yet the protective exosomal vesicle structure hinders rapid, simple detection of the harbored molecules. We have established a new method, the electric field-induced release and measurement (EFIRM), which can simultaneously disrupt exosomes to release the contents and on-site monitoring the harbored exosomal RNA/proteins biomarkers. When exposed to a non-uniform electrical field, exosomal RNA and proteins are rapidly released. Bio-recognition of these biomolecules is carried out concurrently. We tested the hypothesis that the lung cancer cell line, H460 stably transfected with hCD63-GFP, would shed hCD63-GFP expressing exosomes that could be detected in serum and saliva. We confirmed in vivo that H460-CD63-GFP shed exosomes were transported to blood and saliva. This result demonstrates for the first time tumor-shed exosomes were detected in saliva, in addition to blood, presenting a new translational utility of exosome-based biomarker detection in saliva.
Collapse
Affiliation(s)
| | | | - David T.W. Wong
- UCLA School of Dentistry, UCLA Dental Research Institute, 73-017 Center for Health Sciences, 10833 Le Conte Ave., University of California, Los Angeles, CA 90095-1668, USA
| |
Collapse
|
117
|
Affiliation(s)
- C A Niño
- Institut Jacques Monod, Paris Diderot University , Sorbonne Paris Cité, CNRS UMR7592, Equipe labellisée Ligue contre le cancer, 15 rue Hélène Brion, 75205 Paris Cedex 13, France
| | | | | | | |
Collapse
|
118
|
Nagarajan VK, Jones CI, Newbury SF, Green PJ. XRN 5'→3' exoribonucleases: structure, mechanisms and functions. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1829:590-603. [PMID: 23517755 PMCID: PMC3742305 DOI: 10.1016/j.bbagrm.2013.03.005] [Citation(s) in RCA: 274] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 03/08/2013] [Accepted: 03/11/2013] [Indexed: 01/11/2023]
Abstract
The XRN family of 5'→3' exoribonucleases is critical for ensuring the fidelity of cellular RNA turnover in eukaryotes. Highly conserved across species, the family is typically represented by one cytoplasmic enzyme (XRN1/PACMAN or XRN4) and one or more nuclear enzymes (XRN2/RAT1 and XRN3). Cytoplasmic and/or nuclear XRNs have proven to be essential in all organisms tested, and deficiencies can have severe developmental phenotypes, demonstrating that XRNs are indispensable in fungi, plants and animals. XRNs degrade diverse RNA substrates during general RNA decay and function in specialized processes integral to RNA metabolism, such as nonsense-mediated decay (NMD), gene silencing, rRNA maturation, and transcription termination. Here, we review current knowledge of XRNs, highlighting recent work of high impact and future potential. One example is the breakthrough in our understanding of how XRN1 processively degrades 5' monophosphorylated RNA, revealed by its crystal structure and mutational analysis. The expanding knowledge of XRN substrates and interacting partners is outlined and the functions of XRNs are interpreted at the organismal level using available mutant phenotypes. Finally, three case studies are discussed in more detail to underscore a few of the most exciting areas of research on XRN function: XRN4 involvement in small RNA-associated processes in plants, the roles of XRN1/PACMAN in Drosophila development, and the function of human XRN2 in nuclear transcriptional quality control. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
Affiliation(s)
- Vinay K. Nagarajan
- Delaware Biotechnology Institute, Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19711, USA
| | - Christopher I. Jones
- Medical Research Building, Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton BN1 9PS, UK
| | - Sarah F. Newbury
- Medical Research Building, Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton BN1 9PS, UK
| | - Pamela J. Green
- Delaware Biotechnology Institute, Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19711, USA
| |
Collapse
|
119
|
Feigenbutz M, Jones R, Besong TMD, Harding SE, Mitchell P. Assembly of the yeast exoribonuclease Rrp6 with its associated cofactor Rrp47 occurs in the nucleus and is critical for the controlled expression of Rrp47. J Biol Chem 2013; 288:15959-70. [PMID: 23580640 PMCID: PMC3668751 DOI: 10.1074/jbc.m112.445759] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Rrp6 is a key catalytic subunit of the nuclear RNA exosome that plays a pivotal role in the processing, degradation, and quality control of a wide range of cellular RNAs. Here we report our findings on the assembly of the complex involving Rrp6 and its associated protein Rrp47, which is required for many Rrp6-mediated RNA processes. Recombinant Rrp47 is expressed as a non-globular homodimer. Analysis of the purified recombinant Rrp6·Rrp47 complex revealed a heterodimer, suggesting that Rrp47 undergoes a structural reconfiguration upon interaction with Rrp6. Studies using GFP fusion proteins show that Rrp6 and Rrp47 are localized to the yeast cell nucleus independently of one another. Consistent with this data, Rrp6, but not Rrp47, is found associated with the nuclear import adaptor protein Srp1. We show that the interaction with Rrp6 is critical for Rrp47 stability in vivo; in the absence of Rrp6, newly synthesized Rrp47 is rapidly degraded in a proteasome-dependent manner. These data resolve independent nuclear import routes for Rrp6 and Rrp47, reveal a structural reorganization of Rrp47 upon its interaction with Rrp6, and demonstrate a proteasome-dependent mechanism that efficiently suppresses the expression of Rrp47 in the absence of Rrp6.
Collapse
Affiliation(s)
- Monika Feigenbutz
- Molecular Biology and Biotechnology Department, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | | | | | | | | |
Collapse
|
120
|
Marin-Vicente C, Lyutvinskiy Y, Romans Fuertes P, Zubarev RA, Visa N. The Effects of 5-Fluorouracil on the Proteome of Colon Cancer Cells. J Proteome Res 2013; 12:1969-79. [DOI: 10.1021/pr400052p] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Consuelo Marin-Vicente
- Department of Molecular Biosciences,
The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- Department of Medical Biochemistry
and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Yaroslav Lyutvinskiy
- Department of Medical Biochemistry
and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Patricia Romans Fuertes
- Department of Molecular Biosciences,
The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Roman A. Zubarev
- Department of Medical Biochemistry
and Biophysics, Karolinska Institutet, Stockholm, Sweden
- SciLifeLab, Stockholm, Sweden
| | - Neus Visa
- Department of Molecular Biosciences,
The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
121
|
Rodríguez-Galán O, García-Gómez JJ, de la Cruz J. Yeast and human RNA helicases involved in ribosome biogenesis: current status and perspectives. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:775-90. [PMID: 23357782 DOI: 10.1016/j.bbagrm.2013.01.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 01/15/2013] [Accepted: 01/16/2013] [Indexed: 11/17/2022]
Abstract
Ribosome biogenesis is a fundamental process that is conserved in eukaryotes. Although spectacular progress has been made in understanding mammalian ribosome synthesis in recent years, by far, this process has still been best characterised in the yeast Saccharomyces cerevisiae. In yeast, besides the rRNAs, the ribosomal proteins and the 75 small nucleolar RNAs, more than 250 non-ribosomal proteins, generally referred to as trans-acting factors, are involved in ribosome biogenesis. These factors include nucleases, RNA modifying enzymes, ATPases, GTPases, kinases and RNA helicases. Altogether, they likely confer speed, accuracy and directionality to the ribosome synthesis process, however, the precise functions for most of them are still largely unknown. This review summarises our current knowledge on eukaryotic RNA helicases involved in ribosome biogenesis, particularly focusing on the most recent advances with respect to the molecular roles of these enzymes and their co-factors in yeast and human cells. This article is part of a Special Issue entitled: The Biology of RNA helicases-Modulation for life.
Collapse
|
122
|
Extensive degradation of RNA precursors by the exosome in wild-type cells. Mol Cell 2012; 48:409-21. [PMID: 23000176 DOI: 10.1016/j.molcel.2012.08.018] [Citation(s) in RCA: 192] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 05/23/2012] [Accepted: 08/16/2012] [Indexed: 11/22/2022]
Abstract
The exosome is a complex involved in the maturation of rRNA and sn-snoRNA, in the degradation of short-lived noncoding RNAs, and in the quality control of RNAs produced in mutants. It contains two catalytic subunits, Rrp6p and Dis3p, whose specific functions are not fully understood. We analyzed the transcriptome of combinations of Rrp6p and Dis3p catalytic mutants by high-resolution tiling arrays. We show that Dis3p and Rrp6p have both overlapping and specific roles in degrading distinct classes of substrates. We found that transcripts derived from more than half of intron-containing genes are degraded before splicing. Surprisingly, we also show that the exosome degrades large amounts of tRNA precursors despite the absence of processing defects. These results underscore the notion that large amounts of RNAs produced in wild-type cells are discarded before entering functional pathways and suggest that kinetic competition with degradation proofreads the efficiency and accuracy of processing.
Collapse
|
123
|
Porrua O, Hobor F, Boulay J, Kubicek K, D'Aubenton-Carafa Y, Gudipati RK, Stefl R, Libri D. In vivo SELEX reveals novel sequence and structural determinants of Nrd1-Nab3-Sen1-dependent transcription termination. EMBO J 2012; 31:3935-48. [PMID: 23032188 DOI: 10.1038/emboj.2012.237] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/26/2012] [Indexed: 11/09/2022] Open
Abstract
The Nrd1-Nab3-Sen1 (NNS) complex pathway is responsible for transcription termination of cryptic unstable transcripts and sn/snoRNAs. The NNS complex recognizes short motifs on the nascent RNA, but the presence of these sequences alone is not sufficient to define a functional terminator. We generated a homogeneous set of several hundreds of artificial, NNS-dependent terminators with an in vivo selection approach. Analysis of these terminators revealed novel and extended sequence determinants for transcription termination and NNS complex binding as well as supermotifs that are critical for termination. Biochemical and structural data revealed that affinity and specificity of RNA recognition by Nab3p relies on induced fit recognition implicating an α-helical extension of the RNA recognition motif. Interestingly, the same motifs can be recognized by the NNS or the mRNA termination complex depending on their position relative to the start of transcription, suggesting that they function as general transcriptional insulators to prevent interference between the non-coding and the coding yeast transcriptomes.
Collapse
Affiliation(s)
- Odil Porrua
- Centre de Génétique Moléculaire, Gif sur Yvette, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
124
|
Abstract
Exchange of macromolecules between the nucleus and cytoplasm is a key regulatory event in the expression of a cell's genome. This exchange requires a dedicated transport system: (1) nuclear pore complexes (NPCs), embedded in the nuclear envelope and composed of proteins termed nucleoporins (or "Nups"), and (2) nuclear transport factors that recognize the cargoes to be transported and ferry them across the NPCs. This transport is regulated at multiple levels, and the NPC itself also plays a key regulatory role in gene expression by influencing nuclear architecture and acting as a point of control for various nuclear processes. Here we summarize how the yeast Saccharomyces has been used extensively as a model system to understand the fundamental and highly conserved features of this transport system, revealing the structure and function of the NPC; the NPC's role in the regulation of gene expression; and the interactions of transport factors with their cargoes, regulatory factors, and specific nucleoporins.
Collapse
|
125
|
Hou D, Ruiz M, Andrulis ED. The ribonuclease Dis3 is an essential regulator of the developmental transcriptome. BMC Genomics 2012; 13:359. [PMID: 22853036 PMCID: PMC3434026 DOI: 10.1186/1471-2164-13-359] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 07/11/2012] [Indexed: 11/24/2022] Open
Abstract
Background Dis3 is ribonuclease that acts directly in the processing, turnover, and surveillance of a large number of distinct RNA species. Evolutionarily conserved from eubacteria to eukaryotes and a crucial component of the RNA processing exosome, Dis3 has been shown to be essential in yeast and fly S2 cells. However, it is not known whether Dis3 has essential functions in a metazoan. This study inquires whether Dis3 is required for Drosophila development and viability and how Dis3 regulates the transcriptome in the developing fly. Results Using transgenic flies, we show that Dis3 knock down (Dis3KD) retards growth, induces melanotic tumor formation, and ultimately results in 2nd instar larval lethality. In order to determine whether Dis3KD fly phenotypes were a consequence of disrupting developmentally regulated RNA turnover, we performed RNA deep sequencing analysis on total RNA isolated from developmentally staged animals. Bioinformatic analysis of transcripts from Dis3KD flies reveals substantial transcriptomic changes, most notably down-regulation in early expressed RNAs. Finally, gene ontology analysis of this early stage shows that Dis3 regulates transcripts related to extracellular structure and remodelling, neurogenesis, and nucleotide metabolism. Conclusions We conclude that Dis3 is essential for early Drosophila melanogaster development and has specific and important stage-specific roles in regulating RNA metabolism. In showing for the first time that Dis3 is required for the development of a multicellular organism, our work provides mechanistic insight into how Dis3—either independent of or associated with the RNA processing exosome—participates in cell type-specific RNA turnover in metazoan development.
Collapse
Affiliation(s)
- Dezhi Hou
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | | | | |
Collapse
|
126
|
Kaposi's sarcoma-associated herpesvirus G-protein-coupled receptor prevents AU-rich-element-mediated mRNA decay. J Virol 2012; 86:8859-71. [PMID: 22696654 DOI: 10.1128/jvi.00597-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
During lytic Kaposi's sarcoma-associated herpesvirus (KSHV) infection, host gene expression is severely restricted by a process of global mRNA degradation known as host shutoff, which rededicates translational machinery to the expression of viral proteins. A subset of host mRNAs is spared from shutoff, and a number of these contain cis-acting AU-rich elements (AREs) in their 3' untranslated regions. AREs are found in labile mRNAs encoding cytokines, growth factors, and proto-oncogenes. Activation of the p38/MK2 signal transduction pathway reverses constitutive decay of ARE-mRNAs, resulting in increased protein production. The viral G-protein-coupled receptor (vGPCR) is thought to play an important role in promoting the secretion of angiogenic molecules from KSHV-infected cells during lytic replication, but to date it has not been clear how vGPCR circumvents host shutoff. Here, we demonstrate that vGPCR activates the p38/MK2 pathway and stabilizes ARE-mRNAs, augmenting the levels of their protein products. Using MK2-deficient cells, we demonstrate that MK2 is essential for maximal vGPCR-mediated ARE-mRNA stabilization. ARE-mRNAs are normally delivered to cytoplasmic ribonucleoprotein granules known as processing bodies (PBs) for translational silencing and decay. We demonstrate that PB formation is prevented during KSHV lytic replication or in response to vGPCR-mediated activation of RhoA subfamily GTPases. Together, these data show for the first time that vGPCR impacts gene expression at the posttranscriptional level, coordinating an attack on the host mRNA degradation machinery. By suppressing ARE-mRNA turnover, vGPCR may facilitate escape of certain target mRNAs from host shutoff and allow secretion of angiogenic factors from lytically infected cells.
Collapse
|
127
|
Kelly S, Pak C, Garshasbi M, Kuss A, Corbett AH, Moberg K. New kid on the ID block: neural functions of the Nab2/ZC3H14 class of Cys₃His tandem zinc-finger polyadenosine RNA binding proteins. RNA Biol 2012; 9:555-62. [PMID: 22614829 DOI: 10.4161/rna.20187] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Polyadenosine RNA binding proteins (Pabs) play critical roles in regulating the polyadenylation, nuclear export, stability, and translation of cellular RNAs. Although most Pabs are ubiquitously expressed and are thought to play general roles in post-transcriptional regulation, mutations in genes encoding these factors have been linked to tissue-specific diseases including muscular dystrophy and now intellectual disability (ID). Our recent work defined this connection to ID, as we showed that mutations in the gene encoding the ubiquitously expressed Cys3His tandem zinc-finger (ZnF) Pab, ZC3H14 (Zinc finger protein, CCCH-type, number 14) are associated with non-syndromic autosomal recessive intellectual disability (NS-ARID). This study provided a first link between defects in Pab function and a brain disorder, suggesting that ZC3H14 plays a required role in regulating RNAs in nervous system cells. Here we highlight key questions raised by our study of ZC3H14 and its ortholog in the fruit fly Drosophila melanogaster, dNab2, and comment on future approaches that could provide insights into the cellular and molecular roles of this class of zinc finger-containing Pabs. We propose a summary model depicting how ZC3H14-type Pabs might play particularly important roles in neuronal RNA metabolism.
Collapse
Affiliation(s)
- Seth Kelly
- Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, United States
| | | | | | | | | | | |
Collapse
|
128
|
Vilotti S, Codrich M, Dal Ferro M, Pinto M, Ferrer I, Collavin L, Gustincich S, Zucchelli S. Parkinson's disease DJ-1 L166P alters rRNA biogenesis by exclusion of TTRAP from the nucleolus and sequestration into cytoplasmic aggregates via TRAF6. PLoS One 2012; 7:e35051. [PMID: 22532838 PMCID: PMC3332112 DOI: 10.1371/journal.pone.0035051] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 03/08/2012] [Indexed: 01/21/2023] Open
Abstract
Mutations in PARK7/DJ-1 gene are associated to autosomal recessive early onset forms of Parkinson's disease (PD). Although large gene deletions have been linked to a loss-of-function phenotype, the pathogenic mechanism of missense mutations is less clear. The L166P mutation causes misfolding of DJ-1 protein and its degradation. L166P protein may also accumulate into insoluble cytoplasmic aggregates with a mechanism facilitated by the E3 ligase TNF receptor associated factor 6 (TRAF6). Upon proteasome impairment L166P activates the JNK/p38 MAPK apoptotic pathway by its interaction with TRAF and TNF Receptor Associated Protein (TTRAP). When proteasome activity is blocked in the presence of wild-type DJ-1, TTRAP forms aggregates that are localized to the cytoplasm or associated to nucleolar cavities, where it is required for a correct rRNA biogenesis. In this study we show that in post-mortem brains of sporadic PD patients TTRAP is associated to the nucleolus and to Lewy Bodies, cytoplasmic aggregates considered the hallmark of the disease. In SH-SY5Y neuroblastoma cells, misfolded mutant DJ-1 L166P alters rRNA biogenesis inhibiting TTRAP localization to the nucleolus and enhancing its recruitment into cytoplasmic aggregates with a mechanism that depends in part on TRAF6 activity. This work suggests that TTRAP plays a role in the molecular mechanisms of both sporadic and familial PD. Furthermore, it unveils the existence of an interplay between cytoplasmic and nucleolar aggregates that impacts rRNA biogenesis and involves TRAF6.
Collapse
Affiliation(s)
| | | | - Marco Dal Ferro
- Laboratorio Nazionale Consorzio Interuniversitario Biotecnologie, Trieste, Italy
- Department of Life Sciences (DSV), University of Trieste, Trieste, Italy
| | | | - Isidro Ferrer
- Institute of Neuropathology, Institut d'Investigacio Biomedica de Bellvitge, University Hospital Bellvitge, University of Barcellona, Llbregat, Spain
- SISSA Unit, Italian Institute of Technology (IIT), Trieste, Italy
| | - Licio Collavin
- Laboratorio Nazionale Consorzio Interuniversitario Biotecnologie, Trieste, Italy
- Department of Life Sciences (DSV), University of Trieste, Trieste, Italy
| | - Stefano Gustincich
- SISSA, Sector of Neurobiology, Trieste, Italy
- Institute of Neuropathology, Institut d'Investigacio Biomedica de Bellvitge, University Hospital Bellvitge, University of Barcellona, Llbregat, Spain
- SISSA Unit, Italian Institute of Technology (IIT), Trieste, Italy
- * E-mail: (SG); (SZ)
| | - Silvia Zucchelli
- SISSA, Sector of Neurobiology, Trieste, Italy
- Institute of Neuropathology, Institut d'Investigacio Biomedica de Bellvitge, University Hospital Bellvitge, University of Barcellona, Llbregat, Spain
- SISSA Unit, Italian Institute of Technology (IIT), Trieste, Italy
- * E-mail: (SG); (SZ)
| |
Collapse
|
129
|
Davidson L, Kerr A, West S. Co-transcriptional degradation of aberrant pre-mRNA by Xrn2. EMBO J 2012; 31:2566-78. [PMID: 22522706 PMCID: PMC3365414 DOI: 10.1038/emboj.2012.101] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 03/27/2012] [Indexed: 11/09/2022] Open
Abstract
Eukaryotic protein-coding genes are transcribed as pre-mRNAs that are matured by capping, splicing and cleavage and polyadenylation. Although human pre-mRNAs can be long and complex, containing multiple introns and many alternative processing sites, they are usually processed co-transcriptionally. Mistakes during nuclear mRNA maturation could lead to potentially harmful transcripts that are important to eliminate. However, the processes of human pre-mRNA degradation are not well characterised in the human nucleus. We have studied how aberrantly processed pre-mRNAs are degraded and find a role for the 5'→3' exonuclease, Xrn2. Xrn2 associates with and co-transcriptionally degrades nascent β-globin transcripts, mutated to inhibit splicing or 3' end processing. Importantly, we provide evidence that many endogenous pre-mRNAs are also co-transcriptionally degraded by Xrn2 when their processing is inhibited by Spliceostatin A. Our data therefore establish a previously unknown function for Xrn2 and an important further aspect of pre-mRNA metabolism that occurs co-transcriptionally.
Collapse
Affiliation(s)
- Lee Davidson
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | | | | |
Collapse
|
130
|
Abstract
Transcription of protein-coding genes by RNA polymerase II is a repetitive, cyclic process that enables synthesis of multiple RNA molecules from the same template. The transcription cycle consists of three main stages, initiation, elongation and termination. Each of these phases is intimately coupled to a specific step in pre-mRNA processing; 5´ capping, splicing and 3´-end formation, respectively. In this article, we discuss the recent concept that cotranscriptional checkpoints operate during mRNA biogenesis to ensure that nonfunctional mRNAs with potentially deleterious effects for the cell are not produced or exported to the cytoplasm for translation.
Collapse
Affiliation(s)
- Sérgio F de Almeida
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | | |
Collapse
|
131
|
SKIV2L mutations cause syndromic diarrhea, or trichohepatoenteric syndrome. Am J Hum Genet 2012; 90:689-92. [PMID: 22444670 DOI: 10.1016/j.ajhg.2012.02.009] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 01/23/2012] [Accepted: 02/10/2012] [Indexed: 02/08/2023] Open
Abstract
Syndromic diarrhea (or trichohepatoenteric syndrome) is a rare congenital bowel disorder characterized by intractable diarrhea and woolly hair, and it has recently been associated with mutations in TTC37. Although databases report TTC37 as being the human ortholog of Ski3p, one of the yeast Ski-complex cofactors, this lead was not investigated in initial studies. The Ski complex is a multiprotein complex required for exosome-mediated RNA surveillance, including the regulation of normal mRNA and the decay of nonfunctional mRNA. Considering the fact that TTC37 is homologous to Ski3p, we explored a gene encoding another Ski-complex cofactor, SKIV2L, in six individuals presenting with typical syndromic diarrhea without variation in TTC37. We identified mutations in all six individuals. Our results show that mutations in genes encoding cofactors of the human Ski complex cause syndromic diarrhea, establishing a link between defects of the human exosome complex and a Mendelian disease.
Collapse
|
132
|
Rapid cytoplasmic turnover of yeast ribosomes in response to rapamycin inhibition of TOR. Mol Cell Biol 2012; 32:2135-44. [PMID: 22451491 DOI: 10.1128/mcb.06763-11] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The target of rapamycin (TOR) pathway is the central regulator of cell growth in eukaryotes. Inhibition of TOR by rapamycin elicits changes in translation attributed mainly to altered translation initiation and repression of the synthesis of new ribosomes. Using quantitative analysis of rRNA, we found that the number of existing ribosomes present in a Saccharomyces cerevisiae culture during growth in rich medium rapidly decreases by 40 to 60% when the cells are treated with rapamycin. This process is not appreciably affected by a suppression of autophagy, previously implicated in degradation of ribosomes in eukaryotes upon starvation. Yeast cells deficient in the exosome function or lacking its cytoplasmic Ski cofactors show an abnormal pattern of rRNA degradation, particularly in the large ribosomal subunit, and accumulate rRNA fragments after rapamycin treatment and during diauxic shift. The exosome and Ski proteins are thus important for processing of rRNA decay intermediates, although they are probably not responsible for initiating rRNA decay. The role of cytoplasmic nucleases in rapamycin-induced rRNA degradation suggests mechanistic parallels of this process to nutrient-controlled ribosome turnover in prokaryotes. We propose that ribosome content is regulated dynamically in eukaryotes by TOR through both ribosome synthesis and the cytoplasmic turnover of mature ribosomes.
Collapse
|
133
|
Stoppel R, Meurer J. The cutting crew - ribonucleases are key players in the control of plastid gene expression. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1663-73. [PMID: 22140236 DOI: 10.1093/jxb/err401] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Chloroplast biogenesis requires constant adjustment of RNA homeostasis under conditions of on-going developmental and environmental change and its regulation is achieved mainly by post-transcriptional control mechanisms mediated by various nucleus-encoded ribonucleases. More than 180 ribonucleases are annotated in Arabidopsis, but only 17 are predicted to localize to the chloroplast. Although different ribonucleases act at different RNA target sites in vivo, most nucleases that attack RNA are thought to lack intrinsic cleavage specificity and show non-specific activity in vitro. In vivo, specificity is thought to be imposed by auxiliary RNA-binding proteins, including members of the huge pentatricopeptide repeat family, which protect RNAs from non-specific nucleolytic attack by masking otherwise vulnerable sites. RNA stability is also influenced by secondary structure, polyadenylation, and ribosome binding. Ribonucleases may cleave at internal sites (endonucleases) or digest successively from the 5' or 3' end of the polynucleotide chain (exonucleases). In bacteria, RNases act in the maturation of rRNA and tRNA precursors, as well as in initiating the degradation of mRNAs and small non-coding RNAs. Many ribonucleases in the chloroplasts of higher plants possess homologies to their bacterial counterparts, but their precise functions have rarely been described. However, many ribonucleases present in the chloroplast process polycistronic rRNAs, tRNAs, and mRNAs. The resulting production of monocistronic, translationally competent mRNAs may represent an adaptation to the eukaryotic cellular environment. This review provides a basic overview of the current knowledge of RNases in plastids and highlights gaps to stimulate future studies.
Collapse
Affiliation(s)
- Rhea Stoppel
- Biozentrum der Ludwig-Maximilians-Universität, Plant Molecular Biology/Botany, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | | |
Collapse
|
134
|
Mühlemann O, Jensen TH. mRNP quality control goes regulatory. Trends Genet 2012; 28:70-7. [DOI: 10.1016/j.tig.2011.11.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 11/04/2011] [Accepted: 11/08/2011] [Indexed: 01/19/2023]
|
135
|
Romero-López C, Barroso-delJesus A, Menendez P, Berzal-Herranz A. Analysis of mRNA abundance and stability by ribonuclease protection assay. Methods Mol Biol 2012; 809:491-503. [PMID: 22113296 DOI: 10.1007/978-1-61779-376-9_32] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Gene expression is a multi-step process, which proceeds from DNA through RNA to protein. The tight regulation of this process is essential for overall cellular integrity and physiological homeostasis. Regulation of the messenger RNA (mRNA) levels has emerged as a crucial event in the modulation of the expression of genetic information. The mechanisms by which this process occurs have been extensively studied and begin to be much better understood. They involve a network of complex pathways that use intrinsic features of the target mRNA, like stability, to control its relative abundance in the cytoplasm. Thus, the analysis of the mRNA stability and abundance is essential to properly undertake gene expression studies. This chapter describes the ribonuclease protection assay, a widely accepted approach to evaluate the quality and amount of a target mRNA. This technique displays a higher sensitivity than classical Northern blot analysis and may be used either individually or in combination with other quantitative methods, such as quantitative reverse-transcription PCR, as complementary procedures rendering more complete and reliable information on gene expression.
Collapse
Affiliation(s)
- Cristina Romero-López
- Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, Parque Tecnológico de Ciencias de la Salud, Av del Conocimiento s/n, Granada, Spain
| | | | | | | |
Collapse
|
136
|
Lubas M, Chlebowski A, Dziembowski A, Jensen TH. Biochemistry and Function of RNA Exosomes. EUKARYOTIC RNASES AND THEIR PARTNERS IN RNA DEGRADATION AND BIOGENESIS, PART A 2012; 31:1-30. [DOI: 10.1016/b978-0-12-404740-2.00001-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
137
|
Jarboui MA, Wynne K, Elia G, Hall WW, Gautier VW. Proteomic profiling of the human T-cell nucleolus. Mol Immunol 2011; 49:441-52. [DOI: 10.1016/j.molimm.2011.09.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 08/30/2011] [Accepted: 09/06/2011] [Indexed: 12/25/2022]
|
138
|
Williams CW, Elmendorf HG. Identification and analysis of the RNA degrading complexes and machinery of Giardia lamblia using an in silico approach. BMC Genomics 2011; 12:586. [PMID: 22126454 PMCID: PMC3282835 DOI: 10.1186/1471-2164-12-586] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 11/29/2011] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND RNA degradation is critical to the survival of all cells. With increasing evidence for pervasive transcription in cells, RNA degradation has gained recognition as a means of regulating gene expression. Yet, RNA degradation machinery has been studied extensively in only a few eukaryotic organisms, including Saccharomyces cerevisiae and humans. Giardia lamblia is a parasitic protist with unusual genomic traits: it is binucleated and tetraploid, has a very compact genome, displays a theme of genomic minimalism with cellular machinery commonly comprised of a reduced number of protein components, and has a remarkably large population of long, stable, noncoding, antisense RNAs. RESULTS Here we use in silico approaches to investigate the major RNA degradation machinery in Giardia lamblia and compare it to a broad array of other parasitic protists. We have found key constituents of the deadenylation and decapping machinery and of the 5'-3' RNA degradation pathway. We have similarly found that all of the major 3'-5' RNA degradation pathways are present in Giardia, including both exosome-dependent and exosome-independent machinery. However, we observe significant loss of RNA degradation machinery genes that will result in important differences in the protein composition, and potentially functionality, of the various RNA degradation pathways. This is most apparent in the exosome, the central mediator of 3'-5' degradation, which apparently contains an altered core configuration in both Giardia and Plasmodium, with only four, instead of the canonical six, distinct subunits. Additionally the exosome in Giardia is missing both the Rrp6, Nab3, and Nrd1 proteins, known to be key regulators of noncoding transcript stability in other cells. CONCLUSIONS These findings suggest that although the full complement of the major RNA degradation mechanisms were present - and likely functional - early in eukaryotic evolution, the composition and function of the complexes is more variable than previously appreciated. We suggest that the missing components of the exosome complex provide an explanation for the stable abundance of sterile RNA species in Giardia.
Collapse
Affiliation(s)
| | - Heidi G Elmendorf
- Department of Biology, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
139
|
Abstract
Antibody maturation requires class switch recombination (CSR) and somatic hypermutation (SHM), both of which are initiated by activation-induced cytidine deaminase (AID). AID deaminates cytosine residues resulting in mismatches that are differentially processed to produce double-strand breaks in Ig switch (S) regions that lead to CSR, or to point mutations in variable (V) exons resulting in SHM. Although AID was first thought to be Ig-specific, recent work indicates that it also targets a diverse group of non-Ig loci, including genes such as Bcl6 and c-myc, whose modification by AID results in lymphoma-associated mutations and translocations. Here, we review the recent literature on AID targeting and the role for transcriptional stalling in recruitment of this enzyme to Ig and non-Ig loci. We propose a model for AID recruitment based on transcriptional stalling, which reconciles several of the key features of SHM, CSR, and lymphoma-associated translocation.
Collapse
Affiliation(s)
- Rushad Pavri
- Laboratory of Molecular Immunology, The Rockefeller University, New York, USA
| | | |
Collapse
|
140
|
Abstract
Polyadenylation [poly(A)] signals (PAS) are a defining feature of eukaryotic protein-coding genes. The central sequence motif AAUAAA was identified in the mid-1970s and subsequently shown to require flanking, auxiliary elements for both 3'-end cleavage and polyadenylation of premessenger RNA (pre-mRNA) as well as to promote downstream transcriptional termination. More recent genomic analysis has established the generality of the PAS for eukaryotic mRNA. Evidence for the mechanism of mRNA 3'-end formation is outlined, as is the way this RNA processing reaction communicates with RNA polymerase II to terminate transcription. The widespread phenomenon of alternative poly(A) site usage and how this interrelates with pre-mRNA splicing is then reviewed. This shows that gene expression can be drastically affected by how the message is ended. A central theme of this review is that while genomic analysis provides generality for the importance of PAS selection, detailed mechanistic understanding still requires the direct analysis of specific genes by genetic and biochemical approaches.
Collapse
Affiliation(s)
- Nick J Proudfoot
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom.
| |
Collapse
|
141
|
miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J 2011; 30:4414-22. [PMID: 21964070 DOI: 10.1038/emboj.2011.359] [Citation(s) in RCA: 814] [Impact Index Per Article: 58.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 08/29/2011] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) are ∼22 nt non-coding RNAs that typically bind to the 3' UTR of target mRNAs in the cytoplasm, resulting in mRNA destabilization and translational repression. Here, we report that miRNAs can also regulate gene expression by targeting non-coding antisense transcripts in human cells. Specifically, we show that miR-671 directs cleavage of a circular antisense transcript of the Cerebellar Degeneration-Related protein 1 (CDR1) locus in an Ago2-slicer-dependent manner. The resulting downregulation of circular antisense has a concomitant decrease in CDR1 mRNA levels, independently of heterochromatin formation. This study provides the first evidence for non-coding antisense transcripts as functional miRNA targets, and a novel regulatory mechanism involving a positive correlation between mRNA and antisense circular RNA levels.
Collapse
|
142
|
Perna D, Fagà G, Verrecchia A, Gorski MM, Barozzi I, Narang V, Khng J, Lim KC, Sung WK, Sanges R, Stupka E, Oskarsson T, Trumpp A, Wei CL, Müller H, Amati B. Genome-wide mapping of Myc binding and gene regulation in serum-stimulated fibroblasts. Oncogene 2011; 31:1695-709. [PMID: 21860422 PMCID: PMC3324106 DOI: 10.1038/onc.2011.359] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The transition from quiescence to proliferation is a key regulatory step that can be induced by serum stimulation in cultured fibroblasts. The transcription factor Myc is directly induced by serum mitogens and drives a secondary gene expression program that remains largely unknown. Using mRNA profiling, we identify close to 300 Myc-dependent serum response (MDSR) genes, which are induced by serum in a Myc-dependent manner in mouse fibroblasts. Mapping of genomic Myc-binding sites by ChIP-seq technology revealed that most MDSR genes were directly targeted by Myc, but represented a minor fraction (5.5%) of all Myc-bound promoters (which were 22.4% of all promoters). Other target loci were either induced by serum in a Myc-independent manner, were not significantly regulated or were negatively regulated. MDSR gene products were involved in a variety of processes, including nucleotide biosynthesis, ribosome biogenesis, DNA replication and RNA control. Of the 29 MDSR genes targeted by RNA interference, three showed a requirement for cell-cycle entry upon serum stimulation and 11 for long-term proliferation and/or survival. Hence, proper coordination of key regulatory and biosynthetic pathways following mitogenic stimulation relies upon the concerted regulation of multiple Myc-dependent genes.
Collapse
Affiliation(s)
- D Perna
- Department of Experimental Oncology, European Institute of Oncology, IFOM-IEO Campus, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Hwang J, Maquat LE. Nonsense-mediated mRNA decay (NMD) in animal embryogenesis: to die or not to die, that is the question. Curr Opin Genet Dev 2011; 21:422-30. [PMID: 21550797 PMCID: PMC3150509 DOI: 10.1016/j.gde.2011.03.008] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 03/24/2011] [Accepted: 03/25/2011] [Indexed: 11/28/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) is a well-studied cellular quality-control pathway. It decreases the half-lives of eukaryotic mRNAs that aberrantly contain premature termination codons and additionally regulates an estimated 10-20% of normal transcripts. NMD factors play crucial roles during embryogenesis in many animals. Here, we review data indicating that NMD factors are required for proper embryogenesis by discussing the abnormal developmental phenotypes that result when the abundance of individual NMD factors is either downregulated or completely eliminated. We conclude that while NMD per se affects the embryogenesis of all animals, it is required to avoid embryonic lethality in only some animals. The critical roles of many NMD factors in other metabolic pathways undoubtedly also contribute to embryonic development if not viability.
Collapse
Affiliation(s)
- Jungwook Hwang
- Department of Biochemistry and Biophysics and the Center for RNA Biology, School of Medicine and Dentistry, 601 Elmwood Avenue, Box 712, University of Rochester, Rochester, New York, 14642, USA
| | - Lynne E. Maquat
- Department of Biochemistry and Biophysics and the Center for RNA Biology, School of Medicine and Dentistry, 601 Elmwood Avenue, Box 712, University of Rochester, Rochester, New York, 14642, USA
| |
Collapse
|
144
|
Januszyk K, Liu Q, Lima CD. Activities of human RRP6 and structure of the human RRP6 catalytic domain. RNA (NEW YORK, N.Y.) 2011; 17:1566-77. [PMID: 21705430 PMCID: PMC3153979 DOI: 10.1261/rna.2763111] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 05/19/2011] [Indexed: 05/24/2023]
Abstract
The eukaryotic RNA exosome is a highly conserved multi-subunit complex that catalyzes degradation and processing of coding and noncoding RNA. A noncatalytic nine-subunit exosome core interacts with Rrp44 and Rrp6, two subunits that possess processive and distributive 3'-to-5' exoribonuclease activity, respectively. While both Rrp6 and Rrp44 are responsible for RNA processing in budding yeast, Rrp6 may play a more prominent role in processing, as it has been demonstrated to be inhibited by stable RNA secondary structure in vitro and because the null allele in budding yeast leads to the buildup of specific structured RNA substrates. Human RRP6, otherwise known as PM/SCL-100 or EXOSC10, shares sequence similarity to budding yeast Rrp6 and is proposed to catalyze 3'-to-5' exoribonuclease activity on a variety of nuclear transcripts including ribosomal RNA subunits, RNA that has been poly-adenylated by TRAMP, as well as other nuclear RNA transcripts destined for processing and/or destruction. To characterize human RRP6, we expressed the full-length enzyme as well as truncation mutants that retain catalytic activity, compared their activities to analogous constructs for Saccharomyces cerevisiae Rrp6, and determined the X-ray structure of a human construct containing the exoribonuclease and HRDC domains that retains catalytic activity. Structural data show that the human active site is more exposed when compared to the yeast structure, and biochemical data suggest that this feature may play a role in the ability of human RRP6 to productively engage and degrade structured RNA substrates more effectively than the analogous budding yeast enzyme.
Collapse
Affiliation(s)
- Kurt Januszyk
- Structural Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Quansheng Liu
- Structural Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Christopher D. Lima
- Structural Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| |
Collapse
|
145
|
Budini M, Buratti E. TDP-43 autoregulation: implications for disease. J Mol Neurosci 2011; 45:473-9. [PMID: 21681666 DOI: 10.1007/s12031-011-9573-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 06/06/2011] [Indexed: 12/13/2022]
Abstract
TDP-43 is a nuclear protein that has been shown to play a central role in RNA metabolism. In recent years, this protein has become very important in the study of neurodegenerative diseases such as amyotrophic lateral sclerosis and frontotemporal lobar degeneration (FTLD). These diseases share, as common feature, the presence of abnormally aggregated, posttranslationally modified, and mislocalized TDP-43 in the cell cytoplasm of both neurons and glial cells. A major question in TDP-43 research is represented by the investigation of the mechanism(s) that trigger this process and its potential consequences. Regarding the first issue, it is likely that relative protein expression levels might play an important role as has been demonstrated for many protein aggregation processes. In fact, the eventual misregulation of TDP-43 expression leading to enhanced protein production might well correlate with enhanced aggregation, and thus results in increasingly harmful gain- or loss-of-function effects on cellular metabolism. For this reason, it is important to determine the mechanisms that act to regulate TDP-43 levels within the cell. In normal conditions, it is now clear that TDP-43 can modulate its own protein levels through a negative feedback loop triggered by binding to its own RNA in the 3'UTR region leading to mRNA degradation. This work discusses how an eventual disruption of this mechanism might affect TDP-43 pathology, focusing in particular on its association with stress granules and intrinsic aggregation properties.
Collapse
Affiliation(s)
- Mauricio Budini
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34012, Trieste, Italy
| | | |
Collapse
|
146
|
Antisense RNA polymerase II divergent transcripts are P-TEFb dependent and substrates for the RNA exosome. Proc Natl Acad Sci U S A 2011; 108:10460-5. [PMID: 21670248 DOI: 10.1073/pnas.1106630108] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Divergent transcription occurs at the majority of RNA polymerase II (RNAPII) promoters in mouse embryonic stem cells (mESCs), and this activity correlates with CpG islands. Here we report the characterization of upstream antisense transcription in regions encoding transcription start site associated RNAs (TSSa-RNAs) at four divergent CpG island promoters: Isg20l1, Tcea1, Txn1, and Sf3b1. We find that upstream antisense RNAs (uaRNAs) have distinct capped 5' termini and heterogeneous nonpolyadenylated 3' ends. uaRNAs are short-lived with average half-lives of 18 minutes and are present at 1-4 copies per cell, approximately one RNA per DNA template. Exosome depletion stabilizes uaRNAs. These uaRNAs are probably initiation products because their capped termini correlate with peaks of paused RNAPII. The pausing factors NELF and DSIF are associated with these antisense polymerases and their sense partners. Knockdown of either NELF or DSIF results in an increase in the levels of uaRNAs. Consistent with P-TEFb controlling release from pausing, treatment with its inhibitor, flavopiridol, decreases uaRNA and nascent mRNA transcripts with similar kinetics. Finally, Isg20l1 induction reveals equivalent increases in transcriptional activity in sense and antisense directions. Together these data show divergent polymerases are regulated after P-TEFb recruitment with uaRNA levels controlled by the exosome.
Collapse
|
147
|
Zucconi BE, Wilson GM. Modulation of neoplastic gene regulatory pathways by the RNA-binding factor AUF1. FRONT BIOSCI-LANDMRK 2011; 16:2307-25. [PMID: 21622178 PMCID: PMC3589912 DOI: 10.2741/3855] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The mRNA-binding protein AUF1 regulates the expression of many key players in cancer including proto-oncogenes, regulators of apoptosis and the cell cycle, and pro-inflammatory cytokines, principally by directing the decay kinetics of their encoded mRNAs. Most studies support an mRNA-destabilizing role for AUF1, although other findings suggest additional functions for this factor. In this review, we explore how changes in AUF1 isoform distribution, subcellular localization, and post-translational protein modifications can influence the metabolism of targeted mRNAs. However, several lines of evidence also support a role for AUF1 in the initiation and/or development of cancer. Many AUF1-targeted transcripts encode products that control pro- and anti-oncogenic processes. Also, overexpression of AUF1 enhances tumorigenesis in murine models, and AUF1 levels are enhanced in some tumors. Finally, signaling cascades that modulate AUF1 function are deregulated in some cancerous tissues. Together, these features suggest that AUF1 may play a prominent role in regulating the expression of many genes that can contribute to tumorigenic phenotypes, and that this post-transcriptional regulatory control point may be subverted by diverse mechanisms in neoplasia.
Collapse
Affiliation(s)
- Beth E. Zucconi
- Department of Biochemistry and Molecular Biology and Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, 108 N. Greene St., Baltimore, MD 21201
| | - Gerald M. Wilson
- Department of Biochemistry and Molecular Biology and Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, 108 N. Greene St., Baltimore, MD 21201
| |
Collapse
|
148
|
Preker P, Almvig K, Christensen MS, Valen E, Mapendano CK, Sandelin A, Jensen TH. PROMoter uPstream Transcripts share characteristics with mRNAs and are produced upstream of all three major types of mammalian promoters. Nucleic Acids Res 2011; 39:7179-93. [PMID: 21596787 PMCID: PMC3167610 DOI: 10.1093/nar/gkr370] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
PROMoter uPstream Transcripts (PROMPTs) were identified as a new class of human RNAs, which are heterologous in length and produced only upstream of the promoters of active protein-coding genes. Here, we show that PROMPTs carry 3′-adenosine tails and 5′-cap structures. However, unlike mRNAs, PROMPTs are largely nuclear and rapidly turned over by the RNA exosome. PROMPT-transcribing DNA is occupied by RNA polymerase II (RNAPII) complexes with serine 2 phosphorylated C-terminal domains (CTDs), mimicking that of the associated genic region. Thus, the inefficient elongation capacity of PROMPT transcription cannot solely be assigned to poor CTD phosphorylation. Conditions that reduce gene transcription increase RNAPII occupancy of the upstream PROMPT region, suggesting that they reside in a common transcription compartment. Surprisingly, gene promoters that are actively transcribed by RNAPI or RNAPIII also produce PROMPTs that are targeted by the exosome. RNAPIII PROMPTs bear hallmarks of RNAPII promoter-associated RNAs, explaining the physical presence of RNAPII upstream of many RNAPIII-transcribed genes. We propose that RNAPII activity upstream gene promoters are wide-spread and integral to the act of gene transcription.
Collapse
Affiliation(s)
- Pascal Preker
- Department of Molecular Biology, Centre for mRNP Biogenesis and Metabolism, Aarhus University, C.F. Møllers Allé, Building 1130, 8000 Aarhus, Denmark
| | | | | | | | | | | | | |
Collapse
|
149
|
Stavnezer J. Complex regulation and function of activation-induced cytidine deaminase. Trends Immunol 2011; 32:194-201. [PMID: 21493144 PMCID: PMC3090464 DOI: 10.1016/j.it.2011.03.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 03/05/2011] [Accepted: 03/08/2011] [Indexed: 01/10/2023]
Abstract
Activation-induced cytidine deaminase (AID) instigates mutations and DNA breaks in Ig genes that undergo somatic hypermutation and class switch recombination during B cell activation in response to immunization and infection. This review discusses how AID expression and activity are regulated, including recent discoveries of AID-interacting proteins that might recruit AID to Ig genes, and allow it to target both DNA strands. Also discussed is the accumulating evidence that AID binds to, mutates, and creates breaks at numerous non-Ig sites in the genome, which initiates cell transformation and malignancies.
Collapse
Affiliation(s)
- Janet Stavnezer
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
150
|
Nurmohamed S, Vincent HA, Titman CM, Chandran V, Pears MR, Du D, Griffin JL, Callaghan AJ, Luisi BF. Polynucleotide phosphorylase activity may be modulated by metabolites in Escherichia coli. J Biol Chem 2011; 286:14315-23. [PMID: 21324911 PMCID: PMC3077632 DOI: 10.1074/jbc.m110.200741] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 01/14/2011] [Indexed: 11/30/2022] Open
Abstract
RNA turnover is an essential element of cellular homeostasis and response to environmental change. Whether the ribonucleases that mediate RNA turnover can respond to cellular metabolic status is an unresolved question. Here we present evidence that the Krebs cycle metabolite citrate affects the activity of Escherichia coli polynucleotide phosphorylase (PNPase) and, conversely, that cellular metabolism is affected widely by PNPase activity. An E. coli strain that requires PNPase for viability has suppressed growth in the presence of increased citrate concentration. Transcriptome analysis reveals a PNPase-mediated response to citrate, and PNPase deletion broadly impacts on the metabolome. In vitro, citrate directly binds and modulates PNPase activity, as predicted by crystallographic data. Binding of metal-chelated citrate in the active site at physiological concentrations appears to inhibit enzyme activity. However, metal-free citrate is bound at a vestigial active site, where it stimulates PNPase activity. Mutagenesis data confirmed a potential role of this vestigial site as an allosteric binding pocket that recognizes metal-free citrate. Collectively, these findings suggest that RNA degradative pathways communicate with central metabolism. This communication appears to be part of a feedback network that may contribute to global regulation of metabolism and cellular energy efficiency.
Collapse
Affiliation(s)
- Salima Nurmohamed
- From the Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA and
| | - Helen A. Vincent
- Biophysics Laboratories, School of Biological Sciences, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth PO1 2DY, United Kingdom
| | - Christopher M. Titman
- From the Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA and
| | - Vidya Chandran
- From the Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA and
| | - Michael R. Pears
- From the Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA and
| | - Dijun Du
- From the Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA and
| | - Julian L. Griffin
- From the Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA and
| | - Anastasia J. Callaghan
- Biophysics Laboratories, School of Biological Sciences, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth PO1 2DY, United Kingdom
| | - Ben F. Luisi
- From the Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA and
| |
Collapse
|